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A general procedure to combine estimators

F. Lavancier and P. Rochet

University of Nantes, France

Abstract

We propose a general method to combine several estimators of the same quantity in order
to produce a better estimate. In the spirit of model and forecast averaging, the final estimator
is computed as a weighted average of the initial ones, where the weights are constrained to
sum to one. In this framework, the optimal weights, minimizing the quadratic loss, are
entirely determined by the mean square error matrix of the vector of initial estimators. The
averaging estimator is derived using an estimation of this matrix, which can be computed
from the same dataset. We prove a non-asymptotic error bound on the averaging estimator
and we show that it is asymptotically optimal under mild conditions on the estimated mean
square error matrix. This method is illustrated on standard statistical problems in parametric
and semi-parametric models where the averaging estimator outperforms the initial estimators
in most cases.

Keywords. Averaging ; Parametric estimation ; Weibull model ; Boolean model

1 Introduction

We are interested in estimating a parameter θ in a statistical model, based on a collection of
preliminary estimators T1, ..., Tk. In general, the relative performance of each estimator depends
on the true value of the parameter, the sample size, or other unknown factors, in which case
deciding in advance what method to favor can be difficult. This situation occurs in numerous
problems of modern statistics like forecasting or non-parametric regression, but it remains a ma-
jor concern even in simple parametric problems. In this paper, we study a general methodology
to combine linearly several estimators in order to produce a final single better estimator. In par-
ticular, we address the problem of inference for a parametric distribution and for a parametric
stochastic process, in presence of several competing estimators.

The issue of dealing with several possibly competing estimators of the same quantity has
been extensively studied in the literature these past decades. One of the main solution retained
is to consider a weighted average of the Ti’s. The idea of estimator averaging actually goes back
to the early 19th century with Pierre Simon de Laplace [19], who was interested in finding the
best combination between the mean and the median to estimate the location parameter of a
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symmetric distribution, see the discussion in [29]. More generally, the solution can be expressed
as a linear combination of the initial estimators

θ̂λ = λ⊤T =

k
∑

i=1

λiTi, (1)

for λ a vector of weights lying in a subset Λ of Rk and T = (T1, . . . , Tk)
⊤. A large number of

statistical frameworks fit with this description. For example, model selection can be viewed as
a particular case for Λ the set of vertices. Similarly, convex combinations corresponds to the
simplex Λ = {λ :

∑k
i=1 λi = 1, λi ≥ 0} while linear combinations to Λ = R

k. Another well-used
framework consists in relaxing the positivity condition of convex combination, corresponding to
the set Λ = {λ :

∑k
i=1 λi = 1}.

Estimator averaging has received a particular attention for prediction purposes. Ever since
the paper of Bates and Granger [2], dealing with forecast averaging for time series, the literature
on this subject has greatly developed, see for instance [10, 30] in econometrics and [7] in machine
learning. In this framework, the parameter θ represents the future observation of a series to
be predicted and T = (T1, ..., Tk) a collection of predictors. Averaging methods have also been
widely used for prediction in a regression framework. In this case, θ is the response variable to
predict given some regressors, and T is a collection of models output. These so-called model
averaging procedures are shown to provide good alternatives to model selection for parametric
regression, see [23] for a survey. Model averaging has been studied in both Bayesian [26, 31] and
frequentist contexts [3, 15, 13]. In closed relation, functional aggregation deals with the same
problem in non-parametric regression [24, 34, 9, 4]. Aggregation methods have also been exten-
sively studied for density estimation, as an alternative to classical bandwidth selection methods
[27, 5, 33, 6].

In [13], Hansen introduced a least squares model average estimator, in the same spirit as the
forecast average estimator proposed in [2]. Loosely speaking, this estimator aims to mimic the
oracle, defined as the linear combination θ̂λ that minimizes the quadratic loss E(θ̂λ − θ)2, under
the constraint on the weights

∑k
i=1 λi = 1. Under this constraint, the oracle expresses in terms

of the mean squared error matrix Σ of T. The averaging estimator is then defined by replacing
Σ by an estimator Σ̂.

The main objective of this paper is to apply the latter idea to classical estimation problems,
not restricted to prediction. Although it can be applied to non-parametric models, our procedure
is essentially designed for parametric or semi-parametric models, where the number k of available
estimators is small compared to the sample size n and does not vary with n. The procedure
works well in these situations because the estimation of Σ can be carried out efficiently by
standard methods (e.g. plug-in or Monte-Carlo), and does not require the tuning of extra
parameters. While it recovers some results of [11, 12, 20] and more recently [18] on estimator
averaging for the mean in a Gaussian model, the method applies to a wide range of statistical
models. It is implemented in Section 4 on three other examples. In the first one, θ represents
the position of an unknown distribution, which can be estimated by both the empirical mean
and median, as initially addressed by P. S. de Laplace in [19]. In the second example, θ is the
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two-dimensional parameter of a Weibull distribution, for which several competing estimators
exist. In the third one, we consider a stochastic process, namely the Boolean model, that also
depends on a two-dimensional parameter and we apply averaging to get a better estimate.

An important contribution of our approach is to include the case where several parameters
θ1, . . . , θd have to be estimated, and a collection of estimators is available for each of them. In
order to fully exploit the available information to estimate say θ1, it may be profitable to average
all estimators, including those designed for θj, j 6= 1. We show that a minimal requirement is
that the weights associated to the latter estimators sum to 0, while the weights associated to
the estimators of θ1 sum to one (additional constraints on the weights can also be added as
discussed in Section 2.3). To our knowledge, estimator averaging including estimators of other
parameters is a new idea. Our simulations study shows that it can produce spectacular results
in some specific situations such as the Boolean model treated in the third example of Section 4.

From a theoretical point of view, we provide an upper bound on the deviation of the averaging
estimator to the oracle. Our result is non-asymptotic and involves the error to the oracle for the
actual event, in contrast with usual criteria based on expected loss functions. In particular, our
result strongly differs from classical oracle inequalities derived in the literature on aggregation
for non-parametric regression [4, 9, 17, 34] or density estimation [5, 6, 27, 33]. Moreover, we
deduce that under mild assumptions, our averaging estimator behaves asymptotically as the
oracle, generalizing the asymptotic optimality result proved by Hansen and Racine [14] in the
frame of model averaging where Σ is estimated by jackknife. Our result applies in particular
if

√
n(T − θ) converges in mean square to a gaussian law and a consistent estimator of the

asymptotic covariance matrix is available, though these conditions are far from being necessary.
This situation makes it possible to construct an asymptotic confidence interval based on the
averaging estimator, the length of which is necessarily smaller than all confidence intervals
based on the initial estimators.

The averaging procedure is detailed in Section 2, where we give some examples for the choice
of the set of weights Λ, or equivalently of the constraints followed by the weights, and we detail
some natural methods for the estimation of Σ. In Section 3 we prove a non-asymptotic bound
on the error to the oracle and discuss the asymptotic optimality of the averaging estimator.
Section 4 is devoted to some examples of problems, where we show that the method performs
almost always better than the best estimator in the initial collection T. These examples deal
with the estimation of the position of a symmetric distribution, estimation in a Weibull model
and a Boolean model. Proofs of our results are postponed to the Appendix.

2 The averaging procedure

The method is different whether it is applied to one parameter or several. For ease of
comprehension, we first present the averaging procedure for one parameter, which follows the
idea introduced in [2] for forecast averaging, though our choice of the set of weights Λ may be
different. We then introduce a generalization of the procedure for averaging several parameters
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simultaneously. Finally, we discuss in Sections 2.3 and 2.4 the choice Λ and the construction of
Σ̂.

2.1 Averaging for one parameter

Let T = (T1, ..., Tk)
⊤ be a collection of estimators of a real parameter θ. We search for a

decision rule that combines suitably the Ti’s to provide a unique estimate of θ. Aiming for the
best unconstrained transformation f(T) is pointless since the solution is the trivial f(T) = θ.
A reasonable alternative is to settle for linear transformations

θ̂λ = λ⊤T, λ ∈ Λ,

where λ⊤ denotes the transpose of λ and Λ is a given subset of Rk. In this linear setting, a
convenient way to measure the performance of θ̂λ is to compare it to the oracle θ̂∗, defined as
the best linear combination θ̂λ obtained for a non-random vector λ ∈ Λ. Specifically, the oracle
is the linear combination θ̂∗ = λ∗⊤T minimizing the mean square error (MSE), i.e.

λ∗ = argmin
λ∈Λ

E(λ⊤T− θ)2.

Of course, λ∗ is unknown in practice and needs to be approximated by an estimator, say λ̂.

Clearly, the larger the set Λ, the better the oracle. However, choosing the whole space
Λ = R

k is generally not exploitable. Indeed, assuming that the Gram matrix E(TT⊤) exists
and is non-singular, the oracle over Λ = R

k is given by

λ∗
lin = arg min

λ∈Rk
E(λ⊤T− θ)2 = θ

[

E(TT⊤)
]−1

E(T).

For the solution θ̂ = λ̂⊤T to be comparable to the oracle, we need to be able to approach the
optimal weights better than we can estimate θ. The presence of θ in the above expression shows
that λ∗

lin should be at least as difficult to estimate as θ, rending linear averaging inefficient. In
fact, the performance of the average highly relies on the choice of the set Λ. Indeed, choosing a
too large set Λ might increase the accuracy of the oracle but make it difficult to estimate λ∗. On
the contrary, a too small set Λ might lead to a poorly efficient oracle but easy to approximate.
Therefore, a good balance must be found for the oracle to be both accurate and reachable.

Writing the estimation error as

θ̂ − θ = θ̂∗ − θ + (λ̂− λ∗)⊤T, (2)

a good rule of thumb is to consider a set Λ for which the residual term (λ̂−λ∗)⊤T can be made
negligible compared to the error of the oracle θ̂∗ − θ. In this purpose, a solution proposed in [2]
and widely used in the averaging literature is to consider the affine constraint set

Λmax = {λ ∈ R
k : λ⊤1 = 1},

where 1 denotes the unit vector 1 = (1, ..., 1)⊤. If λ∗ and λ̂ are in Λmax, the error term can be
written as

(λ̂− λ∗)⊤T = (λ̂− λ∗)⊤(T − θ1),
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where both (λ̂ − λ∗) and (T − θ1) can contribute to make the error term negligible. This is
confirmed by the theoretical result stated later in Corollary 3.2.

In the sequel, we let Λ be a non-empty closed subset of Λmax. Some examples for the choice
of Λ are discussed in Section 2.3. We assume that the initial estimators have finite order-two
moments and 1, T1, ..., Tk are linearly independent so that the Gram matrix

Σ = E
[

(T− θ1)(T− θ1)⊤
]

is well defined and non-singular. From the identity λ⊤1 = 1, we see that the optimal weight λ∗

defining the oracle θ̂∗ = λ∗⊤T writes

λ∗ = argmin
λ∈Λ

E(λ⊤T− θ)2 = argmin
λ∈Λ

λ⊤Σλ.

Remark that the assumptions made on Λ ensure the existence of a minimizer. If Λ is convex, the
solution is unique, otherwise we agree that λ∗ refers to one of the minimizers. In the particular
important example where Λ = Λmax, we get the well known explicit solution

λ∗
max =

Σ−11

1⊤Σ−11
,

considered for instance in [2], [10] or [14]. Of course, in practice, the MSE matrix Σ is unknown
and has to be approximated by some estimator Σ̂ to yield the averaging estimator θ̂ = λ̂⊤T,
where

λ̂ = argmin
λ∈Λ

λ⊤Σ̂λ.

Natural methods to construct Σ̂ are discussed in Section 2.4. While it may seem paradoxical
to shift our attention from θ to the less accessible Σ, the effectiveness of the averaging process
can be explained by a lesser sensibility to the errors on Σ̂. As a result, the averaging estimator
improves on the original collection as soon as we are able to build Σ̂ sufficiently close from the
true value, without stronger requirement such as consistency. On the contrary, the chances of
considerably deteriorating the estimation of θ are expected to be small due to the smoothing
effect of averaging.

2.2 Averaging for several parameters

We now discuss a generalization of the method that deals with several parameters simultane-
ously. Let θ = (θ1, . . . , θd)

⊤ ∈ R
d and assume we have access to a collection of estimators Tj for

each component θj . For sake of generality we allow the collections T1, . . . ,Td to have different
sizes k1, . . . , kd with kj ≥ 1. So, let T1 ∈ R

k1 , . . . ,Td ∈ R
kd and note T = (T⊤

1 , . . . ,T
⊤
d )

⊤ ∈ R
k,

with k =
∑d

j=1 kj . We consider averaging estimators of θ of the form

θ̂λ = λ⊤T ∈ R
d,
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where here, λ is a k × d matrix. For similar reasons as previously, we choose to make some
restrictions on the set of authorized values for λ. In this purpose, define the matrix

J =













1k1 0 . . . 0

0 1k2
. . .

...
...

. . .
. . . 0

0 . . . 0 1kd













∈ R
k×d,

where 1kj is the vector composed of kj ones (we simply note it 1 in the sequel to ease notation).
We consider the maximal restriction set

Λmax = {λ ∈ R
k×d : λ⊤ J = I}, (3)

with I the identity matrix. Let λj ∈ R
k denote the j-th column of λ ∈ R

k×d. For each component
θj, the average is given by

θ̂λ,j = λ⊤
j T = λ⊤

j,1T1 + · · ·+ λ⊤
j,dTd,

where λj = (λ⊤
j,1, . . . , λ

⊤
j,d)

⊤ with λj,ℓ ∈ R
kℓ, ℓ = 1, . . . , d. Imposing that λ ∈ Λmax means that

for any j = 1, . . . , d

λ⊤
j,ℓ1 =

{

0 if ℓ 6= j
1 if ℓ = j.

(4)

In particular, this condition does not rule out using the entire collection T to estimate each
component θj, although the weights λj,ℓ do not satisfy the same constraints depending on the
relevance of Tℓ. While it may seem more natural to impose that only Tj is involved in the
estimation of θj (and this can be made easily through an appropriate choice of Λ ⊂ Λmax,
letting λj,ℓ = 0 for ℓ 6= j), allowing one to use the whole set T to estimate each component
enables to take into account possible dependencies, which may improve the results. Nevertheless,
the condition λ⊤ J = I is imposed to have the equality λ⊤T − θ = λ⊤(T − J θ), which is used
to derive the optimality result of Theorem 3.1 in Section 3.1. Letting ‖.‖ denote the usual
Euclidean norm on R

d, the expression of the mean square error becomes, using the classical
trick of switching trace and expectation,

E‖λ⊤T− θ‖2 = E
[

tr
[

(T− J θ)⊤λλ⊤(T− J θ)
]]

= tr(λ⊤Σλ),

where Σ = E
[

(T − J θ)(T − J θ)⊤
]

∈ R
k×k. Here again, we assume that Σ exists and is non-

singular. The simultaneous averaging process for several parameters generalizes the procedure
presented in Section 2.1. In fact, averaging for one parameter just becomes the particular
case with d = 1. Given a subset Λ ⊆ Λmax, we define the oracle as the linear transformation
θ̂∗ = λ∗⊤T with

λ∗ = argmin
λ∈Λ

E‖λ⊤T− θ‖2 = argmin
λ∈Λ

tr(λ⊤Σλ). (5)

Finally, assuming we have access to an estimator Σ̂ of Σ, see Section 2.4, we define the averaging
estimator as θ̂ = λ̂⊤T where

λ̂ = argmin
λ∈Λ

tr(λ⊤Σ̂λ). (6)

If λ⊤Σλ is well approximated by λ⊤Σ̂λ for λ ∈ Λ, we can reasonably expect the average θ̂ to be
close to the oracle θ̂∗, regardless of the possible dependency between Σ̂ and T.
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2.3 Examples of constraint sets

As explained before, the set Λ must be included in Λmax defined in (3). This constraint
is confirmed by the theoretical study of Section 3, where we further assume that Λ is convex.
The latter condition is required for technical reasons and excludes the case where Λ is the
set of vertices, corresponding to estimator selection. Applying the method in this case would
simply consist in comparing the estimated mean square error of each estimator and this natural
approach is already used in numerous situations. Other interesting situations are discussed
below. They all fit the setting of our theoretical results and provide a better oracle than for
estimator selection.

• When a good estimation of Σ can be provided, it is natural to consider the maximal
constraint set Λ = Λmax, thus aiming for the best possible oracle. This set is actually an
affine subspace of Rk×d and in particular, it is convex. The oracle, obtained by minimizing
the convex map λ 7→ tr(λ⊤Σλ) subject to the constraint λ⊤ J = I is given by θ̂∗max = λ∗⊤

maxT

where
λ∗
max = Σ−1 J(J⊤Σ−1 J)−1, (7)

generalizing the formula given in Section 2.1. Its mean-square error can be calculated
directly

E
[

(θ̂∗max − θ)(θ̂∗max − θ)⊤
]

= (J⊤ Σ−1 J)−1.

This solution is a direct consequence of the equality

λ⊤Σλ− (J⊤Σ−1 J)−1 = λ⊤Σλ− λ∗⊤
maxΣλ

∗
max = (λ− λ∗

max)
⊤Σ(λ− λ∗

max) (8)

that holds for all λ ∈ Λmax due to the condition λ⊤ J = I, and where the last matrix is
positive definite.

Moreover, (8) shows that the oracle is not only the solution of our optimization problem
over Λmax, but it is optimal to estimate any linear transformation of θ. In particular each
component θ̂∗max,j of the oracle is the best linear transformation λ⊤T, λ ∈ Λmax, that one
can get to estimate θj. Another desirable property of the choice Λ = Λmax is that due

to the closed expression (7), the averaging estimator θ̂max obtained by replacing Σ by its
estimation Σ̂ has also a closed expression which makes it easily computable, namely

θ̂max = (J⊤ Σ̂−1 J)−1 J⊤ Σ̂−1T. (9)

As mentioned earlier, the maximal constraint set allows one to use the information con-
tained in external collections to estimate each parameter. This requires to estimate the
whole MSE matrix, including the cross correlations between different collections Ti. While
this can produce surprisingly good results in some cases (see Section 4), it may deteriorate
the estimator if the external collections do not contain significant additional information
on the parameter.

• A natural and simpler framework is to consider component-wise averaging, for which only
the collection Tj is involved in the estimation of θj. The associated set of weights is the
set of matrices λ whose support is included in the support of J, that is

Λ = {λ ∈ Λmax : supp(λ) ⊆ supp(J)},
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where for a matrix A = (Ai,j) ∈ R
k×d, supp(A) := {(i, j), Ai,j 6= 0}. In this particular

framework, the covariance of two initial estimators in different collection Ti,Tj, i 6= j is
not involved in the computation of the oracle, so that the corresponding entries of Σ need
not be estimated. Consequently, each component of θ is combined regardless of the others
and as a result, the oracle is given by

θ̂∗j =
1⊤Σ−1

j Tj

1⊤Σ−1
j 1

, j = 1, ..., d.

where
Σj = E

[

(Tj − θj1)(Tj − θj1)
⊤
]

∈ R
kj×kj , j = 1, ..., d.

In order to build the averaging estimator, it is sufficient to plug an estimate of Σj, j =
1, ..., d, in the above expression, which makes it easily computable. See Section 4.2 for
further discussion.

• Convex averaging corresponds to the choice

Λ = {λ ∈ Λmax : λi,j ≥ 0, i = 1, ..., k, j = 1, ..., d}.

Observe that the positivity restriction combined with the condition λ⊤ J results in λ having
its support included in that of J, making convex averaging a particular case of component-
wise averaging. This means that each component of θ can be dealt with separately. So,
for sake of simplicity in this example, we only consider the case d = 1.

Convex combination of estimators is a natural choice that has been widely studied in the
literature. An advantage lies in the increased stability of the solution, due to the restriction
of λ to a compact set, though the oracle may of course be less efficient than in the maximal
case Λ = Λmax. The use of convex combinations is also particularly convenient to preserve
some properties of the initial estimators, such as positivity or boundedness. Moreover,
imposing non-negativity often leads to sparse solutions.

In this convex constrained optimization problem, the minimizer λ̂ = argminλ∈Λ λ⊤Σ̂λ
can either lie in the interior of the domain, in which case λ̂ = Σ̂−11/1⊤Σ̂−11 corresponds
to the global minimizer over Λmax, or on the edge, meaning that it has at least one zero
coordinate. Letting m̂ ⊆ {1, ..., k} denote the support of λ̂, it follows that the averaging
procedure obtained with the estimtors Tm̂ := (Ti)i∈m̂ leads to a solution λ̂m̂ with full
support. As a result, it can be expressed as the global minimizer for the collection Tm̂,

λ̂m̂ =
Σ̂−1
m̂ 1

1⊤Σ̂−1
m̂ 1

,

where Σ̂m̂ is the submatrix composed of the entries Σ̂i,j for (i, j) ∈ m̂2. Since we have by

construction λ̂⊤
m̂Tm̂ = λ̂⊤T = θ̂, we deduce the following characterization of the convex

averaging solution:

θ̂ =
1⊤Σ̂−1

m̂ Tm̂

1⊤Σ̂−1
m̂ 1

,
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where m̂ must be the support which is both admissible and provides the minimal mean-
square error, i.e. m̂ = argmaxm⊆{1,...,k} 1⊤Σ̂−1

m 1 subject to the constraint that Σ̂−1
m 1 has

all its coordinates positive. This provides an easy method to implement convex averaging
in practice. Remark that this method is only efficient if k is not too large, otherwise we
recommend to use a standard quadratic programming solver to get λ̂, see for instance [25].

2.4 Estimation of the MSE matrix

The accuracy of Σ̂ is clearly a main factor to the performance of the averaging method. There
are natural methods to construct Σ̂ that essentially differ whether the model is parametric or
not. In all cases, the estimation of Σ can be carried out from the same data as those used to
produce the initial estimators Ti and no sample splitting is needed.

In a fully specified parametric model, the MSE matrix Σ can be estimated by plugging an
initial estimate of θ. Precisely, assuming that the MSE matrix can be expressed as the image of
θ through a known map Σ(.) : Rd → R

k×k, one can choose Σ̂ = Σ(θ̂0), where θ̂0 is a consistent
estimate of θ. A natural choice for θ̂0 is to take one of the initial estimators if it is known to
be consistent, or the average 1

k

∑k
i=1 Ti provided all initial estimators are consistent. If the map

Σ(.) is not explicitly known, Σ(θ̂0) may be approximated by Monte-Carlo simulations of the
model using the estimated parameter θ̂0, a procedure sometimes called parametric bootstrap.
This method is illustrated in our examples in Sections 4.2 and 4.3. Remark that in this para-
metric situation, the averaging procedure does not require any information other than the initial
collection T.

In some cases, Σ may also depend on a nuisance parameter η. In this situation, Σ̂ can be
built similarly by plugging or Monte-Carlo, provided η can be estimated from the observations.
This situation requires that the sample X1, ...,Xn used to built the initial estimators Ti is avail-
able to the user.

In a semi and non-parametric setting, a parametric closed-form expression for Σ may be
available asymptotically, i.e. when the sample size on which T is built tends to infinity, and the
above plugging method then becomes possible, see also (i) in Section 3.2. Alternatively, Σ can
be estimated by standard bootstrap if no extra information is available. These two methods are
implemented in the first example of Section 4.

3 Theoretical results

3.1 Non-asymptotic error bound

The performance of the averaging estimator relies on the accuracy of Σ̂, but more specifically,
on the ability to evaluate the error tr(λ⊤Σλ) as λ ranges over Λ. As a result, it is not crucial
that Σ̂ be a perfect estimate of Σ as long as tr(λ⊤Σ̂λ) is close to its true value for λ ∈ Λ. In order
to measure the accuracy of Σ̂ for this particular purpose, we introduce the following criterion.
For two symmetric positive definite matrices A and B and for any non-empty set Λ that does
not contain 0, let δΛ(A|B) denote the maximal divergence of the ratio tr(λ⊤Aλ)/ tr(λ⊤Bλ) over
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Λ,

δΛ(A|B) = sup
λ∈Λ

∣

∣

∣

∣

1− tr(λ⊤Aλ)

tr(λ⊤Bλ)

∣

∣

∣

∣

,

and δΛ(A,B) = max{δΛ(A|B), δΛ(B|A)}. We are now in position to state our main result.

Theorem 3.1 Let Λ be a non-empty closed convex subset of Λmax with associated oracle θ̂∗

defined through (5), and Σ̂ a symmetric positive definite k× k matrix. The averaging estimator
θ̂ = λ̂⊤T defined through (6) satisfies

‖θ̂ − θ̂∗‖2 ≤
[

inf
λ∈Λ

E‖λ⊤T− θ‖2
]

(

2δΛ(Σ̂,Σ) + δΛ(Σ̂,Σ)2
)

‖Σ− 1

2 (T− J θ)‖2. (10)

In this theorem, we provide an upper bound on the distance of the averaging estimator to
the oracle. We emphasize that this result holds without requiring any condition on the joint
behavior of T and Σ̂ (in particular, they may be strongly dependent). Moreover, we point out
that the upper bound applies to the actual error to the oracle (for the current event ω), contrary
to classical oracle inequalities which generally involve an expected loss of some kind.

The influence of the constraint set Λ in the process becomes apparent through both the
minimal error infλ∈Λ E‖λ⊤T− θ‖2 and the maximal divergence δΛ(Σ̂,Σ). It appears that while
the efficiency of the oracle is increased for large sets Λ, one must settle for combinations λ for
which tr(λ⊤Σλ) can be well evaluated, thus yielding a small value of δΛ(Σ̂,Σ). The presence
of strong correlations among the initial estimators Ti can in turn influence negatively the value
of δΛ(Σ̂,Σ). This is because a near singular matrix Σ will result in amplified errors when
computing Σ̂−1. For this reason, one must be careful when including too many estimators to
the initial collection as it increases the possibilities of strong correlations. If this problem does
not occur, adding a new estimator generally improves the efficiency of the oracle, but the final
term ‖Σ− 1

2 (T− J θ)‖2 in the right-hand side shows the price to pay in view of the equality

E‖Σ− 1

2 (T− J θ)‖2 = k.

In Lemma 5.1 in the Appendix, we establish an upper bound of the divergence δΛ(Σ̂,Σ) by

δΛ(Σ̂,Σ) ≤ ‖|Σ̂Σ−1 − ΣΣ̂−1‖|, (11)

where ‖|.‖| denotes the operator norm. The right-hand side measures how well Σ̂Σ−1 approxi-
mates the identity matrix. Thus, the quantity

L := ‖|Σ̂Σ−1 −ΣΣ̂−1‖|
provides a good indicator of efficiency for the averaging method, as illustrated by the next result.

Corollary 3.2 Under the assumptions of Theorem 3.1, the averaging estimator satisfies, for all
ǫ ∈ (0, 1],

P

( ‖θ̂ − θ̂∗‖2
E‖θ̂∗ − θ‖2

<
k

ǫ

(

2L+ L2
)

)

≥ 1− ǫ. (12)

Remark that, contrary to δΛ(Σ̂,Σ), L no longer depends on the constraint set Λ. Hence, the
sharpest bounds in (11) and (12) are obtained for Λ = Λmax, although they trivially apply to
smaller constraint sets.
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3.2 Asymptotic study

The properties of the averaging estimator established in Theorem 3.1 do not rely on any
assumption on the construction of T or Σ̂. In this section, we investigate the asymptotic
properties of the averaging estimator in a situation where both T and Σ̂ are computed from
a set of observations X1, . . . ,Xn of size n growing to infinity. From now on, we modify our
notations to Tn, Σ̂n, Σn, λ

∗
n, λ̂n, θ̂n and θ̂∗n to emphasize the dependency on n.

In practice, we expect the oracle θ̂∗n to satisfy good properties such as consistency or asymp-
totic normality. Theorem 3.1 suggests that θ̂n should inherit these asymptotic properties if Σn

can be sufficiently well estimated. Remark that if the initial estimators Ti are consistent in
quadratic mean, Σn converges to the null matrix as n → ∞. In this case, providing an estimator
Σ̂n such that Σ̂n−Σn

p−→ 0 is clearly not sufficient for θ̂n to achieve the asymptotic performance
of the oracle (here p stands for the convergence in probability while d is used for distribution).

On the contrary, requiring that Σ̂−1
n −Σ−1

n
p−→ 0 is unnecessarily too strong and would be nearly

impossible to achieve. In fact, we show in Proposition 3.3 below that the condition

Σ̂nΣ
−1
n

p−→ I (13)

appears as a simple compromise, both sufficient for asymptotic optimality and reasonable enough
to be verified in numerous situations with regular estimators of Σn. We briefly discuss a few
examples.

(i) If
√
n(Tn − J θ) converges in L

2 to a Gaussian vector N (0,W ) with W a non-singular
matrix, providing a consistent estimator, say Ŵn, of W is sufficient to verify (13), taking
Σ̂n = Ŵn. The situation becomes particularly convenient if the limit matrix W follows
a known parametric expression W = W (η, θ), with η a nuisance parameter (see the first
example in Section 4). If the map W (., .) is continuous, plugging consistent estimators
η̂0, θ̂0 yields an estimator Ŵn = W (η̂0, θ̂0) that fulfills (13). Observe that knowing the
rate

√
n in this example is not necessary as it simplifies in the expression of θ̂n. In fact, a

different rate of convergence, even unknown, would lead to the exact same result. In this
case, the asymptotic normality can make it possible to construct asymptotic confidence
intervals of minimal length for the parameter, as shown in Proposition 3.3 below.

(ii) More generally, if Σn satisfies
Σn = anW + o(an), (14)

for some vanishing sequence an, building a consistent estimator of W is sufficient to achieve
(13). Here again, the rate of convergence must not be known.

(iii) If we have different rates of convergence within the collection Tn, the condition (13) can
be verified if the normed eigenvectors of Σn converge as n → ∞. Precisely, if there exist
an orthogonal matrix P (i.e. with P⊤P = I) and a known deterministic sequence (An)n∈N
of diagonal invertible matrices such that

lim
n→∞

AnPΣnP
⊤ = D,

11



for some non-singular diagonal matrix D, producing consistent estimators P̂n and D̂n of
P and D respectively enables to verify (13) by Σ̂n = P̂⊤

n A−1
n D̂nP̂n. Here, the limit of the

normed eigenvectors of Σn are given by the rows of P and the estimator Σ̂n is constructed
from the asymptotic expansion of Σn. This example allows to have different rates of
convergence within the collection Tn but also covers the previously mentioned examples
where all constant combinations λ⊤Tn converge to θ at the same rate.

Let us introduce some additional definitions and notation. For each component θj, j =
1, ..., d, we define

αn,j := E‖θ̂∗n,j − θj‖2 = λ∗⊤
n,j Σn λ∗

n,j,

where we recall that λ∗
n,j is the j-th column of λ∗

n. Similarly, let α̂n,j = λ̂
⊤
n,jΣ̂nλ̂n,j. We assume

that the quadratic error of the oracle, given by

αn := E‖θ̂∗n − θ‖2 = tr(λ∗⊤
n Σnλ

∗
n) =

d
∑

j=1

αn,j,

converges to zero as n → ∞. For a given constraint set Λ ⊂ R
k×d, we note Λj = {λj : λ ∈ Λ} ⊂

R
k its marginal set. We say that Λ is a cylinder if Λ = {λ : λ1 ∈ Λ1, ..., λd ∈ Λd}, i.e., if Λ is the

Cartesian product of its marginal sets Λj . We point out that choosing a constraint set Λ that
satisfies this property is very natural, as it simply states that each vector of weights λj used to
estimate θj can be computed independently of the others. In particular, all the constraint sets
discussed in Section 2.3 are cylinders.

Proposition 3.3 If (13) holds, then

‖θ̂n − θ‖2 = ‖θ̂∗n − θ‖2 + op(αn). (15)

Moreover, if Λ is a cylinder and α
− 1

2

n,j (θ̂
∗
n,j−θj)

d−→ Z for some j = 1, ..., d, where Z is a random
variable, then

α̂
− 1

2

n,j (θ̂n,j − θj)
d−→ Z. (16)

This proposition establishes that building an estimate Σ̂n for which (13) holds ensures that
the error of the average θ̂n is asymptotically comparable to that of the oracle, up to op(αn). If in
addition Λ is a cylinder, it is possible to provide asymptotic confidence regions for θj when the
limit distribution Z is known. From (6), we know this confidence interval is of minimal length
amongst all possible confidence intervals based on a linear combination of Tn. Note that no
extra estimation is needed to approach the asymptotic variance, as α̂n,j is entirely determined

by λ̂n and Σ̂n, which are already used to compute θ̂n.

Remark 3.4 The convergence result (16) is in contrast with Theorem 4.1 in [15] where the
limit distribution of the averaging estimator differs from that of the oracle. However the authors
deal with model averaging, where some particular local misspecification is assumed, implying
a specific construction of the averaging weights. We consider here a more regular framework,
which explains why we are able to achieve the same limit distribution as the oracle.
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In Proposition 3.3, the asymptotic optimality of θ̂n is stated in probability. Remark how-
ever that asymptotic optimality in quadratic loss can be obtained easily under additional as-
sumptions. If, for instance, Σ̂n and Tn are computed from independent samples (which may
be achieved by sample splitting), θ̂n is asymptotically optimal in quadratic loss as soon as
E[δΛ(Σ̂n,Σn)

2] tends to 0. Indeed, we have in this case

E‖θ̂n − θ‖2 = E‖θ̂∗n − θ‖2 + o(αn), (17)

which follows directly from (24) in the proof of Proposition 3.3, taking the expectation on both
sides. We emphasize however that the use of sample splitting may reduce the performance of
the oracle, as it would be computed from fewer data. One can argue that this is a high price to
pay to obtain asymptotic optimality in L

2 and is not to be recommended in this framework.
Asymptotic optimality in L

2 can also be achieved if one can show there exists p > 1 such that

sup
n∈N

E‖Σ− 1

2
n (Tn − J θ)‖

2p

p−1 < ∞ and lim
n→∞

E[δΛ(Σ̂n,Σn)
2p] = 0.

In this case, Equation (17) follows directly by applying Hölder’s inequality in (24). These
conditions ensure the asymptotic optimality in L

2 of the averaging estimator without sample
splitting, but they remain nonetheless extremely difficult to check in practice.

4 Applications

4.1 Estimating the position of a symmetric distribution

Let us consider a continuous real distribution with density f , symmetric around some pa-
rameter θ. To estimate θ from a sample of n realisations x1, . . . , xn, a natural choice is to use the
mean xn or the median x(n/2). Both estimators are consistent whenever σ2 =

∫

(x − θ)2f(x)dx
is finite.

As remarked in introduction, the idea of combining the mean and the median to construct
a better estimator goes back to Pierre Simon de Laplace [19]. P. S. de Laplace obtains the
expression of the weights in Λmax that ensure a minimal asymptotic variance for the averaging
estimator. In particular, he deduced that for a Gaussian distribution, the better combination
is to take the mean only, showing for the first time the efficiency of the latter. For other
distributions, he noticed that the best combination is not available in practice because it depends
on the unknown distribution.

Similarly, we consider the averaging of the mean and the median over Λmax. We have two
initial estimators T1 = xn, T2 = x(n/2) and the averaging estimator is given by (9) where J is

just in this case the vector (1, 1)⊤. The MSE matrix between the two estimators is denoted by
Σn. We assume that the n realisations are independent and we propose two ways to estimate
Σn:

1. Based on the asymptotic equivalent of Σn. The latter, obtained in P. S. de Laplace’s work
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and recalled in [29], is n−1W where

W =

(

σ2 E|X−θ|
2f(θ)

E|X−θ|
2f(θ)

1
4f(θ)2

)

.

Each entry of W may be naturally estimated from an initial consistent estimate θ̂0 of θ as
follows: σ2 by the empirical variance s2n; E|X − θ| by m̂ = 1/n

∑n
i=1 |xi − θ̂0|; and f(θ) by

the kernel estimator f̂(θ̂0) = 1/(nh)
∑n

i=1 exp(−(xi − θ̂0)
2/(2h2)), where h is chosen, e.g.,

by the so-called Silverman’s rule of thumb (see [28]). With this estimation of Σn, we get
the following averaging estimator:

θ̂AV =
p1

p1 + p2
xn +

p2
p1 + p2

x(n/2) (18)

where p1 = 1/(4f̂ (θ̂0)) − m̂/2 and p2 = s2nf̂(θ̂0)− m̂/2. This estimator corresponds to an
empirical version of the best combination obtained by P. S. de Laplace.

2. Based on bootstrap. We draw with replacement B samples of size n from the original

dataset. We compute the mean and the median of each sample, respectively denoted x
(b)
n

and x
(b)
(n/2) for b = 1, . . . , B. The MSE matrix Σn is then estimated by

1

B

(

∑B
b=1(x

(b)
n − xn)

2
∑B

b=1(x
(b)
n − xn)(x

(b)
(n/2) − x(n/2))

∑B
b=1(x

(b)
n − xn)(x

(b)
(n/2) − x(n/2))

∑B
b=1(x

(b)
(n/2) − x(n/2))

2

)

.

This leads to another averaging estimator, denoted by θ̂AVB .

Let us note that the first procedure above fits the asymptotic justification presented in example
(i) of Section 3.2. For this reason, θ̂AV is asymptotically as efficient as the oracle, provided θ̂0 is
consistent. Moreover, since the initial estimators are asymptotically Gaussian and unbiased, an
asymptotic confidence interval for θ can be provided without further estimation, see Section 3.2.
For the second procedure, theory is lacking to study the behaviour of δ in (10) when Σ̂n is
estimated by bootstrap, so no consistency can be claimed at this point. However the latter is a
very natural procedure, easy to implement in practice, so it is natural to assess its performances
in our simulation study.

Table 1 summarizes the estimated MSE of xn, x(n/2), θ̂AV and θ̂AVB , for n = 30, 50, 100,
and for different distributions, namely: Cauchy, Student with 5 degrees of freedom, Student
with 7 degrees of freedom, Logistic, standard Gaussian, and an equal mixture distribution of a
N (−2, 1) and a N (2, 1). For all distributions, θ = 0. For the initial estimate θ̂0 in (18), we take
the median x(n/2), because it is well defined and consistent for any continuous distribution. The

number of bootstrap samples taken for θ̂AVB is B = 1000.
While the best estimator between xn and x(n/2) depends on the underlying distribution, the

averaging estimators θ̂AV and θ̂AVB perform better than both xn and x(n/2), for all distributions
considered in Table 1 except the Gaussian law. For the latter distribution, we know that the
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n=30 n=50 n=100
MEAN MED AV AVB MEAN MED AV AVB MEAN MED AV AVB

Cauchy 2.106 9 8.95 8.99 4.107 5.07 4.92 4.9 2.107 2.56 2.49 2.49
(1.106) (0.14) (0.15) (0.15) (4.107) (0.08) (0.08) (0.08) (2.107) (0.04) (0.04) (0.04)

St(4) 6.68 5.71 5.4 5.43 4.12 3.53 3.33 3.34 1.99 1.74 1.61 1.62
(0.1) (0.08) (0.08) (0.08) (0.06) (0.05) (0.05) (0.05) (0.03) (0.02) (0.02) (0.02)

St(7) 4.8 5.51 4.6 4.64 2.82 3.32 2.74 2.8 1.42 1.67 1.37 1.38
(0.07) (0.08) (0.07) (0.07) (0.04) (0.05) (0.04) (0.04) (0.02) (0.02) (0.02) (0.02)

Logistic 10.89 12.7 10.76 10.87 6.64 7.93 6.52 6.6 3.3 4 3.2 3.26
(0.16) (0.18) (0.16) (0.16) (0.09) (0.11) (0.09) (0.09) (0.05) (0.06) (0.05) (0.05)

Gauss 3.39 5.11 3.53 3.61 2.04 3.1 2.1 2.15 1 1.51 1.02 1.06
(0.05) (0.07) (0.05) (0.05) (0.03) (0.04) (0.03) (0.03) (0.01) (0.02) (0.01) (0.01)

Mix 16.79 87 15.03 13.41 10.08 66.53 7.57 6.68 5.05 42.35 3.09 2.36
(0.23) (0.82) (0.29) (0.3) (0.14) (0.64) (0.15) (0.18) (0.07) (0.43) (0.06) (0.07)

Table 1: Monte Carlo estimation of the MSE of xn (MEAN), x(n/2) (MED), θ̂AV (AV) and

θ̂AVB (AVB) in the estimation of the position of a symmetric distribution, depending on the
distribution and the sample size. The number of replications is 104 and the standard deviation
of the MSE estimations is given in parenthesis. Each entry has been multiplied by 100 for ease
of presentation.

oracle is the mean, so the averaging estimator cannot improve on xn. However the MSE of
θ̂AV and θ̂AVB are very close to that of xn in this case, proving that the optimal weights (1, 0)
are fairly well estimated. Moreover, note that the Cauchy distribution does not belong to our
theoretical setting because it has no finite moments and xn should not be used. But it turns
out that the averaging estimators are very robust in this case, as they manage to highly favor
x(n/2). Choosing the median x(n/2) as the initial estimator θ̂0 is of course crucial in this case.

As explained above, the averaging procedure allows us to deduce an asymptotic confidence
interval without any further estimation. By construction, the length of these intervals is smaller
than the length of any similar confidence interval based on xn or x(n/2). Further, the empirical
rate of coverage of these intervals is reported in Table 2 for the previous simulations, and turns
out to be close to the nominal level 95%.

n=30 n=50 n=100
AV AVB AV AVB AV AVB

Cauchy 98.08 96.18 98.21 95.55 97.75 95.22

St(4) 93.59 91.45 94.38 92.71 94.71 92.55

St(7) 93.34 91.25 93.93 91.77 94.27 92.73

Logistic 92.48 90.33 93.96 92.05 93.91 92.21

Gauss 92.97 91.13 93.54 91.94 94.09 92.59

Mix 93.19 93.83 94.77 95.97 94.94 97.91

Table 2: Empirical rate of coverage (in %) of the asymptotic 95% confidence intervals based on
θ̂AV and θ̂AV B in the estimation of the position of a symmetric distribution, deduced from the
same simulations as in Table 1.
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Finally, while θ̂AVB suffers from a lack of theoretical justification, it behaves pretty much
like θ̂AV , except for the mixture distribution where it performs slightly better than θ̂AV . This
may be explained by the fact that θ̂AV is more sensitive than θ̂AVB to the initial estimate θ̂0, the
variance of which is large for the mixture distribution because f(0) is close to 0. Nevertheless,
θ̂AV demonstrates very good performance in this case, for the sample sizes considered in Tables 1
and 2.

4.2 Estimating the parameters of a Weibull distribution

We consider estimators averaging in a parametric setting, namely the Weibull distribution
with shape parameter β > 0 and scale parameter η > 0, the density function of which is

f(x) =
β

ηβ
xβ−1e−(x/η)β , x > 0.

Based on a sample of n independent realisations, many estimators of β and η are available (see
[16]). We consider the following three standard methods:

• the maximum likelihood estimator (ML) is the solution of the system

n

β
+

n
∑

i=1

log(xi)− n

∑n
i=1 x

β
i log(xi)

∑n
i=1 x

β
i

= 0, η =

(

1

n

n
∑

i=1

xβi

)1/β

.

• the method of moments (MM), based on the two first moments, reduces to solve:

s2n
x2n

=
Γ(1 + 2/β)

Γ(1 + 1/β)2
− 1, η =

xn
Γ(1 + 1/β)

,

where xn and sn denote the empirical sample mean and the unbiased sample variance.

• the ordinary least squares method (OLS) is based on the fact that for any x > 0,
log(− log(1−F (x)) = β log(x)−β log η, where F denotes the cumulative distribution func-
tion of the Weibull distribution. More precisely, denoting x(1), . . . , x(n) the ordered sample,
an estimation of β and η is deduced from the simple linear regression of (log(− log(1 −
F (x(i))))i=1...n on (log x(i))i=1...n, where according to the ”mean rank” method F (x(i)) may
be estimated by i/(n+1). This fitting method is very popular in the engineer community
(see [1]): the estimation of β simply corresponds to the slope in a ”Weibull plot”.

The performances of these three estimators are variable, depending on the value of the pa-
rameters and the sample size. In particular, no one is uniformly better than the others, see
Figure 1 for an illustration.

Let us now consider the averaging of these estimators. In the setting of the previous sec-
tions, we have d = 2 parameters to estimate and k1 = 3, k2 = 3 initial estimators of each are
available. The averaging over the maximal constraint set Λmax demands to estimate the 6 × 6
MSE matrix Σ, that involves 21 unknown values. The Weibull distribution is often used to
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model lifetimes, and typically only a low number of observations are available to estimate the
parameters. As a consequence averaging over Λmax of the 6 initial estimators above could be too
demanding. Moreover, between the two parameters β and η, the shape parameter β is often the
most important to identify, as it characterizes for instance the type of failure rate in reliability
engineering. For these reasons, we choose to average the three estimators of β presented above,
β̂ML, β̂MM and β̂OLS , and to consider only one estimator of η: η̂ML (where β̂ML is used for its
computation). The averaging over Λmax of these 4 estimators has three consequences: First, the
number of unknown values in the MSE matrix is reduced to 10. Second, the averaging estimator
of β depends only on β̂ML, β̂MM and β̂OLS, because η̂ML has a zero weight from (4). This means
that we actually implement a component-wise averaging for β. Third, the averaging estimator
of η equals η̂ML plus some linear combination of β̂ML, β̂MM and β̂OLS where the weights sum
to zero. This particular situation will allow us to see if η̂ML can be improved by exploiting the
correlation with the estimators of β, or if it is deteriorated.

So we have d = 2, k1 = 3, k2 = 1, T1 = (β̂ML, β̂MM , β̂OLS)
⊤, T2 = η̂ML and the averag-

ing estimator over Λmax is given by (9), denoted by (β̂AV , η̂AV )
⊤. The matrix Σ is estimated

by Monte Carlo simulations: Starting from initial estimates β̂0, η̂0, we simulate B samples of
size n of a Weibull distribution with parameters β̂0, η̂0. Then the four estimators are com-

puted, which gives β̂
(b)
ML, β̂

(b)
MM , β̂

(b)
OLS and η̂

(b)
ML, for b = 1, . . . , B, and each entry of Σ is esti-

mated by its empirical counterpart. For instance the estimation of E(β̂ML − β)(β̂MM − β) is

(1/B)
∑B

b=1(β̂
(b)
ML − β̂0)(β̂

(b)
MM − β̂0). In our simulations, we chose β̂0 as the mean of T1 and

η̂0 = η̂ML. Note that Σ having a parametric form ensures that (β̂AV , η̂AV )
⊤ is asymptotically

as efficient as the oracle, as explained in Section 3.2.

Table 3 gives the MSE, estimated from 104 replications, of each estimator of β, for n =
10, 20, 50, and for β = 0.5, 1, 2, 3, η = 10, where for each replication B = 1000. The averaging
estimator has by far the lowest MSE, even for small samples. As an illustration, the repartition
of each estimator, for n = 20 and β = 0.5, 3, is represented in Figure 1.

Table 4 shows the MSE for η̂ML and η̂AV where only estimators of β were used in attempt
to improve η̂ML by averaging. The performances of both estimators are similar, showing that
the information coming from T1 did not help significantly improving η̂ML. On the other hand,
the estimation of these (almost zero) weights might have deteriorated η̂ML, especially for small
sample sizes. This did not happen.

Finally, the empirical rate of coverage of the asymptotic confidence intervals based on β̂AV

and η̂AV is given in Table 5, showing that it is not far from the nominal level 95%, even for the
small sample sizes considered in this simulation. On the other hand, the length of these intervals
are by construction smaller than the length of similar confidence intervals based on the initial
estimators.
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n=10 n=20 n=50
ML MM OLS AV ML MM OLS AV ML MM OLS AV

β = 0.5
35.53 76.95 24.41 25.27 12.06 35.57 13.74 10.5 3.7 14.19 6.04 3.52
(0.91) (1.27) (0.40) (0.64) (0.26) (0.52) (0.19) (0.19) (0.07) (0.20) (0.08) (0.06)

β = 1
152.4 131.6 98.1 85.5 49.2 53.6 54.2 36.9 14.4 19.3 23.9 12.8
(3.8) (3.1) (1.5) (1.7) (1.1) (1.1) (0.7) (0.7) (0.2) (0.3) (0.3) (0.2)

β = 2
596.4 444.6 399.4 355.5 194.5 164.5 218 163.3 57.9 53.9 94.8 54.3
(14.4) (11.9) (6.3) (6.7) (3.8) (3.3) (2.8) (2.7) (1.0) (0.9) (1.3) (0.9)

β = 3
1369 1080 905 770 452 394 486 343 128 122 211 120
(34.6) (29.7) (14.6) (18.1) (9.8) (8.9) (6.7) (6.2) (2.2) (2.0) (2.7) (1.9)

Table 3: Monte Carlo estimation of the MSE of β̂ML, β̂MM , β̂OLS and β̂AV , based on 104

replications of a sample of size n = 10, 20, 50 from a Weibull distribution with parameters
β = 0.5, 1, 2, 3 and η = 10. The standard deviation of the MSE estimations are given in
parenthesis. Each entry has been multiplied by 100 for ease of presentation.

n=10 n=20 n=50
ML AV ML AV ML AV

β = 0.5
60.59 55.61 25.96 24.56 9.57 9.38
(1.60) (1.48) (0.53) (0.5) (0.17) (0.17)

β = 1
11.15 10.88 5.53 5.43 2.23 2.22
(0.18) (0.17) (0.08) (0.08) (0.03) (0.03)

β = 2
2.71 2.74 1.36 1.37 0.55 0.56
(0.04) (0.04) (0.02) (0.02) (0.01) (0.01)

β = 3
1.21 1.23 0.61 0.61 0.247 0.248
(0.02) (0.02) (0.01) (0.01) (0.003) (0.004)

Table 4: Monte Carlo estimation of the MSE of η̂ML and η̂AV , based on 104 replications of a
sample of size n = 10, 20, 50 from a Weibull distribution with parameters β = 0.5, 1, 2, 3 and
η = 10. The standard deviation of the MSE estimations are given in parenthesis. Each entry
has been multiplied by 100 for ease of presentation.

n=10 n=20 n=50

β̂AV η̂AV β̂AV η̂AV β̂AV η̂AV

β = 0.5 89.84 87.48 93.43 90.01 95.41 93.07

β = 1 87.25 89.24 90.98 91.61 93.81 93.62

β = 2 89.96 91.36 91.77 93.39 93.09 94.20

β = 3 92.19 92.38 92.86 93.83 94.25 94.77

Table 5: Empirical rate of coverage (in %) of the asymptotic 95% confidence intervals based on
β̂AV and η̂AV for the parameters of a Weibull distribution, deduced from the same simulations
as in Tables 3 and 4.
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Figure 1: Repartition of β̂ML, β̂MM , β̂OLS and β̂AV (from left to right) based on 104 replications
of a sample of size n = 20 from a Weibull distribution with β = 0.5 (left), β = 3 (right) and
η = 10.

4.3 Estimation in a Boolean model

The Boolean model is the main model of random sets used in spatial statistics and ran-
dom geometry, see [8]. It is a germ-grain model where, in the planar and stationary case, the
germs come from a homogeneous Poisson point process on R

2 with intensity ρ and the grains
are independent random discs, the radii of which are distributed according to a probability law
µ. Figure 2 contains four realisations of a Boolean model on [0, 1]2 where ρ = 25, 50, 100, 150
respectively and the law of the radii µ is the uniform distribution over [0, 0.1]. We assume in the
following that µ is the beta distribution over [0, 0.1] with parameter (1, α), α > 0, denoted by
B(1, α), i.e. µ has density 10α (1− 10x)α−1 on [0, 0.1]. The simulations of Figure 2 correspond
to α = 1.

The estimation of parameters ρ and α from the observation of random sets as in Figure 2
is challenging, since the individual grains cannot be identified and likelihood-based inference
becomes impossible. The standard method of inference, see [22], is based on the following
equations proved in [32]. They relate the expected area per unit area A and the expected
perimeter per unit area P of the random set to the intensity ρ and the two first moments of µ,
namely

A = 1− exp(−πρEµ(R
2)), P = 2πρEµ(R) exp(−πρEµ(R

2)),

where R denotes a random variable with distribution µ. Developing Eµ(R) and Eµ(R
2) in terms

of α, we obtain the following estimates of α and ρ :

α̂1 =
Pobs

10(Aobs − 1) log(1−Aobs)
− 2, ρ̂1 =

5 (α̂1 + 1)Pobs

π(1−Aobs)
,

where Aobs and Pobs denote the observed area and perimeter per unit area of the set.
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Figure 2: Samples from a Boolean model on [0, 1]2 with intensity ρ = 25, 50, 100, 150, from top
left to bottom right respectively, and law of radii B(1, α) where α = 1.
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An alternative procedure to estimate the intensity ρ is based on the number of tangent points
to the random set in a given direction. Let u be a vector in R

2. We denote by N(u) the number
of tangent points to the random set such that the associated tangent line is orthogonal to u and
the boundary of the set is convex in direction u. Considering k distinct vectors u1, . . . , uk, an
estimator of ρ, studied in [21], is

ρ̂2 =
1
k

∑k
i=1 N(ui)

|W |(1−Aobs)
,

where |W | denotes the area of the observation window. Although this estimator is consistent
and asymptotically normal for k = 1, it becomes more efficient as k increases, see [21]. In the
following, we consider k = 100 and the directions of u1, . . . , uk are randomly drawn from an
uniform distribution over [0, 2π].

Let us now consider the combination of the above estimators. In connection with the previ-
ous sections, we have d = 2, k1 = 2, k2 = 1, T1 = (ρ̂1, ρ̂2) and T2 = α̂1. The averaging estimator
over Λmax is denoted by (ρ̂AV , α̂AV ). In this setting, we recall that ρ̂AV is a linear combination
of ρ̂1 and ρ̂2 where the weights sum to one, whereas α̂AV equals α̂1 plus a linear combination
of ρ̂1 and ρ̂2 where the weights sum to zero. The weights are estimated according to (7), where
Σ is obtained from Monte-Carlo simulations of the model with parameters 0.5(ρ̂1 + ρ̂2) and α̂1

(see the previous section for more details).

Table 6 reports the MSE of each estimator, estimated from 104 replications from a Boolean
model with parameters ρ = 25, 50, 100, 150 and α = 1. For each replication, 100 Monte-Carlo
samples were used. The averaging estimators have better performances than the initial estima-
tors. It is worth noticing the improvement of α̂1 when it is corrected by ρ̂1 and ρ̂2 through α̂AV .
Though this procedure might seem unnatural, the result is astonishing for this model. More
simulations with other values of α (not reported in this paper) gave similar results.

ρ̂1 ρ̂2 ρ̂AV α̂1 α̂AV

ρ = 25
34.15 14.63 14.60 8.09 6.70
(0.55) (0.22) (0.22) (0.15) (0.13)

ρ = 50
131.63 47.41 45.65 4.69 3.24
(2.26) (0.72) (0.67) (0.067) (0.048)

ρ = 100
949 272 223 5.70 2.29

(21.8) (4.9) (3.6) (0.086) (0.034)

ρ = 150
7606 1656 1005 14.7 4.1
(341) (46.5) (24.4) (0.34) (0.11)

Table 6: Monte Carlo estimation of the MSE of ρ̂1, ρ̂2, ρ̂AV and α̂1, α̂AV based on 104 replications
of a Boolean model with parameters ρ = 25, 50, 100, 200 and µ ∼ B(1, α) with α = 1. The
standard deviation of the MSE estimations are given in parenthesis. The two last columns have
been multiplied by 100 for ease of presentation.

As explained before, we can deduce from ρ̂AV and α̂AV an asymptotic confidence interval
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without any further estimation. The length of these intervals is smaller than the length of any
similar confidence interval based on the initial estimators and Table 7 reports the empirical rate
of coverage of these intervals, showing that it is close to the nominal level 95%.

ρ = 25 ρ = 50 ρ = 100 ρ = 150

ρ̂AV 98.3 % 97.6 % 96.5 % 93.4 %

α̂AV 95.9 % 94.3 % 93.9 % 94.9 %

Table 7: Empirical rate of coverage (in %) of the asymptotic 95% confidence intervals based on
ρ̂AV and α̂AV for the parameters of the Boolean model, deduced from the same simulations as
in Table 6.

5 Appendix

Proof of Theorem 3.1

Since Λ ⊆ Λmax, we know that λ⊤ J = I for all λ ∈ Λ. Let S = Σ− 1

2 (T− J θ), we have

‖θ̂ − θ̂∗‖2 = ‖(λ̂− λ∗)⊤(T− J θ)‖2 = ‖(λ̂− λ∗)⊤Σ
1

2S‖2 ≤ ‖(λ̂− λ∗)⊤Σ
1

2 ‖2F ‖S‖2, (19)

where ‖A‖F =
√

tr(A⊤A) denotes the Frobenius norm of A. The map φ : λ 7→ tr(λ⊤Σλ) is
coercive, and strictly convex by assumption. So, since Λ is closed and convex, the minimum of
φ on Λ is reached at a unique point λ∗ ∈ Λ. Moreover, we know that for λ ∈ Λ, λ∗ + t(λ− λ∗)
lies in Λ for all t ∈ [0, 1], to which we deduce the optimality condition

lim
t→0+

φ(λ∗ + t(λ− λ∗))− φ(λ∗)

t
= tr

[

∇φ(λ∗)⊤(λ− λ∗)
]

= 2 tr
[

λ∗⊤Σ(λ− λ∗)
]

≥ 0,

for all λ ∈ Λ. It follows that

‖(λ̂− λ∗)Σ
1

2‖2F = tr(λ̂⊤Σλ̂)− tr(λ∗⊤Σλ∗)− 2 tr
[

λ∗⊤Σ(λ̂− λ∗)
]

≤ tr(λ̂⊤Σλ̂)− tr(λ∗⊤Σλ∗). (20)

By construction of λ̂, we know that tr(λ̂⊤Σ̂λ̂) ≤ tr(λ∗⊤Σ̂λ∗), yielding

tr(λ̂⊤Σλ̂)− tr(λ∗⊤Σλ∗) ≤ tr(λ̂⊤Σλ̂)− tr(λ̂⊤Σ̂λ̂) + tr(λ∗⊤Σ̂λ∗)− tr(λ∗⊤Σλ∗)

≤ tr(λ̂⊤Σ̂λ̂) δΛ(Σ|Σ̂) + tr(λ∗⊤Σλ∗) δΛ(Σ̂|Σ)
≤

[

tr(λ̂⊤Σ̂λ̂) + tr(λ∗⊤Σλ∗)
]

δΛ(Σ̂,Σ)

where we recall δΛ(A|B) = supλ∈Λ

∣

∣

∣
1− tr(λ⊤Aλ)

tr(λ⊤Bλ)

∣

∣

∣
and δΛ(A,B) = max{δΛ(A|B), δΛ(B|A)}. Now

using that tr(λ̂⊤Σ̂λ̂) ≤ tr(λ∗⊤Σ̂λ∗) and

tr(λ∗⊤Σ̂λ∗) = tr(λ∗⊤Σλ∗) +
[

tr(λ∗⊤Σ̂λ∗)− tr(λ∗⊤Σλ∗)
]

≤ tr(λ∗⊤Σλ∗)
[

1 + δΛ(Σ̂,Σ)
]

,

we obtain
tr(λ̂⊤Σλ̂)− tr(λ∗⊤Σλ∗) ≤ tr(λ∗⊤Σλ∗)

[

2δΛ(Σ̂,Σ) + δΛ(Σ̂,Σ)
2
]

. (21)

Recall that tr(λ∗⊤Σλ∗) = infλ∈Λ E‖λ⊤T− θ‖2, the result follows from (19), (20) and (21).
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Proof of Corollary 3.2

The proof follows directly from an application of Markov’s inequality to the term ‖Σ− 1

2 (T−J θ)‖2
and the next lemma.

Lemma 5.1 Let A, B be two positive definite matrices of order k. For any non-empty set Λ
that does not contain 0,

δΛ(A,B) ≤ ‖|AB−1 −BA−1‖|,
where ‖|A‖| = sup‖x‖F=1 ‖Ax‖F stands for the operator norm.

Proof. By symmetry, it is sufficient to show that the result holds for δΛ(A|B). We have

δΛ(A|B) = sup
λ∈Λ

| tr[λ⊤(B −A)λ]|
tr(λ⊤Bλ)

≤ sup
λ6=0

| tr[λ⊤(B −A)λ]|
tr(λ⊤Bλ)

.

By Cauchy-Schwarz inequality,

| tr[λ⊤(B −A)λ]| =
∣

∣ tr
[

λ⊤B
1

2 (I−B− 1

2AB− 1

2 ) B
1

2λ
]∣

∣

≤ ‖B 1

2λ‖F ‖(I−B− 1

2AB− 1

2 ) B
1

2λ‖F
≤ ‖|I−B− 1

2AB− 1

2‖|‖B 1

2λ‖2F . (22)

Recall that ‖B 1

2λ‖2F = tr(λ⊤Bλ), it follows

δΛ(A|B) ≤ ‖|I−B− 1

2AB− 1

2‖|.

Since the matrix C = I − B− 1

2AB− 1

2 is symmetric, it is diagonalizable in an orthogonal basis.
In particular, denoting sp(.) the spectrum, ‖|C‖| = supt∈sp(C) |t|. Finally, observe that sp(C) =

1− sp(B− 1

2AB− 1

2 ) = 1− sp(AB−1), so that AB−1 has positive eigenvalues and

‖|I−B− 1

2AB− 1

2 ‖| = sup
t∈sp(AB−1)

|1− t| ≤ sup
t∈sp(AB−1)

|t− 1

t
| ≤ ‖|AB−1 −BA−1‖|,

ending the proof. �

Proof of Proposition 3.3

By Lemma 5.1, we know that

δΛ(Σ̂n,Σn) ≤ ‖|Σ̂nΣ
−1
n − ΣnΣ̂

−1
n ‖|. (23)

In particular, δΛ(Σ̂n,Σn) = op(1) by the assumption Σ̂nΣ
−1
n

p−→ I. Write for c > 0,

‖θ̂n − θ‖2 ≤ (1 + c)‖θ̂∗n − θ‖2 + (1 + c−1)‖θ̂n − θ̂∗n‖2.

Applying Theorem 3.1, we get

‖θ̂n − θ‖2 ≤ (1 + c)‖θ̂∗n − θ‖2 + (1 + c−1)αn

(

2δΛ(Σ̂n,Σn) + δΛ(Σ̂n,Σn)
2
)

‖Sn‖2, (24)
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where Sn = Σ
− 1

2
n (Tn − J θ). Since E‖Sn‖2 = k, we know that ‖Sn‖2 = Op(1). Equation (24)

holds for all c > 0 so we can take c = cn such that cn → 0 and δΛ(Σ̂n,Σn)/cn
p−→ 0 as n → ∞,

yielding
‖θ̂n − θ‖2 ≤ ‖θ̂∗n − θ‖2 + cn‖θ̂∗n − θ‖2 + op(αn) = ‖θ̂∗n − θ‖2 + op(αn).

We shall now prove the second part of the proposition. Write,

α̂
− 1

2

n,j (θ̂n,j − θj) =

√

αn,j

α̂n,j
α
− 1

2

n,j

[

(θ̂∗n,j − θj) + (θ̂n,j − θ̂∗n,j)
]

.

To prove the result, it suffices to show that α
− 1

2

n,j ‖θ̂n,j − θ̂∗n,j‖ = op(1) and αn,j/α̂n,j
p−→ 1. When

Λ is a cylinder, it is easy to see that the following holds

λ̂n,j = arg min
λ∈Λj

λ⊤Σ̂nλ and λ∗
n,j = arg min

λ∈Λj

λ⊤Σnλ,

where we recall Λj = {λj : λ ∈ Λ}. Moreover, we easily adapt the proof of Theorem 3.1 to get

‖θ̂n,j − θ̂∗n,j‖2 ≤ αn,j

(

2δΛj
(Σ̂n,Σn) + δΛj

(Σ̂n,Σn)
2
)

‖Σ− 1

2
n (Tn − J θ)‖2.

We deduce that α
− 1

2

n,j (θ̂n,j − θ̂∗n,j) = op(1) in view of (13) and Lemma 5.1. Now, remark that

αn,j

α̂n,j
=

λ∗⊤
n,jΣnλ

∗
n,j

λ̂
⊤
n,jΣ̂nλ̂n,j

≤ λ̂
⊤
n,jΣnλ̂n,j

λ̂
⊤
n,jΣ̂nλ̂n,j

− 1 + 1 ≤ δΛj
(Σ̂n,Σn) + 1.

Similarly,
α̂n,j

αn,j
≤ δΛj

(Σ̂n,Σn) + 1.

So, we get
1

1 + δΛj
(Σ̂n,Σn)

≤ αn,j

α̂n,j
≤ 1 + δΛj

(Σ̂n,Σn),

proving that αn,j/α̂n,j
p−→ 1.
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