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Abstract O�-the-shelf wireless sensing devices open

up interesting perspectives for biomedical monitoring.

Yet because of their limited processing and transmis-

sion capacities most applications considered to date im-

ply either indoor real-time data streaming, or ambula-

tory data recording. In this paper we investigate the

possibility of using disruption-tolerant wireless sensors

to monitor the biomedical parameters of athletes during

outdoor sports events. We focus on a scenario we be-

lieve to be a most challenging one: the ECG monitoring

of runners during a marathon race, using o�-the shelf

sensing devices and a limited number of base stations

deployed along the marathon route. Field experiments

conducted during intra-campus sports events show that

such a scenario is indeed viable, although special at-

tention must be paid to supporting episodic, low-rate

transmissions between sensors carried by runners and

roadside base stations.

1 Introduction

The concept of Wireless Biomedical Sensor Network

(WBSN) opens up new opportunities for biomedical

monitoring, such as the long-term, continuous monitor-

ing of patients in a clinical environment or at home [1,

2,3].

In a typical deployment scenario, one or several wire-

less sensors are attached to a patient, and a wireless

base station is installed in this patient's surroundings.

This base station can either store the data received from

the sensors, or it can forward these data directly to a
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remote site, such as a physician's desktop computer or

a hospital's monitoring center. In any case, since the

sensors are wireless the patient can move freely around

the base station, while an endless stream of data �ows

from the sensors he/she is carrying to the base sta-

tion. This freedom of movement is however limited by

the short transmission range of the wireless sensors. In-

deed, most sensors include low-power radio transceivers

(such as IEEE 802.15.4/ZigBee transceivers or, less fre-

quently, IEEE 802.15.1/Bluetooth transceivers), with

which actual transmission ranges are usually between a

few meters indoor and up to a hundred meters outdoor.

In traditional scenarios involving wireless biomedi-

cal sensors and a base station, it is commonly assumed

that the transmission link between sensor and base sta-

tion is continuously available and reliable. Transmis-

sion protocols can actually tolerate transient link dis-

ruptions without data loss, but the general assumption

is that frequent, long-term disruptions should never oc-

cur while a patient's health status is being monitored.

Such an assumption holds when a patient does not move

much around the base station, as is the case in a hos-

pital environment or at home. Yet there are other cir-

cumstances when the connectivity between sensor and

base station can be seriously disrupted by the patient's

mobility.

In this paper we investigate the possibility of using

o�-the-shelf wireless sensors to monitor the health of

highly mobile people in outdoor conditions. Our main

motivation is to confront the possibilities o�ered by cur-

rently available sensors with the requirements of a de-

manding biomedical application, in order to assess if

such an application can indeed be implemented using

existing devices and technologies. To achieve this goal

we focus on a scenario we consider as a most challenging

one: monitoring the cardiac activity of runners during
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a marathon race. The underlying idea is that if biomed-

ical monitoring can be performed in such a challenging

scenario, then similar solutions can also be designed and

implemented for less constrained situations.

This paper provides a synthesis of results we pre-

sented in September 2012 at the 7th International Con-

ference on Body Area Networks (BODYNETS'12) in

Oslo [4], and in December 2012 at the 6th International

Conference on Ubiquitous Computing and Ambient In-

telligence (UCAmI'12) in Madrid [5]. Both communica-

tions addressed the same marathon scenario, which is

the test-case we consider in project CoMoBioS (Com-

municating Mobile Biometric Sensors). This scenario

is described in Section 2. Related work pertaining to

biomedical monitoring and to delay/disruption toler-

ant networking is discussed in Section 3. Section 4 pro-

vides an overview of the sensors we use in project Co-

MoBioS. The constraints presented by such sensors in

order to meet the requirements of the marathon sce-

nario are discussed in Section 5. In Section 6 we re-

port on a �rst �eld experiment we conducted in order

to check whether IEEE 802.15.4 (ZigBee) technology

can be used to support the transmissions between sen-

sors worn by runners and roadside base stations. Re-

sults of this experiment were presented at BODYNET

2012. They show that 802.15.4 transmissions can hardly

meet the requirements of the marathon scenario. An

alternative approach was therefore proposed, and pre-

sented at UCAmI 2012.This new approach is presented

in Section 7. It involves using Android smartphones

as relays between ECG sensors and roadside base sta-

tions, and IEEE 802.11 (Wi-Fi) transmissions on the

smartphone-to-base-station segment. Field experiments

con�rm that it is a lot more viable, as it allows to

transmit ECG episodically with no data loss. Section 8

presents new results that were obtained using 3G trans-

missions instead of Wi-Fi transmissions. These results

show that although 3G transmission may appear to

be the �obvious� solution to collect biomedical data on

marathon runners, this solution is quite power-greedy

and is therefore not necessarily the most e�ective one.

Section 9 discusses power consumption issues, and Sec-

tion 10 concludes this paper

2 Description of the Marathon Scenario

The scenario we consider as a test case is de�ned as fol-

lows: we assume the cardiac activity of athletes must be

monitored using o�-the-shelf sensors featuring an ECG

sensing element during a marathon race. This partic-

ular scenario was selected because runners must cover

a long distance during a marathon, and that distance

clearly exceeds the limited radio range of the low-power
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Fig. 1 Illustration of ECG monitoring for marathon runners,
using wearable sensors and roadside base stations

radio transceivers available on most current sensor plat-

forms. Besides, since runners in a marathon all follow

exactly the same route, a number of base stations can

be deployed along that route (see Fig. 1).

A base station (BS) is typically a unit that features

a low-power radio interface, and at least one wired or

wireless interface for long-distance transmissions (typ-

ically a broadband access to the Internet). The �rst

radio interface is used to receive data from the sen-

sors carried by marathon runners, and the second one

is used to forward these data to a remote site (for ex-

ample the closest medical aid station, or a physician's

desktop, laptop, or smartphone). Data received from

the sensors can be processed locally on the BS before

being forwarded to the monitoring site, although that

is not a requirement.

Transmissions between sensors carried by runners

and roadside base stations must rely on low-power trans-

ceivers. IEEE 802.15.4 (ZigBee) transceivers would be

ideal candidates for this purpose, since this standard

has been developed speci�cally for low-power, low-bitrate

transmission. Besides, many o�-the-shelf sensors include

such transceivers. Another option would be to use the

IEEE 802.11 (Wi-Fi) standard, which provides higher

bitrates and a longer transmission range, but at the

price of a signi�cantly higher power consumption. This

option would not be our �rst choice, though, since cur-

rent o�-the-shelf sensors usually do not feature Wi-Fi

interfaces.

With 802.15.4 transceivers the average transmission

range is around 30 meters for outdoor transmissions.

With 802.11 transceivers the average range is around

100 meters outdoor.

A BS deployed along a marathon route would thus

cover about 60 meters of that route using an 802.15.4

transceiver, and about 200 meters with an 802.11 trans-

ceiver. In the �rst case no less than 700 base stations

would be required to ensure a full coverage of the 42.2 km
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Fig. 2 Illustration of disruption-tolerant ECG monitoring for marathon runners, each base station covering only a small part of the
marathon route

route, while �only� 200 base stations would be required

in the second case.

In any case, deploying hundreds of base stations in

order to cover a marathon route is hardly an option,

for both organizational and �nancial reasons. The ap-

proach we propose is based on the idea that only a

sparse coverage of the route needs to be ensured, us-

ing a reasonable number of base stations. A disruption-

tolerant solution for data gathering must therefore be

implemented, using the store and forward principle.

This principle is the foundation of Disruption-Tolerant

Networking (DTN): a mobile node that is temporarily

disconnected from the network can store data (or mes-

sages) in a local cache, carry these data for a while, and

forward them later when circumstances permit [6]. In

our scenario, the ECG sensor carried by a runner cap-

tures data continuously and stores these data locally.

Whenever the runner passes by a BS, a transient radio

contact occurs between the sensor and that BS. This

contact is exploited by the sensor to upload data to the

BS, which in turn can relay these data to the monitor-

ing center (see Fig. 2). The distance between successive

base stations and the speed of the runner determine

how often �fresh� data can be sent to the monitoring

center. According to cardiologists, a physician moni-

toring the cardiac activity of marathon runners should

receive updated data for each runner at least every 5

to 10 minutes, in order to be able to detect arrhyth-

mias and prevent incidents. Considering the pace of an

average runner this implies that base stations should

be placed about 1 to 2 km apart. With this approach,

the marathon route can be covered satisfactoritly with

about 30 base stations. These base stations could typi-

cally be deployed on or near medical aid tents.

3 Related Work

As mentioned in Section 1 wireless biomedical sensor

networks open up new opportunities for biomedical mon-

itoring. Many projects have addressed the long-term,

continuous monitoring of patients in a clinical environ-

ment or at home [2,3]. In the latter case the cost and

inconvenience of regular visits to the physician can be

avoided, or at least signi�cantly reduced.

Projects in the mHealth (Mobile Health) line usu-

ally recognize that patients should not always be com-

pelled to stay at home or in a clinical ward while being

monitored. The solutions they propose usually rely ei-

ther on dedicated base stations that must be deployed

speci�cally for that purpose [7], or on 2.5/3G technolo-

gies [8,9,10]. In both cases the general assumption is

that biomedical sensors worn by patients can send data

whenever necessary to a remote site for data recording

or analysis. In other words end-to-end connectivity be-

tween sensors and remote site is a prerequisite, which

is sometimes hardly met in real conditions.

The concept of Delay/Disruption-Tolerant Network-

ing (DTN) has been introduced as a means to cope

with challenging situations where continuous end-to-

end connectivity in a network cannot be guaranteed [11].

Work along that line was originally targeted at Inter-

Planetary Networking (IPN), where the prime concern

is to tolerate long delays and predictably-interrupted

communications over long distances. Yet it was rapidly

recognized that the store and forward principle can

prove useful in many other kinds of challenging envi-

ronments and application �elds. Indeed transmission

disruptions and delays can also be encountered in ter-

restrial wireless networks.

During the last decade many projects have thus

been initiated in order to apply the DTN concept in
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a variety of application �elds, such as tactical mili-

tary communication, emergency relief operations, en-

vironment and wildlife monitoring, or vehicular net-

working [12]. When mobile nodes are involved in the

network, the store and forward principle can actually

be extended to the store, carry and forward princi-

ple: mobility becomes an advantage, as it allows mo-

bile nodes to carry messages physically (and potentially

over long distances) before forwarding them to another

node. This approach makes it possible to �ll the gap

between non-connected parts of the network, allowing

remote nodes to communicate even though no tempora-

neous end-to-end connectivity is ever achieved between

these nodes.

Delay- and disruption-tolerant solutions for sensor-

based applications have already been proposed several

times in the literature [13,14,15,16], but to the best

of our knowledge the potential of this approach for

eHealth or mHealth applications has not been investi-

gated much so far. Yet [17] con�rms that health services

based on DTN techniques could notably be appreciated

by health workers, especially for those working in low

resource settings.

4 Overview of SHIMMER Sensors

In this project we use SHIMMER platforms with ECG

expansion modules in order to acquire biomedical data

on runners (see Fig. 3). The SHIMMER platform fea-

tures an 8 MHz TI MSP430 micro-controller with 10 kB

RAM, 16 kB EEPROM, 48 kB �ash memory (for pro-

gram code). Two radio modules are included, that both

operate in the 2.4 GHz ISM band: an IEEE 802.15.4/Zig-

Bee compliant CC2420 transceiver, and a WML-C46A

class 2 IEEE 802.15.1 (Bluetooth) transceiver. Data ac-

quisition is performed on up to 8 channels through a

12-bit AD converter. A 2 GB micro-SD card provides

storage capacity for data logging, and the platform is

powered by an integrated 250 mAh Li-Ion battery.

The SHIMMER platform is mostly dedicated to record-

ing and transmitting physiological and kinematic data [18].

Several kinds of expansion modules are therefore avail-

able, including physiological sensors such as ECG (elec-

trocardiography), EMG (electromyography) and GSR

(galvanic skin response) sensors, as well as kinematic

sensors for 3-axis angular rate sensing and 3-axis low

�eld magnetic sensing.

The ECG expansion module we use in this project

provides RA-LL (Right Arm - Left Leg) and LA-LL

(Left Arm - Left Leg) input leads. The RA-LA (Right

Arm - Left Arm) lead can then be calculated based

on the other two leads. Sampling is performed on each

Fig. 3 A SHIMMER platform, with an ECG expansion module
and electrodes

RA-LL and LA-LL channel by the 12-bit A/D con-

verter, and the sampling frequency can be adjusted up

to 1 kHz. ECG sampling on two channels therefore pro-

duces a continuous stream of data, at a rate that can

reach up to 24 kbps.

Like many other o�-the-shelf sensor platforms the

SHIMMER platform is driven by TinyOS, a free and

open-source component-based operating system target-

ing wireless sensor networking [19]. TinyOS applica-

tions are built in nesC (a dialect of the C language opti-

mized for low memory consumption) out of event-based

software components, some of which present hardware

abstractions and others higher-level abstractions such

as packet communication, routing, sensing, actuation

and storage.

5 Requirements and Constraints

Compared with many other sensor-based applications

that only produce data episodically, ECG monitoring

is a rather demanding application. Indeed a stream of

data is produced continuously, at a rate that can reach a

few tens of kbps. Since our objective is to transmit ECG

data in short bursts whenever a marathon runner passes

by a roadside base station, the question is therefore to

determine if the requirements of ECG monitoring can

be balanced with the constraints of episodic, low-rate,

and short-range transmissions.

In order to answer this question it is necessary to

evaluate the exact requirements of ECG monitoring on

the one hand, and the constraints presented by SHIM-

MER sensors for outdoor data transmission on the other

hand.
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5.1 Requirements of ECG Monitoring

ECG monitoring is usually performed with a 500 Hz

to 1 kHz sampling frequency, and the SHIMMER plat-

form's A/D converter has a 12-bit resolution. In such

conditions the bitrate of the data stream produced by

the platform's 2-channel ECG module ranges between

12 kbps and 24 kbps. If needed several options can be

considered in order to reduce this �gure:

� Using lower sampling frequency and resolution: a

200 Hz sampling with 8-bit samples (on each chan-

nel) would for example produce a 3.2 kbps data

stream. Such parameters may of course alter the

quality of the ECG data stream, but signal recon-

struction techniques can be used on the receiver side

in order to compensate for this low quality [20].

� Compressing ECG data before storage and trans-

mission: an important constraint here is to imple-

ment an algorithm that does not exceed the com-

putation power of the SHIMMER platform's micro-

controller, such as that proposed in [21].

� Processing ECG data on the SHIMMER platform,

and transmitting reports and alerts rather than the

whole data stream: a recognition module for cardiac

arrhythmia is proposed in [22], and delineation al-

gorithms for the automatic detection of the major

ECG characteristic waves are described in [23]. The

algorithms proposed in both papers have a low com-

putational complexity, so they can run on resource-

constrained platforms such as the SHIMMER plat-

form.

5.2 Constraints Presented by SHIMMER Platforms

The IEEE 802.15.4 transceivers included in SHIMMER

platforms theoretically allow a 250 kbps transfer rate.

Yet this transfer rate is the maximal signaling rate that

can be achieved on the radio channel. The actual trans-

fer rate available at application level is of course signif-

icantly lower than that signaling rate.

In order to clarify the real potential of SHIMMER

platforms for data transmission in our marathon sce-

nario, we conducted a series of preliminary experiments.

We developed a simple base station by associating a

netbook with a Crossbow TELOS-B mote. The TELOS-

B mote is very similar to the SHIMMER platform, ex-

cept that it does not come with a collection of expan-

sion modules for biomedical monitoring. In that case

the IEEE 802.15.4 transceiver of the mote was used

to receive data from the SHIMMER sensor, and for-

ward these data directly to the netbook through a USB

link. It is worth mentioning that we did not investi-

gate IEEE 802.15.1 (Bluetooth) transmissions during

these preliminary experiments, for we considered that

the 10.25 second inquiry procedure required for discov-

ering and pairing Bluetooth devices was not compliant

with a scenario that involves runners passing rapidly by

a base station.

� Power consumption: we observed that a SHIMMER

sensor with an ECG expansion module can run for

almost 10 hours on its built-in battery, while storing

ECG data on the micro-SD card and sending these

data continuously on the wireless channel. Further

details are given in Section 9.

� Radio range: as mentioned before the average radio

range around an 802.15.4 transceiver is around 30

meters.

� Transmission bitrate: according to the tests we con-

ducted with SHIMMER and TELOS-B platforms

the achievable transfer rate between sensor and BS

cannot exceed 50 kbps.

The last �gure of 50 kbps is surprisingly low compared

to the standard's 250 kbps signaling rate. Yet this is the

maximal bitrate we observed, and this result is actually

consistent with other results mentioned in the litera-

ture [24] and in the TinyOS forum. Indeed it appears

that the architecture of the SHIMMER and TELOS-

B platforms both present a transmission bottleneck,

which lies in the connection between the micro-controller

and radio transceiver. Although the CC2420 radio trans-

ceiver can send and receive frames at 250 kbps on the

radio channel, these frames can only be transferred to or

from the micro-controller at a very limited rate. This is

an important disadvantage for our marathon scenario,

which requires that a single base station be able to

receive data streams from several ECG sensors in the

same timespan.

6 Field Experiment using IEEE 802.15.4

Transmissions

6.1 Experimental Conditions

The preliminary experiments mentioned in Section 5

gave us a crude idea of what can be expected from

sensors and base stations in a marathon scenario, but

we decided to get a proof-of-concept in more realistic

conditions. A �eld experiment was conducted during

an intra-campus sports event that occurred in Septem-

ber 2011 on the Ker Lann campus in Bruz (France). A

3.9 km running race was organized during that event,

and three volunteers (two students and a professor)

were equipped with ECG-enabled SHIMMER sensors

on that occasion. Four base stations (BS1 to BS4) were

deployed along the running route (Fig. 4). This route
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S

Fig. 4 Running route and location of base stations during the
3.9 km running race at Ker Lann campus

Fig. 5 One base station (i.e. netbook + TELOS-B mote) in-
stalled on the roadside during the running race at Ker Lann
campus

was a loop, so the runners passed two times near each

base station. BS4 had to be moved between the �rst

and second round, since the second round was shorter

than the �rst round. The distance between successive

base stations was about 500 meters.

During this �eld experiment at Ker Lann campus

each base station was composed of a netbook connected

to a TELOS-B mote (see Fig. 5). The netbooks were

not connected to a remote monitoring center on that

occasion, since our motivation was primarily to observe

how ECG data could be collected from the SHIMMER

sensors as the runners passed close to a base station.

Each base station therefore simply recorded the data

obtained from passing sensors in �ash memory, and the

data recorded by all four base stations were reassembled

and analyzed after the race was over.

6.2 Protocol for Data Acquisition and Transmission

We developed speci�c code in nesC in order to en-

sure the acquisition, storage, and transmission of data

between SHIMMER sensors and TELOS-B platforms.

The main features of this code are detailed below.

6.2.1 Data Acquisition on a SHIMMER Sensor

The acquisition of ECG data on each SHIMMER sen-

sor is performed on the two 12-bit channels (RA-LL

and LA-LL leads), with 500 Hz sampling frequency.

The 12 kbps data stream hence produced is compressed

on-the-�y, using a simple di�erential compression al-

gorithm that lowers the bitrate to about 6 kbps. The

data stream is then packetized in small bundles, each

bundle containing a 34-byte header (including the sen-

sor's identi�er and a local timestamp), and 80 bytes of

compressed ECG data. A bundle can thus �t in a sin-

gle 802.15.4 data frame (whose size cannot exceed 128

bytes). After its creation a bundle is stored as a �le in

the SHIMMER sensor's micro-SD card, from which it

can be retrieved to be transmitted during radio contacts

with a base station.

6.2.2 Data Transmission between SHIMMER Sensor

and Base Station

Since each base station (using a TELOS-B mote as an

802.15.4 transceiver) can have to interact with several

passing SHIMMER sensors at the same time, some form

of medium access control is required in order to avoid

frame collisions on the radio channel. We therefore de-

signed and implemented a simple coordination protocol,

whereby a base station can allocate time slots to each

sensor in range for data transmissions. This protocol

is strongly inspired from the GTS (Guaranteed Time

Slot) allocation method de�ned in the ZigBee speci�-

cation [25]. Each base station periodically broadcasts a

beacon frame, which allows neighbor SHIMMER sen-

sors to detect its presence. The interval between two

successive beacons is split in two parts: a Contention

Access Period (CAP), and a Contention-Free Period

(CFP). During the CAP sensors can notify the base

station of their presence and request the allocation of a

time slot for data transmission. During the CFP each

sensor can use its allocated time slot to upload bundles

of data to the base station, with no interference from

other sensors. Since all sensors do not necessarily have

the same amount of data (that is, the same number of

data bundles) to upload to the base station, the num-

ber of available data bundles is included in the request

a sensor sends to the base station during the CAP. The
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base station can thus adjust the duration of the CAP

time slots assigned to neighbor sensors proportionally

to the amount of data they need to upload. Information

about the allocation, ordering and duration of time slots

is noti�ed to all neighbor sensors at once, using a single

frame that is broadcast by the base station at the end

of the CAP and just before the CFP.

Each bundle of ECG data can �t in a single data

frame, so no fragmentation is required. MAC-level data

frame acknowledgement is enabled during the CFP: af-

ter sending a data bundle a sensor receives an ACK

frame, that con�rms that the data bundle has been re-

ceived and accepted by the base station. If the ACK

frame is not received the same data frame is sent again

after a timeout. Upon receiving an ACK for a data

frame the corresponding bundle remains in the micro-

SD �lesystem, but it is tagged as �transmitted� so the

sensor will not try to upload this bundle again (to the

same base station or to the next one).

Several strategies can be devised in order to de-

termine which data bundles should be sent �rst when

a SHIMMER sensor establishes a connection with a

nearby base station. An option is for example to pre-

serve the chronological ordering of data bundles, up-

loading the oldest bundles �rst. For the �eld experi-

ment we decided to favor the transmission of �fresh�

ECG data �rst, and to �ll the gaps by uploading older

bundles whenever possible. The transmission algorithm

running on the sensors was therefore implemented in

such a way that �real-time� bundles (i.e. those produced

during a radio contact between sensor and base station)

were uploaded to the base station �rst, and the time re-

maining during each GTS time slot was used to upload

�old� bundles (i.e. bundles that had been stored on the

sensor's micro-SD card, and that had not been uploaded

to a base station yet). A monitoring system receiving

ECG data from a marathon runner could thus display

the current heart activity of the runner, and option-

ally allow a user to rewind the ECG stream in order to

display past events.

6.2.3 Data Collection on a Base Station

Besides serving as a coordinator for wireless medium ac-

cess, the base station receives ECG data bundles from

passing sensors. As mentioned before, each bundle in-

cludes an identi�er of the source sensor and a times-

tamp that is associated with the data when they are

packetized. The SHIMMER platform does not include

any real-time clock, so timestamping is performed based

on a local timer that ticks every 100 ms. When a data

bundle is sent by a sensor to a nearby base station, the
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Fig. 6 Example of ECG data collected from a runner's sensor
during the race

duration since this bundle was recorded is calculated,

and this duration is inserted in the bundle's header in

place of the record time. When the data frame is re-

ceived by the base station the actual time of the bun-

dle's production is calculated based on the current time

(according to the base station's system clock), on the

duration speci�ed in the bundle's header, and on an

estimation of the time required to transmit the data

frame between sensor and base station (this transmis-

sion can be estimated quite accurately since data frames

are transmitted during a CFP period, when no backo�

mechanism is used).

Every bundle of ECG data thus received by a base

station contains an indication of where and when it

was produced. Each base station can therefore record

data bundles for deferred analysis, or transmit these

bundles to a remote site with no risk of data mixup or

disordering.

6.3 Results

During this experiment the three runners covered the

3.9 kilometers in about 22 minutes, and each sensor

produced about 2.5 MB of ECG data (that is, about

65.000 compressed bundles) during that time.

Figure 6 shows an excerpt of the ECG data stream

that was collected from one of the sensors during the

race. This data stream would probably need some noise

reduction processing, but as such it is exploitable by a

cardiologist.

During the race our prime motivation was to ob-

serve if the data bundles produced continuously on each

sensor could actually be transmitted when the sensor

established radio contact with one or another base sta-

tion. Figure 7 shows the timeline of transmissions be-

tween the three sensors (S1 to S3) and the four base

stations (BS-1 to BS-4). More precisely it shows the ra-

dio contacts as each sensor passed close to a base station

(lines with arrowheads), and the amount of data that

were uploaded to the base station during that contact.

For example, a radio contact was established between
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Fig. 7 Timeline of data transmissions during the �rst �eld experiment (at Ker Lann campus)

S1 and BS-1 between 09h15m55s and 09h16m22s. It can

be observed that during this 27-second contact only a

small amount of data was uploaded from S1 to BS-1,

and none of the data acquired before the radio con-

tact was uploaded to BS-1. About two minutes later

S1 established a radio contact with BS-2, and during

this contact 82% of the data produced since the for-

mer contact was uploaded to BS-2. The next contact

was established between S1 and BS-3, and this time S1

managed to upload to BS-3 all the data it had produced

since its contact with BS-2, plus 17% of the data that

it had failed to transmit to BS-2.

By observing carefully the timing of the radio con-

tacts between the sensors and base stations, it can be

observed that the data uploading process was more ef-

fective when a base station only had to interact with one

or two sensors simultaneously. In contrast, when a sen-

sor had to deal with the three sensors (as happened at

the beginning of the race when all three sensors passed

close to BS-1 at the same time) only a fraction of the

data could be uploaded to the BS.

During the race the duration of radio contacts ranged

between 11 seconds and 48 seconds, with an average

value of 19 seconds. During these contacts the sensors

managed to upload 79% of their data to the base sta-

tions. The remaining 21% of data bundles were not lost,

though, since they were stored on each sensor's micro-

SD card and could be collected after the race.

6.4 Discussion

Globally the results of this �eld experiment involving

802.15.4 transmissions between sensors and base sta-

tions con�rm that the protocol we implemented can in-

deed tolerate transient connectivity, and is resilient to

connectivity disruptions. However they also show that

in spite of this disruption-tolerant procotol not all data

acquired during the race could be uploaded to the base

stations.

A major outcome of this experiment is that it clearly

showed the limits of outdoor ECG data acquisition us-

ing short-range, low-rate 802.15.4 transmissions. Although

this experiment was conducted with only three sensors,

and although the distance between successive base sta-

tions was rather short (about 400 meters instead of the

1 or 2 km required during a real marathon race), only

a fraction of the data acquired on each sensor could be

collected by base stations during the race.

Of course the amount of data produced on each sen-

sor could certainly be reduced, as explained in Sec-

tion 5, by adjusting the frequency and resolution of

ECG acquisition. A more e�cient compression algo-

rithm could for example be implemented, provided the

code of this algorithm could hold in the SHIMMER

platform's 48 kB �ash memory. Our current code (which

handles data acquisition, compression, packetization,

storage, and transmissions) already has a 45 kB foot-

print. Replacing the simple di�erential compression al-

gorithm it contains by a more e�cient compression al-

gorithm without exceeding the SHIMMER's capacity

would be quite a challenge. Indeed, at runtime about

22% of the processing time is used for data acquisition,

28% for data compression and packetization, 16% for

data storage (writing to and reading from the micro-

SD card), 28% for data transmission (which is an im-

portant task but only occurs when the sensor gets close
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to a base station), and the remaining 6% is spent per-

forming other minor tasks.

7 Field Experiment using IEEE 802.11

Transmissions

7.1 Experimental Conditions

The �eld experiment conducted at Ker Lann campus

revealed that 802.15.4 transceivers can hardly meet the

requirements of our marathon scenario. In order to get

around this problem we started investigating an alter-

native approach whereby transmissions between a run-

ner and nearby base stations are based on the IEEE

802.11 (Wi-Fi) standard. Unfortunately, like most biomed-

ical sensors the SHIMMER platform does not include

an 802.11 transceiver. Each runner must therefore carry

a smartphone, which serves as a relay between his/her

sensor and nearby base stations. Besides, since most

smartphones feature an IEEE 802.15.1 (Bluetooth) trans-

ceiver but no IEEE 802.15.4 (ZigBee) transceiver, the

sensor and the smartphone must be linked using Blue-

tooth.

In this new con�guration the ECG data stream pro-

duced by the sensor is thus transmitted directly and

continuously to the smartphone through a Bluetooth

RFCOMM link. The smartphone processes this data

stream (packetization + compression + storage + op-

tional signal analysis), and the upload of data bundles

from a smartphone to roadside base stations is per-

formed using Wi-Fi wireless links. Base stations take

the form of standard Wi-Fi access points, with broad-

band connectivity to the monitoring center.

7.2 Protocol for Data Acquisition and Transmission.

In order to investigate this new approach we again de-

veloped speci�c code in nesC for the SHIMMER sen-

sors, and a Java application for Android smartphones.

With the protocol described in Section 6.2 the SHIM-

MER sensor was responsible for data acquisition, com-

pression, packetization, and episodic transmission to

nearby base stations. With this new protocol the sen-

sor is only responsible for data acquisition. All the other

operations are delegated to the smartphone.

7.2.1 Data Acquisition on a SHIMMER Sensor

As mentioned above the ECG data stream produced on

the sensor is transmitted on-the-�y to the smartphone

through a Bluetooth RFCOMM link.

7.2.2 Transmission between SHIMMER Sensor and

Android Smartphone

Each SHIMMER sensor must be paired with a speci�c

smartphone, and two paired devices must of course be

carried by the same marathon runner. The Java appli-

cation we designed for Android smartphones allows a

user to locate nearby SHIMMER sensors, and to pair

the smartphone with one or several of these sensors,

using secured pairing if desired. The possibility for a

single smartphone to collect data from several sensors

is a provision for future work: several sensors may thus

be attached to a single athlete, so di�erent kinds of data

can be collected simultaneously.

Once a smartphone is paired with a sensor, an RF-

COMM link is established between them. Through this

link the smartphone can control the sensor, and send

simple commands in order to adjust the sampling fre-

quency or resolution, to start or stop the data acqui-

sition, etc. When data acquisition is enabled on a sen-

sor, a continuous data stream is sent to the smartphone

through the RFCOMM link.

The code we designed for both SHIMMER sensors

and Android smartphones can tolerate transient disrup-

tions in RFCOMM links. For example, if paired sen-

sor and smartphone get disconnected for a while, they

strive to re-establish the connection, and data trans-

mission (if enabled) resumes as soon as the connection

is re-established.

The data stream received by the smartphone is pack-

etized in bundles, which are then stored in the smart-

phone's SD-card, awaiting for transmission to the mon-

itoring center. Each bundle consists of a header and a

payload. The header includes an identi�er of the source

sensor and a timestamp. The payload is simply a byte

array that contains a sequence of data bytes received

from the sensor. The size of this byte array depends

on the data acquisition frequency and resolution on the

sensor, as well as on the period set for data bundling.

For example, data acquisition on two 12-bit channels

with 500 Hz sampling produces a continuous data stream

at 12 kbps. Assuming a bundle is produced every 20 sec-

onds on the smartphone, each bundle contains a 30 kB

payload.

7.2.3 Transmission between Smartphone and Roadside

Base Station

As mentioned in the former section a base station is

typically a standard Wi-Fi access point with broadband

connectivity to the Internet. When a runner passes close

to a base station, the smartphone he/she is carrying de-

tects the access point and tries to associate with it. If
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the association succeeds, the smartphone authenticates

if needed, and sends a DHCP request in order to ob-

tain IP parameters from a DHCP server. Once the IP

connectivity is obtained, the Android application we de-

signed starts uploading data bundles to a remote server

that is the entry point of the monitoring center.

The transmission of data bundles between smart-

phone and server is performed using UDP datagrams.

Each bundle of ECG data easily �ts in a single data-

gram, so no fragmentation is required at this level. An

ARQ (Automatic Repeat reQuest) mechanism is how-

ever implemented in order to prevent any loss of data

bundle.

When a smartphone carried by a runner establishes

a connection with a base station these devices are still

far away from each other (see Fig. 2). The quality of

the wireless link between them is usually quite low,

so sending data bundles too hastily in such conditions

could yield a high level of data loss. In order to pre-

vent this problem our Android application implements

a rate control mechanism that is inspired from TCP's

slow-start mechanism. At the beginning of a contact

window �when the smartphone has just received IP pa-

rameters from the DHCP server� a simple stop-and-

wait method is used: the smartphone only sends one

bundle, and waits for an acknowledgement that this

bundle has been received by the server. Once this ac-

knowledgement is received the next data bundles are

sent with a go-back-N method: up to N bundles can

be sent in a row, before receiving the acknowledgement

of the �rst of these bundles. The width of the sliding

window (N) can be adjusted dynamically as the runner

moves closer to the access point, then farther from this

access point. Experience con�rms that the combination

of both ARQ methods allows an e�cient use of the con-

tact window between smartphone and base station, and

does not induce a high level of transmission failures at

the beginning of a contact window.

7.3 Results

A new �eld experiment was conducted on the Tohannic

campus in Vannes (France) in Spring 2012, in order to

observe how our system performs with 802.11 transmis-

sions on the runner-to-base-station segment. Three vol-

unteers were equipped with ECG-enabled SHIMMER

sensors and HTC Wild�re S smartphones, and two base

stations (BS1 and BS2) were placed about 1 km apart

along the running route. These base station were stan-

dard Wi-Fi access points. They were both placed on a

window-ledge, and connected to the campus LAN. The

runners had to run around the campus, passing twice

close to each base station.

Figure 8 shows the timeline of transmissions be-

tween the smartphones carried by the three runners (S1

to S3) and the two base stations. The intervals with ar-

rowheads depict radio contacts between smartphones

and base stations, and the duration of each contact is

indicated in the �gure.

Let us examine the transmission timeline for S1.

This smartphone was installed together with a SHIM-

MER sensor on a runner around 10:58. Both devices

were activated immediately, so S1 started collecting bun-

dles of data from that time on. Once the three runners

were ready to go, they walked together to the start

line. Since BS1 was located near that line a connec-

tion S1 established a connection with B1, and started

uploading to the remote server all the bundles it had

recorded since its activation. At 11:04, the three run-

ners started running. The connection between S1 and

BS1 was therefore interrupted, after a 105 second con-

tact window during which 21 data bundles had been

uploaded to the server. Around 11:10 S1 established a

connection with the second base station. This new con-

tact window lasted 40 seconds, and this time 19 bundles

were uploaded by S1 (17 of these bundles had been pro-

duced since S1 lost contact with BS1, and 2 new bundles

were produced while S1 was in contact with BS2). As

the runner carrying S1 continued running around the

campus, S1 later established a connection again with

BS1 (around 11:19), and then with BS2 (around 11:28),

which was installed close to the �nish-line.

7.4 Discussion

During this �eld experiment involving 802.11 transmis-

sions between runners and base stations, no data bundle

was lost, or failed to reach the remote server. This is

of course a major improvement over the �rst experi-

ment, which revealed the limitations of 802.15.4 trans-

missions.

The con�guration involving smartphones that serve

as relays between SHIMMER sensors and roadside base

stations obviously meets the requirements of our marathon

scenario. Additional experiments have been conducted

in order to assess the scalability of this approach. Each

of the three volunteers involved in the previous exper-

iment has been equipped with a backpack containing

4 smartphones, and went running around the campus

again. The Android application running on these smart-

phones was con�gured so as to run in simulation mode,

producing dummy data bundles at the same rate as if

real bundles were received from a SHIMMER sensor.

With this con�guration we could verify that when the

three runners (hence the 12 smartphones) passed close
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Fig. 8 Timeline of data transmissions during the second �eld experiment (at Tohannic campus)

to an access point simultaneously, the smartphones man-

aged to associate with this access point and upload their

data bundles during the contact window.

Further experiments involving a larger number of

runners covering a longer distance should of course be

conducted, but considering the high bandwidth avail-

able with Wi-Fi transmissions it can be expected that

hundreds of runners can be monitored simultaneously

using this approach (although hundreds of runners pass-

ing by the same access point at the same time may

exceed its capacity).

One of the drawbacks of this con�guration is of

course that runners might be reluctant to carry a smart-

phone in an armband, in addition to the SHIMMER

sensor. A SHIMMER unit with its ECG expansion mod-

ule weighs about 22 grams. In contrast a smartphone

usually weighs between 100 and 200 grams.

8 Field Experiment using 3G Transmissions

8.1 Experimental Conditions

Besides using episodic Wi-Fi transmission to upload

ECG data bundles to a remote monitoring center, the

Android application we designed for the smartphone

can also rely on 3G transmission for data upload.

In this con�guration data bundles can be uploaded

as soon as they are produced by the smartphone, pro-

vided 3G connectivity is e�ective whenever a new bun-

dle is ready to be sent. Otherwise bundles are stored on

the bundle until connectivity is restored.

Fig. 9 Transmission rates observed with Wi-Fi and 3G for 16 kB
bundles (logarithmic scale)

8.2 Results

A �eld experiment was again conducted on the To-

hannic campus in order to compare how our system

performs when using either Wi-Fi transmissions or 3G

transmissions. Two volunteers were equipped with our

system, which was con�gured so as to rely on Wi-Fi

access points for the �rst volunteer, and on 3G trans-

missions for the second one.

During this experiment the volunteers ran side by

side around the campus. Both monitoring systems were

con�gured so as produce a 16 kB bundle every 20 sec-

onds, and we measured the time required for sending

each bundle and receiving the corresponding acknowl-

edgement.

The results are presented in terms of transmission

rates in Figure 9 (with a logarithmic scale). As ex-

pected we observe transmission rates of several Mbps
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for Wi-Fi transmissions. More speci�cally, the bitrate

observed with the Wi-Fi solution ranges from 850 kbps

to 4 Mbps, with an average value around 2 Mbps. For

3G transmissions we expected to observe transmission

rates of at least 200 or 300 kbps, but the �gures we ob-

tained are signi�cantly lower. Indeed, the bitrate ranges

from 35 kbps to 70 kbps, with an average value around

45 kbps.

8.3 Discussion

During this experimentation, the smartphone using 3G

transmission maintained its connection with nearby cell-

phone towers continuously (in HSPDA/3G+ mode) as

its carrier ran around the campus. It is worth men-

tioning that this campus is well covered by cell phone

networks. During a real marathon race the connectivity

to a 3G network would probably be less stable, and the

store-carry-and-forward algorithm implemented in the

Android application would prove useful in such condi-

tions.

Another issue is that the dependability of a 3G net-

work can hardly be guaranteed in a mass crowd event

such as a marathon race, during which hords of specta-

tors �most of them using their cell phone intensively�

usually gather along the route followed by the runners.

In contrast the approach that requires the deployment

of about 30 Wi-Fi access points with standard WPA

authentication guarantees that these access points are

used only for biomedical monitoring.

9 Power Consumption

The autonomy of the devices carried by runners might

be an issue during a marathon race. An autonomy of

at least 6 hours is required, so marathon runners can

be equipped with a monitoring system long before they

actually start running, and so the monitoring continues

after they have passed the �nish line of the marathon.

In order to evaluate whether this issue is a criti-

cal one we measured the evolution of the battery level

on a smartphone and on a SHIMMER sensor, for each

possible con�guration considered in this article.

Figure 10 shows that the SHIMMER platform with

its ECG expansion module can run for about 9 to 10

hours, while acquiring ECG data continuously, storing

these data on the micro-SD card, and sending these

data on the ZigBee or Bluetooth wireless channel.

In contrast an Android HTC Wild�re smartphone

maintaining one Bluetooth connection with a SHIM-

MER sensor and uploading bundles of data to a remote
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Fig. 10 Power consumption observed on the SHIMMER sensor
and HTC Wild�re smartphone

monitoring center can deplete its battery quite rapidly.

If this smartphone relies on episodic Wi-Fi connections

with nearby access points its battery is empty after

about 6 hours. If this smartphone relies instead on 3G

transmissions its battery is empty after about 4 hours.

An autonomy of 4 to 6 hours is barely su�cient for

a marathon race, but of course other models of smart-

phones may run far longer in similar conditions (the

Wild�re S model is known to have very little auton-

omy).

These results however show that a monitoring so-

lution relying on 3G transmissions tends to be more

power-greedy than a solution relying on Wi-Fi trans-

missions. Further experiments must be conducted in

order to clarify this point. Indeed, the amount of power

consumed for 3G transmission changes dynamically, as

the transceiver continuously adjusts its transmission

power and protocols in order to reach the base station

it is associated with.

10 Conclusion

O�-the-shelf wireless sensing devices such as the SHIM-

MER platform open a wide range of perspectives for

health monitoring. Yet because of the limited computa-

tion and transmission capacities of such platforms most

applications considered to date imply either ambulatory

data recording or real-time data streaming. In the lat-

ter case, ubiquitous continuous end-to-end connectiv-

ity is expected to support data transmissions between

sensors worn by patients and a remote monitoring cen-

ter. With disruption-tolerant networking another ap-

proach can be considered, whereby data are captured

and stored continuously on the sensor platform, and

transient connectivity with one or several base stations

is used opportunistically to upload data to a remote

site.
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In order to illustrate this approach we investigated

a challenging scenario: the ECG monitoring of runners

during a marathon race. A �eld experiment conducted

during a campus sports event, using SHIMMER plat-

forms for data acquisition and IEEE 802.15.4 trans-

missions to upload episodically ECG data to roadside

base stations, has revealed that 802.15.4 transmissions

�though appealing at �rst glance� can hardly meet the

requirements of the marathon scenario. An alternative

approach has then been considered, using Android smart-

phones as relays between ECG sensors and roadside

base stations. With this approach data acquired by the

SHIMMER sensor are transmitted continuously to the

smartphone through a Bluetooth RFCOMM link. The

smartphone processes this data stream, and uploads

data bundles episodically to Wi-Fi access points placed

on the roadside. A �eld experiment conducted with this

con�guration con�rms that capturing and transmitting

ECG data during a running race is indeed feasible with

o�-the-shelf devices and technologies. Since many cur-

rent mHealth projects rely on 3G transmissions for data

collection, we compared how our system performs when

using either Wi-Fi or 3G transmissions for data up-

load. The solution involving 3G transmission proves

more power-greedy, which may be a problem since our

marathon monitoring system should be able to run con-

tinuously for about 6 hours in order not to be a trouble

for runners. The 3G option may additionally be less

scalable during a marathon event, as thousands of peo-

ple use their cell phones simultaneously and tend to

saturate the neigbouring cell towers. Further investiga-

tion is needed in order to clarify this point.

In the near future we plan to deploy our system dur-

ing a real marathon race (possibly the next edition of

the Baie du Mont Saint-Michel marathon, in France),

with dozens of runners carrying ECG monitoring sys-

tems.
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