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Abstract

We consider the Advanced Scheduling Problem (ASP) in the operating room block schedul-
ing, taking into account stochastic patient surgery duration. A surgery waiting list, a set
of Operating Room (OR) blocks, and a planning horizon are given. The problem herein
addressed is to determine the subset of patients to be scheduled in the considered time
horizon and their assignment to the available OR blocks. The problem aims at minimizing
a measure of the waiting time of the patients. To this purpose, we introduce a penalty
function associated to waiting time, urgency and tardiness of patients.

We propose a robust optimization model to solve the ASP with uncertain surgery dura-
tions. The proposed approach does not need to generate a set of scenarios, and guarantees
that solutions remain feasible for some variations of the surgery length parameters. We
solve the problem on a set of real-based instances to test the behaviour of the proposed
model. The solution quality is evaluated with regards to the number of patients operated
and their tardiness. Furthermore, assuming lognormal distribution for the surgery times,
we use a set of randomly generated scenarios in order to assess the performance of the
solutions in terms of OR utilization rate and number of cancelled patients.

Keywords: Operating Room planning, Robust Optimization, uncertain surgery dura-
tion, block scheduling.

1. Introduction and literature review

In recent years, hospital organizations have been facing a strong pressure to improve the
health care delivery processes and to increase their productivity and operational efficiency.

∗corresponding author
Email addresses: bernardetta.addis@loria.fr (Bernardetta Addis),

giuliana.carello@polimi.it (Giuliana Carello ), etanfani@economia.unige.it (Elena
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In the majority of the hospitals, surgical departments contribute significantly to the total
expenditure; besides, they have a great impact on services demands and patient waiting
times. The crucial role of surgery departments and their management within hospitals
results in an increasing number of research studies aimed at planning Operating Rooms
(ORs). Recent literature reviews on operating room planning and scheduling are reported
in [1] and [2], where the authors analyze into detail different topics related to the problem
settings and summarize significant trends in actual research and possible areas for the
future one. Due to the many features that can or cannot be taken into account, several
different versions of the OR problem have been considered in literature [3].

OR planning and scheduling problems may be classified according to the scheduling
strategy used, i.e. block scheduling, open scheduling, and modified block scheduling. In
the block scheduling, each specialty receives a number of OR blocks (usually half-day or
full day length) in a given planning period, into which it can arrange its surgical cases [4].
Instead, in the open scheduling, operating rooms are not reserved to a specialty: open
scheduling allows surgical cases to be assigned to any operating room available at the
convenience of the surgeons or surgical specialties [5]. Modified block scheduling strategy
is a mix of the two previous strategies, which can increas the flexibility of the pure block
scheduling approach [6].

In this paper we focus on the OR planning and scheduling problem assuming a block
scheduling strategy. Within this framework, the problem is usually decomposed into three
main phases [7]. Firstly, the number, type and opening hours of the ORs are fixed at a
strategic level. Second, the OR capacity is divided among surgical groups or specialties
and a cyclic timetable, denoted as Master Surgical Schedule, is built on a medium term
stand point to account for the tactical assignment of specialties to the OR blocks during
the planning horizon. The last phase, referred as Surgery Process Scheduling, is divided
into two sub-problems: Advance Scheduling and Allocation scheduling [8, 9]. The Advance
Scheduling Problem (ASP) assigns a surgery date and OR to the each scheduled patient,
afterwards the allocation scheduling problem determines the sequence of surgeries in each
OR block.

We set our analysis at an operational level and we focus our attention on the ASP
also known as surgical case assignment, surgery scheduling, surgery admission or surgery
loading problem.

Integer and mixed integer linear programming models have been developed for the ASP
assuming deterministic surgery times: langragian relaxation approaches [10], branch and
price algorithms [11, 12], heuristics [13, 14, 15, 16] and metaeuristics algorithms [17, 18]
have been recently proposed.

The OR planning and scheduling problem is further complicated by the inherent vari-
ability of the surgical cases durations, which forces the planners to over-conservative
scheduling, thus reducing the OR utilization level [19]. Modeling the stochasticity of
operating times is a crucial factor in real life planning and scheduling systems, and differ-
ent assumptions on surgery duration distributions have high impact on the resulting OR
overtime and idle time [20].

Fewer papers have been published that propose methods to solve the surgery process
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scheduling taking into account surgery durations uncertainty. The approaches can be
roughly classified into stochastic programming and robust optimization methods. In [21]
an advance scheduling problem is considered and uncertainty is managed using a two-stage
stochastic model with recourse. The objective function includes the patient waiting times
and the OR idle and overtime. The authors compare different heuristics. Furthermore, they
also analyze the influence of patient sequencing inside the OR blocks. In [22] a stochastic
programming model with recourse is presented. A sample average approximation method
to obtain an optimal surgery schedule with the aim of minimizing patient costs and OR
overtime costs is used. In [23] a mathematical program considering probabilistic constraints
to represent the uncertain duration of surgery procedures is proposed. The proposed model
tries to optimize OR utilization without increasing overtime and cancellations. In [24] two
models aimed at minimizing the overall OR cost including a fixed cost of opening ORs and
a variable cost of overtime are compared. The first is a two-stage stochastic linear model
with binary decision variables in the first stage and simple recourse in the second stage.
The second is its robust counterpart, in which the objective is to minimize the maximum
cost associated with an uncertainty set for surgery durations. They show that the robust
method is much faster than solving the stochastic recourse model, and has the benefit
of limiting the worst-case outcome of the recourse problem. In [25] different heuristics
for the robust surgery loading problem are proposed, with the aim of maximizing the
utilization of operating theatre and minimizing the overtime risk by introducing planned
slack times. In [26] a two-level framework is proposed. In the first level, a MIP model finds
a deterministic solution for the OR planning problem. In the second level, the variability
of surgery duration is taken into account by means of individual chance constraints for
each OR block and a robust solution is achieved by iteratively adding safety slacks to the
first level deterministic model solutions.

Simulation based approaches are also proposed in literature. Some authors use simu-
lation to compare different scheduling strategies and test the solution robustness against
the randomness of surgery duration [27, 7, 28]. Although the majority of the authors re-
stricts their analysis to the evaluation of alternative scenarios, advanced simulation-based
optimization approaches have been proposed combining simulation with other solution
techniques [29, 30].

In this paper, we propose a robust optimization approach to select and assign a set of
waiting patients to OR blocks in a given planning horizon, assuming that patient operating
times are random parameters. The aim is to minimize a measure of the total waiting time.
Based on the seminal work [31], we propose a penalty function that takes into account
waiting time, urgency and tardiness of all patients to be scheduled. The robustness of
solutions is achieved by applying the approach proposed in [32], which allows to exploit the
potentialities of a linear programming model without the necessity of generating scenarios.
This approach does not require to know the probability density functions of the surgery
duration. It requires only limited information and few general assumptions which is a
realistic limitation in many real-based application. We propose the formulations of the
deterministic and robust version of the problem. The models are compared over a set of
real life based instances to evaluate their behavior in terms of computational effort and
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solution quality. The solution quality is also evaluated with regards to the number of
patients operated and their waiting time and tardiness. Moreover, assuming lognormal
distributions for the surgery times, a set of randomly generated scenarios is used in order
to compare the proposed solutions in terms of OR utilization rate and number of cancelled
patients. The impact of introducing overtime in the model formulation is evaluated and a
sensitivity analysis on the choice of the key parameters is performed.

The remainder of the paper is organized as follows: in Section 2 we introduce the
problem under investigation and the deterministic and robust formulation are presented.
In Section 3, the results on a set of real-based randomly generated instances are reported
and compared. Finally, in Section 4 conclusions and future research directions are given.

2. Problem description and models

In the ASP a set of elective patients I is given to be scheduled in a planning horizon. Let
D be the length in days of the planning horizon. We assume a block scheduling approach
and focus on a single surgical specialty, but the approach can be easily adapted to take
into account more than one specialty. A set J of OR blocks assigned to the specialty and
their schedule during a week are given. Each block is described by an operating room and
a week day. The planning horizon is then represented by a sequence of repetitions of the
same group of blocks in a set of weeks K. The available total time of a time block j in
week k, i.e. the OR block length, is denoted as γjk.

The patients in the set I belong to a waiting list, where patients are registered at the
moment they arrive at the service. For each patient i, let wi denote the number of days
which the patient has already spent in the waiting list at the beginning of the planning
horizon. Moreover, a maximum waiting time li and a corresponding urgency parameter ui

are given for each patient i. If the patient has spent wi days in the waiting list, he/she
must receive surgery before a due date ddi = li −wi, otherwise he/she is considered tardy.
According to the block weekly based pattern, if a patient is scheduled in block j ∈ J and
week k ∈ K, he/she waits a total number of days djk = 7(k − 1) + j. The surgery time t̃i
for each patient i is consider to follow a given probability distribution.

The Stochastic Advanced Scheduling (SAS) problem can be defined: select a subset of
patients to be operated on in the considered planning horizon and assign them to weeks
and OR blocks, while guaranteeing that the capacity of each block is not exceeded. The ob-
jective function aims at minimizing an overall penalty due to delay in serving the patients.
As proposed in [15] it takes into account both the urgency and waiting time of scheduled
and not scheduled patients. Besides, a penalty for due date violation and patient tardiness
is also considered ([31]).

The problem can be formulated using the following set of binary variables xk
ij, such

that xk
ij = 1 if patient i is assigned to block j in week k ∈ K, and zero otherwise. The

objective function is formulated as follows:
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min
∑

i∈I

{

∑

j∈J

∑

k∈K

[

djk + (wi + djk − li)
+
]

uix
k
ij (1)

+
[

(wi +D + 1) + (wi +D + 1− li)
+
]

ui

(

1−
∑

j∈J

∑

k∈K

xk
ij

)}

,

where (wi + djk − li)
+ = max{wi + djk − li, 0} is the patient tardiness, that is the number

of days waited after the due date. The first term represents the penalty for the scheduled
patients. For each scheduled patient i the penalty is composed by two parts: the number of
days djk spent before receiving surgery in the planning horizon and the tardiness (wi+d−
li)

+ of the patient. The term is weighted by the patient urgency parameter ui, in order to
give priority to the most urgent patients. The second term is associated with the penalty of
the unscheduled patients. It is the sum of the tardiness and the overall days spent waiting
for surgery before and after the beginning of the planning horizon, while for the scheduled
patients, the waiting days term consider also the days after the beginning of the planning
horizon. As real tardiness and waiting days cannot be computed for unscheduled patients
(we do not know when there will be scheduled), we use a lower bound to take them into
account, which is calculated assuming that all the remaining patients are scheduled the
first day after the planning horizon (D+1). Also for the unscheduled patients the waiting
time and the tardiness are weighted by the urgency parameter ui.

The set of constraints is the following:

∑

j∈J

∑

k∈K

xk
ij ≤ 1 ∀i ∈ I (2)

∑

i∈I

t̃ix
k
ij ≤ γjk ∀j ∈ J, ∀k ∈ K (3)

Constraints (2) ensure that each patient is operated at most once. Constraints (3) are the
stochastic capacity constraints for each block forcing the total time in block j of week k

to be lesser than or equal to the maximum available time γjk.
The Deterministic Advanced Scheduling (DAS) model is obtained from the SAS model

using for each patient i a deterministic surgery time t̄i. Constraints (3) are replaced by

∑

i∈I

t̄ix
k
ij ≤ γjk ∀j ∈ J, ∀k ∈ K (4)

Beside we propose a robust counterpart, the Robust Advanced Scheduling (RAS) model
to deal with uncertainty, which is based on the robust optimization approach proposed in
[32].

According to [32], a random variable is assumed to vary in a given interval. Uncertainty
is dealt with so as to guarantee than any solution is feasible if, for each constraint involving
uncertain parameters, at most Γ of them assume the maximum value in the interval and all
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the others assume the central one. In our case the uncertain parameters are the uncertain
surgery times t̃i. We consider the interval t̄− t̂, t̄+ t̂, where the central value of the interval
is denoted as t̄ and the maximum value we want to protect is equal to t̄i + t̂i. In the
computational results we will propose and discuss possible choices for t̂. Then, for each
block j, and week k, a subset Sjk of patients, who require their maximum surgery time,
such that |Sjk| = Γ, is chosen among the patients assigned to the block in the given week.
Among all the possible subsets, the one having the worst impact on the capacity constraint
is selected, and the solution is guaranteed to be feasible even with respect to this subset:

∑

i∈I

t̄ix
k
ij + max

Sjk⊂I:|Sjk|=Γ







∑

i∈Sjk

t̂ix
k
ij







≤ γjk ∀j ∈ J, ∀k ∈ K (5)

The value maxSjk⊂I:|Sjk|=Γ

{

∑

i∈Sjk
t̂ix

k
ij

}

can be computed for each block j and each

week k solving the following Linear Programming problem:

βjk =max

(

∑

i∈I

t̂ix
k
ij

)

zi (6)

∑

i∈I

zi ≤ Γ (7)

zi ≤ 1 ∀i ∈ I (8)

zi ≥ 0 ∀i ∈ I (9)

Let denote with ζjk the dual variables associated to constraints (7) and with π
jk
i the

dual variables associated to constraints (8). The dual of (βjk) can be formulated as follows:

min Γζjk +
∑

i∈I

π
jk
i (10)

ζjk + π
jk
i ≥ t̂ix

k
ij ∀i ∈ I (11)

ζjk, π
jk
i ≥ 0 (12)

The optimal values of the objective functions (6) and (10) coincide. Thus, constraints
(3) can be linearized, by replacing them with:

∑

i∈I

t̄ix
k
ij + Γζjk +

∑

i∈I

π
jk
i ≤ γjk ∀j ∈ J ∀k ∈ K (13)

ζjk + π
jk
i ≥ t̂ix

k
ij ∀j ∈ J ∀i ∈ I (14)

ζjk, π
jk
i ≥ 0 (15)
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The resulting RAS model formulation is as follows:

min
∑

i∈I

{

∑

j∈J

∑

k∈K

[djk + (wi + djk − li)
+]uix

k
ij

+[(wi +D + 1) + (wi +D + 1− li)
+]ui

(

1−
∑

j∈J

∑

k∈K

xk
ij

)}

(16)

∑

j∈J

∑

k∈K

xk
ij ≤ 1 ∀i ∈ I

(17)
∑

i∈I

t̄ix
k
ij + Γζjk +

∑

i∈I

π
jk
i ≤ γjk ∀j ∈ J, ∀k ∈ K

(18)

ζjk + π
jk
i ≥ t̂ix

k
ij ∀j ∈ J, ∀i ∈ I

(19)

ζjk, π
jk
i ≥ 0 ∀j ∈ J, ∀k ∈ K, ∀i ∈ I

(20)

xk
ij ∈ {0, 1} ∀j ∈ J, ∀k ∈ K, ∀i ∈ I

(21)

3. Experimental tests

The deterministic and robust formulations have been tested in order to evaluate the
applicability of the proposed approach both in terms of computational effort and quality
of the obtained solutions.

The models have been tested on a set of instances derived from real life data. First,
the obtained solutions are compared with respect to the objective function value and the
number of operated patients, in order to evaluate the impact of different values of Γ, and
thus different levels of required robustness. Then, the obtained assignments of patients to
OR blocks are evaluated on a set of 100 randomly generated scenarios. The aim is to study
the behavior of the proposed solutions in terms of utilization rate and number of cancelled
patients. Further, a sensitivity analysis is performed to evaluate the impact of different
choices of the maximum deviation of surgery times. Tests on larger instances are run to
evaluate the computational effort required in solving the models.

Finally, the possibility of allowing overtime is considered. Both formulations are modi-
fied to take into account block overtime. The obtained solutions are evaluated on the 100
scenarios in terms of utilization rate and cancelled patients.

Instances and scenarios generation are described in Section 3.1. Models results are
reported and analysed in Section 3.2, while the overtime impact in discussed in Section 3.3.
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3.1. Instances and scenarios generation

The instances are generated from real data based waiting lists partially derived from [26].
Each waiting list represents a collection of patients who wait for surgery and should be
scheduled.

In the following we refer to an already validated prioritisation system based on five
urgency classes [33]. Each urgency class is associated to a maximum waiting time expressed
in days, that is the maximum number of days that a patient can wait before surgery without
deteriorating his/her clinical conditions. The maximum waiting times are set to 8, 30, 60,
180 and 360 days, respectively. The maximum waiting time contributes in defining the
urgency coefficient, which represents the speed at which the clinical need is assumed to
increase with time. In particular, for each class the urgency coefficient is computed as the
ratio between the maximum waiting time of the least urgent class and its own maximum
waiting time. The corresponding urgency coefficients of the five considered classes are 45,
12, 6, 2, 1, respectively.

For each waiting list, we generated eight instances by assigning different surgery times
to patients. Real data surgery time were derived from [25]. We used data of eight different
surgery time lists. Each list is composed by different types of surgery. Each surgery type is
described by an average surgery time, a standard deviation and the percentage of this type
over the total number of surgeries in the list. According to these percentages, an average
surgery time (t̄i) and a standard deviation (σi) is randomly assigned to each patient i.
We recall that the maximum value we want to protect from (t̂) must be determined to
apply the robust approach. The maximum deviation is assumed to be proportional to the
standard deviation t̂ = ασi.

Each instance represents the combination of a waiting list and a surgery list. Each
instance is named n-s, where n is the the number of patients (|I|), and s is the list index
used for the surgery times generation.

We consider a 7 days time horizon, corresponding to one week.
For the first series of computational results, we considered two sets of instances: one

with 20 patients and two OR blocks per week, scheduled on Monday and Wednesday, the
other with 40 patients and three blocks per week, on Monday, Wednesday and Friday.
Each block j is assumed to have a capacity of 6 hours.

For each instance we generated 100 different random realizations. In each realization,
for each patient i the surgery time t̃i is randomly generated using a lognormal distribution
with average surgery time t̂i and standard deviation σi. Lognormal distribution is widely
applied in describing stochastic surgery times. In [34] it is showed that plots of surgical
times reveal a truncation on the left side and a long tail in the right hand side suggesting
a lognormal distribution. As well, in [35] a lognormal distribution with non-zero mini-
mum parameter is suggested to represent procedure times. In [36] normal and lognormal
models to represent surgical procedure times are compared, and the use of the lognormal
distribution for predicting these times is recommended. Furthermore, in [37] the lognormal
distribution to estimate prediction bounds to support managerial decision making on the
day of surgery is used.
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DAS Γ = 1 Γ = 2 Γ = 3 Γ = 4 Γ = 5 Γ = 6 Γ = 7 Γ = 8
20 patients average 0.02 0.05 0.10 0.21 0.11 0.19 0.18 0.17 0.09

max 0.03 0.08 0.20 1.14 0.34 0.73 0.59 0.56 0.37
40 patients average 0.15 6.80 2.06 11.38 102.73 107.67 250.81 73.85 172.00

max 0.82 52.59 10.32 42.37 613.86 645.20 1678.96 521.78 1334.47

Table 1: Computational times in seconds

To avoid too short surgery times, we truncate the lognormal distribution at a minimum
value equal to max(t̄i−σi, 30). If ri is the random generated number following the lognormal
distribution, the surgery time assigned to patient i will be: t̃i = max(ri, t̄i − σi, 30).

For the larger instances tests, we considered three waiting lists, with 80, 120 and 140,
respectively. The larger instances are generated with the same procedure applied for the
smaller ones. For each waiting list, two sets of instances are considered, one with three
blocks per week, and one with five blocks per week.

3.2. Models results

The deterministic and robust models are tested on the set of instances described in
Section 3.1. The models have been implemented with AMPL and solved with CPLEX
12.2.0.0 on a Intel Xeon CPU E5335 (2 quad core cpus at 2GH). We set a 2 hours time
limit and a 1.e − 3 accetable relative gap. Eight values of Γ have been considered, from
1 to 8. Results on the objective function and number of operated patients are discussed
in Section 3.2.1. The behavior of the obtained solutions over the random scenarios is
analysed in Section 3.2.2. We set α = 1 for these first tests, i.e. the maximum deviation is
assumed to be equal to the standard deviation; then we performed a sensitivity analysis on
α parameter in Section 3.2.3. Finally, tests on larger instances are reported in Section 3.2.4
to evaluate the models with respect to computational time and scalability.

3.2.1. Objective function and operated patients

In Table 1 the average and maximum computational times are given, for DAS and RAS
models and for each value of Γ. All the considered instances have been solved to optimality
within the time limit. Solving the deterministic model requires few seconds, while the
computational time may significantly vary for the robust counterpart. Computational
time is higher for higher values of Γ, with a peak corresponding to Γ = 5 or Γ = 6.
However, the required CPU time is never above one hour and a half.

The trend of the objective function is reported in Figure 1 and 2, for the 20 and 40
instances, respectively. In particular, the figures represent the average increase, w.r.t. the
non robust case, of the waiting time of each patient in number of urgency weighted days.
The value increases for larger values of Γ: indeed a more robust solution is required, a
larger subset of patients requires the maximum surgery time and therefore less patients
are scheduled per day. However the average delay, and in general the objective function,
is constant after a value Γ which varies for the different instances considered. This is due
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Figure 1: Average per patient delay for 20 patients instances

to the fact that when the value of Γ is equal to, or greater than, the maximum number of
patients which can be scheduled in one block, all such patients are assumed to ask for their
maximum surgery time. In the following tables, the values after Γ are replaced by “-”.

In Table 2 the number of operated patients is given for each instance and value of Γ.
In the first column (max) an upper bound of the number of patients who can be operated
is also reported. Such value is computed by maximizing the number of operated patients
without taking into account patient penalties.

Results show that if robustness is not required (DAS) the number of operated patients
is close to the maximum possible. The number of operated patients usually decreases with
the increasing values of Γ. However, for low values of Γ the value is still very close to the
bound. Even for higher values of Γ it is less than half the bound only in few instances,
while in general it is more than 50%. Note that the set of operated patients is different for
different values of Γ, and, in general, the set of operated patients for Γ = m is not a subset
of those operated for Γ = m− 1.

Table 3 reports about those patients whose deadline is exceeded (tardy patients). The
number of patients who receive their surgery in the planning horizon after due date is
reported in the “op” columns, while the number of patients who are tardy, but will not be
scheduled in the planning horizon is given in the “nop” columns. As the objective function
takes into account the weighted waiting times, rather than the number of tardy patients,
the number may increase or decrease with the increasing value of Γ parameter. In general,
the variation is not dramatical in most of the instances. Furthermore, the positive impact
of requiring robustness will be highlighted by tests on realizations.

3.2.2. Utilization rate and cancelled patients

The behavior of the obtained solutions on a set of 100 randomly generated scenarios is
described in Table 4 and in Table 5. In particular, in Table 4 the operating room utilization
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Figure 2: Average per patient delay for 40 patients instances

Instance max DAS Γ = 1 Γ = 2 Γ = 3 Γ = 4 Γ = 5 Γ = 6 Γ = 7 Γ = 8
20-1 8 8 6 6 4 - - - - -
20-2 9 8 8 7 6 - - - - -
20-3 7 7 6 5 - - - - - -
20-4 10 9 8 8 6 - - - - -
20-5 12 11 10 9 10 9 9 8 - -
20-6 8 7 7 6 6 5 - - - -
20-7 8 7 7 7 6 - - - - -
20-8 8 6 7 6 5 - - - - -
40-1 14 12 9 7 5 - - - - -
40-2 15 13 11 12 10 - - - - -
40-3 12 10 9 8 7 - - - - -
40-4 15 14 13 12 10 9 - - - -
40-5 20 18 17 15 15 13 13 12 - -
40-6 14 10 9 10 9 8 - - - -
40-7 13 10 11 8 - - - - - -
40-8 13 10 9 9 7 - - - - -

Table 2: Number of operated patients
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Instance DAS Γ =1 Γ =2 Γ =3 Γ =4 Γ =5 Γ =6 Γ =7 Γ =8
op nop op nop op nop op nop op nop op nop op nop op nop op nop

20-1 4 5 4 6 4 6 5 6 5 6 5 6 5 6 5 6 5 6
20-2 6 3 6 4 5 4 4 5 4 5 5 5 5 5 5 5 5 5
20-3 6 4 5 5 5 5 5 5 4 6 4 6 4 6 4 6 4 6
20-4 9 0 7 1 8 2 7 3 5 4 6 4 6 4 6 4 6 4
20-5 8 1 7 2 7 2 7 2 7 2 7 2 5 3 7 2 7 2
20-6 4 4 5 5 4 5 5 5 4 5 4 5 4 5 4 5 4 5
20-7 5 4 4 5 5 5 5 6 4 5 4 5 4 5 4 5 4 5
20-8 5 5 4 5 5 6 4 6 5 6 5 6 5 6 5 6 5 6
40-1 8 4 8 5 7 6 6 7 6 7 6 7 6 7 6 7 6 7
40-2 11 1 11 2 10 3 8 4 10 3 10 3 10 3 10 3 10 3
40-3 10 3 9 4 9 4 8 5 8 5 8 5 8 5 8 5 8 5
40-4 11 0 12 0 11 1 11 2 10 2 10 3 10 3 10 3 10 3
40-5 10 1 11 1 11 1 11 1 10 1 10 1 10 1 11 1 11 1
40-6 9 3 8 4 8 5 9 4 8 5 8 5 8 5 7 5 8 5
40-7 10 3 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5
40-8 9 4 9 4 8 5 7 6 8 5 7 6 7 6 7 6 7 6

Table 3: Number of patients operated (op) and still waiting (nop) after their due date
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rate is given, while in Table 5 the average minimum number of cancelled patients for each
block is reported. Results show that the operating rooms are well exploited if no robustness
is required (DAS). The utilization rate is between 90% and 100% for DAS case, while it
decreases when the value of Γ increases, since longer surgery times are considered for at
least a subset of patients. The rate may fall to about 70% for most of the instances, but it
is always above 50%. On the other hand, with small values of Γ the number of cancelled
patients is significant. It rises up to more than 0.4 in five instances if no robustness is
required, and it reaches 0.65 for instance 40-8. In the robust solutions, the number of
cancelled patients decreases when the value of Γ increases. The selected assignment is
almost completely respected for Γ ≥ 4. For example, let us consider instance 20-1. The
deterministic solution produces an average number of cancelled patients per block equal
to 0.47. As there are two blocks in a week, about one patient is cancelled per each week.
On the other side, by setting Γ = 3, the number of cancelled patients is about 3 every 50
weeks (less then 4 cancellations in one year).

By properly tuning the value of Γ a tradeoff between the utilization rate and the
number of cancelled patients can be obtained. In fact, from the hospital management
point of view, smaller values of Γ are preferable, as they guarantee a higher utilization
rate. However, such values impact on the solution robustness, as it is shown by the higher
number of cancelled patients. Cancelled patients must be reschedule in a longer term
period planning. If cancelled patients are too frequent, the planning is disrupted and must
be re-optimized. From the perceived quality of service point of view, instead, higher values
of Γ are better as they guarantee that the OR schedule is respected and no patients must
be delayed from the plan (and rescheduled in further periods). Besides, it is worth noting
that an utilization rate below 100% means that there is some operating room capacity not
utilized. Such available OR time, rather than being a loss for the system, could allow to
manage emergency cases and/or cancelled patients to be rescheduled, without changing
the planned OR schedule.

3.2.3. Maximum deviation sensitivity

We already pointed out that for the robust approach we used, a maximum value t̂ for
uncertainty parameter has to be chosen. We assume t̂ = ασi. In the first computational
experiments we set α = 1. We now tested the impact of different values of parameter
α, that is to say, of different choices of the maximum deviation. We run our model with
α = 0.5, α = 1, and α = 2. The behavior of the average delay per patient is reported in
Figure 3. Results show that the impact of α and Γ are combined, as they both have an
impact on the overall required surgery time. For a given value of Γ, increasing the value of
α increases the average delay. The trend is similar for 20 and 40 patients instances. The
value of Γ in general decreases with the increasing value of α.

The obtained solutions are then tested on the scenarios. Results on the utilization rate
and on the number of cancelled patients are shown in Figure 4 and 5. As for the average
delay, the impact of the two parameters is combined. For a given value of Γ, the utilization
rate decreases with the increasing value of α. Increasing the value of α reduces significantly
the number of cancelled patients. For α = 2 the number of cancelled patients is equal zero
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Instance DAS Γ =1 Γ =2 Γ = 3 Γ = 4 Γ = 5 Γ = 6 Γ = 7 Γ = 8
20-1 101.72 69.77 62.06 54.54 - - - - -
20-2 99.17 83.53 77.03 69.73 69.73 69.73 70.08 - -
20-3 97.74 83.56 72.16 - - - - - -
20-4 94.30 84.93 80.11 63.02 63.02 63.22 63.02 - -
20-5 95.81 89.20 82.94 82.82 76.25 74.36 70.28 69.99 70.28
20-6 99.86 87.62 78.86 77.04 68.91 - - - -
20-7 92.53 79.84 79.84 68.51 69.28 69.28 69.44 69.28 69.44
20-8 91.42 80.82 70.95 61.30 - - - - -
40-1 102.11 73.82 64.80 49.10 - - - - -
40-2 101.11 84.85 80.19 70.75 70.62 70.67 70.67 70.67 70.70
40-3 97.83 81.41 73.53 69.86 - - - - -
40-4 96.34 87.38 81.47 67.87 62.17 62.10 61.92 61.93 62.11
40-5 99.94 92.77 85.18 83.18 75.70 74.59 70.13 70.11 70.08
40-6 94.71 86.47 81.04 75.56 76.36 75.92 75.92 76.36 -
40-7 91.39 86.28 69.25 62.69 62.74 - - - -
40-8 92.53 79.84 79.84 68.51 69.28 69.28 69.44 69.28 69.44

Table 4: Utilization rate in percentage

Instance DAS Γ =1 Γ =2 Γ = 3 Γ = 4 Γ = 5 Γ = 6 Γ = 7 Γ = 8
20-1 0.47 0.13 0.13 0.03 - - - - -
20-2 0.32 0.19 0.07 0.06 0.06 0.06 0.03 - -
20-3 0.19 0.02 - - - - - - -
20-4 0.25 0.07 0.08 0.00 0.00 0.01 0.00 - -
20-5 0.21 0.12 0.05 0.03 0.03 0.02 0.00 0.02 0.00
20-6 0.15 0.11 0.05 0.02 0.00 - - - -
20-7 0.25 0.05 0.05 0.02 0.00 - - - -
20-8 0.29 0.10 0.04 0.01 - - - - -
40-1 0.26 0.07 0.08 0.01 0.00 0.00 0.01 - -
40-2 0.41 0.16 0.08 0.04 0.05 0.05 0.05 0.06 0.05
40-3 0.17 0.05 0.03 0.01 - - - - -
40-4 0.41 0.26 0.12 0.04 0.00 - - - -
40-5 0.43 0.16 0.08 0.06 0.00 0.00 0.00 0.00 0.01
40-6 0.26 0.08 0.03 0.00 0.02 - - - -
40-7 0.25 0.07 0.03 0.00 0.01 - - - -
40-8 0.65 0.31 0.12 0.06 - - - - -

Table 5: Average number of cancelled patients per block
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for almost all the instances even for Γ = 2.
The average per patient delay, the utilization rate and the number of cancelled patients

for a particular instance, namely instance 20-5, are reported in Figure 6, 7 and 8, respec-
tively. The analysis allows to highlight the impact of parameter values and the way in
which they are combined. Let us considered for instance the average delay (Figure 6) for
Γ = 1 and Γ = 2. A delay of about 30 is obtained either for Γ = 1 and α = 2, or for Γ = 2
and α = 1. A value slightly below 60 is obtained either for Γ = 2 and α = 2, or for Γ = 6
and α = 1. Thus, the two value impacts are combined, but a high value of α produces
behaviors which cannot be obtained for lower values by increasing Γ.
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Figure 3: Average per patient delay for different values of α
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Figure 4: Utilization rate for different values of α
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Figure 5: Average number of cancelled patients per block for different values of α
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Figure 6: Average per patients delay for different values of α on instance 20-5

3.2.4. Scalability

The last set of tests is run on larger instances, in order to evaluate the scalability of the
proposed models. Table 6, 7 and 8 give the computational times and the gaps. The gap
is denoted with “ag” when the solver manages to reach the imposed gap of 1.e − 3. The
computational time is replaced by “TL” for those instances for which the relative accepted
gap is not reached within the two hours time limit. Tables report results for the three and
five blocks case. Besides, the average and maximum value is reported for each case.

Concerning the instances with 80 patients (Table 6), the deterministic model is solved to
optimality for all the instances. Computational times are negligible for the three blocks case
and they increase for the five blocks one. Even for the five blocks case the computational
time are about 10 seconds on the average and require more than one minute only in one
case.

Concerning the robust model, only five among the instances with 80 patients and three
blocks are not solved to optimality. Increasing the value of Γ increases the required com-
putational effort. RM requires very different computational time for different surgery
time lists. Instances 80-4 and 80-5 turn out to be the more computationally challenging.
Instances solved to optimality require an average CPU time which increases with the in-
creasing value of Γ up to Γ = 6 and Γ = 7. Then it slightly decreases for Γ = 7 and Γ = 8.
This could be due to the fact that for a high value of Γ almost all the patients scheduled
require their maximum surgery time. The gap is always below 1.5% for the instances which
are not solved to optimality.

Increasing the number of blocks has a significant impact on the computational times.
Both the average CPU time and the number of instances not solved within the time limit
greatly increase. Besides, 7 instances run out of memory (they are denoted with a “*”).

Concerning the robust model, results on 120 patients instances (Table 7) show that
the computational time increases when the number of patients increases. Yet, increasing
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Figure 7: Utilization rate for different values of α on instance 20-5

Figure 8: Average number of cancelled patients per block for different values of α on instance 20-5
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the number of patients from 80 to 120 seems to have a less significant impact than adding
two blocks. All the instances with 120 patients and three blocks are solved to optimality
except 7. Such 7 instances show, however, a very low gap. On the contrary, almost all
the instances with five blocks cannot be solved to optimality, and three of them run out
of memory. However, the gaps are reasonable, being on average between 0.34% and 2.67%
and never rising above 6.5%. Deterministic case is not computationally challenging.

A more or less similar behavior is shown for the 140 patients instances (Table 8).

3.3. Overtime impact

We modified SAS to take into account the possibility of considering blocks overtime.
We define an amount of overtime allowed for a each block δ. Besides, we assume that
at most ∆ blocks can exploit overtime in the considered planning horizon. The following
variables are added to the models:

• vkj ∈ {0, 1} = 1 if overtime is assigned to block j in week k

• okj ≥ 0 amount of overtime in block j of week k ∈ K.

The following constraints are added to the model:

∑

i∈I

t̃ix
k
ij ≤ γjk + okj ∀j ∈ J, ∀k ∈ K (22)

okj ≤ δvkj ∀j ∈ J, k ∈ K (23)
∑

j∈J

∑

k∈K

vkj ≤ ∆ (24)

Constraints (22) are the capacity constraints for each block forcing either the total time in
block j of week k to be less than or equal to the maximum available time γjk or variable o

k
j to

be strictly positive. They replace constraints (3) if overtime is considered. Constraints (23)
and (24) limit, respectively, the amount of overtime for each block j and week k and the
resulting number of overtime blocks to be less than the a priori fixed values δ and ∆. From
this new model for SAS we derived new versions of DAS and SAS taking into account
overtime.

We consider a maximum allowed overtime per block equal to 2 hours (δ = 120), and at
most ∆ = 1

3
|J | blocks allowed to use overtime during the planning horizon.

Overtime always improves the solutions. It allows to increase the number of operated
patients or to reduce the number of patients operated after their due date. Tables 9 and 10
describe the impact of allowing overtime in terms of utilization rate and cancelled patients,
respectively. Results show that allowing overtime increases significantly the utilization
rate for most of the cases, with an improvement of up to 10%. As the utilization rate is
computed w.r.t. the 6 hours block length, it may rise up to more than 100% for some
instances, when overtime is allowed. On the other hand, introducing overtime does not
have a strong impact on the number of cancelled patients, although this value decreases
slightly for all instances.
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3 blocks DAS Γ = 1 Γ = 2 Γ = 3 Γ = 4 Γ = 5 Γ = 6 Γ = 7 Γ = 8
instance gap % time gap % time gap % time gap % time gap % time gap % time gap % time gap % time gap % time

80-1 ag 0.05 ag 1.71 ag 0.66 ag 4.33 ag 2.48 ag 2.03 ag 1.59 ag 1.06 ag 0.76
80-2 ag 0.07 ag 0.44 ag 1.89 ag 81.77 ag 24.11 ag 11.76 ag 9.13 ag 5.12 ag 4.76
80-3 ag 0.02 ag 0.13 ag 0.65 ag 0.77 ag 0.65 ag 0.36 ag 0.95 ag 0.33 ag 0.20
80-4 ag 1.13 ag 1.45 ag 95.68 ag 918.61 1.02 TL 1.05 TL ag 5711.39 ag 2803.27 ag 505.02
80-5 ag 0.09 ag 10.10 ag 46.41 ag 174.70 ag 4570.56 ag 1705.92 1.35 TL 1.17 TL 1.05 TL
80-6 ag 0.05 ag 0.54 ag 0.08 ag 0.16 ag 0.61 ag 0.52 ag 0.34 ag 0.58 ag 0.17
80-7 ag 0.05 ag 0.26 ag 0.09 ag 1.09 ag 20.59 ag 5.97 0.04 5.16 ag 2.92 ag 2.55
80-8 ag 0.11 ag 0.17 ag 0.43 ag 21.28 ag 19.08 ag 5.51 ag 5.42 ag 1.89 ag 1.60

average ag 0.20 ag 1.85 ag 18.24 ag 150.34 0.21 1478.21 0.22 1114.95 0.25 1615.20 0.23 1250.34 0.22 962.83
max ag 1.13 ag 10.10 ag 95.68 ag 918.61 1.02 TL 1.05 TL 1.35 TL 1.17 TL 1.05 TL

5 blocks DAS Γ = 1 Γ = 2 Γ = 3 Γ = 4 Γ = 5 Γ = 6 Γ = 7 Γ = 8
instance gap % time gap % time gap % time gap % time gap % time gap % time gap % time gap % time gap % time

80-1 ag 2.11 ag 195.93 ag 980.32 ag 1733.23 ag 883.74 ag 605.31 ag 293.38 ag 246.04 ag 163.64
80-2 ag 5.73 ag 1244.76 0.84 TL 2.21 TL 1.92 TL 1.55 TL 1.09 7147.55 0.80 7179.31 0.65 TL
80-3 ag 0.39 ag 55.76 0.38 7187.49 ag 2051.23 ag 1150.95 ag 167.61 ag 168.70 ag 128.74 ag 98.69
80-4 ag 22.05 0.30 7181.18 2.06 7186.28 6.84 TL 7.80 TL 6.99 TL 6.68 5745.76∗ 5.87 6634.73∗ 5.26 TL
80-5 ag 66.58 0.39 TL 0.86 5235.98∗ 2.25 TL 3.14 TL 4.65 790.13∗ 5.64 TL 5.21 TL 5.08 992.23∗

80-6 ag 1.36 ag 13.56 ag 941.52 0.51 TL ag 7020.63 ag 3616.01 ag 4491.46 ag 2312.77 ag 813.17
80-7 ag 0.58 ag 170.10 ag 187.39 ag 2859.41 0.47 TL ag 5597.01 ag 4479.43 ag 3293.56 ag 2664.78
80-8 ag 0.53 ag 4.53 ag 7.25 1.65 TL 1.32 6340.00∗ 0.90 6881.90∗ 0.83 TL 0.60 TL 0.49 TL

average ag 12.42 0.16 2006.67 0.57 3614.22 1.72 5322.70 1.87 5518.19 1.81 4004.13 1.83 4587.68 1.61 4271.28 1.49 3286.89
max ag 66.58 0.39 TL 2.06 TL 6.84 TL 7.80 TL 6.99 TL 6.68 TL 5.87 TL 5.26 TL

Table 6: Percentage gap and computational time for the 80 patients instances
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3 blocks DAS Γ = 1 Γ = 2 Γ = 3 Γ = 4 Γ = 5 Γ = 6 Γ = 7 Γ = 8
instance gap time gap time gap time gap time gap time gap time gap time gap time gap time

120-1 ag 0.05 ag 2.12 ag 43.89 ag 358.42 ag 197.04 ag 150.19 ag 99.61 ag 54.76 ag 54.21
120-2 ag 0.31 ag 22.82 ag 5.37 ag 1625.98 ag 211.47 ag 78.50 ag 48.97 ag 31.27 ag 10.21
120-3 ag 0.07 ag 0.75 ag 51.25 ag 83.23 ag 52.47 ag 64.26 ag 44.87 ag 23.04 ag 2.78
120-4 ag 0.45 ag 5.61 ag 14.54 ag 5792.23 0.78 TL 0.81 TL 0.45 TL ag 5227.71 ag 2449.56
120-5 ag 0.09 ag 12.20 ag 98.08 ag 1290.97 ag 1527.07 0.61 TL 1.14 TL 0.93 TL 0.75 TL
120-6 ag 0.19 ag 11.60 ag 81.35 ag 116.02 ag 178.74 ag 82.43 ag 66.48 ag 50.39 ag 14.90
120-7 ag 0.09 ag 1.77 ag 3.42 ag 72.58 ag 115.49 ag 76.87 ag 66.40 ag 39.22 ag 28.46
120-8 ag 0.15 ag 1.08 ag 1.39 ag 2621.18 ag 2375.38 ag 1643.39 ag 725.07 ag 332.66 ag 65.71

average ag 0.18 ag 7.24 ag 37.41 ag 1495.08 0.18 1480.65 0.25 2058.85 0.27 1928.32 0.20 1618.33 0.18 1226.67
max ag 0.45 ag 22.82 ag 98.08 ag 5792.23 0.78 TL 0.81 TL 1.14 TL 0.93 TL 0.75 TL

5 blocks DAS Γ = 1 Γ = 2 Γ = 3 Γ = 4 Γ = 5 Γ = 6 Γ = 7 Γ = 8
instance gap % time gap % time gap % time gap % time gap % time gap % time gap % time gap % time gap % time

120-1 ag 0.46 1.16 6409.59∗ 2.45 TL 4.01 TL 2.19 TL 2.04 TL 1.80 TL 1.68 TL 1.19 TL
120-2 ag 7.64 0.44 TL 0.50 TL 2.05 TL 2.23 TL 1.88 TL 1.55 TL 1.27 TL 0.95 TL
120-3 ag 0.44 ag 227.65 1.43 TL 1.76 TL 1.47 TL 0.97 TL 0.77 TL 0.57 TL 0.50 TL
120-4 ag 55.61 0.52 TL 0.68 TL 5.29 TL 6.21 TL 5.72 TL 4.86 TL 4.38 TL 3.89 TL
120-5 ag 0.34 0.17 TL 0.55 TL 1.85 TL 2.87 TL 3.75 2795.42∗ 4.19 TL 3.86 5965.84∗ 3.50 TL
120-6 ag 0.59 ag 145.12 0.73 TL 1.62 TL 1.81 TL 1.53 TL 1.21 TL 1.03 TL 0.86 TL
120-7 ag 0.55 ag 50.56 0.27 TL 1.36 TL 1.88 TL 1.52 TL 1.32 TL 1.15 TL 0.94 TL
120-8 ag 0.75 ag 259.97 ag 2760.24 3.06 TL 2.71 TL 2.43 TL 2.12 TL 1.99 TL 1.88 TL

average ag 8.30 0.34 3581.94 0.84 6634.15 2.63 TL 2.67 TL 2.48 6638.56 2.23 TL 1.99 7034.86 1.71 TL
max ag 55.61 1.16 TL 2.45 TL 5.29 TL 6.21 TL 5.72 TL 4.86 TL 4.38 TL 3.89 TL

Table 7: Percentage gap and computational time for the 120 patients instances

23



3 blocks DAS Γ = 1 Γ = 2 Γ = 3 Γ = 4 Γ = 5 Γ = 6 Γ = 7 Γ = 8
instance gap % time gap % time gap % time gap % time gap % time gap % time gap % time gap % time gap % time

140-1 ag 0.07 ag 36.47 ag 20.16 ag 283.55 ag 77.67 ag 35.58 ag 19.58 ag 11.82 ag 8.09
140-2 ag 0.13 ag 15.06 ag 51.87 ag 497.16 ag 460.48 ag 168.72 ag 138.32 ag 55.13 ag 61.78
140-3 ag 0.08 ag 1.15 ag 93.00 ag 16.94 ag 25.44 ag 5.73 ag 5.42 ag 2.60 ag 1.46
140-4 ag 0.32 ag 1.89 ag 67.19 0.61 TL 1.03 TL 0.91 TL 0.65 TL 0.26 TL ag 1494.30
140-5 ag 0.37 ag 20.56 ag 20.97 ag 634.35 ag 471.84 ag 1664.47 0.54 TL 0.42 TL 0.50 TL
140-6 ag 0.11 ag 0.66 ag 14.16 ag 34.42 ag 14.03 ag 6.64 ag 3.59 ag 1.81 ag 1.15
140-7 ag 0.40 ag 0.87 ag 15.20 ag 26.98 ag 65.36 ag 46.07 ag 27.47 0.02 9.51 ag 3.03
140-10 ag 0.06 ag 3.58 ag 1.82 0.18 TL ag 6826.82 ag 5540.05 ag 1548.02 ag 290.39 ag 71.50

average ag 0.19 ag 10.03 ag 35.55 0.17 1983.57 0.22 1891.15 0.20 1831.85 0.22 2014.69 0.15 1843.31 0.15 1103.61
max ag 0.40 ag 36.47 ag 93.00 0.61 TL 1.03 TL 0.91 TL 0.65 TL 0.42 TL 0.50 TL

5 blocks DAS Γ = 1 Γ = 2 Γ = 3 Γ = 4 Γ = 5 Γ = 6 Γ = 7 Γ = 8
instance gap % time gap % time gap % time gap % time gap % time gap % time gap % time gap % time gap % time

140-1 ag 0.27 0.78 TL 1.18 TL 2.27 TL 1.08 TL 0.76 TL 0.73 TL 0.64 TL 0.47 TL
140-2 ag 99.08 0.31 TL 0.86 TL 2.13 TL 1.95 TL 1.59 TL 1.21 TL 0.90 TL 0.72 TL
140-3 ag 0.56 ag 60.04 0.98 TL 0.93 TL 0.39 TL ag 5152.33 ag 1119.23 ag 671.90 ag 166.43
140-4 ag 3.09 ag 34.44 1.21 TL 4.82 TL 5.33 TL 5.01 TL 4.52 TL 3.97 TL 3.64 TL
140-5 0.12 3272.88∗ 0.24 TL 0.81 TL 1.72 TL 2.51 TL 2.83 TL 3.33 TL 3.11 TL 2.80 TL
140-6 ag 1.26 0.22 TL 0.66 TL 1.03 TL 1.18 TL 0.78 TL 0.69 TL 0.30 TL 0.34 TL
140-7 ag 0.30 ag 148.32 0.41 TL 1.18 TL 1.43 7184.21 1.13 TL 0.98 TL 0.81 TL 0.73 TL
140-10 ag 0.21 ag 6158.32 0.52 TL 2.70 TL 2.45 TL 2.15 TL 1.91 TL 1.70 TL 1.54 TL

average ag 422.21 0.24 4393.92 0.83 TL 2.10 TL 2.04 7187.16 1.79 6933.17 1.68 6429.03 1.44 6373.13 1.29 6309.93
max 0.12 3272.88 0.78 TL 1.21 TL 4.82 TL 5.33 TL 5.01 TL 4.52 TL 3.97 TL 3.64% TL

Table 8: Percentage gap and computational time for the 140 patients instances
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Instance DAS Γ =1 Γ =2 Γ = 3 Γ = 4 Γ = 5 Γ = 6 Γ = 7 Γ = 8
20-1 118.62 90.62 68.71 61.81 - - - - -
20-2 120.31 102.64 92.31 81.83 82.64 82.09 - - -
20-3 119.97 103.03 88.04 83.04 83.30 - - - -
20-4 120.12 106.79 94.00 83.03 78.23 73.57 - - -
20-5 116.47 103.44 102.27 94.52 87.54 88.05 88.15 81.98 82.07
20-6 117.64 98.73 96.89 88.73 86.53 - - - -
20-7 115.37 101.53 82.78 90.52 88.44 - - - -
20-8 115.40 105.28 91.47 78.03 79.20 70.95 - - -
40-1 119.42 83.51 76.02 57.78 58.30 58.30 57.67 58.30 -
40-2 114.10 97.49 90.46 83.65 79.85 79.28 79.28 79.21 78.96
40-3 112.55 95.16 84.82 80.47 76.64 77.04 77.04 76.64 -
40-4 113.29 103.29 94.70 79.28 73.23 73.50 73.23 73.50 -
40-5 114.21 106.03 98.84 93.43 87.64 83.08 83.29 79.50 78.93
40-6 114.06 101.87 92.24 87.51 85.74 83.29 83.25 83.49 82.97
40-7 106.27 87.03 81.10 75.00 - - - - -
40-8 109.93 98.18 83.82 75.91 74.72 70.32 70.44 70.42 70.36

Table 9: Utilization rate in percentage if overtime is allowed

Instance DAS Γ =1 Γ =2 Γ = 3 Γ = 4 Γ = 5 Γ = 6 Γ = 7 Γ = 8
20-1 0.37 0.25 0.11 0.06 - - - - -
20-2 0.32 0.19 0.05 0.07 0.03 - - - -
20-3 0.17 0.01 0.01 0.05 0.00 - - - -
20-4 0.28 0.16 0.06 0.02 0.02 0.00 - - -
20-5 0.27 0.05 0.07 0.02 0.03 0.03 0.03 0.02 0.00
20-6 0.20 0.07 0.02 - - - - - -
20-7 0.26 0.10 0.05 0.03 0.01 - - - -
20-8 0.23 0.15 0.07 0.07 0.03 0.01 - - -
40-1 0.20 0.13 0.05 0.07 0.01 0.00 0.00 0.02 0.01
40-2 0.36 0.14 0.08 0.04 0.02 0.04 0.05 0.05 0.07
40-3 0.15 0.05 0.04 0.06 0.01 0.00 0.00 0.01 -
40-4 0.34 0.25 0.12 0.05 0.02 0.01 0.02 0.01 -
40-5 0.30 0.15 0.09 0.05 0.04 0.02 0.02 0.03 0.01
40-6 0.27 0.10 0.05 0.04 0.03 0.03 0.01 0.02 0.01
40-7 0.24 0.09 0.05 0.03 - - - - -
40-8 0.59 0.24 0.19 0.07 0.07 0.07 0.08 0.07 -

Table 10: Average number of cancelled patients per block, if overtime is allowed
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4. Conclusions and further developments

In this paper a robust optimization approach with the Advance Scheduling problem
in which surgery times are uncertain parameters is presented. Waiting time, urgency and
due date of patients are considered. The goal of the problem is to minimize the penalty
associated to waiting time and tardiness of patients.

The proposed models have been tested on a set of real life based instances. The impact
of different levels of required robustness is analysed. Besides, we tested the obtained so-
lutions in terms of utilization rate and number of cancelled patients on a set of randomly
generated realistic scenarios assuming lognormal distributions for surgery duration. Dif-
ferent choices for the maximum deviation of surgery times are evaluated, as well. Tests
on larger instances are run to evaluate the models scalability. Finally, the possibility of
allowing overtime is considered, and its impact is evaluated.

Results show that the proposed robust models can be used, as the required compu-
tational time is compatible with the weekly schedule. The required computational time
are reasonable varying the number patients to be scheduled. Even for larger instances,
with up to 140 patients, the gaps are limited. Furthermore, the obtained robust solutions
behave well when tested on the scenarios: in fact they improve the number of cancelled
patients upon the non robust solution. Although the robust solutions may produce an
utilization rate below the 100%, nevertheless by properly tuning the value of parameters,
i.e. the level of robustness required, or the degree of risk accepted, a good tradeoff between
hospital productivity and quality of service provided to patients can be achieved.

Future work will be devoted to study the impact of different objective function, as well
as an to develop an online approach which re-assigns the patients to be rescheduled and
deals with the emergency cases.
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