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Gradient Estimation Revitalized

Usman R. Alim, Torsten Möller, Member, IEEE and Laurent Condat, Member, IEEE

Fig. 1. DVR images of the carp dataset. Left: Original Cartesian (2563) dataset reconstructed using prefiltered tricubic B-splines and
shaded using the analytic gradient. Middle: Downsampled Cartesian (1283) dataset reconstructed using prefiltered tricubic B-splines
and shaded by interpolating the gradient obtained through a fourth-order central differencing scheme (pFIR). Right: The middle
dataset shaded using our proposed fourth-order shifted gradient estimation scheme (pFIR-s). Notice how the details in the bones
and skull are much better preserved as compared to the central-differencing scheme even though the underlying scalar interpolation
is the same. This gain in quality comes at no additional cost.

Abstract— We investigate the use of a Fourier-domain derivative error kernel to quantify the error incurred while estimating the
gradient of a function from scalar point samples on a regular lattice. We use the error kernel to show that gradient reconstruction quality
is significantly enhanced merely by shifting the reconstruction kernel to the centers of the principal lattice directions. Additionally, we
exploit the algebraic similarities between the scalar and derivative error kernels to design asymptotically optimal gradient estimation
filters that can be factored into an infinite impulse response interpolation prefilter and a finite impulse response directional derivative
filter. This leads to a significant performance gain both in terms of accuracy and computational efficiency. The interpolation prefilter
provides an accurate scalar approximation and can be re-used to cheaply compute directional derivatives on-the-fly without the need
to store gradients. We demonstrate the impact of our filters in the context of volume rendering of scalar data sampled on the Cartesian
and Body-Centered Cubic lattices. Our results rival those obtained from other competitive gradient estimation methods while incurring
no additional computational or storage overhead.

Index Terms—Derivative, Gradient, Reconstruction, Sampling, Lattice, Interpolation, Approximation, Frequency Error Kernel

1 INTRODUCTION

The quality of volume rendering has been of central interest to our
community since the beginning. While in the early days, the trade-off
between quality and rendering speed was the defining issue, today the
focus is on the ability to quantify the truthfulness of our images using
various methods of uncertainty visualization.

One of the defining measures of quality has been the ability to con-
tain the error during function reconstruction. This is a broad field of
interest with many different approaches. One staple of understanding
of this topic has been Fourier Analysis and the reasoning about band-
limited reconstruction, which is based on the insights of Whittaker-
Nyquist-Kotelnikov-Shannon [29]. According to this theory, we need
an infinitely supported reconstruction kernel (the sinc function to be
exact) and we can measure our error relative to that particular recon-
struction kernel.

However, we often deal with functions that are not band-limited,
and we reconstruct them based on compact reconstruction kernels, like
the B-splines. To our rescue, comes a theory developed by Blu et
al. [4] and Unser [35] among others, that extends the reasoning of
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perfect reconstruction to arbitrary shift-invariant spaces. These are
spaces that are constructed by a single basis function and its shifts.
This is exactly the scenario we face in volume rendering.

In our previous work, we have pointed out that, one of the crucial
aspects of volume rendering is the accuracy of normal computation
since it will mask the appearance of a bad interpolation filter [24].
Even with a good underlying scalar interpolation filter, image qual-
ity is very sensitive to the type of normal computation scheme used
(Figure 1). Yet, the computation of proper normals remains a very
difficult issue, as the performance of normal estimation in our recent
work shows [20] where average angular errors of 20 to 30 degrees
were not uncommon. Therefore, it is crucial to find more accurate and
practical ways of estimating the normal for rendering applications.

The design of so-called digital differentiators [12, 19, 16] is usually
motivated by the fact that the gradient only needs to be accurately
determined at the sample points. In volume visualization on the other
hand, to compute shadings, we need to accurately estimate derivatives
everywhere and not just at the sample points. We are faced with a
reconstruction problem where, for efficiency reasons, we would like to
choose a compact reconstruction kernel and design a digital derivative
filter that enables us to fully exploit the approximation power of the
kernel. Very few works have focused on this problem, a fortiori on
reconstructing continuous gradients on multi-dimensional lattices.

A common method consists in computing exact derivatives of the
interpolated function. This approach has been contrasted in [24, 25]
with a direct approach, in which a finite-difference-like digital fil-
ter is combined with a continuous reconstruction kernel. This direct
methodology is preferable, since all the degrees of freedom can be ex-
ploited towards a good estimation of the true underlying derivative,
without being constrained by the reconstruction of the function itself.



Hence, a reconstruction space for the derivative can be specified inde-
pendent of the way the scalar function is interpolated.

Within the Shannon paradigm of bandlimited function, the ideal
reconstruction function was shown to be the derivative of the sinc in-
terpolator [2]. However, its slow decay and the ringing artifacts it may
introduce, prevent its practical use. Moreover, for non-bandlimited
signals, this framework is not valid any more [35]. That is why practi-
tioners rely on convolutions with more localized kernels having com-
pact support. To mitigate the adverse effects of truncating the deriva-
tive of the sinc, the idea of windowing was extended to derivative
reconstruction [18, 32]. In [2], the tuning of the various parameters
of a piecewise cubic derivative filter was discussed. In none of these
works, there is an analytic comparison of different filters nor a quanti-
tative analysis of the estimation error.

Once the reconstruction space for the derivative is chosen, e.g. a
spline space [33], the scheme, which determines a particular contin-
uous function in this space from the available point samples, has to
be designed. To that end, Möller et al. developed tools and derived
absolute error bounds for the spatial analysis of both interpolation and
derivative filters of arbitrary order in [24]. More recently [20], they
extended the orthogonal projection (OP) paradigm [34] to the recon-
struction of derivatives in given shift-invariant spaces.

A relevant viewpoint to analyse reconstruction is offered by approx-
imation theory. In this perspective, we focus on the approximation or-
der of the derivative reconstruction schemes, that governs how the er-
ror behaves asymptotically. To fully exploit the approximation power
of a given reconstruction space, it is required to prefilter the data [35].
The interest of prefiltering for the visualization community has been
recognized [7, 17], but has not been transposed to derivative recon-
struction so far. A notable exception is the recent work of Csébfalvi
et al. [8] in which they propose FIR derivative prefilters designed to
fully exploit the approximation power of the reconstruction space. Our
motivation is the same as in [8]. However, we depart from existing ap-
proaches to design IIR prefilters with specific properties, either within
the OP framework or by designing combinations of interpolation pre-
filters and finite differences. Our methodology is generic, in the sense
that it can be deployed on arbitrary lattices. It is now a wide-spread
result that the Body Centered Cubic (BCC) lattice outperforms the
Cartesian Cubic (CC) lattice for visualization tasks [22, 14, 26, 31].

Hence, the main contribution of this work is the demonstration that,
when reconstructing the gradient continuously in appropriate shift-
invariant spaces with specific prefilters, we can obtain normals whose
accuracy goes beyond previously known limits. This quality comes
without increase in the computational burden. Even more, the efforts
for obtaining a good normal estimation provide a good function re-
construction for no additional cost. Incidentally, we break the com-
mon belief that the best gradient is obtained by computing the analytic
partial derivatives of the reconstructed function.

The outline of this paper is as follows. In Section 2, we recall
the basics of reconstruction in shift-invariant box-spline spaces. In
Section 3, we depart from previous works by shifting the reconstruc-
tion spaces between lattice sites, along the principle directions of the
lattice, following an idea originally developed in [3]. We adapt the
Hilbert space framework based on orthogonal projection (OP) pro-
posed in [20] to this shifted setting. In Section 4, we propose a new
methodology, which combines the optimal approximation capabilities
of the OP framework with much lower computation cost and memory
requirement. For this, we make use of the recently developed error
kernel [5], which allows to accurately quantify the error between the
reconstructed gradient and its true underlying counterpart. We detail
the methodology in Section 5 with the design of practical schemes for
the 3D Cartesian and BCC lattices. Finally, Section 6 is devoted to the
experimental illustration of the proposed approaches.

2 PRELIMINARIES

Unless otherwise stated, all functions are assumed to be of the form
f : R

d → C that belong to the Hilbert space L2(Rd). We
denote the inner product between two such functions f and g as
〈f |g〉 :=

R

Rn
f(x)g⋆(x)dx, where x = (x1, . . . , xd) ∈ R

d and

g⋆(x) indicates the complex conjugate of g(x). This inner product
induces a norm (the L2-norm) on any function f , which we denote as

‖f‖L2 :=
p

〈f |f〉.
The Fourier transform of a function f(x) is defined as bf(ω) :=
R

Rn
f(x) exp(−jωTx)dx, where j =

√
−1 and ωT indicates the

transpose of ω. In L2(Rd), a useful property is Parseval’s theo-

rem [27] which states that ‖f‖2
L2 = 1

(2π)d
‖ bf‖2

L2 .

A d-dimensional lattice L generated by the d × d matrix L =
[l1, . . . , ld] is the set of points given by L := {Lk : k ∈ Z

d} [11].
We call the column vectors li, the principal direction of L. We de-
note by Lh, a scaled version of the lattice L generated by the matrix
hL, where h is a positive isotropic scaling parameter. We denote a
discrete sequence on lattice Lh as f [k], where k ∈ Z

d. Usually, the
sequence will consist of point samples of a continuous function f(x)
(i.e. f [k] = f(hLk)). Such a sequence can be used as coefficients
in a multi-dimensional Fourier series to yield the Fourier transform of
the sequence which is given by

bF (ω) :=
X

k∈Zd
f [k] exp(−jhω

T
Lk)

= 1
hd|det L|

X

r∈Zd

bf(ω − 2π

h
L

−T
r),

(1)

where the latter equality represents the sampling induced aliasing of

the spectrum bf on the reciprocal (or dual) lattice generated by the ma-
trix (2π/h)L−T [23]. We denote the reciprocal lattice as L◦

h. To indi-
cate continuous and discrete Fourier transform pairs, we use the nota-

tions ↔ and
L↔ respectively, e.g. f(x) ↔ bf(ω) and f [k]

L↔ bF (ω).

2.1 Shift-Invariant Approximation Spaces

The goal of function reconstruction is to faithfully approximate a func-
tion from its discrete measurements on a lattice Lh. This is usually
achieved by convolving the discrete measurements with a scaled ver-
sion of a continuous reconstruction kernel ψ(x). This process can be
written as

f(x) ≈ fapp(x) =
X

k
c[k]ψh,k(x), (2)

where ψh,k(x) := ψ(x
h
−Lk) is a scaled and shifted version of ψ(x)

and the sequence c represents discrete linear measurements of f at the
lattice sites — not necessarily the ideal point samples of f . If however,
c is obtained by point-sampling f then the reconstruction kernel ψ is
typically chosen such that fapp exactly interpolates the sample values.
Furthermore, when f is bandlimited, then exact reconstruction is pos-
sible if and only if ψ(x) is chosen to be the sinus cardinalis function
associated with Lh [27]. This method however is not practical because
of the infinite support of the sinus cardinalis function. Moreover, when
f is not bandlimited or when the sampling process is non-ideal, it is
more desirable to seek an approximation that attempts to minimize the
L2 error ‖f − fapp‖L2 .

Towards this end, it is useful to introduce the notion of an approxi-
mation space spanned by a basis formed by the functions ψh,k where
k ∈ Z

n. We denote this space as

V(Lh, ψ) :=
n

fapp(x) =
X

k∈Zd

c[k]ψh,k(x) : c[k] ∈ l2(Z
d)

o

. (3)

With some additional constraints on the reconstruction function ψ(x),

it can be shown that V(Lh, ψ) ⊂ L2(Rd) [4] and any fapp ∈
V(Lh, ψ) has a unique representation in terms of a finite-energy co-

efficient sequence c. Given a function f ∈ L2(Rd), the minimum
error approximation of f in V(Lh, ψ) in the least-squares sense is
obtained by orthogonally projecting f onto V(Lh, ψ) [35]. This is
accomplished by taking inner products of f with functions that are bi-

orthogonal duals of ψh,k . Let ψ̊(x) denote the bi-orthogonal dual of

ψ(x) that satisfies the condition 〈ψ(x − Lk)|ψ̊(x − Ll)〉 = δk,l ,
where δ is the multi-dimensional Kronecker delta function. The dual
function ψ̊ has the following Fourier domain representation obtained



by solving the bi-orthogonality constraint in the Fourier domain [35].

b

ψ̊(ω) =
bψ(ω)

bAψ(ω)
, where bAψ(ω)

L↔ aψ[k] (4)

and the sequence aψ[k] is obtained by sampling the auto-correlation
function of ψ at the lattice sites, i.e.

aψ[k] := (ψ ∗ ψ)(x)
˛

˛

x=Lk
, (5)

where ψ(x) := ψ(−x) and ∗ indicates the continuous convolu-

tion operation. A scaled and translated version of ψ̊ yields the bi-

orthogonal dual of ψh,k , i.e. ψ̊h,k(x) := h−dψ̊(x
h
− Lk). The mini-

mum error orthogonal projection can now be written as

`

P
V(Lh,ψ)

f
´

(x) :=
X

k

c[k]ψh,k(x), where c[k] = 〈f |ψ̊h,k〉. (6)

The quality of the minimum error approximation provided by
V(Lh, ψ) can be characterized by using the results of Strang and
Fix [30]. In particular, we say that the space V(Lh, ψ) provides an
n-th order approximation of f if ‖f −

`

P
V(Lh,ψ)

f
´

‖L2 = O(hn)

as h → 0. This is true if and only if the reconstruction function ψ
satisfies

bψ(0) 6= 0 and bψ(ω − 2πL
−T

k) = O(|ω|n) for k ∈ Z
n\{0}. (7)

If ψ satisfies this condition, we term it an n-th order reconstruction
function.

2.2 Box Splines

The box splines are very useful reconstruction functions that are well
suited for designing approximation spaces on arbitrary sampling lat-
tices. They satisfy the Strang-Fix relations (7) and have attractive
mathematical properties similar to the B-splines. For a thorough ex-
position of the box splines, we refer the reader to de Boor et al. [9].
Associated with a box spline in R

d is a d × n (n ≥ d) matrix
Ξ = [ξ1, ξ2, . . . , ξn] consisting of direction vectors ξk. We denote
this box spline as MΞ(x). It is obtained by successively convolving
line segments along the direction vectors contained in Ξ. The simplest
box spline is obtained by choosing n = d linearly independent direc-
tion vectors and is the indicator function of the parallelepiped formed
by these direction vectors. Successive directional convolutions are de-
fined inductively as

M[Ξ,ξ](x) :=

Z 1

0

MΞ(x − tξ)dt. (8)

The box splines have a simple Fourier domain representation given by

dMΞ(ω) :=
Y

ξ∈Ξ

1 − exp(−jξTω)

jξTω
. (9)

The support ofMΞ consists of all the points contained within the poly-
tope formed by taking the Minkowski sum of the direction vectors in
Ξ. This implies that MΞ is centered at the point cΞ :=

P

ξ∈Ξ

1
2
ξ.

The smoothness of MΞ and the approximation order it provides are
readily obtained by inspecting the columns of Ξ [9].

3 GRADIENT APPROXIMATION

3.1 A Two-Stage Orthogonal Projection Framework

In visualization and other related disciplines, the discrete measure-
ment procedure is usually assumed to be ideal in which case the goal
of gradient approximation is to reconstruct from the point samples
f [k] = f(hLk) that lie on the lattice Lh, an approximation of the
gradient ∇f(x). Previously, we have developed a two-stage gradient
approximation procedure that first seeks an approximation of f(x) in
an auxiliary approximation space and then orthogonally projects each
component of the gradient of the approximation onto a target approx-
imation space [20]. A schematic illustrating this procedure is shown
in Figure 2. We briefly summarize this approximation technique here

~

~

~

n

Fig. 2. An illustration of the two-stage OP framework.

and then show how to improve it by using an shifted reconstruction
kernel in the target approximation space.

In the first stage, the sampled sequence f [k] is used to generate an

approximation f̃(x) that lies in the space V(Lh, ψ). This is accom-
plished by applying a digital prefilter to f [k] as follows.

f̃(x) =
X

k

`

f ∗ p
´

[k]ψh,k(x), (10)

where ∗ now denotes a discrete convolution operation and the prefilter
p is given in the Fourier domain by

p[k]
L↔ bP (ω) =

1

bQ(ω)
, where bQ(ω)

L↔ q[k] = ψ(Lk). (11)

This prefilter ensures that f̃(x) exactly interpolates the sample values,

i.e. f̃(hLk) = f [k]. If the reconstruction kernel ψ is an interpolating

one, then bP (ω) = 1 and the prefiltering step is not necessary.

In the second stage ∂if̃(x), the partial derivative of f̃(x) with re-
spect to the i-th Cartesian direction (i ∈ {1, . . . , n}), is orthogonally
projected onto a target approximation space V(Lh, ϕ) where the re-
construction kernel is ϕ(x). This is also achieved by applying a dig-
ital filter to the sequence obtained after the first stage. The resulting

function f̃i(x) is given by

f̃i(x) :=
`

P
V(Lh,ϕ)

∂if̃
´

(x) =
X

k

1
h

`

f ∗ p ∗ d̊i
´

[k]ϕh,k(x), (12)

where the digital derivative filter is given by

d̊i[k] := 〈∂iψ|ϕ̊k〉. (13)

For derivation details, we refer the reader to [20].

The familiar Shannon paradigm is also encapsulated in this frame-
work. In particular, for bandlimited functions, ψ = sincL, the sinus
cardinalis function associated with L. The prefiltering step in unneces-
sary since sincL is interpolating. Exact derivative reconstruction can
be achieved by choosing the target space generator ϕ to be sincL as
well since the derivative of a bandlimited function is also bandlimited.
For practicality reasons however, this method is rarely used and other
choices are made for the generators ψ and ϕ. It is desirable to choose
compactly supported generators that attempt to minimize the L2 error
between the true gradient and its approximation; and that simplify the
evaluation of the inner product (13).

3.2 Shifted Reconstruction Kernel

The overall quality of the gradient approximation scheme (12) is gov-
erned by the approximation properties of the spaces V(Lh, ψ) and
V(Lh, ϕ). In our previous work [20], we considered the case where

all the first-stage derivatives ∂if̃ in the axis aligned directions are or-
thogonally projected to the same target space V(Lh, ϕ) generated by
a single reconstruction function ϕ. The target space is chosen so that
it fulfills the regularity and accuracy demands of the application. With



the target space fixed, the first-stage auxiliary space should be cho-
sen to have a higher approximation order so that the gradient of the

first-stage approximation ∇f̃(x) is close to the true gradient ∇f(x).
Using the same space to approximate the function as well as the

gradient componenents is an attractive design choice from a compu-
tational point of view since the same scalar interpolation routines can
be reused to interpolate the gradient as well. In general however, other
choices are possible both in terms of the directions one chooses to
compute derivatives along, as well as the target space in which each di-

rectional derivative is approximated. Towards this end, let ∂ûi f̃ denote

the directional derivative ∇f̃ · ûi and let ϕi(x) be the reconstruction

function of the target space V(Lh, ϕi) onto which ∂ûi f̃ is projected.

Our goal is to choose each target space V(Lh, ϕi) such that it mini-

mizes the orthogonal projection L2 error ‖∂if̃ −
`

P
V(Lh,ϕ

i)
∂if̃

´

‖L2 .

Note that with this modification, the ideal scenario that yields zero er-

ror, i.e. when ϕi(x) is chosen such that ∂if̃ ∈ V(Lh, ϕi), can be
easily incorporated in the framework, thus yielding an approximation

that is the exact gradient of f̃ .
The prospect of finding separate reconstruction spaces V(Lh, ϕi)

is an ambitious one and may not be practically all that advantageous
as it would require each component of the gradient to be reconstructed
with a different reconstruction function ϕi(x). However, if we choose
reconstruction functions from the same family for both the first and
second stages, we may be able to exploit the derivative relationships
that exist between the two functions. In that case, the problem of find-
ing separate functions ϕi(x) can be reduced to finding appropriate
shifts of a symmetric reconstruction function ϕ(x).

The above idea is best explained with an example where we use a
tensor-product B-spline consisting of n-th degree 1D B-splines as the
first stage reconstruction function on a d-dimensional Cartesian lattice

I = Z
d. Let us denote this function as bn(x) =

Qd
i=1 βn(xi), where

βn(x) is a 1D centered B-spline of degree n. The first stage approxi-

mation f̃(x) lies in the space V(I, bn). The centered B-splines exhibit
the following derivative property [36].

dβn
dx

(x) = βn−1(x+ 1
2
) − βn−1(x− 1

2
). (14)

Using this property, it is straightforward to show that ∂if̃ ∈ V(I, ϕi),

where ϕi(x) is the ideal second-stage reconstruction function for the
i-th partial derivative and is given by

ϕi(x) = βn−1(xi − 1
2
)

Y

j 6=i

βn(xj). (15)

Instead of the ideal functions ϕi(x), let us choose the second-stage
reconstruction functions to be

bim(x) := βm(xi − 1
2
)

Y

j 6=i

βm(xj) = bm(x − 1
2
êi), (16)

where m ≤ n and êi represents the unit vector in the i-th Cartesian
direction. Thus, bim(x) is merely a shifted version of the centered
function bm(x) ( Figure 3a). With this choice, we conjecture that
we obtain a better approximation scheme as compared to our pre-
vious scheme [20] that uses the same symmetric function bm(x) to
approximate all the gradient components. The shifts ensure that the
reconstruction functions remain close to the ideal. Additionally, they
are easy to incorporate into existing interpolation routines as they are
cheaply computed from the same symmetric function bm(x) simply
by shifting the point at which interpolation is to be perfomed by − 1

2
in the direction of the derivative.

The box spline MΞ(x) also exhibits an analogous derivative rela-
tionship [9]. If ξ ∈ Ξ, then the directional derivative ∂ξMΞ is given
by

∂ξMΞ(x) = MΞ\ξ(x) −MΞ\ξ(x − ξ), (17)

where Ξ\ξ is the matrix obtained by removing one occurrence of ξ
from Ξ. The directional derivative is therefore obtained by the back-
ward difference of two lower-order box splines. If the box spline

is symmetric (i.e.
P

η∈Ξ
η = 0), then the lower-order box spline

thus obtained is shifted in the direction ξ as illustrated in Figure 3b
for the hexagonal lattice in 2D. Thus, when working with symmet-
ric box splines, we argue that we can obtain a better approximation
scheme if instead of approximating a partial derivative in an axis-
aligned direction using symmetric box splines, we approximate direc-
tional derivatives using the same box spline shifted along the direction
of the derivative.
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Fig. 3. (a) 1D illustration of the shifted derivative estimation scheme.
Instead of using a centered kernel, e.g. a cubic B-spline β3(x) (solid), to
reconstruct the derivative, we propose to use the shifted version β3(x−
1
2
) (dashed). (b) Box splines on the hexagonal lattice are generated by

three direction vectors (indicated as arrows). The support of a fourth-
order box spline is a hexagon formed by the second-nearest neighbors.
The directional derivative of this box spline along a convolution direction
is a linear combination of two lower-order box splines that are shifted
along the convolution direction as illustrated.

We formalize this notion in the following section by quantitatively
analyzing the L2 error incurred as a result of choosing a shifted
second-stage reconstruction function. Hereinafter, we collectively re-
fer to both of these gradient estimation strategies as the orthogonal
projection (OP) framework.

4 FOURIER-DOMAIN ERROR QUANTIFICATION

4.1 Scalar and Derivative Error Kernels

In order to quantitatively assess the error behavior of the OP derivative
approximation framework, we propose to use the result of Blu et al. [4]
who have devised a way to quantify theL2 error of a shift-invariant ap-
proximation technique in terms of a frequency domain error kernel. If
a d-dimensional function f(x) is approximated in the space V(Lh, ϕ)
by first applying a discrete prefilter p[·] to the point samples and then
reconstructing with the function ϕ(x) to yield the approximation fapp,
then an estimate of the L2 error ‖f − fapp‖L2 is given by

ǫf (h) :=

s

1

(2π)d

Z

Rd

˛

˛

˛

bf(ω)
˛

˛

˛

2

E(hω)dω, (18)

where E(ω) is a Fourier-domain error kernel defined as

E(ω) := 1 − |bϕ(ω)|2
bAϕ(ω)

| {z }

Emin(ω)

+ bAϕ(ω)
˛

˛

˛

bP (ω) − bϕ̊
⋆
(ω)

˛

˛

˛

2

| {z }

Eres(ω)

. (19)

The term Emin(ω) measures the minimum error incurred as a result of
the orthogonal projection (6) and Eres(ω) measures any additional er-
ror incurred as a result of deviating from the orthogonal projection. In
particular, Eres(ω) characterizes the error behaviour of various inter-
polative and quasi-interpolative approximation schemes by comparing
the frequency response of the prefilter p to that of the dual ϕ̊.

Condat et al. [5] have recently extended this result to the Fourier-
domain error quantification of one-dimensional derivatives of any or-
der. Their result can be easily applied to arbitrary sampling lattices
in higher dimensions to yield the following Fourier-domain derivative



error kernel,

El(ω) := Emin(ω) + bAϕ(ω)

˛

˛

˛

˛

˛

bD(ω)

jlTω
− bϕ̊

⋆
(ω)

˛

˛

˛

˛

˛

2

| {z }

El
res(ω)

. (20)

Here, l is a principle direction of the lattice L and bD
L↔ d is a discrete

filter that is to be applied to the samples of f to yield the directional
derivative approximation,

∂lf(x) ≈ f l
app(x) =

X

k∈Zd

1

h
(f ∗ d)[k]ϕh,k(x). (21)

The overall L2 error ‖∂lf − f l
app‖L2 can be predicted according to

ǫfl(h) :=

s

1

(2π)d

Z

Rd

˛

˛

˛

bf(ω)jlTω

˛

˛

˛

2

El(hω)dω. (22)

The derivative error kernel (20) has an algebraic form that is very simi-
lar to the scalar error kernel (19). It is also bounded below byEmin(ω)
which suggests that the derivative approximation error can never be
lower than the minimum scalar orthogonal projection error. The term
El

res(ω) can be interpreted as first undoing the directional derivative
operation performed by the filter d effectively yielding an approxima-
tion of the original function f , and then measuring the deviation from
the orthogonal projection.

Since we are dealing with point samples, the minimum error ap-
proximation scenario is not realizable. However, for functions that
have most of their spectral power contained in the vicinity of ω = 0,
we can still achieve a similar asymptotic error behavior if the filter d
is chosen appropriately. If ϕ is an n-th order reconstruction function,

then the minimum error kernel satisfies Emin(ω) = O(|ω|2n). Thus,

in order to ensure that f l
app provides an n-th order approximation of

∂lf , we require that El
res(ω) = O(|ω|2n) [4, 5]. In other words, the

derivative filter d should be chosen so that the approximation scheme
matches the orthogonal projection as closely as possible. This boils
down to requiring that

bD(ω)

jlTω
= bϕ̊

⋆
(ω) +O(|ω|n), or equivalently,

bD(ω) = jlTωbϕ̊
⋆
(ω) +O(|ω|n+1).

(23)

4.2 Assessment of the two-stage OP framework

We restrict attention to the case where derivatives are taken along the
principle lattice directions only. For a symmetric first-stage recon-
struction function ψ of the B-spline or box spline type, the directional
derivative ∂liψ in the lattice direction li (i ∈ {1, 2, . . . , d}) is given
by the backward difference of two lower-order spline functions that are

centered about the points
−li
2

and
li
2

respectively. We therefore choose

the second-stage reconstruction function to be ϕi(x) := ϕ(x − li
2
)

where ϕ is an n-th order function of the spline variety that is sym-
metric about the origin. We then orthogonally project the directional
derivative of the first-stage approximation onto the space V(Lh, ϕi).

It is straightforward to verify that the shift carries over to the duals,
i.e.

ϕ̊i(x) = ϕ̊(x − li
2
) ↔ bϕ̊i(ω) :=

bϕ(ω)

bAϕ(ω)
exp(− j

2
li

T
ω). (24)

Consequently, the digital derivative filter (13), now takes the form

d̊i[k] = 〈∂liψ|ϕ̊ik〉 =
`

∂li(ψ ∗ ϕ̊i)
´

(x)
˛

˛

x=Lk

=
`

∂li(ψ ∗ ϕ̊)
´

(x)
˛

˛

x=Lk+li/2
.

(25)

By expressing the dual ϕ̊(x) in terms of a linear combination of the
primal functions ϕ1,k(x), we can write this as

d̊i[k] = (δi ∗ a−1
ϕ )[k],

where, δi[k] =
`

∂li(ψ ∗ ϕ)
´

(x)
˛

˛

x=Lk+li/2
,

and, a−1
ϕ [k]

L↔ 1/Âϕ(ω).

(26)

The combined OP directional derivative filter Di that is to be applied
to the point samples of f (cf. (12)) is then given by

Di[k] := (p ∗ d̊i)[k]
L↔ bDi(ω) =

P

k d̊i[k] exp(−jωTLk)
P

k
ψ(Lk) exp(−jωTLk)

=

P

r∈L◦

“

d∂liψ(ω − r)bϕ(ω − r) exp( j
2
lTi (ω − r))

”

bAϕ(ω)
P

r∈L◦
bψ(ω − r)

.
(27)

From this, it can be deduced that, if the approximation order of ψ
is at least n, then the resultant filter Di satisfies (23) and provides
an n-th order approximation of ∂lif when used in conjunction with

ϕi. Furthermore, this result holds true irrespective of the second-stage
shift.

Thus, in order to guarantee an n-th order approximation of the di-
rectional derivative, we demand that ψ and ϕ be the same n-th order
reconstruction functions. In this case, the first-stage prefilter p also
serves as an interpolation prefilter for a scalar approximation that lies
in V(L, ϕ). Since all the directional derivative filters di have p in com-
mon, it only has to be applied once and the resulting data can be used
for both scalar interpolation as well as gradient estimation as illus-
trated in Figure 4. Higher quality schemes can be obtained by choos-
ing ψ such that it has an approximation order strictly greater than n.
However, we don’t discuss such schemes in this paper.

f(x)

sampling on L

f [k]
p

prefilter

d̊1|r1

dir. der. filter

ϕ(x − l1/2)

reconstruction

d̊2|r2 ϕ(x − l2/2)

d̊3|r3 ϕ(x − l3/2)

f l1
app

f l2
app

f l3
app

P

i f
li
appl

i

gradient estimation

(∇f)app(x)

ϕ(x)

scalar reconstruction

fapp(x)

Fig. 4. Overview of the gradient estimation pipeline in R
3. The sampled

data is prefiltered once and can be used for both scalar interpolation as
well as gradient estimation. We use the derivative filters d̊1, d̊2 and d̊3 in
the OP framework while r1, r2 and r3 are FIR filters used for on-the-fly
derivative estimation.

4.3 A Strategy for Designing Practical Filters

Even though the derivative filters that the OP framework yields are
asymptotically optimal, they are not advantageous from a practical
point of view since they have an infinite impulse response (IIR) and
need to be applied in a preprocessing step resulting in significant stor-
age overhead. The problem of designing derivative filters can be an-
alyzed entirely using the derivative error kernel without resorting to
a first-stage auxiliary approximation space. Here, we explore such
a strategy that exploits the similarities between the scalar error ker-
nel (19) and the derivative error kernel (20) to produce separable filters
that are practically more advantageous.

In order for a directional derivative filter Di to be asymptotically
optimal, it must satisfy the optimality criterion (23). This is tanta-
mount to requiring that the Taylor-series expansion of the frequency

response bDi(ω) match that of the ideal analysis function jli
Tωbϕ̊

⋆
(ω)

upto order n + 1 where n is the desired approximation order. Addi-
tionally, it is practically desirable that Di be factorable according to

di[k] = (p ∗ ri)[k]
L↔ bDi(ω) = bP (ω) bRi(ω), where ri depends

on the direction of the derivative while p has no such dependence and
can be applied once in a preprocessing stage for all the directions in
a manner akin to the OP framework ( Figure 4). With these design
criteria, equation (23) can be written as

bDi(ω) = bP (ω) bRi(ω) = bϕ̊i
⋆

(ω)jli
T
ω +O(|ω|n+1)

=
`

bϕ̊(ω)
´`

jli
T
ω exp( j

2
li

T
ω)

´

+O(|ω|n+1).
(28)
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Fig. 5. The derivative error kernel for various derivative reconstruction
schemes designed for the cubic B-spline.

Now, it is obvious that if p satisfies bP (ω) = bϕ̊(ω) + O(|ω|n) and

ri satisfies bRi(ω) = jli
Tω exp( j

2
li

Tω)+O(|ω|n+1), then the com-
bined filter di satisfies (28) as well as the optimality criterion (23).
The directional dependence due to the derivative and the shift are com-
pletely reflected in the response of the derivative filter ri making the
filter p directionally independent.

An inspection of the scalar residue termEres(ω) in (19) reveals that
if we use the symmetric function ϕ to reconstruct fapp, then p also
provides an asymptotically optimal n-th order approximation of f , i.e.
bP (ω) = bϕ̊(ω) + O(|ω|n) or equivalently, Eres(ω) = O(|ω|2n). An
interpolation prefilter that attempts to exactly interpolate the sample
values (given by (11) with ψ = ϕ) satisfies this condition [4]. Such a
prefilter is usually employed anyway to approximate the scalar func-

tion. Combining it with a derivative filter ri that satisfies bRi(ω) =

jli
Tω exp( j

2
li

Tω) +O(|ω|n+1) will therefore guarantee an n-th or-
der approximation. Higher quality quasi-interpolation prefilters are
also possible [6] and are a topic of future research.

As for the directional component ri, observe that the substitu-
tion ω′ = li

Tω converts the multi-dimensional Taylor expansion of
the term

`

jli
Tω exp( j

2
li

Tω)
´

into a one-dimensional expansion of
`

jω′ exp ( j
2
ω′)

´

in the variable ω′. Therefore, it suffices to design
derivative filters in 1D and then extend them to higher dimensions by
simply applying the filter along the lattice direction li. This is an at-
tractive solution for our design goals as we are interested in keeping
the impulse response of ri as short as possible so that it can be em-
ployed on the fly. The resulting overall filtering pipeline is the same as
that obtained through the OP framework as shown in Figure 4.

4.4 Discussion

4.4.1 Error Behavior in 1D

We illustrate the error behavior of the two scenarios considered above
with a 1D example where the centered reconstruction function is cho-
sen to be a 4-th order cubic B-spline β3(x). For the OP scenario,
the first-stage is also taken to be the cubic B-spline (ψ(x) = β3(x))
and the derivative is then projected to a second-stage centered cu-
bic B-spline (ϕ(x) = β3(x)) and a shifted cubic B-spline (ϕ(x) =
β3(x− 1

2
)) yielding the filters CC and CC-s respectively.

For the practical scenario, the FIR derivative filter is obtained by
equating Taylor coefficients upto and including terms of order 4 as
explained in Section 5.1.2. The case without the shift is termed pFIR
while the one with the shift is termed pFIR-s, where p refers to the
scalar prefilter.

As shown in Figure 5, using a shifted reconstruction function leads
to better error behavior across the board. The error kernel for the OP
filter CC-s closely follows the minimum error kernel for the cubic B-
spline while CC departs significantly around ω = π suggesting that
the use of this filter would lead to corruption of high frequency con-

tent. Using a shifted reconstruction function has a more dramatic im-
pact on the FIR filters as can be clearly seen from the corresponding
error kernels. In comparison to pFIR, pFIR-s vastly improves the error
response making it comparable to the OP filter CC-s.

Finally, we show that simply computing the analytic derivative of
the scalar approximation is not the best possible choice. The error
kernel for this scheme departs from the minimum sooner as compared
to the OP schemes. This should not come as a surprise since the re-
construction quality is constrained by the approximation order of the
quadratic B-spline which is one order lower as suggested by the cor-
responding minimum error kernel in Figure 5.

4.4.2 Gradient Reconstruction

So far, we have only discussed how to accurately reconstruct direc-
tional derivatives. The problem of combining the different directional
derivatives to estimate the function gradient deserves some attention.
The column vectors of the generating matrix L of lattice L define a ba-
sis for R

d that is not necessarily orthogonal. The gradient of a function
is coordinate-system independent and can be conveniently expressed
in a dual (contravariant) basis according to

∇f(x) =
Xd

i=1
(∂lif)(x) l

i, (29)

where the dual vectors li are column vectors of the matrix L−T [37].
Thus, if the directional derivatives in the principal lattice directions
are approximately known, they can be easily combined to yield an
approximation of the function gradient.

5 EXPERIMENTAL VALIDATION

In order to validate our proposed shifted schemes, we consider various
4-th order gradient estimation filters to be used in conjunction with the
tricubic B-spline on the Cartesian Cubic (CC) lattice and the quintic
box spline [15] on the Body-Centered Cubic (BCC) lattice. Both of
these reconstruction functions are known to have an approximation
order of 4 [15].

5.1 Tricubic B-Spline on CC

The CC lattice C = Z
3 is generated by the matrix diag(1, 1, 1). Due

to its inherent separability, it is customary to design continuous re-
construction functions and discrete filters in 1D and then extend them
to higher dimensions via a simple tensor product. Consequently, the
filters can be applied in a separable way.

5.1.1 OP Derivative Filters

We consider a 3D extension of the 1D case presented in Section 4.4.1
and choose the first-stage function to be the centered tricubic B-spline
ψ(x) = b3(x) = β3(x)β3(y)β3(z).

CC: For the unshifted case, the second stage functions ϕi(x)
are all taken to be b3(x) and the components of the gradient in
the three principal directions of C (i.e. the canonical basis) are
orthogonally projected to V(Ch, b3). This case has already been
considered in our previous work [20]. The resulting filters are
completely separable and can be obtained by a tensor product of 1D
filters. The first-stage prefilter is given by the samples of β3(x), the
auto-correlation sequence is obtained by sampling β7(x) while the

derivative filter δi is given by the samples of dβ7
dx

(x) in the direction
of the derivative and by the samples of β7(x) in the other directions.

CC-s: We introduce a shift in the second stage and choose the
reconstruction functions to be ϕi(x) = bi3(x) (cf. (16)). The gradient
component in the direction êi is then orthogonally projected to
V(Ch, bi3). The first-stage prefilter and the auto-correlation sequence
are the same as the unshifted case CC. Using (26), we see that
the derivative filter δi is separable and is given by the samples of
dβ7
dx

(x + 1
2
) in the direction êi and by the samples of β7(x) in the

other directions.
Since these are IIR filters, they are efficiently applied to the sampled

data in the Fourier domain via a tensor product extension of the Fast



Fourier Transform (FFT). The result is stored in a gradient component
volume which is later used during rendering for the purpose of gradient
reconstruction.

5.1.2 FIR Derivative Filters

For these schemes, the sampled data is first prefiltered using an
interpolation prefilter. This is also done in a preprocessing step using
the FFT and the resulting filtered data is used for all subsequent
operations. Coefficients needed for reconstructing a partial derivative
are computed on the fly using a 1D FIR filter that is aligned in the
direction of the derivative.

pFIR: For this case, the centered function b3(x) is used to re-
construct gradient components. We choose an antisymmetric 1D
derivative filter with weights [b, a, 0,−a,−b]. The criterion to satisfy
is

2j(a sin(ω) + b sin(2ω)) = jω +O(ω5). (30)

Expanding both sides and equating coefficients, the solution is found
to be a = 2/3 and b = −1/12. This is the same as our 4-cd filter
developed using a spatial domain Taylor-series framework [20].

pFIR-s: This is analogous to the case CC-s in the sense that
the shifted function bi3(x) is used to reconstruct the partial derivative
in the direction êi. Let us take the unknown filter weights to be
[l2, l1, c, r1, r2] The criterion to satisfy is

c+ e−2jω(r2 + r1e
jω + l1e

3jω + l2e
4jω) = jωej

ω
2 +O(ω5). (31)

Equating Taylor coefficients on both sides leads to the solution
[− 1

24
, 9

8
,− 9

8
, 1

24
, 0].

For the shifted schemes pFIR-s and CC-s, we need to reconstruct
the i-th partial derivative with the shifted function bi3(x). Reconstruct-
ing at the point x in the shifted basis is equivalent to reconstructing at
the point y = x − êi/2 in the centered basis. Therefore, we simply
translate the point of interest by −êi/2 and use the code that imple-
ments the centered interpolation scheme. Alternatively, this can also
be regarded as a shift of the underlying grid by êi/2.

5.2 Quintic Box Spline on BCC

The BCC lattice B is generated by the symmetric matrix

B = [b1 b2 b3] =
h

1 −1 −1
−1 1 −1
−1 −1 1

i

. (32)

It consists of those points in Z
3 whose coordinates have the same par-

ity. The BCC box splines introduced by Entezari et al. are a family
of even order symmetric reconstruction functions [15]. The simplest
BCC box spline is the 2-nd order linear box spline MΞ(x) generated
by the matrix

Ξ =
h

1 −1 −1 1
−1 1 −1 1
−1 −1 1 1

i

. (33)

Convolving this box spline with itself effectively doubles each direc-
tion in Ξ, yielding the 4-th order quintic box spline MΞ2(x) :=
M[Ξ,Ξ](x) . Using (33) and the box spline derivative relationship (17),
it is easy to check that the directional derivative ofMΞ2(x) in the prin-
cipal direction bi is given by a linear combination of two lower-order
box splines that are centered at ± 1

2
bi.

5.2.1 OP Derivative Filters

Like the CC lattice, we consider two different cases. For both cases,
the first-stage function is the quintic box spline, i.e. ψ(x) = MΞ2(x).

QQ: The partial derivatives of MΞ2(x) in the canonical directions
êi are orthogonally projected to the same target space V(Bh,MΞ2).
This case has also been explored in our previous work [20]. The
constituent filters are non-separable. In particular, the first-stage
prefilter is given by the samples of MΞ2(x) at the lattice sites of
B while the auto-correlation sequence is obtained by sampling the
box-spline MΞ4(x). Finally, the derivative filter δi is obtained by

sampling the partial derivative ∂iMΞ4(x) at the lattice sites. We refer
the reader to [20] for details.

QQ-s: For the shifted case, we take the second stage function
to be ϕi(x) = M i

Ξ2(x) := MΞ2(x − 1
2
bi) and orthogonally

project the first stage derivative in the direction bi to the target
space V(Bh,M i

Ξ2). The first-stage prefilter and the auto-correlation
sequence are unaffected by the shift and are the same as QQ. The
weights of the directional derivative filter δi[k] are obtained by
evaluating ∂biMΞ4(x) at the sites x = Bk + 1

2
bi (evaluation code

is provided as supplementary material). The three approximated
directional derivatives are combined according to (29) to yield an
estimate of the gradient.

Like the CC case, these IIR filters are also applied to the sam-
pled data in a preprocessing step using the Fast BCC Discrete Fourier
Transform (BCC-FFT) [1].

5.2.2 FIR Derivative Filters

This pipeline proceeds in a manner akin to the CC case above. The
sampled data is first prefiltered for use with the quintic box spline.
This is implemented in a preprocessing step using the BCC-FFT. The
prefiltered data is then used to evaluate derivatives on the fly. We
distinguish between three filter types.

P-OPT26: We use our previously derived error optimal 26 weight
filter [20] to compute derivatives in the canonical directions. The
components are all reconstructed with the centered quintic box spline.

P-FIR: We apply the 4 weight central differencing filter (cf. (30))
to the prefiltered data along the principal direction bi and use the
centered quintic box spline to reconstruct the directional derivative.
The different directions are combined using (29) to recover the
gradient.

P-FIR-s: We apply the 4 weight shifted FIR filter derived above
(cf. (31)) to the prefiltered data along the principal directions bi
and use the corresponding shifted quintic box spline M i

Ξ2(x) to
reconstruct the directional derivative. Analogous to the CC shifted
reconstruction schemes, instead of reconstructing the directional
derivative at x, we reconstruct it at the translated point y = x − bi/2
using the reconstruction code for the centered quintic box-spline.

6 RESULTS AND DISCUSSION

In order to assess the impact of our filters on volume visualization, we
rendered isosurface images of the synthetic Marschner-Lobb (ML) test
function first introduced in [21]. This function has a simple analytic
formulation which can be used for the purpose of quantitative compar-
isons. We used the parameters given in [21] and sampled the function
on CC and BCC grids of equivalent resolutions. To effectively discern
the effect of a gradient estimation scheme, we used the analytic form to
reconstruct the isosurface but used the sampled data to reconstruct the
gradients according to the different schemes presented in Section 5.

Figure 6 shows the renditions obtained using the various schemes
while Figure 7 illustrates the distributions of the gradient errors on
the visible isosurface. CC vs BCC. The BCC lattice incurs less er-
rors as compared to CC. It is known to be an optimal sampling lattice
and produces better scalar reconstructions [31, 15]. It is therefore not
surprising that this benefit carries over to gradient reconstruction as
well. Furthermore, BCC also seems to be more sensitive to filter com-
binations as can be seen by the wider separation between the angular
distribution curves.

OP vs Practical. The OP schemes perform better than the FIR
schemes both in terms of angles and magnitudes. This further cor-
roborates our analysis in Section 4.4.1 (see also Figure 5) where we
have shown that the OP filters yield lower error kernels.

Shift vs. Centered. The shifted OP filters incur much less magnitude
errors as predicted by the derivative error kernel. However, surpris-
ingly, this trend seems to be reversed when we consider the angular
error distributions. On the other hand, for the FIR filters, the shifts
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Fig. 6. The 0.5 isosurface of the ML function shaded using different gradient estimation schemes; top row, CC, and bottom row, BCC. The analytic
function was used to reconstruct the isosurface while sampled data (CC: 41 × 41 × 41, BCC: 32 × 32 × 64) were used for gradient estimation. For
comparison, the left half of each image shows the truth. The mean angular error and the mean length of the error vector are indicated. The terms
pANALYTIC and P-ANALYTIC refer to computing the analytic gradient of the scalar approximation.
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Fig. 7. Distribution of the errors for the images shown in Figure 6.

have a clear advantage. The filters pFIR-s and P-FIR-s lead to lower
angular and magnitude errors as compared to their centered counter-
parts pFIR and P-OPT26.

Orthogonal vs. Oblique. We observed strong directional artifacts
with the directional filter P-FIR which suggests that for an oblique
central differencing scheme, the non-orthogonality of the basis has a
major impact. However, the introduction of an oblique shift (P-FIR-
s), not only cures these artifacts, but also leads to a more accurate
scheme without any additional computational burden. In comparison,
the orthogonal scheme P-OPT26 is more expensive and less accurate.

Analytic vs. FIR. For the most part, the analytic derivative performs
well, specially in comparison to the centered, orthogonal FIR schemes
pFIR and P-OPT26. Undoubtedly, the IIR OP schemes are better, and
even more so when the crucial aspect is the orientation of the gradi-
ent. With the introduction of a shift, the FIR schemes become almost
as good as the analytical gradient in terms of the gradient magnitude.
They seem to have an advantage in terms of the orientation of the gra-
dient. However, this is rather fortuitous since the criterion optimized
by the error kernel is the magnitude and not the orientation.

In order to investigate the effect of the shifted schemes, we exper-
imented with an aneurysm dataset obtained through an angiography
scan. Isosurface renditions of the original high resolution CC dataset
are shown in Figure 8. Even at this resolution, the differences between
the centered and shifted FIR schemes are remarkable, pFIR-s clearly
reveals details that are smoothed out by the centered scheme pFIR.

We downsampled this dataset on equivalent CC and BCC grids

(a) pFIR (b) pFIR-s

Fig. 8. An isosurface (isovalue = 1000) of the high resolution (5123)
aneurysm CC dataset reconstructed using prefiltered tricubic B-spline
interpolation.

and reconstructed the same isosurface using the gradient estimation
schemes outlined in Section 5. In order to ensure that we remain in
the low-pass regime, appropriate anti-aliasing filters were applied in
the Fourier domain (using the FFT) before downsampling. To create a
BCC volume downsampled by a factor of 4, we filtered the CC dataset
by zeroing out the spectrum outside a rhombic dodecahedron that is
the Voronoi cell of the dual FCC lattice. The resulting CC volume was
then simply subsampled on a BCC lattice. An equivalent CC volume
was created by discarding the spectrum outside the rectangular region
corresonding to the Voronoi cell of the downsampled CC volume. The
resulting images are shown in Figure 9. It should be stressed that the
underlying isosurface for each lattice type is the same, since the same
prefiltered reconstruction scheme is used to find the isosurface.

The visual differences between the various CC renditions are sub-
tle. Nevertheless, one can observe that the OP scheme CC does a
better job at preserving the high frequency details as compared to the
FIR scheme pFIR which has the greatest smoothing effect. With an
introduction of a shift, the FIR scheme pFIR-s recovers the lost details
and is visually comparable to the shifted OP scheme CC-s. In contrast
to the CC lattice, the BCC lattice provides a better scalar reconstruc-
tion and is much more sensitive to the various derivative filter combi-
nations. As before, the centered FIR scheme P-OPT26 has a strong
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Fig. 9. Downsampled isosurface renditions of the aneurysm dataset, top row CC (3233) and bottom row, BCC (256 × 256 × 512). The shading
differences are solely due to the different gradient estimation schemes.

smoothing effect. In comparison, the centered OP scheme QQ fares a
lot better as shown by the zoomed in regions of the corresponding im-
ages. The greatest improvement is shown by the the shifted schemes
P-FIR-s and QQ-s. They dramatically improve visual quality by re-
vealing high frequency details and enhancing contrast. We have also
compared these renditions to those obtained by computing the analytic
gradient. The visual differences between the shifted schemes and the
analytic gradient are hard to discern, although we did notice that the
shifted OP schemes reproduce edges better and are more accurate in
preserving the gradient magnitude in high frequency regions. Some
additional examples are also provided in the supplementary material.

The benefits of the shifted schemes also extend to Direct Volume
Rendering (DVR) as shown in Figure 1 for the case of the CC carp
dataset. The images obtained by rendering the downsampled dataset
clearly demonstrate the dramatic impact a mere shift can have on vi-
sual quality. Even though several color values are composited to pro-
duce a DVR rendering, the effect of a poor normal estimation scheme
persists specially in areas of high variability.

In summary, the shifted OP schemes yield the best results. How-
ever, they achieve the superior visual quality at the expense of an added
storage overhead. On the other hand, the shifted FIR schemes not only
yield results that rival those obtained through the shifted OP schemes,
they are also cheap to compute and do not require any changes to the
underlying interpolation kernel as is the case with the analytic gradi-
ent. This makes them ideally suited for practical applications where
both efficiency and accuracy are crucial. It should be emphasized that
the scenario we have considered is the bare minimum to guarantee
fourth-order convergence. Both the frameworks considered in Sec-
tion 4 can be easily extended to obtain higher quality filters which can
be combined with the tricubic B-spline (CC) or the quintic box spline
(BCC) to further reduce the error. In contrast, there is little room for
improvement for the analytic gradient (cf. Figure 5) because of the
lower approximation order.

7 CONCLUSION

We have presented a new methodology to design derivative reconstruc-
tion schemes on arbitrary lattices, to extend the state of the art. The
contribution is twofold; first, the components of the gradient are com-
puted as partial derivatives along principal lattice directions and each
derivative is reconstructed in a shift-invariant box spline space whose
supporting grid is shifted between two lattice points in the direction
of the derivative. Second, the digital prefilter which yields the box-
spline coefficients from the available point samples is split into an in-
terpolation prefilter and a FIR finite-difference filter, designed to fully
exploit the approximation order of the reconstruction space. The in-
terpolation prefilter is applied only once and provides the coefficients
for the reconstruction of both the function and its derivative. This
framework globally matches the state-of-the-art quality of our previ-
ously proposed Hilbert space framework [20], while being free of the
storage overhead.

In future, we shall further investigate the use of the derivative error
kernel [5] to design quasi-projection prefilters, by relaxing the interpo-
lation constraint to improve the global behavior of the reconstruction.
Furthermore, we shall study the extension of the formalism to the case
where the measurements are corrupted by noise [10, 13, 28], to design
schemes that apodize noise while retaining maximal approximation
order.
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tari, and T. Möller. On visual quality of optimal 3D sampling and recon-

struction. In Graphics Interface 2007, pages 265 – 272, May 2007.

[23] R. Mersereau and T. Speake. The processing of periodically sampled

multidimensional signals. IEEE Transactions on Acoustics, Speech, and

Signal Processing, ASSP-31(1):188–194, 1983.
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