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ABSTRACT

In most digital cameras, color images are captured by a sensor

overlaid by the Bayer color filter array (CFA). Denoisaicking

(joint demosaicking and denoising) consists in reconstructing a

color image from the noisy “Bayerized” data output by the sen-

sor. We show that the frequency analysis of the sampling pattern

induced by the Bayer CFA provides a simple way to reconstruct

the luminance and chrominance channels of the image. The pro-

cess is reduced to adequate linear filtering operations and de-

noising of the grayscale luminance image.

Index Terms— Demosaicking, denoising, Bayer color filter

array, frequency selection, spatio-spectral sampling

1. INTRODUCTION

Color images are usually acquired by digital cameras using a

single sensor on which a color filter array (CFA) is overlaid [1].

The most popular is the Bayer CFA, which equips almost all

cameras nowadays. In order to reconstruct a full-color image

from the raw data delivered by the sensor, an interpolation pro-

cess called demosaicking is performed. There is an abundant lit-

erature on demosaicking and we direct the readers to the broad

and recent survey by Menon [2]. However, most demosaick-

ing methods are developed under the unrealistic assumption of

noise-free data. In the presence of noise, the performances of

the algorithms degrade drastically, since their sophisticated non-

linear mechanisms are generally not robust to noise. More-

over, denoising after demosaicking is untractable, because de-

mosaicking distorts the characteristics of the noise in a com-

plex and hardly computable form. Thus, the joint problem of

demosaicking and denoising the raw images of cameras, for

which we coin the term denoisaicking1, has to be handled as

a whole [3, 4, 5, 6, 7, 8].

The denoisaicking problem can be formulated as follows.

Let us first introduce some notations. Boldface letters denote

vectors, e.g. k = [k1, k2]
T ∈ Z

2. We define the color image

u = (u[k])k∈Z2 as the ground-truth to be estimated by denoi-

saicking. For every k, u[k] =
[

uR[k], uG[k], uB [k]
]T

is the

color of the pixel of u at location k. In this paper, we adopt an

1This neologism was used by K. Hirakawa and P. J. Wolfe during their

tutorial talk at the conference ICIP’08.

additive white Gaussian noise (AWGN) model; that is, we have

at our disposal the noisaicked image v such that

v[k] = uX [k] + ε[k], ∀k ∈ Z
2, (1)

where X ∈ {R, G, B} is the color of the filter in the Bayer pat-

tern at location k (see Fig. 1a), ε[k] ∼ N (0, σ2) for every k

and σ2 is the noise variance. In real conditions, the AWGN as-

sumption is not met; the real noise is more accurately modeled

by the sum of a Gaussian component and a signal-dependent

Poissonian component and by taking into account the clipping

due to the limited dynamic range of the sensor [9]. Moreover,

the observed values are the photon counts, which have to be tone

mapped/gamma corrected and this step modifies the noise char-

acteristics. However, homomorphic nonlinear transformations

can be efficiently employed for variance stabilization [10], so

that the problem can be recast in the AWGN context.

The article is organized as follows. The sequel of this

section is devoted to a brief survey of works on denoisaicking.

In sect. 2, we recall the spatio-spectral model of Bayer sampling

of Alleysson et al. and the demosaicking approach by frequency

selection of Dubois. We extend these principles to the noisy

case and describe the proposed denoisaicking method in sect. 3.

It is validated by experiments in sect. 4.

Hirakawa and Parks addressed denoisaicking with a total

least squares approach [3]. A different method consists in ap-

plying a wavelet transform to the noisy data. Then, the wavelet

coefficients of the luminance and chrominance components are

estimated and denoised [4]. In [5], the color differences are esti-

mated with a MMSE approach that exploits both spectral and

spatial correlations, to simultaneously decrease the noise and

the interpolation error. Then, the CFA channel-dependent noise

is removed with a wavelet-based approach. In [6], Paliy et al.

proposed to decorrelate estimates of the color intensities by a

color transformation, then to directionally interpolate and de-

noise them using anisotropic adaptive filters. In [7], directional

varying-scale joint denoising/interpolation filtering kernels are

applied directly on the noisaicked image. This approach per-

forms worse than the one in [6], by the same authors, although

it is faster. More recently, Menon et al. designed space-varying

filters to minimize a quadratic regularization term [8]. The de-

mosaicked image is denoised by thresholding the coefficients of

its undecimated wavelet transform.
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Fig. 1. (a) The Bayer CFA and (b) schematic representation of

the spectrum of a mosaicked image, with the spectrum of the

luminance uL in the baseband and the replicas of the spectra of

chrominance with hatched fill.

An alternative is to first denoise the noisaicked image be-

fore applying a classical demosaicking method. Traditional de-

noising approaches for grayscale images cannot be applied, be-

cause the mosaic structure violates the assumptions about lo-

cal smoothness these methods rely on. Zhang et al. proposed

a denoising method based on the principal component analysis

(PCA) for shrinkage on image blocks [11]. In [12], the state-

of-the-art BM3D denoising method [13] was extended to noi-

saicked images, using cross-color filtering and the special non-

local modeling embedded in BM3D.

2. SPATIO-SPECTRAL MODEL OF NOISAICKING

AND DEMOSAICKING BY FREQUENCY SELECTION

It is well known that the R,G,B components of natural im-

ages are strongly correlated [1]. That is why we define the

components of luminance, green/magenta and red/blue chromi-

nances of a color image a as aL = 〈a,L〉, aG/M =
〈a,CG/M 〉, and aR/B = 〈a,CR/B〉, respectively, using the

vectors L = 1

4
[1, 2, 1]T,CG/M = 1√

6
[−1, 2,−1]T,CR/B =

1√
2
[1, 0,−1]T. A major contribution of Alleysson et al. [14]

consisted in showing that the basis L, C
G/M , CR/B is appro-

priate to characterize the Bayer CFA and that the mosaicked im-

age is the sum of the modulated luminance and chrominance

components of u. That is,

v̂(ω) = ûL(ω) +
√

6

4
ûG/M (ω − [π, π]T) +

√
2

4
ûR/B(ω −

[0, π]T) −
√

2

4
ûR/B(ω − [π, 0]T) + ε̂(ω), (2)

where the Fourier transform â(ω) of an image a is defined as

â(ω) =
∑

k∈Z2 a[k]e−jω
T
k and an image with finite support

is implicitely extended to an infinite one by zero-padding.

This frequency analysis of the spatio-spectral sampling in-

duced by the Bayer CFA, illustrated in Fig. 1b, sheds an inter-

esting light on denoisaicking: it aims at separating the three im-

ages uL, uR/B and uG/M from their noisy mixing in v. This

is exactly what demosaicking by frequency selection does, in

the noise-free case. This approach, proposed in its most rigor-

ous form by Dubois [15, 16], consists in assigning the high fre-

quency content of v to the chrominance of the demosaicked im-

age and the rest of the frequency content to the luminance. More

precisely, the method consists in the following steps, where we

denote convolutions by ∗ and the demosaicked image by d.

1. Estimate the G/M chrominance by modulation and con-

volution with a lowpass filter hG/M : dG/M = 4√
6
vπ,π ∗

hG/M , where vπ,π[k] = (−1)k1+k2v[k].

2. Estimate the R/B chrominance by modulation and con-

volution with a lowpass filter hR/B . Since this chromi-

nance information is present in two exemplaries in v̂,

we obtain two estimates: d
R/B
H = −4√

2
vπ,0 ∗ hR/B

and d
R/B
V = 4√

2
v0,π ∗ (hR/B)T, where vπ,0[k] =

(−1)k1v[k], v0,π[k] = (−1)k2v[k], and (hR/B)T is the

filter hR/B rotated by 90o. The two estimates dem
R/B
H

and dem
R/B
V should then be fused. We consider the

simplest fusion process, the linear average, which yields

dR/B = 1

2
(d

R/B
H + d

R/B
V ). A nonlinear fusion was pro-

posed in [15, 16], but we leave the study of its robustness

to noise for future work.

3. Estimate the luminance as the residual information con-

tent of v by subtracting the re-modulated chrominance:

dL = v − d
G/M
m − d

R/B
m , where d

G/M
m [k] =

√
6

4
(−1)k1+k2dG/M [k] and d

R/B
m [k] =

√
2

4

(

(−1)k2 −

(−1)k1

)

dR/B[k].

The step 2. can be performed using a single spatially-varying

convolution, so that this linear demosaicking method only re-

verts to two convolutions. Moreover, they can be performed in

parallel. The filters hR/B and hG/M can be chosen using the-

oretical constraints [15]. Another approach [16] consists in cal-

culating the filters minimizing the averaged mean squared error

between d and u, for the images of a learning database.

3. PROPOSED DENOISAICKING APPROACH

Let us first analyze the behavior of demosaicking by frequency

selection, as described in the previous section, in the presence

of noise. We denote by v0 the noise-free mosaicked image,

so that v[k] = v0[k] + ε[k] for every k. We denote by d0

and d the images produced by demosaicking, from v0 and v,

respectively. Due to the linearity of modulations and convo-

lutions, we get d = d0 + e, where the components eG/M ,

eR/B , eL of the color noise image e are independent2 Gaus-

sian noise realizations. eG/M and eR/B are stationary and have

spectral density 8

3
σ2|ĥG/M (ω)|2 and 2σ2

(

|ĥR/B(ω1, ω2)|2 +

|ĥR/B(ω2, ω1)|2
)

, respectively. So, a point to keep in mind is

2Rigorously, the independence is only approximative. The three noise re-

alizations are independent if the functions ĥG/M (ω−[π,π]T), ĥR/B(ω1−

π, ω2) and ĥR/B(ω2−π, ω1) are indicator functions with compact and dis-

joint supports. In practice, since we use strongly lowpass filters hG/M and

hR/B , the independence is relatively well satisfied.



that the G/M and R/B chrominance basis is the right one to con-

sider for image denoisaicking, because in it, the two noise re-

alizations are independent and have different variance. Consid-

ering another chrominance representation would make the noise

correlated and difficult to remove subsequently.

However, the luminance noise eL is not stationary and not

white, because of the subtraction from v of the R/B chrominance

re-modulated at the two frequencies [π, 0]T and [0, π]T in step

3. Therefore, it is very difficult to remove. We will see that the

solution comes from denoising the chrominance channels before

estimating the luminance.

For this, we keep the algorithm unchanged but seek the fil-

ters hG/M and hR/B that estimate the denoised chrominance

directly. The method for calculating the least-squares filters for

demosaicking, detailed in [16], can be modified to obtain the de-

noisaicking filters which are optimal in the Wiener sense, for a

given base of test images. Let us determine the filter hG/M of,

say, size 9 × 9. We denote by x the vector containing the 81

coefficients of the filter, in lexicographic order; by A the ma-

trix whose each row contains the 81 pixel values of every 9 × 9
patch present in the set of learning images, after the images have

been mosaicked and re-modulated (pointwise multiplication by
4√
6
(−1)k1+k2 ); and by b the vector containing the correspond-

ing chrominance values, for the central pixel of each patch. We

want to minimize the expectation of the error E{‖Ãx − b‖2},

where Ã is equal to A plus noise, since every re-modulated mo-

saicked patch is contaminated by white noise of variance 8

3
σ2.

We have: E{ÃT
b} = A

T
b and E{ÃT

Ã} = A
T
A+ 8

3
σ2NI,

where I is the identity matrix and N is the total number of pix-

els in the image base (the number of rows of A). Therefore, the

coefficients of the Wiener filter hG/M are given by the vector x

solution of the linear system of size 81 × 81:

(

1

N A
T
A + 8

3
σ2

I
)

x = 1

N A
T
b. (3)

This system can be formed easily by reading the images in scan-

line, without having to store the matrices A and b. The fil-

ter hR/B is obtained the same way, by solving a system like in

eqn. (3), where the noise amplification gain 8/3 is replaced by

4. Note that if σ = 0, we recover the least-squares filter design

of Dubois [16]. For the experiments in the next section, we used

symmetric filters of size 13 × 13, since 9 × 9 is not enough

for high noise levels. In practice, since the required filters are

strongly lowpass, it is more appropriate and faster to use separa-

ble recursive filters instead of the FIR filters proposed here.

Since the chrominance images dG/M and dR/B are de-

noised, once they are re-modulated and subtracted from v during

the step 3. of the method, the residual image is dL ≈ uL + ε,

according to (2). Therefore, the proposed denoisaicking method

simply consists in adding a step 4. to the demosaicking method

by frequency selection:

4. Consider dL as a grayscale image corrupted by AWGN of

variance σ2 and apply a denoising method to it.

By lack of place, we omit the mathematical analysis showing

that the assumption of AWGN in dL is a good approximation.

Denoisaicking method σ = 1 σ = 10 σ = 20
[3] 32.95 30.06 27.62

[5] 39.40 32.17 28.66

[6] 37.37 32.06 28.77

[11]+[17] 38.09 32.17 28.82

proposed 38.49 32.56 29.57

proposed+mosaicking+ [17] 39.42 32.73 29.67

Table 1. Average CPSNR (in dB) over the 24 images of the

Kodak test set for different denoisaicking methods.

4. EXPERIMENTAL VALIDATION

We compared our approach against methods of the literature

for which code is provided by the authors on their home-

page; that is, the methods of [3], [5], [6] and the denoising-

first method of [11] combined with the nonlinear demosaicking

method of [17]. The 24 color images of the classical Kodak

test set3 were mosaicked4 with the Bayer CFA and corrupted

with different noise levels5. The state-of-the-art BM3D denois-

ing method [13] was used in step 4. of our approach, to illustrate

its full potential. In Tab. 1, we report the CPSNR6 between u

and d, averaged over the 24 images. We also propose an ex-

tended variant of our approach in which the denoisaicked im-

age is mosaicked again and then demosaicked using the method

of [17]. Our approach outperforms the other methods compared.

The extended variant provides a significant gain for low noise

levels; this shows the superiority of good nonlinear demosaick-

ing methods over linear frequency selection for noise-free mo-

saicked images. Visually, as can be seen in the example of Fig. 2,

our method provides images with a natural look, without the

structured artifacts typical of the other methods, like washed out

textures, ringing artifacts near edges, wavy or brushed patterned

noise or checkerboard patterns in homogeneous areas.

5. CONCLUSION

We proposed a simple denoisaicking approach, which consists

in recovering the chrominance by linear filtering and denoising

the luminance using a classical method for grayscale images. A

Matlab implementation of our approach has been made available

online7. There exist efficient denoising methods, including the

Non-Local Means, for which fast implementations have been re-

ported [18], [19]. Using such an algorithm within our approach

3The database is available at http://r0k.us/graphics/kodak/

The vertical images were first rotated by 90o counterclockwise to simulate

an acquisition with a digital camera whose sensor is aligned horizontally.
4The filter for the top-left pixel was green and its right neighbor was red.
5We used the same noise realization for every method and every image,

using the Matlab command randn(’state’,0);
6The CPSNR between the color images u1 and u2 is equal

to 10 log10(2552/MSE) with MSE =
P

X=R,G,B

P

k
(uX

1
[k] −

uX
2

[k])2/(3N.M) for images of size N ×M . A 20 pixel-wide band around

the border of the images was ignored when computing the CPSNR, since

some of the tested algorithms do not perform well in said band. The pixel

values were rounded to integers in 0 . . . 255 before computing the CPSNR.
7at http://www.greyc.ensicaen.fr/∼lcondat/



Fig. 2. From top left to bottom right: part of the ground-truth image no. 3 of the Kodak base, parts of the denoisaicked images with

the methods [3], [5], [6], [11]+[17], proposed. The noise level was σ = 20.

opens the door to real-time high-quality denoisaicking. The pro-

posed framework can also be extended to other CFAs [20].
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