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A SIMPLE, FAST AND EFFICIENT APPROACH TO DENOISAICKING: JOINT DEMOSAICKING AND DENOISING
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In most digital cameras, color images are captured by a sensor overlaid by the Bayer color filter array (CFA). Denoisaicking (joint demosaicking and denoising) consists in reconstructing a color image from the noisy "Bayerized" data output by the sensor. We show that the frequency analysis of the sampling pattern induced by the Bayer CFA provides a simple way to reconstruct the luminance and chrominance channels of the image. The process is reduced to adequate linear filtering operations and denoising of the grayscale luminance image.

INTRODUCTION

Color images are usually acquired by digital cameras using a single sensor on which a color filter array (CFA) is overlaid [START_REF] Gunturk | Demosaicking: Color filter array interpolation[END_REF]. The most popular is the Bayer CFA, which equips almost all cameras nowadays. In order to reconstruct a full-color image from the raw data delivered by the sensor, an interpolation process called demosaicking is performed. There is an abundant literature on demosaicking and we direct the readers to the broad and recent survey by Menon [START_REF] Menon | Color image reconstruction for digital cameras[END_REF]. However, most demosaicking methods are developed under the unrealistic assumption of noise-free data. In the presence of noise, the performances of the algorithms degrade drastically, since their sophisticated nonlinear mechanisms are generally not robust to noise. Moreover, denoising after demosaicking is untractable, because demosaicking distorts the characteristics of the noise in a complex and hardly computable form. Thus, the joint problem of demosaicking and denoising the raw images of cameras, for which we coin the term denoisaicking 1 , has to be handled as a whole [START_REF] Hirakawa | Joint demosaicing and denoising[END_REF][START_REF] Hirakawa | A framework for wavelet-based analysis and processing of color filter array images with applications to denoising and demosaicking[END_REF][START_REF] Zhang | Color reproduction from noisy CFA data of single sensor digital cameras[END_REF][START_REF] Paliy | Spatially adaptive color filter array interpolation for noiseless and noisy data[END_REF][START_REF] Paliy | Denoising and interpolation of noisy Bayer data with adaptive cross-color filters[END_REF][START_REF] Menon | Joint demosaicking and denoising with space-varying filters[END_REF].

The denoisaicking problem can be formulated as follows. Let us first introduce some notations. Boldface letters denote vectors, e.g. k = [k 1 , k 2 ] T ∈ Z 2 . We define the color image u = (u[k]) k∈Z 2 as the ground-truth to be estimated by denoi- saicking. For every k, u

[k] = u R [k], u G [k], u B [k]
T is the color of the pixel of u at location k. In this paper, we adopt an additive white Gaussian noise (AWGN) model; that is, we have at our disposal the noisaicked image v such that

v[k] = u X [k] + ε[k], ∀k ∈ Z 2 , (1) 
where X ∈ {R, G, B} is the color of the filter in the Bayer pattern at location k (see Fig. 1a), ε[k] ∼ N (0, σ 2 ) for every k and σ 2 is the noise variance. In real conditions, the AWGN assumption is not met; the real noise is more accurately modeled by the sum of a Gaussian component and a signal-dependent Poissonian component and by taking into account the clipping due to the limited dynamic range of the sensor [START_REF] Foi | Practical Poissonian-Gaussian noise modeling and fitting for singleimage raw-data[END_REF]. Moreover, the observed values are the photon counts, which have to be tone mapped/gamma corrected and this step modifies the noise characteristics. However, homomorphic nonlinear transformations can be efficiently employed for variance stabilization [START_REF] Foi | Clipped noisy images: heteroskedastic modeling and practical denoising[END_REF], so that the problem can be recast in the AWGN context. The article is organized as follows. The sequel of this section is devoted to a brief survey of works on denoisaicking. In sect. 2, we recall the spatio-spectral model of Bayer sampling of Alleysson et al. and the demosaicking approach by frequency selection of Dubois. We extend these principles to the noisy case and describe the proposed denoisaicking method in sect. 3. It is validated by experiments in sect. 4.

Hirakawa and Parks addressed denoisaicking with a total least squares approach [START_REF] Hirakawa | Joint demosaicing and denoising[END_REF]. A different method consists in applying a wavelet transform to the noisy data. Then, the wavelet coefficients of the luminance and chrominance components are estimated and denoised [START_REF] Hirakawa | A framework for wavelet-based analysis and processing of color filter array images with applications to denoising and demosaicking[END_REF]. In [START_REF] Zhang | Color reproduction from noisy CFA data of single sensor digital cameras[END_REF], the color differences are estimated with a MMSE approach that exploits both spectral and spatial correlations, to simultaneously decrease the noise and the interpolation error. Then, the CFA channel-dependent noise is removed with a wavelet-based approach. In [START_REF] Paliy | Spatially adaptive color filter array interpolation for noiseless and noisy data[END_REF], Paliy et al. proposed to decorrelate estimates of the color intensities by a color transformation, then to directionally interpolate and denoise them using anisotropic adaptive filters. In [START_REF] Paliy | Denoising and interpolation of noisy Bayer data with adaptive cross-color filters[END_REF], directional varying-scale joint denoising/interpolation filtering kernels are applied directly on the noisaicked image. This approach performs worse than the one in [START_REF] Paliy | Spatially adaptive color filter array interpolation for noiseless and noisy data[END_REF], by the same authors, although it is faster. More recently, Menon et al. designed space-varying filters to minimize a quadratic regularization term [START_REF] Menon | Joint demosaicking and denoising with space-varying filters[END_REF]. The demosaicked image is denoised by thresholding the coefficients of its undecimated wavelet transform. An alternative is to first denoise the noisaicked image before applying a classical demosaicking method. Traditional denoising approaches for grayscale images cannot be applied, because the mosaic structure violates the assumptions about local smoothness these methods rely on. Zhang et al. proposed a denoising method based on the principal component analysis (PCA) for shrinkage on image blocks [START_REF] Zhang | PCA-based spatially adpative denoising of CFA images for single-sensor digital cameras[END_REF]. In [START_REF] Danielyan | Cross-color BM3D filtering of noisy raw data[END_REF], the stateof-the-art BM3D denoising method [START_REF] Dabov | Image denoising by sparse 3D transform-domain collaborative filtering[END_REF] was extended to noisaicked images, using cross-color filtering and the special nonlocal modeling embedded in BM3D.

SPATIO-SPECTRAL MODEL OF NOISAICKING AND DEMOSAICKING BY FREQUENCY SELECTION

It is well known that the R,G,B components of natural images are strongly correlated [START_REF] Gunturk | Demosaicking: Color filter array interpolation[END_REF]. That is why we define the components of luminance, green/magenta and red/blue chrominances of a color image a as a L = a, L , a G/M = a, C G/M , and a R/B = a, C R/B , respectively, using the vectors

L = 1 4 [1, 2, 1] T , C G/M = 1 √ 6 [-1, 2, -1] T , C R/B = 1 √ 2 [1, 0, -1] T .
A major contribution of Alleysson et al. [START_REF] Alleysson | Linear demosaicing inspired by the human visual system[END_REF] consisted in showing that the basis L, C G/M , C R/B is appropriate to characterize the Bayer CFA and that the mosaicked image is the sum of the modulated luminance and chrominance components of u. That is,

v(ω) = ûL (ω) + √ 6 4 ûG/M (ω -[π, π] T ) + √ 2 4 ûR/B (ω - [0, π] T ) - √ 2 4 ûR/B (ω -[π, 0] T ) + ε(ω), (2) 
where the Fourier transform â(ω) of an image a is defined as

â(ω) = k∈Z 2 a[k]e -jω
T k and an image with finite support is implicitely extended to an infinite one by zero-padding. This frequency analysis of the spatio-spectral sampling induced by the Bayer CFA, illustrated in Fig. 1b, sheds an interesting light on denoisaicking: it aims at separating the three images u L , u R/B and u G/M from their noisy mixing in v. This is exactly what demosaicking by frequency selection does, in the noise-free case. This approach, proposed in its most rigorous form by Dubois [START_REF] Dubois | Frequency-domain methods for demosaicking of Bayer-sampled color images[END_REF][START_REF]Filter design for adaptive frequency-domain Bayer demosaicking[END_REF], consists in assigning the high fre-quency content of v to the chrominance of the demosaicked image and the rest of the frequency content to the luminance. More precisely, the method consists in the following steps, where we denote convolutions by * and the demosaicked image by d.

Estimate the G/M chrominance by modulation and convolution with a lowpass filter h

G/M : d G/M = 4 √ 6 v π,π * h G/M , where v π,π [k] = (-1) k1+k2 v[k].
2. Estimate the R/B chrominance by modulation and convolution with a lowpass filter h R/B . Since this chrominance information is present in two exemplaries in v, we obtain two estimates: d should then be fused. We consider the simplest fusion process, the linear average, which yields

R/B H = -4 √ 2 v π,0 * h R/B and d R/B V = 4 √ 2 v 0,π * (h R/B ) T , where v π,0 [k] = (-1) k1 v[k], v 0,π [k] = (-1) k2 v[k],
d R/B = 1 2 (d R/B H + d R/B V
). A nonlinear fusion was proposed in [START_REF] Dubois | Frequency-domain methods for demosaicking of Bayer-sampled color images[END_REF][START_REF]Filter design for adaptive frequency-domain Bayer demosaicking[END_REF], but we leave the study of its robustness to noise for future work.

3. Estimate the luminance as the residual information content of v by subtracting the re-modulated chrominance:

d L = v -d G/M m -d R/B m , where d G/M m [k] = √ 6 4 (-1) k1+k2 d G/M [k] and d R/B m [k] = √ 2 4 (-1) k2 - (-1) k1 d R/B [k].
The step 2. can be performed using a single spatially-varying convolution, so that this linear demosaicking method only reverts to two convolutions. Moreover, they can be performed in parallel. The filters h R/B and h G/M can be chosen using theoretical constraints [START_REF] Dubois | Frequency-domain methods for demosaicking of Bayer-sampled color images[END_REF]. Another approach [START_REF]Filter design for adaptive frequency-domain Bayer demosaicking[END_REF] consists in calculating the filters minimizing the averaged mean squared error between d and u, for the images of a learning database.

PROPOSED DENOISAICKING APPROACH

Let us first analyze the behavior of demosaicking by frequency selection, as described in the previous section, in the presence of noise. We denote by v 0 the noise-free mosaicked image, so that v that the G/M and R/B chrominance basis is the right one to consider for image denoisaicking, because in it, the two noise realizations are independent and have different variance. Considering another chrominance representation would make the noise correlated and difficult to remove subsequently.

[k] = v 0 [k] + ε[k]
However, the luminance noise e L is not stationary and not white, because of the subtraction from v of the R/B chrominance re-modulated at the two frequencies [π, 0] T and [0, π] T in step 3. Therefore, it is very difficult to remove. We will see that the solution comes from denoising the chrominance channels before estimating the luminance.

For this, we keep the algorithm unchanged but seek the filters h G/M and h R/B that estimate the denoised chrominance directly. The method for calculating the least-squares filters for demosaicking, detailed in [START_REF]Filter design for adaptive frequency-domain Bayer demosaicking[END_REF], can be modified to obtain the denoisaicking filters which are optimal in the Wiener sense, for a given base of test images. Let us determine the filter h G/M of, say, size 9 × 9. We denote by x the vector containing the 81 coefficients of the filter, in lexicographic order; by A the matrix whose each row contains the 81 pixel values of every 9 × 9 patch present in the set of learning images, after the images have been mosaicked and re-modulated (pointwise multiplication by 4 √ 6 (-1) k1+k2 ); and by b the vector containing the corresponding chrominance values, for the central pixel of each patch. We want to minimize the expectation of the error E{ Ãxb 2 }, where à is equal to A plus noise, since every re-modulated mosaicked patch is contaminated by white noise of variance 8 3 σ 2 . We have: E{ ÃT b} = A T b and E{ ÃT Ã} = A T A+ 8 3 σ 2 N I, where I is the identity matrix and N is the total number of pixels in the image base (the number of rows of A). Therefore, the coefficients of the Wiener filter h G/M are given by the vector x solution of the linear system of size 81 × 81:

1 N A T A + 8 3 σ 2 I x = 1 N A T b. (3) 
This system can be formed easily by reading the images in scanline, without having to store the matrices A and b. The filter h R/B is obtained the same way, by solving a system like in eqn. [START_REF] Hirakawa | Joint demosaicing and denoising[END_REF], where the noise amplification gain 8/3 is replaced by 4. Note that if σ = 0, we recover the least-squares filter design of Dubois [START_REF]Filter design for adaptive frequency-domain Bayer demosaicking[END_REF]. For the experiments in the next section, we used symmetric filters of size 13 × 13, since 9 × 9 is not enough for high noise levels. In practice, since the required filters are strongly lowpass, it is more appropriate and faster to use separable recursive filters instead of the FIR filters proposed here. Since the chrominance images d G/M and d R/B are denoised, once they are re-modulated and subtracted from v during the step 3. of the method, the residual image is d L ≈ u L + ε, according to [START_REF] Menon | Color image reconstruction for digital cameras[END_REF]. Therefore, the proposed denoisaicking method simply consists in adding a step 4. to the demosaicking method by frequency selection: 4. Consider d L as a grayscale image corrupted by AWGN of variance σ 2 and apply a denoising method to it.

By lack of place, we omit the mathematical analysis showing that the assumption of AWGN in d L is a good approximation.

Denoisaicking method σ = 1 σ = 10 σ = 20 [START_REF] Hirakawa | Joint demosaicing and denoising[END_REF] 32.95 30.06 27.62 [START_REF] Zhang | Color reproduction from noisy CFA data of single sensor digital cameras[END_REF] 39.40 32.17 28.66 [START_REF] Paliy | Spatially adaptive color filter array interpolation for noiseless and noisy data[END_REF] 37.37 32.06 28.77 [START_REF] Zhang | PCA-based spatially adpative denoising of CFA images for single-sensor digital cameras[END_REF]+ [START_REF] Zhang | Color demosaicking via directional linear minimum mean square-error estimation[END_REF] 38 

EXPERIMENTAL VALIDATION

We compared our approach against methods of the literature for which code is provided by the authors on their homepage; that is, the methods of [START_REF] Hirakawa | Joint demosaicing and denoising[END_REF], [START_REF] Zhang | Color reproduction from noisy CFA data of single sensor digital cameras[END_REF], [START_REF] Paliy | Spatially adaptive color filter array interpolation for noiseless and noisy data[END_REF] and the denoisingfirst method of [START_REF] Zhang | PCA-based spatially adpative denoising of CFA images for single-sensor digital cameras[END_REF] combined with the nonlinear demosaicking method of [START_REF] Zhang | Color demosaicking via directional linear minimum mean square-error estimation[END_REF]. The 24 color images of the classical Kodak test set 3 were mosaicked 4 with the Bayer CFA and corrupted with different noise levels 5 . The state-of-the-art BM3D denoising method [START_REF] Dabov | Image denoising by sparse 3D transform-domain collaborative filtering[END_REF] was used in step 4. of our approach, to illustrate its full potential. In Tab. 1, we report the CPSNR 6 between u and d, averaged over the 24 images. We also propose an extended variant of our approach in which the denoisaicked image is mosaicked again and then demosaicked using the method of [START_REF] Zhang | Color demosaicking via directional linear minimum mean square-error estimation[END_REF]. Our approach outperforms the other methods compared.

The extended variant provides a significant gain for low noise levels; this shows the superiority of good nonlinear demosaicking methods over linear frequency selection for noise-free mosaicked images. Visually, as can be seen in the example of Fig. 2, our method provides images with a natural look, without the structured artifacts typical of the other methods, like washed out textures, ringing artifacts near edges, wavy or brushed patterned noise or checkerboard patterns in homogeneous areas.

CONCLUSION

We proposed a simple denoisaicking approach, which consists in recovering the chrominance by linear filtering and denoising the luminance using a classical method for grayscale images. A Matlab implementation of our approach has been made available online 7 . There exist efficient denoising methods, including the Non-Local Means, for which fast implementations have been reported [START_REF] Adams | Gaussian KD-trees for fast high-dimensional filtering[END_REF], [START_REF] Barbu | Training an active random field for real-time image denoising[END_REF]. Using such an algorithm within our approach 3 The database is available at http://r0k.us/graphics/kodak/ The vertical images were first rotated by 90 o counterclockwise to simulate an acquisition with a digital camera whose sensor is aligned horizontally. 4 The filter for the top-left pixel was green and its right neighbor was red. 5 We used the same noise realization for every method and every image, using the Matlab command randn('state',0); 6 The CPSNR between the color images u 1 and u 2 is equal to 10 log 10 (255 2 /MSE) with MSE = P X=R,G,B

P k (u X 1 [k] - u X 2 [k]
) 2 /(3N.M ) for images of size N × M . A 20 pixel-wide band around the border of the images was ignored when computing the CPSNR, since some of the tested algorithms do not perform well in said band. The pixel values were rounded to integers in 0 . . . 255 before computing the CPSNR. 7 at http://www.greyc.ensicaen.fr/∼lcondat/ opens the door to real-time high-quality denoisaicking. The proposed framework can also be extended to other CFAs [START_REF] Condat | A new color filter array with optimal properties for noiseless and noisy color image acquisition[END_REF].
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 1 Fig. 1. (a) The Bayer CFA and (b) schematic representation of the spectrum of a mosaicked image, with the spectrum of the luminance u L in the baseband and the replicas of the spectra of chrominance with hatched fill.

  and (h R/B ) T is the filter h R/B rotated by 90 o . The two estimates dem

  for every k. We denote by d 0 and d the images produced by demosaicking, from v 0 and v, respectively. Due to the linearity of modulations and convolutions, we get d = d 0 + e, where the components e G/M , e R/B , e L of the color noise image e are independent 2 Gaussian noise realizations. e G/M and e R/B are stationary and have spectral density 8 3 σ 2 | ĥG/M (ω)| 2 and 2σ 2 | ĥR/B (ω 1 , ω 2 )| 2 + | ĥR/B (ω 2 , ω 1 )| 2 , respectively. So, a point to keep in mind is
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 2 Fig. 2. From top left to bottom right: part of the ground-truth image no. 3 of the Kodak base, parts of the denoisaicked images with the methods [3], [5], [6], [11]+[17], proposed. The noise level was σ = 20.
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 1 Average CPSNR (in dB) over the 24 images of the Kodak test set for different denoisaicking methods.

		.09	32.17	28.82
	proposed	38.49	32.56	29.57
	proposed+mosaicking+ [17]	39.42	32.73	29.67

This neologism was used by K. Hirakawa and P. J. Wolfe during their tutorial talk at the conference ICIP'08.

Rigorously, the independence is only approximative. The three noise realizations are independent if the functions ĥG/M (ω-[π, π] T ), ĥR/B (ω 1π, ω 2 ) and ĥR/B (ω 2 -π, ω 1 ) are indicator functions with compact and disjoint supports. In practice, since we use strongly lowpass filters h G/M and h R/B , the independence is relatively well satisfied.