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Combining estimators using the same dataset to

produce both the experts and the aggregate

F. Lavancier and P. Rochet

University of Nantes, France

Abstract

Given several estimators of the same quantity, called experts, we propose a way
to aggregate them in order to produce a better estimate. The aggregated estima-
tor is simply a linear combination of the experts, with the minimal requirement
that the weights sum to one. In this framework, the optimal weights, minimizing
the quadratic loss, are entirely determined by the mean square error matrix of the
experts. The aggregation estimator is then obtained using an estimation of this ma-
trix, which can be computed from the same dataset. We show that the aggregate
satisfies a non-asymptotic oracle inequality and is asymptotically optimal, provided
the mean square error matrix is suitably estimated. This method is illustrated on
standard statistical problems: estimation of the position of a symmetric distribu-
tion, estimation in a parametric model, density estimation. In most situations, the
aggregate outperforms the initial estimators.

Keywords. Averaging ; Aggregation ; Oracle inequality ; Parametric estimation ;
Weibull model ; Kernel density estimation

1 Introduction

We are interested in estimating a parameter θ in a statistical model, based on a
collection of preliminary estimators T = (T1, ..., Tk), referred to as experts. The issue of
dealing with several possibly competing estimators of the same quantity arises in numerous
situations in which aggregation procedures aim to produce a single final estimator that
hopefully performs as well as possible, given the experts. Different approaches are possible.
For instance, one can search for the best estimator among the Ti’s, or allow combinations of
the experts in order to pursue the best performance possible. Model selection aggregation
as well as linear or convex combinations of the experts have been extensively studied in
the literature, some of the main references are [12], [3], [4], [26]. All these frameworks can
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be described in a similar setting where an aggregate is obtained as a linear combination
of the Ti’s,

θ̂λ = λ⊤T =

k
∑

i=1

λiTi,

for λ in a particular subset Λ of Rk. For example, model selection aggregation corresponds
to the set of vertices Λ = {(1, 0, ..., 0)⊤, (0, 1, 0, ..., 0)⊤, ..., (0, ..., 0, 1)⊤}, convex aggrega-
tion corresponds to Λ = {λ :

∑k
i=1 λi = 1, λi ≥ 0} while linear aggregation corresponds

to the case Λ = R
k.

Ever since the paper of Juditsky and Nemirovsky [12], aggregation literature has been
developed essentially in the context of non parametric regression. Goldenshluger [8] and
Bunea et al. [3] propose general methods adapted to different aggregation sets, assuming
that the experts are non random or independent from the observations. In [7], the authors
develop an aggregation procedure dealing with dependent experts that are affine functions
of the observations. Taniguchi and Tresp [23, 25] propose to combine neural estimators
in a non parametric regression framework, but do not investigate the efficiency of the
aggregate. Aggregation methods have also been extensively studied for density estimation,
as it provides for instance an alternative to classical bandwidth selection methods. In [17]
and [5], the authors propose natural methods for dealing with several estimates of a
density, based on a quadratic minimization, that result in aggregation estimators. Here
again, the experts are assumed to be non random. A different approach was proposed
almost simultaneously by Yang [27] and Catoni [6] to aggregate density estimators using
a sequential process.

As seen from the above references, most of the literature assume that the experts
are non random, which is generally achieved by dividing the sample in order to separate
training and validation. Without this splitting procedure, the experts T1, . . . , Tk are built
from the same data as those used to aggregate them, so they are random and generally
dependent. The question is then to find the best way to combine these estimators, when
the nature of the dependency can be unknown. In this range of work, the issue of esti-
mating the common mean of Gaussian variables has been given a particular interest, with
references going back to the 1960’s such as [9] and [15], for which an averaging of two inde-
pendent Gaussian variables with unknown variances is considered. Keller and Olkin [13]
study the same problem with more than two Gaussian variables for which the covariance
matrix is unknown and estimated independently. However, the problems studied in these
papers remain very specific, as they investigate the estimation of the mean in a Gaussian
model. To our knowledge, the general question of estimating an unknown quantity given
a collection of experts built from the same set of data, without further assumptions on
the model, has not been addressed in these terms in the literature.

The aggregation method discussed in this paper aims at providing a solution to the
latter general problem. The experts are thus random and possibly dependent. Our
aggregated estimator approaches the best linear combination of the experts under the
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minimal requirement that the weights sum to one. However more constraints on the
weights, or equivalently on the definition of the set Λ, can be added, leading for instance
to convex aggregation. We discuss the optimality of the aggregate with respect to the
quadratic loss. This allows us to deal with many aggregation problems, since this choice of
cost function is not specific to an underlying model. As a result, the aggregated estimator
relies on the estimation of the mean square error matrix of the experts. In most cases, this
estimation can be carried out by standard methods (e.g. plug-in or bootstrap methods),
and does not require the tuning of any extra parameter.

The aggregation procedure is detailed in Section 2, both for the estimation of one
parameter, belonging to a Hilbert space, and for the estimation of several parameters.
In Section 3, we discuss some examples of natural aggregation frameworks, i.e. choices
of the set of weights Λ. In Section 4 we derive a non asymptotic oracle inequality for
the aggregate and we discuss its asymptotic optimality. Section 5 is devoted to some
examples of aggregation problems, where we show that the aggregate performs almost
always better than the best expert. These examples deal with the estimation of the
position of a symmetric distribution, estimation in a parametric model, and kernel density
estimators. Proofs of our results are postponed to the Appendix.

2 Construction of the aggregate

For ease of comprehension, we present separately the aggregation procedure for one
parameter and for several parameters simultaneously, although the former is a particular
case of the latter.

2.1 Aggregation for one parameter

Let T = (T1, ..., Tk) be a collection of estimators, or experts, of a parameter θ lying in
some Hilbert space (H, 〈., .〉). We search for a decision rule that combines suitably the Ti’s
to provide a unique estimate of θ. Remark that considering all transformations f(T) is
pointless, since the best transformation in this class is the trivial f(T) = θ. Nevertheless,
a reasonable alternative is to settle for linear transformations

θ̂λ = λ⊤T, λ ∈ Λ,

where λ⊤ denotes the transpose of λ and Λ is a given subset of Rk. In this linear setting,
a convenient way to measure the performance of an aggregate is to compare it to the best
non random combination θ̂∗ in the class {θ̂λ, λ ∈ Λ}, called oracle. Specifically, we define
the oracle as the linear combination θ̂∗ = λ∗⊤T minimizing the mean square error (MSE),
i.e.

λ∗ = argmin
λ∈Λ

E‖λ⊤T− θ‖2
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where ‖.‖ denotes the norm on H, i.e. for any x ∈ H, ‖x‖2 = 〈x, x〉. Of course in practice
λ∗ is unknown and needs to be approximated by an estimator, say λ̂.

Clearly, the larger the set Λ, the better the oracle. However, choosing the whole
space Λ = R

k (which corresponds to linear aggregation) is generally not exploitable.
Indeed, assuming that the Gram matrix E〈T,T⊤〉 (with entries E〈Ti, Tj〉) exists and is
non-singular, the oracle over Λ = R

k is given by

λ∗
lin = arg min

λ∈Rk
E‖λ⊤T− θ‖2 = θ

[

E〈T,T⊤〉
]−1

E(T).

But for the aggregate θ̂ = λ̂⊤T to be comparable to the oracle, we need to be able to
approach the optimal weights at least as well as we can estimate θ. The presence of θ
in the above expression shows that λ∗

lin should be at least as difficult to estimate as θ,
rending linear aggregation inefficient. In fact, the performance of the aggregate highly
relies on the choice of the set Λ. Indeed, choosing a too large set Λ might increase the
accuracy of the oracle but make it difficult to estimate λ∗. On the contrary, a too small
set Λ might lead to a poorly efficient oracle but easy to approximate. Therefore, a good
balance must be found for the oracle to be both accurate and reachable.

Writing the estimation error

θ̂ − θ = θ̂∗ − θ + (λ̂− λ∗)⊤T,

the objective is to consider a set Λ for which the residual term (λ̂− λ∗)⊤T can be made
negligible (in a sense to be made precise) compared to the error of the oracle θ̂∗ − θ. A
natural way to deal with this issue (see for instance [23]) is to consider for Λ a subset of

Λmax = {λ ∈ R
k : λ⊤1 = 1},

where 1 denotes the unit vector 1 = (1, ..., 1)⊤. This choice enables a better control of
the error. To see this, write the equality

(λ̂− λ∗)⊤T = (λ̂− λ∗)⊤(T− θ1),

which always holds if λ∗ and λ̂ are in Λmax. The residual term (λ̂−λ∗)⊤(T−θ1) appears to
be more easily manageable compared to linear aggregation, as long as the initial estimators
Ti are sufficiently accurate.

In the sequel, we assume that the experts have finite order-two moments and 1, T1, ..., Tk

are linearly independent so that the Gram matrix

Σ = E 〈T− θ1, (T− θ1)⊤〉 = (E 〈Ti − θ, Tj − θ〉)i,j=1,...,k
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is well defined and non-singular. Let Λ be a non-empty closed convex subset of Λmax, the
oracle is defined as the linear combination θ̂∗ = λ∗⊤T where

λ∗ = argmin
λ∈Λ

E‖λ⊤T− θ‖2 = argmin
λ∈Λ

λ⊤Σλ,

the last equality holding due to the identity λ⊤1 = 1. Remark that the assumptions made
on Λ ensure both existence and unicity of the minimizer. In the particular important
example where Λ = Λmax, we get as the explicit solution of the above optimization
problem,

λ∗
max =

Σ−11

1⊤Σ−11
.

Of course, in practice, the MSE matrix Σ is unknown and has to be approximated by
some estimator Σ̂ to yield the aggregate θ̂ = λ̂⊤T, where

λ̂ = argmin
λ∈Λ

λ⊤Σ̂λ.

There are natural methods to construct Σ̂ that essentially differ whether the model is
parametric or not. In a fully specified parametric model in which Σ is known up to θ, the
MSE can be estimated by plugging in an initial estimate of θ. Precisely, assuming that the
MSE can be expressed as the image of θ through a known map Σ(.) : H → R

k×k, one can
choose Σ̂ = Σ(θ̂0), where θ̂0 is an initial estimate of θ. A natural choice for θ̂0 is to take
one of the expert or the average T̄ = 1

k

∑k
i=1 Ti. In this case, the aggregation procedure

does not require any other information than the experts. Remark that even if the map
Σ(.) is not explicitly known, Σ(θ̂0) may be approximated by parametric bootstrap. On
the other hand, in a non-parametric setting, an estimation of Σ may be achieved by
standard (non-parametric) bootstrap. Alternatively, a parametric closed-form expression
for Σ may be available asymptotically, i.e. when the sample size on which the experts are
built tends to infinity, and the plugging method explained above then becomes possible.
Some of these methods are illustrated in our examples in Section 5.

2.2 Aggregation for several parameters

We now investigate the simultaneous aggregation procedure for several parameters.
Let θ = (θ1, . . . , θd)

⊤ ∈ Hd and assume we have access to several collections of experts,
T1, . . . ,Td, one for each component θj . For sake of generality we allow the collections Tj ’s
to have different sizes denoted k1, . . . , kd respectively. So, let T1 ∈ Hk1, . . . ,Td ∈ Hkd and
denote T = (T⊤

1 , . . . ,T
⊤
d )

⊤ ∈ Hk, with k =
∑d

j=1 kj . We consider aggregation estimators
of θ of the form

θ̂λ = λ⊤T ∈ Hd,
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where here, λ is a k × d matrix. For similar reasons as previously, we choose to make
some restrictions on the set of authorized values for λ. In this purpose, let

J =







































1 0 . . . 0
...

...
...

...
1 0 . . . 0
0 1 . . . 0
...

...
...

...
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
...

...
...

...
0 0 . . . 1







































∈ R
k×d,

where the j-th column of J contains exactly kj ones, and define the maximal restriction
set

Λmax = {λ ∈ R
k×d : λ⊤J = I}, (1)

with I the identity matrix. Let Πj(λ) denote the j-th column of λ ∈ R
k×d. For each

component θj , the aggregate is given by

θ̂λ,j = Πj(λ)
⊤T = λ⊤

j,1T1 + · · ·+ λ⊤
j,dTd,

where Πj(λ) = (λ⊤
j,1, . . . , λ

⊤
j,d)

⊤ with λj,ℓ ∈ R
kℓ , ℓ = 1, . . . , d. Imposing that λ ∈ Λmax

means that for any j = 1, . . . , d

λ⊤
j,ℓ1 =

{

0 if ℓ 6= j
1 if ℓ = j.

(2)

In particular, this condition does not rule out using the entire collection T to estimate each
component θj , although the weights λj,ℓ do not satisfy the same constraints depending on
the relevance of Tℓ. While it may seem more natural to impose that only Tj is involved
in the estimation of θj (and this can be made easily through an appropriate choice of
Λ ⊂ Λmax, letting λj,ℓ = 0 for ℓ 6= j), allowing one to use the whole set T to estimate
each component enables to take into account possible dependencies between the experts,
which may improve the aggregate. Moreover, the condition λ⊤J = I appears as a minimal
requirement to obtain an oracle inequality, as shown further in Theorem 4.1.

Since there is no ambiguity, we shall use abusively the same notation ‖.‖ to refer to
the norm in Hd, i.e. for any a = (a1, . . . , ad)

⊤ ∈ Hd

‖a‖ = ‖a‖Hd =
√

‖a1‖2H + ... + ‖ad‖2H.
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Similarly, for a and b in Hd, 〈a⊤, b〉 stands for
∑〈ai, bi〉, while 〈a, b⊤〉 denotes as before

the Gram matrix with entries 〈ai, bj〉.

Notice that the condition λ⊤J = I implies that

λ⊤T− θ = λ⊤(T− Jθ),

and the expression of the mean square error can be rewritten

E‖λ⊤T− θ‖2 = E
[

〈(T− Jθ)⊤λ, λ⊤(T− Jθ)〉
]

= E
[

tr
(

〈(T− Jθ)⊤λ, λ⊤(T− Jθ)〉
)]

= E
[

tr
(

〈λ⊤(T− Jθ), (T− Jθ)⊤λ〉
)]

= tr(λ⊤Σλ),

where Σ = E〈T−Jθ, (T−Jθ)⊤〉 ∈ R
k×k and tr(.) denotes the trace operator. Here again,

we assume that Σ exists and is non-singular.
The simultaneous aggregation process for several parameters generalizes the proce-

dure presented in Section 2.1. In fact, aggregation for one parameter just becomes the
particular case with d = 1. Given a subset Λ ⊆ Λmax, we define the oracle as the linear
transformation θ̂∗ = λ∗⊤T with

λ∗ = argmin
λ∈Λ

E‖λ⊤T− θ‖2 = argmin
λ∈Λ

tr(λ⊤Σλ). (3)

Finally, assuming we have access to an estimator Σ̂ of Σ, we define the aggregation
estimator as θ̂ = λ̂⊤T where

λ̂ = argmin
λ∈Λ

tr(λ⊤Σ̂λ). (4)

If λ⊤Σλ is well approximated by λ⊤Σ̂λ for λ ∈ Λ, we may reasonably think that the
aggregate θ̂ will be close to the oracle θ̂∗, regardless of the possible dependency between
Σ̂ and T.

3 Examples of aggregation frameworks

3.1 Maximal constraint set

When a good estimation of Σ can be provided, it is natural to consider the maximal
constraint set Λ = Λmax defined in (1), thus aiming for the best possible oracle. This set
is actually an affine subspace of Rk×d and in particular, it is convex. The oracle, obtained
by minimizing the convex map λ 7→ tr(λ⊤Σλ) subject to the constraint λ⊤J = I is given
by θ̂∗max = λ∗⊤

maxT where
λ∗
max = Σ−1J(J⊤Σ−1J)−1, (5)
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generalizing the formula given in Section 2.1, and its mean-square error can be calculated
directly

E〈θ̂∗max − θ, (θ̂∗max − θ)⊤〉 = (J⊤Σ−1J)−1.

This solution is a direct consequence of the equality

λ⊤Σλ− (J⊤Σ−1J)−1 = λ⊤Σλ− λ∗⊤
maxΣλ

∗
max = (λ− λ∗

max)
⊤Σ(λ− λ∗

max) (6)

that holds for all λ ∈ Λmax due to the condition λ⊤J = I, and where the last matrix is
positive definite.

Moreover, (6) shows that the oracle is not only the solution of our optimization problem
over Λmax, but it is optimal to estimate any linear transformation of θ. In particular each
component θ̂∗max,j of the oracle is the best linear transformation λ⊤T, λ ∈ Λmax, that one
can get to estimate θj . Another desirable property of the choice Λ = Λmax is that due to

the closed expression (5), the aggregate θ̂max obtained by replacing Σ by its estimation Σ̂
has also a closed expression which makes it easily computable, namely

θ̂max = (J⊤Σ̂−1J)−1JΣ̂−1T. (7)

3.2 Component-wise aggregation

A natural and simpler aggregation framework is to consider component-wise aggregation,
for which only the collection Tj is involved in the estimation of θj . The associated
aggregation set is the set of matrices λ whose support is included in the support of J,
that is

Λ = {λ ∈ Λmax : supp(λ) ⊆ supp(J)},
where for a matrix A = (Ai,j) ∈ R

k×d, supp(A) := {(i, j), Ai,j 6= 0}. In this particular
framework, the covariance of two experts in different collection Ti,Tj, i 6= j is not
involved in the computation of the oracle, so that the corresponding entries of Σ need not
be estimated. Consequently, each component of θ is aggregated regardless of the others
and as a result, the oracle is given by

θ̂∗j =
1⊤Σ−1

j Tj

1⊤Σ−1
j 1

, j = 1, ..., d.

where
Σj = E〈Tj − θj1, (Tj − θj1)

⊤〉 ∈ R
kj×kj , j = 1, ..., d.

In order to build the aggregate, it is sufficient to plug an estimate of Σj , j = 1, ..., d,
in the above expression, which makes it easily computable. See Section 5.2 for further
discussion.
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3.3 Convex aggregation

Convex aggregation corresponds to the choice

Λ = {λ ∈ Λmax : λi,j ≥ 0, i = 1, ..., k, j = 1, ..., d}.

Observe that the positivity restriction combined with the condition λ⊤J results in λ
having its support included in that of J, making convex aggregation a particular case of
component-wise aggregation. This means in particular that each component of θ can be
dealt with separately. So, for sake of simplicity in this example, we only consider the case
d = 1.

This aggregation framework has been widely studied in the literature. An advantage
of convex aggregation lies in the increased stability of the solution, due to the restriction
of λ to a compact set, though the oracle may of course be less efficient than in the case
Λ = Λmax. The use of convex combinations is also particularly convenient to preserve
some properties of the experts, such as positivity or boundedness. Moreover, imposing
non-negativity of the weights enables to construct sparse aggregates.

In this convex constrained optimization problem, the minimizer λ̂ = argminλ∈Λ λ⊤Σ̂λ
can either lie in the interior of the domain, in which case λ̂ = Σ̂−11/1⊤Σ̂−11 corresponds
to the global minimizer over Λmax, or on the edge, meaning that it has at least one
zero coordinate. Letting m̂ ⊆ {1, ..., k} denote the support of λ̂, it follows that the
aggregation procedure obtained with the experts Tm̂ := (Ti)i∈m̂ leads to a solution λ̂m̂

with full support. As a result, it can be expressed as the global minimizer for the collection
Tm̂,

λ̂m̂ =
Σ̂−1

m̂ 1

1⊤Σ̂−1
m̂ 1

,

where Σ̂m̂ is the submatrix composed of the entries Σ̂i,j for (i, j) ∈ m̂2. Since we have by

construction λ̂⊤
m̂Tm̂ = λ̂⊤T = θ̂, we deduce the following characterization of the convex

aggregate:

θ̂ =
1⊤Σ̂−1

m̂ Tm̂

1⊤Σ̂−1
m̂ 1

,

where m̂ must be the support which is both admissible and provides the minimal mean-
square error of the aggregate, i.e. m̂ = argmaxm⊆{1,...,k} 1⊤Σ̂−1

m 1 subject to the constraint

that Σ̂−1
m 1 has all its coordinates positive. This provides an easy method to implement

the convex aggregate in practice. Remark that this method is only efficient if k is not too
large, otherwise we recommend to use a standard quadratic programming solver to get λ̂,
see for instance [16].
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4 Theoretical results

4.1 Oracle inequality

The performance of the aggregate relies on the accuracy of the estimator Σ̂, but more
precisely, on the ability to evaluate the error tr(λ⊤Σλ) as λ ranges over Λ. As a result,
it is not crucial that Σ̂ be a perfect estimate of Σ as long as tr(λ⊤Σ̂λ) is close to its true
value for all λ ∈ Λ. In order to measure the accuracy of Σ̂ for this particular purpose,
we introduce the following criterion. For two symmetric positive definite matrices A and
B and for any non-empty set Λ that does not contain 0, let δΛ(A|B) denote the maximal
divergence of the ratio tr(λ⊤Aλ)/tr(λ⊤Bλ) over Λ,

δΛ(A|B) = sup
λ∈Λ

∣

∣

∣

∣

1− tr(λ⊤Aλ)

tr(λ⊤Bλ)

∣

∣

∣

∣

,

and δΛ(A,B) = max{δΛ(A|B), δΛ(B|A)}. We are now in position to state our main result.

Theorem 4.1 Let Λ be a non-empty closed convex subset of Λmax and Σ̂ a symmetric
positive definite k × k matrix. The aggregation estimator θ̂ = λ̂⊤T defined through (4)
satisfies

‖θ̂ − θ̂∗‖2 ≤
[

inf
λ∈Λ

E‖λ⊤T− θ‖2
]

(

2δΛ(Σ̂,Σ) + δΛ(Σ̂,Σ)2
)

‖Σ− 1

2 (T− Jθ)‖2, (8)

where θ̂∗ is the oracle given by (3).

In this theorem, we provide an upper bound on the distance of the aggregate to the
oracle. We emphasize that this result holds without requiring any condition on the joint
behavior of T and Σ̂ (in particular, they may be strongly dependent). The influence
of the constraint set Λ in the aggregation process becomes apparent through both the
minimal error infλ∈Λ E‖λ⊤T − θ‖2 and the maximal divergence δΛ(Σ̂,Σ). This result
conveys that while the efficiency of the oracle is increased for large sets Λ, one must settle
for combinations λ for which tr(λ⊤Σλ) can be well evaluated, thus yielding a small value
of δΛ(Σ̂,Σ).

Remark moreover that the last term ‖Σ− 1

2 (T − Jθ)‖2 influences the efficiency of the
aggregate essentially through the number of experts used in the aggregation process, in
view of the equality

E‖Σ− 1

2 (T− Jθ)‖2 = k.

4.2 Asymptotic study

So far, we established properties of the aggregate that do not rely on any assumption
on the construction of T or Σ̂. In practice, we expect the oracle θ̂∗ to have good properties
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such as consistency and asymptotic normality. As the oracle inequality in Theorem 4.1
suggests, the aggregate θ̂ should inherit these properties, provided Σ̂ is a good estimator
of Σ. In this section, we clarify the asymptotic properties of the aggregate in a situation
where both T and Σ̂ are computed from a set of observations X1, . . . , Xn of size n growing
to infinity. We modify our notations to Tn, Σ̂n, Σn, λ

∗
n, λ̂n, θ̂n and θ̂∗n to emphasize the

dependency on n.

Let us introduce some definitions and notation. For each component θj , j = 1, ..., d, define

αn,j := E‖θ̂∗n,j − θj‖2 = Πj(λ
∗
n)

⊤ΣnΠj(λ
∗
n),

where we recall that Πj(λ
∗
n) is the j-th column of λ∗

n. Similarly, let α̂n,j = Πj(λ̂n)
⊤Σ̂nΠj(λ̂n).

We assume that the quadratic error of the oracle, given by

αn := E‖θ̂∗n − θ‖2 = tr(λ∗⊤
n Σnλ

∗
n) =

d
∑

j=1

αn,j,

converges to zero as n → ∞.
For a given aggregation set Λ ⊂ R

k×d, we define Λj = {Πj(λ) : λ ∈ Λ} ⊂ R
k. We say

that Λ is a cylinder if Λ = {λ : Π1(λ) ∈ Λ1, ...,Πd(λ) ∈ Λd}, i.e., if Λ is the Cartesian
product of its marginal sets Λj. We point out that choosing an aggregation set Λ that
satisfies this property is very natural, as it simply states that each vector of weights Πj(λ

∗
n)

used to produce θ̂∗n,j can be computed independently of the others. In particular, all the
aggregation sets discussed in Section 3 are cylinders.

We denote by
p−→ (resp.

d−→) the convergence in probability (resp. in distribution)
as n → ∞.

Proposition 4.2 If
Σ̂nΣ

−1
n

p−→ I, (9)

then
‖θ̂n − θ‖2 = ‖θ̂∗n − θ‖2 + op(αn). (10)

Moreover, if Λ is a cylinder and α
− 1

2

n,j (θ̂
∗
n,j − θj)

d−→ Z for some j = 1, ..., d, then

α̂
− 1

2

n,j (θ̂n,j − θj)
d−→ Z. (11)

This proposition establishes that building an estimator Σ̂n for which (9) holds ensures
that the error of the aggregate is asymptotically comparable to that of the oracle, up
to op(αn). If in addition Λ is a cylinder, it is possible to provide asymptotic confidence
regions for θj , if Z is known. If H = R, this situation occurs for instance when Tn is
asymptotically unbiased and asymptotically Gaussian. In this case, the normalization

11



αn,j = E(θ̂∗n,j − θj)
2 guarantees that Z d

= N (0, 1) and (11) enables to build an asymptotic
confidence interval for θj . From (10), this confidence interval is of minimal length amongst
all possible confidence intervals based on a linear combination of Tn. Note finally that
no extra estimation is needed to approach the asymptotic variance, as α̂n,j is entirely

determined by λ̂n and Σ̂n, which are already used to compute the aggregate.

These properties rely on the assumption (9), that might be difficult to check in practice.
In the following lemma, we discuss a particular situation where this condition is verified.

Lemma 4.3 Assume there exist an orthogonal matrix P (i.e. with P⊤P = I) and a
known deterministic sequence (An)n∈N of diagonal invertible matrices such that

lim
n→∞

AnPΣnP
⊤ = D,

for some non-singular diagonal matrix D. If P̂n and D̂n are consistent estimators of P
and D respectively, then Σ̂n = P̂⊤

n A−1
n D̂nP̂n satisfies (9).

This lemma concerns the situation in which the normed eigenvectors of Σn converge
as n → ∞, their limits being the rows of P . In this case, a natural estimator Σ̂n is
provided by the asymptotic expansion of Σn. This result covers the particular case where
all constant combinations λ⊤Tn converge to θ at the same rate, as illustrated by the
following result.

Corollary 4.4 Assume there exists a sequence (an)n∈N tending to zero such that

Σn = anW + o(an), (12)

for some non-singular matrix W . Then, if Ŵn is a consistent estimate of W , the aggregate
θ̂n obtained by minimizing λ 7→ tr(λ⊤Ŵnλ) satisfies (10). Moreover, if Λ is a cylinder

and α
− 1

2

n,j (θ̂
∗
n,j − θj)

d−→ Z, then (11) holds.

The proof follows directly from Proposition 4.2 and Lemma 4.3 with An = a−1
n I, in

which case the scaling an has no influence on the value of θ̂n, as shown by (4), and needs
not be known. If (12) holds, the situation becomes particularly convenient if the limit
matrix W follows a known parametric expression W = W (η, θ), with η a nuisance pa-
rameter. If the map W (., .) is continuous, plugging consistent estimators η̂0, θ̂0 yields an
estimator Ŵn = W (η̂0, θ̂0) that fulfills the sufficient conditions for the aggregate θ̂n to
satisfy (10).

In Proposition 4.2, the asymptotic optimality of the aggregate is stated in probability.
Remark however that asymptotic optimality in quadratic loss can be obtained easily
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under additional assumptions. If, for instance, Σ̂n and T are computed from independent
samples (which may be achieved by sample splitting), the aggregate θ̂n is asymptotically
optimal in quadratic loss as soon as E[δΛ(Σ̂n,Σn)

2] tends to 0. Indeed, we have in this
case

E‖θ̂n − θ‖2 = E‖θ̂∗n − θ‖2 + o(αn), (13)

which follows directly from (21) in the proof of Proposition 4.2, taking the expectation
on both sides. We emphasize however that the use of sample splitting may considerably
deteriorate the oracle, as it would be computed from fewer data. This is a high price
to pay to obtain asymptotic optimality in L

2. For this reason, we do not recommend to
separate training and validation with this aggregation procedure.

Asymptotic optimality in L
2 can also be achieved if one can show there exists p > 1

such that

sup
n∈N

E‖Σ− 1

2
n (Tn − Jθ)‖

2p

p−1 < ∞ and lim
n→∞

E[δΛ(Σ̂n,Σn)
2p] = 0.

In this case, Equation (13) follows directly by applying Hölder’s inequality in (21). These
conditions ensure the asymptotic optimality in L

2 of the aggregate without sample split-
ting, but they remain nonetheless extremely difficult to check in practice.

5 Applications

5.1 Estimating the position of a symmetric distribution

Let us consider a continuous real distribution with density f , symmetric around some
parameter θ. To estimate θ from a sample of n realisations x1, . . . , xn, a natural choice
is to use the mean xn or the median x(n/2). Both estimators are consistent whenever
σ2 =

∫

(x− θ)2f(x)dx is finite.

Surprisingly enough, the idea of combining the mean and the median to construct
a better estimator goes back to Pierre Simon de Laplace [14] in early 19th century, see
the discussion in [22]. P. S. de Laplace obtains the expression of the weights in Λmax

that ensure a minimal asymptotic variance for the aggregated estimator. In particular,
he deduced that for a Gaussian distribution, the better combination is to take the mean
only, showing for the first time the efficiency of the latter. For other distributions, he
noticed that the best combination is not available in practice because it depends on the
unknown distribution.

Similarly, we consider the aggregation of the mean and the median over Λmax. In the
setting of the previous sections, we have two experts T1 = xn, T2 = x(n/2), the space H
is simply R, and the aggregated estimator is given by (7) where J is just in this case
the vector (1, 1)⊤. The MSE matrix between the two estimators is denoted by Σn. We
assume that the n realizations are independent and we propose two ways to estimate Σn:
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1. Based on the asymptotic equivalent of Σn. The latter, obtained in P. S. de Laplace’s
work and recalled in [22], is n−1W where

W =

(

σ2 E|X−θ|
2f(θ)

E|X−θ|
2f(θ)

1
4f(θ)2

)

.

Each entry of W may be naturally estimated from an initial estimate θ̂0 of θ as
follows: σ2 by the empirical variance s2n; E|X − θ| by m̂ = 1/n

∑n
i=1 |xi − θ̂0|; and

f(θ) by the kernel estimator f̂(θ̂0) = 1/(nh)
∑n

i=1 exp(−(xi − θ̂0)
2/(2h2)), where

h is chosen, e.g., by the so-called Silverman’s rule of thumb (see [21]). With this
estimation of Σn, we get the following aggregated estimator:

θ̂AG =
p1

p1 + p2
xn +

p2
p1 + p2

x(n/2) (14)

where p1 = 1/(4f̂(θ̂0)) − m̂/2 and p2 = s2nf̂(θ̂0) − m̂/2. This aggregated estimator
corresponds to an empirical version of the best combination obtained by P. S. de
Laplace.

2. Based on non-parametric bootstrap. We draw with replacement B samples of size n
from the original dataset. We compute the mean and the median of each sample,
respectively denoted x(b)

n and x
(b)
(n/2) for b = 1, . . . , B. The MSE matrix Σn is then

estimated by

1

B

(

∑B
b=1(x

(b)
n − xn)

2
∑B

b=1(x
(b)
n − xn)(x

(b)
(n/2) − x(n/2))

∑B
b=1(x

(b)
n − xn)(x

(b)
(n/2) − x(n/2))

∑B
b=1(x

(b)
(n/2) − x(n/2))

2

)

.

This estimation of Σn leads to another aggregated estimator, denoted by θ̂AGB.

Let us note that the first procedure above fits the asymptotic justification presented in
Section 4.2, as (12) holds. For this reason, θ̂AG is asymptotically as efficient as the or-
acle, provided θ̂0 is consistent. Moreover, since the experts are asymptotically Gaussian
and unbiased, an optimal asymptotic confidence interval for θ can be provided without
further estimation, see Section 4.2. For the second procedure, theory is lacking to study
the behaviour of δ in (8) when Σ̂ is estimated by non-parametric bootstrap, so no consis-
tency can be claimed at this point. However the latter is a very natural procedure, easy
to implement in practice, so it is natural to assess its performances in our simulation study.

Table 1 summarizes the estimated MSE of xn, x(n/2), θ̂AG and θ̂AGB, for n = 30, 50, 100,
and for different distributions, namely: Cauchy, Student with 5 degrees of freedom, Stu-
dent with 7 degrees of freedom, Logistic, standard Gaussian, and an equal mixture distri-
bution of a N (−2, 1) and a N (2, 1). For all distributions, θ = 0. For the initial estimate
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θ̂0 in (14), we take the median x(n/2), because it is well defined and consistent for any

continuous distribution. The number of bootstrap samples taken for θ̂AGB is B = 1000.
While the best estimator between xn and x(n/2) depends on the underlying distribution,

the aggregated estimators θ̂AG and θ̂AGB perform better than both xn and x(n/2), for all
distributions considered in Table 1 except the Gaussian law. For the latter distribution,
we know that the oracle is the mean, so our aggregate cannot improve on xn. However the
MSE of θ̂AG and θ̂AGB are very close to that of xn in this case, proving that the optimal
weights (1, 0) are fairly well estimated. Moreover, note that the Cauchy distribution does
not belong to our theoretical setting because it has no finite moments and xn should not
be used. But it turns out that the aggregated estimators are very robust in this case, as
they manage to select x(n/2). Choosing the median x(n/2) as the initial estimator θ̂0 is of
course crucial in this case.

Finally, while θ̂AGB suffers from a lack of theoretical justification, it behaves pretty
much like θ̂AG, except for the mixture distribution where it performs slightly better than
θ̂AG. This may be explained by the fact that θ̂AG is more sensitive than θ̂AGB to the initial
estimate θ̂0, the variance of which is large for the mixture distribution because f(0) is
close to 0. Nevertheless, θ̂AG demonstrates very good performance in this case, for the
sample sizes considered in Table 1 .

n=30 n=50 n=100
MEAN MED AG AGB MEAN MED AG AGB MEAN MED AG AGB

Cauchy 2.106 9 8.95 8.99 4.107 5.07 4.92 4.9 2.107 2.56 2.49 2.49
(1.106) (0.14) (0.15) (0.15) (4.107) (0.08) (0.08) (0.08) (2.107) (0.04) (0.04) (0.04)

St(4) 6.68 5.71 5.4 5.43 4.12 3.53 3.33 3.34 1.99 1.74 1.61 1.62
(0.1) (0.08) (0.08) (0.08) (0.06) (0.05) (0.05) (0.05) (0.03) (0.02) (0.02) (0.02)

St(7) 4.8 5.51 4.6 4.64 2.82 3.32 2.74 2.8 1.42 1.67 1.37 1.38
(0.07) (0.08) (0.07) (0.07) (0.04) (0.05) (0.04) (0.04) (0.02) (0.02) (0.02) (0.02)

Logistic 10.89 12.7 10.76 10.87 6.64 7.93 6.52 6.6 3.3 4 3.2 3.26
(0.16) (0.18) (0.16) (0.16) (0.09) (0.11) (0.09) (0.09) (0.05) (0.06) (0.05) (0.05)

Gauss 3.39 5.11 3.53 3.61 2.04 3.1 2.1 2.15 1 1.51 1.02 1.06
(0.05) (0.07) (0.05) (0.05) (0.03) (0.04) (0.03) (0.03) (0.01) (0.02) (0.01) (0.01)

Mix 16.79 87 15.03 13.41 10.08 66.53 7.57 6.68 5.05 42.35 3.09 2.36
(0.23) (0.82) (0.29) (0.3) (0.14) (0.64) (0.15) (0.18) (0.07) (0.43) (0.06) (0.07)

Table 1: Monte Carlo estimation of the MSE of xn (MEAN), x(n/2) (MED), θ̂AG (AG) and

θ̂AGB (AGB) in the estimation of the position of a symmetric distribution, depending on
the distribution and the sample size. The number of replications is 104 and the standard
deviation of the MSE estimations is given in parenthesis. Each entry has been multiplied
by 100 for ease of presentation.
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5.2 Estimating the parameters of a Weibull distribution

We consider aggregation of estimators in a parametric setting, namely the Weibull
distribution with shape parameter β > 0 and scale parameter η > 0, the density function
of which is

f(x) =
β

η

(

x

η

)β−1

e−(x/η)β , x > 0.

Based on a sample of n independent realizations, many estimators of β and η are available
(see [10]). We consider the following three standard methods:

• the maximum likelihood estimator (ML) is the solution of the system

n

β
+

n
∑

i=1

log(xi)− n

∑n
i=1 x

β
i log(xi)

∑n
i=1 x

β
i

= 0, η =

(

1

n

n
∑

i=1

xβ
i

)1/β

.

• the method of moments (MM), based on the two first moments, reduces to solve:

s2n
x2
n

=
Γ(1 + 2/β)

Γ(1 + 1/β)2
− 1, η =

xn

Γ(1 + 1/β)
,

where xn and sn denote the empirical sample mean and the unbiased sample vari-
ance.

• the ordinary least squares method (OLS) is based on the fact that for any x > 0,
log(− log(1−F (x)) = β log(x)−β log η, where F denotes the cumulative distribution
function of the Weibull distribution. More precisely, denoting x(1), . . . , x(n) the
ordered sample, an estimation of β and η is deduced from the simple linear regression
of (log(− log(1 − F (x(i))))i=1...n on (log x(i))i=1...n, where according to the ”mean
rank” method F (x(i)) may be estimated by i/(n + 1). This fitting method is very
popular in the engineer community (see [1]): the estimation of β simply corresponds
to the slope in a ”Weibull plot”.

The performances of these three estimators are variable, depending on the value of
the parameters and the sample size. In particular, no one is uniformly better than the
others, see Figure 1 for an illustration.

Let us now consider the aggregation of these estimators. In the setting of the previous
sections, we have d = 2 parameters in H = R to estimate and k1 = 3, k2 = 3 estimators
(i.e. experts) of each are available. The aggregation over the maximal constraint set Λmax

demands to estimate the 6 × 6 MSE matrix Σ, that involves 21 unknown values. The
Weibull distribution is often used to model lifetimes, and typically only a low number
of observations are available to estimate the parameters. As a consequence aggregation
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over Λmax of the 6 experts above could be too demanding. Moreover, between the two
parameters β and η, the shape parameter β is often the most important to identify, as
it characterizes for instance the type of failure rate in reliability engineering. For these
reasons, we choose to aggregate the three estimators of β presented above, β̂ML, β̂MM and
β̂OLS, and to consider only one estimator of η: η̂ML (where β̂ML is used for its computa-
tion). The aggregation over Λmax of these 4 estimators has three consequences: First, the
number of unknown values in the MSE matrix is reduced to 10. Second, the aggregated
estimator of β depends only on β̂ML, β̂MM and β̂OLS, because η̂ML has a zero weight
from (2). This means that we actually implement a component-wise aggregation for β.
Third, the aggregated estimator of η equals η̂ML plus some linear combination of β̂ML,
β̂MM and β̂OLS where the weights sum to zero. This particular situation will allow us to
see if η̂ML can be improved by exploiting the correlation with the estimators of β, or if it
is deteriorated.

So we have d = 2, k1 = 3, k2 = 1, T1 = (β̂ML, β̂MM , β̂OLS)
⊤, T2 = η̂ML and the

aggregated estimator over Λmax is given by (7), denoted by (β̂AG, η̂AG)
⊤. The matrix Σ

is estimated by parametric bootstrap: Starting from initial estimates β̂0, η̂0, we simulate
B samples of size n of a Weibull distribution with parameters β̂0, η̂0. Then the four
estimators are computed, which gives β̂

(b)
ML, β̂

(b)
MM , β̂

(b)
OLS and η̂

(b)
ML, for b = 1, . . . , B, and

each entry of Σ is estimated by its bootstrap counterpart. For instance the estimation of
E(β̂ML−β)(β̂MM −β) is (1/B)

∑B
b=1(β̂

(b)
ML− β̂0)(β̂

(b)
MM − β̂0). In our simulations, we chose

β̂0 as the mean of T1, and η̂0 = η̂ML. Note that Σ having a parametric form ensures that
(β̂AG, η̂AG)

⊤ is asymptotically as efficient as the oracle, see Corollary 4.4.

Table 2 gives the MSE, estimated from 104 replications, of each estimator of β, for
n = 10, 20, 50, and for β = 0.5, 1, 2, 3, η = 10. The aggregated estimator has by far the
lowest MSE, even for small samples. As an illustration, the repartition of each estimator,
for n = 20 and β = 0.5, 3, is represented in Figure 1.

Table 3 shows the MSE for η̂ML and η̂AG where only estimators of β were used in
attempt to improve η̂ML by aggregation. The performances of both estimators are similar,
showing that the information coming from T1 did not help significantly improving η̂ML.
On the other hand, the estimation of these (almost zero) weights might have deteriorated
η̂ML, especially for small sample sizes. This did not happen.

5.3 Aggregating kernel density estimators

Let x1, . . . , xn be a sample from a real random variable with density f . The kernel
density estimator of f at x ∈ R is

f̂n,h(x) =
1

nh

n
∑

i=1

K

(

x− xi

h

)

,
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Figure 1: Repartition of β̂ML, β̂MM , β̂OLS and β̂AG (from left to right) based on 104

replications of a sample of size n = 20 from a Weibull distribution with β = 0.5 (left),
β = 3 (right) and η = 10.

n=10 n=20 n=50
ML MM OLS AG ML MM OLS AG ML MM OLS AG

β = 0.5
35.53 76.95 24.41 25.27 12.06 35.57 13.74 10.5 3.7 14.19 6.04 3.52
(0.91) (1.27) (0.40) (0.64) (0.26) (0.52) (0.19) (0.19) (0.07) (0.20) (0.08) (0.06)

β = 1
152.4 131.6 98.1 85.5 49.2 53.6 54.2 36.9 14.4 19.3 23.9 12.8
(3.8) (3.1) (1.5) (1.7) (1.1) (1.1) (0.7) (0.7) (0.2) (0.3) (0.3) (0.2)

β = 2
596.4 444.6 399.4 355.5 194.5 164.5 218 163.3 57.9 53.9 94.8 54.3
(14.4) (11.9) (6.3) (6.7) (3.8) (3.3) (2.8) (2.7) (1.0) (0.9) (1.3) (0.9)

β = 3
1369 1080 905 770 452 394 486 343 128 122 211 120
(34.6) (29.7) (14.6) (18.1) (9.8) (8.9) (6.7) (6.2) (2.2) (2.0) (2.7) (1.9)

Table 2: Monte Carlo estimation of the MSE of β̂ML, β̂MM , β̂OLS and β̂AG, based on 104

replications of a sample of size n = 10, 20, 50 from a Weibull distribution with parameters
β = 0.5, 1, 2, 3 and η = 10. The standard deviation of the MSE estimations are given in
parenthesis. Each entry has been multiplied by 100 for ease of presentation.
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n=10 n=20 n=50
ML AG ML AG ML AG

β = 0.5
60.59 55.61 25.96 24.56 9.57 9.38
(1.60) (1.48) (0.53) (0.5) (0.17) (0.17)

β = 1
11.15 10.88 5.53 5.43 2.23 2.22
(0.18) (0.17) (0.08) (0.08) (0.03) (0.03)

β = 2
2.71 2.74 1.36 1.37 0.55 0.56
(0.04) (0.04) (0.02) (0.02) (0.01) (0.01)

β = 3
1.21 1.23 0.61 0.61 0.247 0.248
(0.02) (0.02) (0.01) (0.01) (0.003) (0.004)

Table 3: Monte Carlo estimation of the MSE of η̂ML and η̂AG, based on 104 replications of a
sample of size n = 10, 20, 50 from a Weibull distribution with parameters β = 0.5, 1, 2, 3
and η = 10. The standard deviation of the MSE estimations are given in parenthesis.
Each entry has been multiplied by 100 for ease of presentation.

where the function K is the kernel and h is a smoothing parameter called bandwidth. It
is well known that the choice of K has only a small impact on the performances of f̂n,h,
while the choice of h is crucial. Many works are dedicated to propose some data-based
bandwidth selection. We refer to [19] for a review.

For our simulations, we choose the standard Gaussian kernel K(x) = e−x2/2/
√
2π and

we consider four choices of bandwidth, see [19] for more details and references:

• The Silverman’s rule-of-thumb, namely h1 = 0.9 min(sn, IQR/1.34)n−1/5, where sn
denotes the standard deviation and IQR the interquartile range.

• The variation proposed in [18], where the constant 0.9 above is replaced by 1.06.

• The unbiased (or least squares) cross-validation method.

• The plug-in method of Sheather and Jones [20].

These four possible choices, called h1, . . . , h4 in the following, correspond to the band-
widths proposed in the function density implemented in the freeware R: nrd0, nrd, ucv
and SJ respectively.

Our goal is to aggregate the experts f̂n,hi
, i = 1, . . . , 4 to obtain a better estimate of f .

In most existing methods of density aggregation (see the references cited in introduction),
the observations are assumed independent and the procedure mainly relies on a sample
splitting, where a training sample is used to compute the experts f̂n,hi

and the aggregation
weights are estimated from the validation sample. In contrast, we propose to construct

19



an aggregate that minimizes the mean integrated square error (MISE), defined for an
estimator f̂ of f by

∫

E(f̂(x) − f(x))2dx. In the setting of the previous sections, H =

L2(R) and the oracle given by (3) involves the MISE matrix Σ with entries
∫

E(f̂n,hi
(x)−

f(x))(f̂n,hj
(x)− f(x))dx. The aggregated estimator over Λmax is then given by (7), where

d = 1 and k1 = 4. In particular, our procedure does not require sample splitting, and we
do not assume independence of the observations.

The main difficulty is the estimation of the MISE matrix Σ which is at the heart of
most methods of bandwidth selection. A standard procedure consists in estimating the
asymptotic form AMISE of the MISE. If the bandwidths hi are deterministic, assuming
that the observations are independent or weakly dependent (and under further mild as-
sumptions, see for instance [2]), the asymptotic equivalent of each entry of Σ is given
by:

AMISE(hi, hj) =
1

n
√

hihj

IK

(

√

hj

hi

)

+
h2
ih

2
j

4
µ2
2(K)R(f ′′) (15)

where for α > 0, IK(α) =
∫

K(αu)K(α−1u)du, µ2(K) =
∫

x2K(x)dx and R(f ′′) =
∫

(f ′′(x))2dx. When K is the Gaussian kernel, we have IK(α) = (1/
√
2π)α/

√
α4 + 1 and

µ2(K) = 1. If the bandwidths hi depend on the observations, as for the four above choices,
then (15) is the conditional AMISE given h1, . . . , h4. We choose to estimate Σ by (15)
where R(f ′′) is estimated by the standard plug-in method proposed in [11], which turns
out to be also used for the computation of h4, see [20]. From a theoretical point of view,
if all hi’s are deterministic and of the form hi = cin

−1/5, ci > 0, then (12) holds and our
procedure provides a consistent aggregated estimator. In presence of random ci’s, some
further investigations are necessary to prove consistency.

Our aggregated estimator, say f̂n,AG, is thus given by (7) with Σ̂ obtained as explained

above. Table 4 summarises the estimated MISE of f̂n,hi
, i = 1, . . . , 4 and f̂n,AG, for some

standard densities f and different sample sizes n = 250, 500, 1000, when the observations
are independently drawn from f . Specifically, we consider the densities of the standard
Gaussian law N (0, 1), of the equal mixture of aN (−1.5, 1) and aN (1.5, 1), of the Gamma
distribution Γ(2, 1) and of the Cauchy distribution. The MISE is estimated by averaging
over 104 replications the integrated square error, obtained by the sum of the square error
(f̂n,hi

(x)− f(x))2 over 100 points x equally spaced on [−2, 2], [−3, 3], [0.5, 4] and [−4, 4],
respectively. Note that Table 4 gives an estimation of the unconditional MISE (even if the
estimation of the weights in f̂n,AG is based on the conditional AMISE (15)). Moreover,

Figure 2 shows the MSE functions (f̂n,hi
(x)−f(x))2 for each distribution f when n = 500.

As a result, f̂n,AG has a lower MISE than the experts, except for the mixture distribu-
tion when n = 250. In fact, our procedure works very well for large samples, but is less
efficient for small samples. One obvious reason is that we do not actually estimate the
MISE matrix Σ but its (conditional) asymptotic expression given by (15). Some simula-
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n=250 n=500 n=1000
h1 h2 h3 h4 AG h1 h2 h3 h4 AG h1 h2 h3 h4 AG

Gauss 29.9 27.2 26.8 29.9 24.9 17.7 16.2 16.2 17.3 14.4 10.5 9.7 9.8 10.1 8.4
Mix 24.0 27.5 27.1 25.2 26.7 14.8 17.6 15.3 14.9 14.2 9.1 11.1 8.9 8.8 7.4
Gamma 28.0 32.7 29.5 28.9 27.9 17.1 20.6 17.0 17.2 15.8 10.3 12.7 10.0 10.3 9.0
Cauchy 31.2 37.0 830 132 32.8 18.9 23.2 945 180 18.7 11.4 14.4 1068 226 10.6

Table 4: Monte Carlo estimation of the MISE of f̂n,hi
, for i = 1, . . . , 4 and of the aggregate

f̂n,AG, for different f and n = 250, 500, 1000. With the notation of R: h1 = nrd0, h2 = nrd,
h3 = ucv and h4 = SJ. The MISE are estimated by the mean over 104 replications of
the integrated square error, obtained by summing up the square error of 100 equally
spaced points on the support of f . Each entry has been multiplied by n.104 for ease of
presentation.

tions (not presented here) show that even the oracle estimator based on the asymptotic
MISE matrix may have a larger MISE than the experts for small values of n. This is for
instance the case for the mixture distribution when n = 250. Moreover, the performances
of f̂n,AG for the Cauchy distribution are remarkably good, in spite of the presence of two

unadapted experts (namely f̂n,h3
and f̂n,h4

).

An alternative procedure to estimate the MISE matrix is smooth bootstrap [24]. Recall
that standard bootstrap fails to estimate the bias in a non-parametric setting. Smooth
bootstrap amounts to resample according to a continuous density f̂ that estimates f .
At least two appealing features arise: First, smooth bootstrap estimates the MISE and
not the asymptotic MISE, which could improve our procedure for small samples. Sec-
ond, when K is the Gaussian kernel, closed-form formulas are available for the smooth
bootstrap estimate of the conditional MISE given h1, . . . , h4, and no Monte-Carlo step
is needed. The unconditional MISE can also be estimated by smooth bootstrap, but
some Monte-Carlo approximations are then needed. Unfortunately, smooth bootstrap
depends on a pilot bandwidth for which we are unable to propose a satisfactory data-
driven choice. Therefore, although smooth bootstrap seems a promising perspective for
aggregating kernel density estimators based on small samples, its implementation deserves
further analysis. Nevertheless, our simulation study shows that the aggregation based on
the asymptotic approximation of the MISE produces satisfactory results for moderate
sample sizes (e.g. n ≥ 250).
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Figure 2: Monte Carlo estimation of the MSE of f̂n,h1
(black crosses), f̂n,h2

(red crosses),

f̂n,h3
(green crosses), f̂n,h4

(blue crosses) and f̂n,AG (black circles), based on 104 replica-
tions, for n = 500 and when f is the density of the Gaussian distribution (top left), the
mixture distribution (top right), the Gamma distribution (bottom left) and the Cauchy
distribution (bottom right). The estimated MISE in Table 4 (for n = 500) are the ap-
proximated integrals of these curves.
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6 Appendix

Proof of Theorem 4.1

Since Λ ⊆ Λmax, we know that λ⊤J = I for all λ ∈ Λ. Let S = Σ− 1

2 (T− Jθ), we have

‖θ̂ − θ̂∗‖2 = ‖(λ̂− λ∗)⊤(T− Jθ)‖2 = ‖(λ̂− λ∗)⊤Σ
1

2S‖2 ≤ ‖(λ̂− λ∗)⊤Σ
1

2‖2F ‖S‖2, (16)

where ‖A‖F =
√

tr(A⊤A) denotes the Frobenius norm of A. The map φ : λ 7→ tr(λ⊤Σλ)
is coercive, and strictly convex by assumption. So, since Λ is closed and convex, the
minimum of φ on Λ is reached at a unique point λ∗ ∈ Λ. Moreover, we know that for
λ ∈ Λ, λ∗+t(λ−λ∗) lies in Λ for all t ∈ [0, 1], to which we deduce the optimality condition

lim
t→0+

φ(λ∗ + t(λ− λ∗))− φ(λ∗)

t
= tr

[

∇φ(λ∗)⊤(λ− λ∗)
]

= 2tr
[

λ∗⊤Σ(λ− λ∗)
]

≥ 0,

for all λ ∈ Λ. It follows that

‖(λ̂− λ∗)Σ
1

2‖2F = tr(λ̂⊤Σλ̂)− tr(λ∗⊤Σλ∗)− 2tr
[

λ∗⊤Σ(λ̂− λ∗)
]

≤ tr(λ̂⊤Σλ̂)− tr(λ∗⊤Σλ∗). (17)

By construction of λ̂, we know that tr(λ̂⊤Σ̂λ̂) ≤ tr(λ∗⊤Σ̂λ∗), yielding

tr(λ̂⊤Σλ̂)− tr(λ∗⊤Σλ∗) ≤ tr(λ̂⊤Σλ̂)− tr(λ̂⊤Σ̂λ̂) + tr(λ∗⊤Σ̂λ∗)− tr(λ∗⊤Σλ∗)

≤ tr(λ̂⊤Σ̂λ̂) δΛ(Σ|Σ̂) + tr(λ∗⊤Σλ∗) δΛ(Σ̂|Σ)
≤

[

tr(λ̂⊤Σ̂λ̂) + tr(λ∗⊤Σλ∗)
]

δΛ(Σ̂,Σ)

where we recall δΛ(A|B) = supλ∈Λ

∣

∣

∣
1− tr(λ⊤Aλ)

tr(λ⊤Bλ)

∣

∣

∣
and δΛ(A,B) = max{δΛ(A|B), δΛ(B|A)}.

Now using that tr(λ̂⊤Σ̂λ̂) ≤ tr(λ∗⊤Σ̂λ∗) and

tr(λ∗⊤Σ̂λ∗) = tr(λ∗⊤Σλ∗) +
[

tr(λ∗⊤Σ̂λ∗)− tr(λ∗⊤Σλ∗)
]

≤ tr(λ∗⊤Σλ∗)
[

1 + δΛ(Σ̂,Σ)
]

,

we obtain

tr(λ̂⊤Σλ̂)− tr(λ∗⊤Σλ∗) ≤ tr(λ∗⊤Σλ∗)
[

2δΛ(Σ̂,Σ) + δΛ(Σ̂,Σ)
2
]

. (18)

Recall that tr(λ∗⊤Σλ∗) = infλ∈Λ E‖λ⊤T−θ‖2, the result follows from (16), (17) and (18).
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Proof of Proposition 4.2

We use the following preliminary result.

Lemma 6.1 Let A, B be two positive definite matrices of order k. For any non-empty
set Λ that does not contain 0,

δΛ(A,B) ≤ ‖|AB−1 − BA−1‖|,

where ‖|A‖| = sup‖x‖F=1 ‖Ax‖F stands for the operator norm.

Proof. By symmetry, it is sufficient to show that the result holds for δΛ(A|B). We have

δΛ(A|B) = sup
λ∈Λ

|tr[λ⊤(B − A)λ]|
tr(λ⊤Bλ)

≤ sup
λ6=0

|tr[λ⊤(B − A)λ]|
tr(λ⊤Bλ)

.

By Cauchy-Schwarz inequality,

|tr[λ⊤(B − A)λ]| =
∣

∣

∣
tr
[

λ⊤B
1

2 (I− B− 1

2AB− 1

2 ) B
1

2λ
]∣

∣

∣

≤ ‖B 1

2λ‖F‖(I− B− 1

2AB− 1

2 ) B
1

2λ‖F
≤ ‖|I−B− 1

2AB− 1

2‖|‖B 1

2λ‖2F . (19)

Recall that ‖B 1

2λ‖2F = tr(λ⊤Bλ), it follows

δΛ(A|B) ≤ ‖|I− B− 1

2AB− 1

2‖|.

Since the matrix C = I − B− 1

2AB− 1

2 is symmetric, it is diagonalizable in an orthogonal
basis. In particular, denoting sp(.) the spectrum, ‖|C‖| = supt∈sp(C) |t|. Finally, observe

that sp(C) = 1 − sp(B− 1

2AB− 1

2 ) = 1− sp(AB−1), so that AB−1 has positive eigenvalues
and

‖|I− B− 1

2AB− 1

2‖| = sup
t∈sp(AB−1)

|1− t| ≤ sup
t∈sp(AB−1)

|t− 1

t
| ≤ ‖|AB−1 − BA−1‖|,

ending the proof. �

By this lemma, we deduce that

δΛ(Σ̂n,Σn) ≤ ‖|Σ̂nΣ
−1
n − ΣnΣ̂

−1
n ‖|. (20)

In particular, δΛ(Σ̂n,Σn) = op(1) by the assumption Σ̂nΣ
−1
n

p−→ I. Write for c > 0,

‖θ̂n − θ‖2 ≤ (1 + c)‖θ̂∗n − θ‖2 + (1 + c−1)‖θ̂n − θ̂∗n‖2.
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Applying Theorem 4.1, we get

‖θ̂n − θ‖2 ≤ (1 + c)‖θ̂∗n − θ‖2 + (1 + c−1)αn

(

2δΛ(Σ̂n,Σn) + δΛ(Σ̂n,Σn)
2
)

‖Sn‖2, (21)

where Sn = Σ
− 1

2
n (Tn − Jθ). Since E‖Sn‖2 = k, we know that ‖Sn‖2 = Op(1). Equation

(21) holds for all c > 0 so we can take c = cn such that cn → 0 and δΛ(Σ̂n,Σn)/cn
p−→ 0

as n → ∞, yielding

‖θ̂n − θ‖2 ≤ ‖θ̂∗n − θ‖2 + cn‖θ̂∗n − θ‖2 + op(αn) = ‖θ̂∗n − θ‖2 + op(αn).

We shall now prove the second part of the proposition. Write,

α̂
− 1

2

n,j (θ̂n,j − θj) =

√

αn,j

α̂n,j
α
− 1

2

n,j

[

(θ̂∗n,j − θj) + (θ̂n,j − θ̂∗n,j)
]

.

To prove the result, it suffices to show that α
− 1

2

n,j ‖θ̂n,j − θ̂∗n,j‖ = op(1) and αn,j/α̂n,j
p−→ 1.

When Λ is a cylinder, it is easy to see that the following holds

Πj(λ̂n) = arg min
λ∈Λj

λ⊤Σ̂nλ and Πj(λ
∗
n) = arg min

λ∈Λj

λ⊤Σnλ,

where we recall Λj = {Πj(λ) : λ ∈ Λ}. Moreover, it is easy to adapt the proof of
Theorem 4.1 to get

‖θ̂n,j − θ̂∗n,j‖2 ≤ αn,j

(

2δΛj
(Σ̂,Σ) + δΛj

(Σ̂,Σ)2
)

‖Σ− 1

2 (T− Jθ)‖2.

We deduce that α
− 1

2

n,j (θ̂n,j − θ̂∗n,j) = op(1) in view of (9) and Lemma 6.1. Now, remark that

αn,j

α̂n,j
=

Πj(λ
∗
n)

⊤ΣnΠj(λ
∗
n)

Πj(λ̂n)⊤Σ̂nΠj(λ̂n)
≤ Πj(λ̂n)

⊤ΣnΠj(λ̂n)

Πj(λ̂n)⊤Σ̂nΠj(λ̂n)
− 1 + 1 ≤ δΛj

(Σ̂n,Σn) + 1.

Similarly,
α̂n,j

αn,j
≤ δΛj

(Σ̂n,Σn) + 1.

So, we get
1

1 + δΛj
(Σ̂n,Σn)

≤ αn,j

α̂n,j
≤ 1 + δΛj

(Σ̂n,Σn),

proving that αn,j/α̂n,j
p−→ 1.
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Proof of Lemma 4.3

Using that by assumption PΣ−1
n P⊤A−1

n tends to D−1, and that P̂n (resp. D̂n) converges
in probability to P (resp. D), it follows that

Σ̂nΣ
−1
n = P̂⊤

n A−1
n D̂nP̂nΣ

−1
n = P̂⊤

n A−1
n D̂nP̂nP

⊤PΣ−1
n P⊤A−1

n AnP

converges in probability to I.
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