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Abstract

Consider a propagative medium, possibly inhomogeneous, containing some scatterers whose posi-
tions are unknown. Using an array of transmit–receive transducers, how can one generate a wave that
would focus in space and time near one of the scatterers, that is, a wave whose energy would confine
near the scatterer during a short time? The answer proposed in the present paper is based on the
so-called DORT method (French acronym for: decomposition of the time reversal operator) which has
led to numerous applications owing to the related space-focusing properties in the frequency domain,
i.e., for time-harmonic waves. This method essentially consists in a singular value decomposition
(SVD) of the scattering operator, that is, the operator which maps the input signals sent to the
transducers to the measure of the scattered wave. By introducing a particular SVD related to the
symmetry of the scattering operator, we show how to synchronize the time-harmonic signals derived
from the DORT method to achieve space–time focusing. We consider the case of the scalar wave
equation and we make use of an asymptotic model for small sound-soft scatterers, usually called the
Foldy–Lax model. In this context, several mathematical and numerical arguments that support our
idea are explored.

1 Introduction

1.1 General context and objective

Time reversal (TR) techniques have been extensively studied during the last decades, in particular owing
to the related focusing properties. The simplest illustration of these properties consists in the following
classical TR experiment (see, e.g., [9]). In a first step, an acoustic source emits a sound which propagates
in the surrounding medium. The acoustic field is then measured and recorded by an array of transmit–
receive transducers. In a second step, all the recordings are time-reversed and then used as input signals
for the transducers of the array, generally called a time reversal mirror (TRM) because of this time
reversal step. The acoustic wave emitted by the TRM propagates back in the same medium towards
the original source. If this source fills a small region and if the initial sound is a short pulse, one can
observe that a great part of the acoustic energy of the back-propagating wave will be concentrated near
the original source at a given time. In this sense, space–time focusing is achieved. The focus quality will
be high if the TRM surrounds completely the source (full aperture case) and if the number of transducers
is large enough. On the other hand, the focusing will generally deteriorate if the number of transducers
becomes smaller or if the aperture of the TRM is reduced, that is, if the angular area occupied by the
TRM decreases (partial aperture case).

In such a TR experiment, the source is active in the sense that it emits the original sound which is
then recorded by the TRM. In the present paper, we are no longer concerned by active sources, but rather
by unknown scatterers which behave passively only by their ability to reflect an incident wave. Hence
the way to retrieve some information on the scatterers is to test the medium by means of the array of

1POEMS (Propagation d’Ondes: Etude Mathématique et Simulation) is a mixed research team (UMR 7231) between
CNRS (Centre National de la Recherche Scientifique), ENSTA ParisTech (Ecole Nationale Supérieure de Techniques
Avancées) and INRIA (Institut National de Recherche en Informatique et en Automatique).

1



transducers which can emit various incident waves and record the response of the medium. We assume
here that we are able to measure the scattered wave, that is, the perturbation of the incident wave due
to the presence of the scatterers. This means implicitly that we are able to compare the propagation of
an acoustic wave in two different media: on the one hand, a reference medium which is the surrounding
medium in the absence of the scatterers, on the other hand a perturbed medium which is the same medium
perturbed by the presence of the scatterers. In other words, each test of the medium consists actually in
two experiments: for given input signals sent to the transducers, the same incident wave is emitted by the
array in both reference and perturbed media, both responses are then measured by the array, and finally
the former is subtracted from the latter. The operator which maps the input signals to the difference
of both measures will be called here the scattering operator (it is often referred to as the multi-static
response matrix). The question we are interested in is the following: from the only knowledge of this
scattering operator, can one generate a wave which would focus in both space and time at one of the
scatterers? There is no doubt that a positive answer to this question could lead to numerous applications
in nondestructive testing, medicine, communication, imaging, etc.

The method we propose is based on the so-called DORT method (French acronym for: decomposition
of the time reversal operator) first developed by Prada and Fink [19, 21, 22] in the context of ultrason-
ics. Numerous experimental, numerical and theoretical applications of this method have been explored
for acoustic, elastic or electromagnetic waves. The DORT method can be seen as an improvement of
iterative time reversal in the frequency domain. It is based actually on a singular value decomposition
(SVD) of the above mentioned scattering operator for time-harmonic waves. It is now well understood
that for distant enough and small scatterers, the number of non-negligible singular values of the scatter-
ing operator coincide with the number of scatterers. Moreover, when these singular values are simple,
each corresponding singular vector generates a wave which focuses selectively on each scatterer. These
properties were first observed for point-like targets [21, 22] and then confirmed by different theoretical
studies (see, e.g., [12] for acoustic waves and [1] for electromagnetic waves). Numerical results [2] show
that these selective focusing properties hold even when the asymptotic conditions are not satisfied, that
is, for rather close scatterers which are not so small in comparison with the wavelength.

In short, the DORT method provides us spatial selective focusing in the frequency domain. This is the
starting point of the present paper which addresses the following issue: can we take advantage of these
spatial focusing properties in the frequency domain in order to produce a time-dependent wave which
would also focus in time? This challenging question was first raised in [17]. It mainly consists in a phase
synchronization issue, since the singular vectors of the scattering operator are defined up to a phase shift.
The same issue was also mentioned in [4] which presents an extension to the time domain of the so-called
MUSIC algorithm (multiple signal classification) for imaging in random media. To our knowledge, the
first proposal of solution was given in [18] using an approximation by a homogeneous free-space back
propagation. The method we propose does not involve any approximation. It is based on the symmetry
of the scattering operator which allows us to choose a particular SVD, called the symmetric singular
value decomposition (SSVD). The idea of using this particular SVD is not really new: we discovered
recently that it is briefly mentioned in an unpublished report [20], but with no justification. Our aim
is to explore several arguments which show that the use of the SSVD of the scattering operator yields
space–time focusing.

The paper is organized as follows. We begin by describing in §1.2 the mathematical formulation of
the problem and we introduce the main notations which are used throughout the paper. Section 2 is
devoted to space focusing in the frequency domain. As the focusing properties of the DORT method
hold for small scatterers, we make use of an asymptotic model, usually called the Foldy–Lax model,
which considers point-like scatterers. In this context, we briefly recall the main features of the DORT
method and we illustrate them by numerical results. Section 3 constitutes the core of the paper. We first
show in §3.1 how to reduce the problem to a phase synchronization issue and introduce the SSVD of the
scattering operator. We then prove in §3.2 that the choice of this SSVD is associated with the optimum
of a TR criterion. In §3.3, we explore the link between the SSVD and the TR experiment mentioned
above. Finally the numerical results of §3.4 illustrate the space–time focusing effect. The focus quality is
evaluated by means of an energy criterion which involves some technical calculations that are collected
in the Appendix.
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1.2 Mathematical formulation of the problem

In the present paper, we consider a reference medium, possibly inhomogeneous in a bounded region, filling
the whole space Rd (with d > 1). This medium is characterized by a sound velocity function c = c(x) for
x ∈ Rd. We denote by G = G(x, y, t) the time-dependent Green’s function of the acoustic wave equation,
which is solution to

1

c2(x)

∂2G(x, y, t)

∂t2
−∆xG(x, y, t) = δ(x− y)⊗ δ(t),

where δ stands for the Dirac measure at the origin, either in space or time. Moreover G is assumed to
be causal in the sense that G(x, y, t) = 0 for all (x, y) ∈ R2d and t < 0 (which ensures the uniqueness of
G). Recall that for a homogeneous medium, i.e., c ≡ 1, this function is given by

Ghom(x, y, t) =





H(t− |x− y|)
2π
√

t2 − |x− y|2
if d = 2,

δ(t− |x− y|)
4π |x− y| if d = 3,

(1)

where H is the Heaviside function.
We consider an array of N point-like transducers located at xn for n = 1, . . . , N which can emit

incident waves of the form

vinc(x, t) :=
N∑

n=1

(qn
t
⋆ G(x, xn, ·))(t) =

N∑

n=1

∫

R

qn(t
′)G(x, xn, t− t′) dt′ (2)

where qin(t) := (q1(t), . . . , qN (t))⊤ represents the vector composed of the input signals which are applied

to the transducers (the symbol ⊤ indicates transposition) and
t
⋆ denotes the convolution with respect to

time.
We suppose that our reference medium is perturbed by the presence of a family of P sound-soft

scatterers Sp ⊂ Rd for p = 1, . . . , P. In this case, when the same signals qin(t) are sent to the transducers,
we observe instead of the incident wave (2) a perturbed wave vinc + vsc where vsc represents the scattered
wave, that is, the part of the wave due to the presence of the scatterers, which is the causal solution to

1

c2(x)

∂2vsc
∂t2

−∆vsc = 0 in R
d \ ∪P

p=1 Sp, (3)

vsc = −vinc on ∪P
p=1 ∂Sp. (4)

This wave is finally measured by the transducers, which yields a vector composed of N functions which
is denoted by qout(t) := (vsc(x1, t), . . . , vsc(xN , t))⊤. The linear operator

S : qin 7−→ qout

is called here the scattering operator. Note that this definition differs slightly from the scattering operator
involved in mathematical physics.

In this paper, we use a spectral representation of S, which amounts to representing all time-dependent
signals as superpositions of time-harmonic signals. Thus we introduce the Fourier transform F with
respect to time defined by

f̂(ω) := Ff(ω) :=

∫ +∞

−∞

f(t) e+iωt dt

whose inverse is given by

f(t) = F−1f̂(t) =
1

2π

∫ +∞

−∞

f̂(ω) e−iωt dω.
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Note that in the case where f is real-valued, its Fourier transform satisfies the symmetry property

f(−ω) = f(ω) so that f(t) =
1

π
Re

∫ +∞

0

f̂(ω) e−iωt dω. (5)

Define q̂in(ω) := Fqin(ω) = (q̂1(ω), . . . , q̂N (ω))⊤. For all ω, q̂in(ω) represents the time-harmonic input
signals which emit a time-harmonic incident wave

v̂inc(x, ω) := (Fvinc(x, ·))(ω) =
N∑

n=1

q̂n(ω) Ĝ(x, xn, ω), (6)

where Ĝ = Ĝ(x, y, ω) denotes the Fourier transform of G, that is, the time-harmonic Green’s function of
the reference medium. Its expression is well-known for a homogeneous medium (c ≡ 1) :

Ĝhom(x, y, ω) =





i

4
H

(1)
0 (ω|x− y|) if d = 2,

eiω|x−y|

4π|x− y| if d = 3,

where H
(1)
0 is the Hankel function of the first kind and order 0. The interaction of v̂inc(x, ω) with

the scatterers produces a scattered wave v̂sc(x, ω) = (Fvsc(x, ·))(ω) which is finally measured by the
transducers. This yields the time-harmonic scattering operator

Ŝω : q̂in(ω) 7−→ q̂out(ω) := (v̂sc(x1, ω), . . . , v̂sc(xN , ω))⊤. (7)

We can sum up the link between the time-dependent and time-harmonic scattering operators by the
equality

S = F−1
Ŝ F , (8)

where Ŝ denotes the operator defined from the family {Ŝω; ω ∈ R} by the simple relation

(Ŝ q̂)(ω) = Ŝω(q̂(ω)).

The question we address in the present paper is the following: from the only knowledge of the operator
S, how can one generate a wave that focuses selectively in space and time on one of the scatterers? The
answer we propose is the subject of section 3. It is based on the DORT method presented in the next
section.

2 Space focusing in the frequency domain

2.1 The scattering operator for small scatterers

As mentioned in the introduction, the spatial focusing properties related to the DORT method hold for
small enough scatterers. That is why we use in the sequel an asymptotic model in the frequency domain,
which enables us to replace the family {Sp ⊂ Rd; p = 1, . . . , P} by a family of P point-like scatterers
located at y1, . . . , yP . The model we use, often called the Foldy–Lax model [10], has the advantage to
take into account an approximation of the interactions between the scatterers. It is widely used by
physicists. For instance, [16] presents an application of the MUSIC method for estimating the locations
and reflectivities of point-like inhomogeneities. A mathematical justification of the Foldy–Lax model was
recently proposed in [7] for the two-dimensional problem.

This model is based on the fact that in the case of one single sound-soft scatterer (P = 1) whose size
is small compared to the wavelength, the time-harmonic scattered field v̂sc behaves like the field emitted
by a point source (see [15]). More precisely, one has

v̂sc(x, ω) ≈ σ(ω) v̂inc(y, ω) Ĝ(x, y, ω),
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where y ∈ Rd is the location of the scatterer and σ(ω) ∈ C is its reflectivity coefficient. For instance, in
a homogeneous medium (c ≡ 1), if the scatterer is circular (d = 2) or spherical (d = 3) with radius ε, we
have

σ(ω) =

{
−4i/H

(1)
0 (ωε) if d = 2,

4πε if d = 3.
(9)

For several obstacles (P > 1), the scattered field appears as a superposition of similar behaviours,

v̂sc(x, ω) ≈
P∑

p=1

σp(ω) v̂p(ω) Ĝ(x, yp, ω) (10)

where v̂p(ω) represents the exciting field on the p-th scatterer. Choosing v̂p(ω) = v̂inc(yp, ω) as for a single
scatterer amounts to neglecting the interactions between the scatterers. The Foldy–Lax model consists
in correcting the latter choice by adding the waves scattered by all the other obstacles, i.e.,

v̂p(ω) = v̂inc(yp, ω) +
∑

q 6=p

σq(ω) v̂q(ω) Ĝ(yp, yq, ω) for p = 1, . . . , P.

If we denote by V̂ω and V̂ inc
ω the vectors of CP with components v̂p(ω) and v̂inc(yp, ω) respectively, this

coupling between the exciting fields can be written equivalently as

(
I− Ĥω Σω

)
V̂ω = V̂ inc

ω , (11)

where Σω is the P × P diagonal matrix composed of the reflectivity coefficients, i.e., (Σω)pp := σp(ω),

and Ĥω is the P × P matrix defined by

(Ĥω)pq := Ĝ(yp, yq, ω) if q 6= p and (Ĥω)pp := 0.

The use of the Foldy–Lax model yields a simple expression for the time-harmonic scattering operator
(7). Indeed, applying (10) to x = xn for n = 1 to N yields

q̂out(ω) = Ĝ
⊤
ω Σω V̂ω, (12)

where Ĝω denotes the P ×N matrix defined by

(Ĝω)pn := Ĝ(xn, yp, ω),

and we recall that the superscript ⊤ indicates transposition. Moreover, noticing from (6) that the right-

hand side of (11) writes as V̂ inc
ω = Ĝω q̂in(ω), we have V̂ω = (I − Ĥω Σω)

−1 Ĝω q̂in(ω). Substituting this
expression in (12) yields finally

Ŝω = Ĝ
⊤
ω (Σ−1

ω − Ĥω)
−1

Ĝω. (13)

This product of three matrices can be interpreted as the succession of three steps in the scattering
process. First Ĝω represents the propagation of the incident wave from the transducers to the scatterers.
Then (Σ−1

ω − Ĥω)
−1 describes the reflection on the scatterers (note that this matrix reduces to Σω if

Ĥω is neglected, which amounts to neglecting the interaction between the scatterers). And finally Ĝ⊤
ω

corresponds to back-propagation from the scatterers to the transducers.

Remark 1. It is readily seen that the scattering operator is symmetric (but not hermitian) in the sense

that Ŝω = Ŝ⊤ω (but Ŝω 6= Ŝ∗ω where Ŝ∗ω is the adjoint matrix, i.e., the conjugate transpose matrix) since

both matrices Σω and Ĥω are symmetric. This can be seen as a consequence of the reciprocity principle.
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2.2 The DORT method

The DORT method [19, 21, 22] consists in a singular value decomposition (SVD) of the scattering operator

Ŝω:

Ŝω = V̂ω D̂ω Ŵ
∗
ω (14)

where D̂ω is a N ×N diagonal matrix with nonnegative real numbers on the diagonal, whereas V̂ω and

Ŵω are unitary N ×N matrices. The diagonal entries of D̂ω are known as the singular values of Ŝω and

the columns of V̂ω and Ŵω are called the left and right singular vectors, respectively.
A real number λ ≥ 0 is a singular value of Ŝω if and only if there exist unit vectors v̂ and ŵ in CN

such that

Ŝωŵ = λ v̂ and Ŝ
∗
ωv̂ = λ ŵ. (15)

Vectors v̂ and ŵ are respectively left and right singular vectors of Ŝω.

Remark 2. The SVD of Ŝω is not unique (actually D̂ω is unique but not V̂ω and Ŵω). This is obvious if
at least one eigenvalue is degenerate, that is, if the dimension of the associated space of right (respectively,
left) singular vectors is greater than one. On the other hand, for a simple (or non-degenerate) singular
value, the right and left singular vectors are unique up to a multiplication by a unit complex number.
Indeed it is readily seen that if a pair (v̂, ŵ) satisfies (15), then so does (eiφ v̂, eiφ ŵ) for all φ ∈ R.

Remark 3. The singular values of Ŝω are the square roots of the eigenvalues of the positive hermitian
matrix Ŝ∗ω Ŝω and the right singular vectors of Ŝω coincide with the eigenvectors of Ŝ∗ω Ŝω. The initial
presentation of the DORT method (see, e.g., [21, 22]) consisted in the diagonalization of the latter
matrix, called the time reversal operator because it was derived from an iterative TR process. The basic
loop of this process consists of the following steps: for given input signals q̂, the array of transducers first
emit an incident wave; the associated scattered wave in then measured, which yields Ŝω q̂; and finally
this measure is time-reversed, which amounts to a conjugation in the frequency domain (see (21)). The

time-reversed measure can then be used to re-emit a new incident wave. The time reversal operator T̂ω

describes two successive iterations of this loop, that is,

T̂ω q̂ := Ŝω Ŝω q̂ = Ŝω Ŝω q̂ so T̂ω = Ŝω Ŝω = Ŝ
∗
ω Ŝω,

where the last equality follows from the symmetry of Ŝω.

The main interest of the DORT method lies in the selective focusing properties related to the singular
vectors of Ŝω. In our context of point-like scatterers, it is well understood [12, 21, 22] that if the reference
medium is homogeneous and if the scatterers are distant enough from each other (they are often referred
to as ideally resolved in this case), then

1. the number of scatterers P is equal to the number of nonzero singular values of Ŝω (provided that

P ≤ N and that the rank of Ĝω is equal to P, which excludes some exceptional situations such as
scatterers located symmetrically with respect to the array);

2. when these singular values are simple, each right singular vector (column of Ŵω) associated with
each nonzero singular value generates a wave which focuses selectively on each scatterer.

Figures 1 to 3 illustrate these results by some numerical experiments in the two-dimensional case. We
first consider the case of a homogeneous medium (i.e., c ≡ 1) filling the whole plane R2. The part of the
plane represented on each figure is the square [0, 2] × [0, 2]. Our array is composed of 128 transducers
(N = 128) regularly distributed along the segment {0}× [0, 2] which corresponds to the left edge of each
figure. Two scatterers (P = 2), with respective diameters 2×10−3 and 10−3, are located at (1.2, 0.3) and
(1.7, 1.9) respectively. They are represented by white disks (not to scale). The time-harmonic scattering
operator has two non-zeros singular values in this case. For the circular frequency ω = 40, that is, a
wavelength λ = 2π/ω ≈ 0.16, Figure 1 shows the modulus of the incident field generated by the associated
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Figure 1: Modulus of the incident field generated by the right singular vectors of Ŝω associated with the
dominant (left) and second (right) singular values. Case of a homogeneous medium with ω = 40.

Figure 2: Same as Figure 1 in the case of a scattering medium with ω = 40.

Figure 3: Same as Figure 2 for ω = 90.
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singular vectors. We clearly see the spatial focusing effect: the field becomes maximal in an elliptical
area centered at each scatterer, generally called the focal spot. If ℓ denotes the length of the array (here
ℓ = 2) and d is the distance between the array and the considered scatterer, the transverse radius of
this area is given by λd/ℓ (Rayleigh resolution formula, see, e.g., [6]) provided that λ ≪ ℓ ≪ d. For
instance λd/ℓ ≈ 0, 1 for the biggest scatterer, which is consistent with the observed focal spot though the
assumption ℓ ≪ d is not fulfilled.

In Figures 2 and 3, we consider the case where a scattering medium is located between the array
and the scatterers. Here our scattering medium consists of 500 point-like scatterers with same diameter
2 × 10−4 (represented by black points) randomly displayed in the rectangle [0.3, 0.8] × [0, 2]. In this
situation, the Green’s function of the reference medium appears as a perturbation of the Green’s function
of the homogeneous medium:

Ĝ(x, y, ω) = Ĝhom(x, y, ω) + Ĝsc(x, y, ω)

where the perturbation Ĝsc(x, y, ω) can be computed by the Foldy–Lax model described in section 2.1,
which requires us to invert the 500× 500 matrix involved in equation (11). Figure 2 represents again the
modulus of the incident field generated by the singular vectors associated with the non-zero eigenvalues
of Ŝω for the same circular frequency ω = 40 as in Figure 1. We see that the presence of the scattering
medium has damaged considerably the spatial focusing effect. Focal spots are still observed, but their
intensity is reduced significantly, for the acoustic field seems to be trapped in the scattering medium.
Figure 3 shows that for the higher circular frequency ω = 90, spatial focusing is recovered.

The physical notions of ballistic and diffusive regimes (see, e.g., [8]) can help us to interpret these
numerical observations. We have to compare the thickness L of the scattering medium with the mean
free path which is given here by

Lfp :=
4ω

N |σ(ω)|2

where N is the number of scatterers per unit surface and σ(ω) is the reflectivity coefficient defined in
(9). The so-called ballistic regime corresponds to the case where L ≪ Lfp. In such a situation, when
a plane wave crosses the scattering medium, its direction of propagation is not much affected and the
perturbation of the plane wave essentially consists in the specular reflections on the scatterers. Higher
order successive reflections are negligible. On the other hand, when L ≫ Lfp, the latter may become
significant, which leads to resonant phenomena inside the scattering medium. In such a diffusive regime,
the structure of a wave crossing the medium is strongly perturbed. In the case of Figure 2 (ω = 40), we
have Lfp ≈ 0.28 whereas L = 0.5, which rather corresponds to the diffusive regime. In the case of Figure
3 (ω = 90), we have Lfp ≈ 0.47, which corresponds to an intermediate regime. In particular, resonances
are still observed in the scattering medium. By increasing the frequency further, we would enter the
ballistic regime and the focus quality would improve.

3 Space-time focusing

3.1 From frequency domain to time domain

A phase synchronization issue.

We arrive now at the main purpose of the paper, which is to take advantage of the selective focusing
properties of the DORT method in the frequency domain in order to construct a time-dependent wave
which focuses in space and time on one given scatterer chosen as a target. Suppose that for all frequency
ω in a given frequency band [ω1, ω2] (which depends on the specifications of the transducers), we know
a triplet (λ(ω), v̂(ω), ŵ(ω)) of singular elements of the scattering operator corresponding to our target:
λ(ω) > 0 is a singular value, which is assumed simple for simplicity, and the associated left and right
singular vectors v̂(ω) and ŵ(ω) are unit vectors of CN such that

Ŝωŵ(ω) = λ(ω) v̂(ω) and Ŝ
∗
ωv̂(ω) = λ(ω) ŵ(ω). (16)
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The fact that these singular elements correspond to our target means that the time-harmonic wave
generated by the right singular vector ŵ(ω) focuses spatially on this target. As this spatial focusing
occurs for all ω ∈ [ω1, ω2], it holds true for any frequency superposition of these waves. So if we consider
a pair (χ, φ) of real-valued functions defined on [ω1, ω2], the time-dependent input signal defined by

qφ(t) :=
1

π
Re

∫ ω2

ω1

χ(ω) eiφ(ω)
ŵ(ω) e−iωt dω (17)

generates a time-dependent wave which focuses in space on our target. But can we choose these functions
so that the above superposition of time-harmonic signals yields also time focusing? Instead of searching
for a pair (χ, φ), we assume here that χ is known and we restrict ourselves to the determination of the
phase function φ : [ω1, ω2] 7→ R (which justifies the fact that χ is not involved in the notation qφ above).

In other words, the issue we are faced with is to synchronize the singular vectors of Ŝω in order to achieve
space–time focusing (recall that eiφ(ω)

ŵ(ω) is a right singular vector of Ŝω whatever φ(ω), see remark 2).

Continuity assumptions in the frequency domain.

From a practical point of view, the signals qφ(t) we are interested in must have a finite duration of
emission. However this is incompatible with the expression (17) of qφ(t). Indeed, from (5), it is clear that
the Fourier transform q̂φ of qφ is given by

q̂φ(ω) =





χ(ω) eiφ(ω)
ŵ(ω) if ω ∈ [ω1, ω2],

0 if ω ∈ R+ \ [ω1, ω2],

q̂φ(−ω) if ω ∈ R−.

(18)

In particular q̂φ has a compact support in the frequency domain, so qφ cannot be compactly supported
in the time domain since it is an entire function of t. However qφ(t) may be close to 0 outside a bounded
interval provided that q̂φ(ω) is regular enough (recall that the Riemann–Lebesgue theorem tells us that
if tn qφ(t) ∈ L1(R), then q̂φ(ω) ∈ Cn(R)). In such a case, (17) can be considered as an approximation of
a compactly supported signal.

It is then natural to assume at least that q̂φ(ω) ∈ C0(R). This means on the one hand that χ and
φ both belong to C0([ω1, ω2]) and χ(ω1) = χ(ω2) = 0, on the other hand that ŵ(ω) depends also
continuously on ω ∈ [ω1, ω2]. This assumption is not restrictive. Indeed we can assume without loss of
generality that our family of singular elements is continuous in the sense that λ(ω), v̂(ω) and ŵ(ω) are
continuous functions of ω. One can always find such a family. This follows from classical arguments of
perturbation theory [14] using the fact that Ŝω is a continuous (even C∞) function of ω (which derives
from the regularity of the time-harmonic Green’s function Ĝ(·, ·, ω)).

A particular singular value decomposition.

The phase choice we propose is related to the symmetry of the scattering operator (see remark 1).
Indeed, this property implies that there exists a particular SVD, called the symmetric singular value
decomposition (SSVD) or Takagi’s factorization [13], which writes as

Ŝω = Ûω D̂ω Û
∗
ω (19)

where D̂ω is the diagonal matrix composed of the singular values and Ûω is unitary. This decomposition

is a particular version of (14) with Ŵω = V̂ω = Ûω, i.e., the right and left singular vectors are conju-
gate of each other. From a practical point of view, the way to obtain the SSVD from a given SVD is
straightforward, especially for simple singular values. Indeed, as Ŝω is symmetric, conjugating (16) yields

Ŝ
∗
ωŵ(ω) = λ(ω) v̂(ω) and Ŝωv̂(ω) = λ(ω) ŵ(ω).

This shows that if (v̂(ω), ŵ(ω)) is a pair of left and right singular vectors, then so is (ŵ(ω), v̂(ω)). For a
simple singular value λ(ω), we deduce from remark 2 that there exists θ(ω) ∈ R such that

(ŵ(ω), v̂(ω)) = eiθ(ω) (v̂(ω), ŵ(ω)).
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As a consequence,

Ŝωŵ(ω) = e−iθ(ω) λ(ω) ŵ(ω).

This relation tells us how to change the phase of our right singular vector in order to obtain a singular
vector of the SSVD (19). Indeed by setting

ŵs(ω) := eiθ(ω)/2
ŵ(ω),

we see that

Ŝω ŵs(ω) = λ(ω) ŵs(ω), (20)

which means that ŵs(ω) is a singular vector of the SSVD. Note that contrary to the singular vectors of
a SVD (see remark 2), ŵs(ω) is defined uniquely up to a multiplication by −1.

In the sequel our aim is to show that if we choose this particular singular vector ŵs(ω) instead of
an arbitrary one ŵ(ω) in the definition (17) of qφ(t), then the optimal choice for φ is either φ ≡ 0 or
φ ≡ π/2. We begin in the next section by proving that both phase functions lead to the minimum of a
function which describes a time reversal process. But do they yield an optimal focusing? A ideal way to
give a mathematical answer to this question would be to prove that these constant phase functions lead
to the minimum of a function which would quantify the focus quality. Unfortunately, we were not able
to find such a function. The only mathematical answer we can give is based on the connection between
these constant phase functions and the time reversal experiment mentioned in the introduction. It is the
subject of §3.3. We finally present in §3.4 some numerical results which confirm the space–time focusing
effect.

3.2 Optimality of a time reversal gap functional

Hereafter we denote by J the time reversal transformation with origin t = 0 : for every real-valued function
f = f(t), function Jf is simply given by Jf(t) := f(−t). Using the Fourier transform, it is readily seen
that FJf(ω) = Ff(ω), or equivalently

J = F−1
Ĵ F where Ĵf̂ := f̂ . (21)

This is nothing but the well-known fact that time reversal becomes complex conjugation in the frequency
domain.

Our idea of using the SSVD originates from a heuristic argument which can be explained as follows.
Suppose that the array emits several short pulse waves, respectively at times tj for j = 1, . . . , J, that
propagate along different paths leading to the aimed scatterer. Let Tj denote the travel time related to
the j-th path. After the interaction of these incident waves with the scatterer, suppose that the associated
scattered wave propagate back to the array along the same respective paths. Thus they will reach the
array respectively at times t′j := tj + 2Tj for j = 1, . . . , J. Obviously, the incident pulse waves will arrive
at the same time t∗ on the scatterer only if tj + Tj = t∗ for all j. In this case, the times of emission
and reception become symmetric with respect to t∗ in the sense that t′j − t∗ = t∗ − tj for all j. More
precisely, up to a scaling factor related to the reflectivity of the scatterer, the input and the output are
time-reversed with respect to the focus time t∗.

This very simple model prompted us to search for phase functions such that this time reversal property
could be nearly satisfied. This is the subject of Theorem 4 below which leads us to the SSVD in the case
where the aimed focus time is t∗ = 0. Actually the connection between this time reversal property and
the SSVD can be seen directly in the characterization (20) of the singular vectors of the SSVD, which

can be written Ŝω ŵs(ω) = λ(ω) Ĵ ŵs(ω). This relation means that when the input signal sent to the
transducers is ŵs(ω), then the measure of the scattered field is, up to a positive real factor λ(ω), the time
reversed input signal. As relation (20) holds for all frequencies ω ∈ [ω1, ω2], all time-harmonic signals
are time-reversed with respect to the same origin t = 0. To a certain extent, this means that working
with singular vectors of the SSVD amounts to synchronizing the time-harmonic emitted waves at time
t = 0. In the above comments, one can replace ŵs(ω) by i ŵs(ω). The only change is that the positive
real factors become negative. These are the two possible choices which yield a synchronization at t = 0.
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Theorem 4. Suppose that
{
(λ(ω), ŵs(ω)) ∈ R+ × CN ; ω ∈ [ω1, ω2]

}
is a continuous family of singular

elements of the SSVD of Ŝω. Let χ ∈ C0([ω1, ω2]) chosen such that χ(ω1) = χ(ω2) = 0. For all (µ, φ) ∈
R× C0([ω1, ω2]), define

G(µ, φ) := ‖(S− µ J)qφ‖2Rt;CN :=

∫

R

‖(S− µ J)qφ(t)‖2CN dt

where ‖ · ‖CN denotes the Euclidean norm in CN and

qφ(t) :=
1

π
Re

∫ ω2

ω1

χ(ω) eiφ(ω)
ŵs(ω) e

−iωt dω.

Then the minimum of G(µ, φ) is reached at (µ+, φ+) and (µ−, φ−) where

µ± := ±
∫ ω2

ω1

λ(ω)χ(ω)2 dω

(∫ ω2

ω1

χ(ω)2 dω

)−1

, φ+ ≡ 0 and φ− ≡ π

2
.

Proof. Thanks to (8) and (21), Parseval’s identity yields

G(µ, φ) = 1

2π
‖(Ŝ− µ Ĵ)q̂φ‖2Rω ;CN =

1

2π

(
aφ µ

2 − 2bφ µ+ cφ
)
, (22)

where q̂φ := Fqφ and

aφ := ‖q̂φ‖2Rω ;CN , bφ := Re(Ŝ q̂φ , Ĵq̂φ)Rω ;CN and cφ := ‖Ŝ q̂φ‖2Rω ;CN .

Note that the expression of aφ follows from the fact that Ĵ is an isometry. From (18) and (20), we deduce

aφ = 2

∫ ω2

ω1

χ(ω)2 dω,

bφ = 2

∫ ω2

ω1

λ(ω)χ(ω)2 cos(2φ(ω)) dω and

cφ = 2

∫ ω2

ω1

λ(ω)2 χ(ω)2 dω.

For a fixed φ, the minimum of the second-order polynomial in the right-hand side of (22) is reached at
µφ := bφ/aφ. Moreover

G(µφ, φ) =
1

2π

(
cφ −

b2φ
aφ

)
.

As aφ and cφ do not actually depend on φ, the minimum of this function is reached for the maximum of
b2φ, that is, when cos(2φ(ω)) = ±1. Hence φ(ω) = kπ/2 for some integer k. And of course it is sufficient
to consider both cases k = 0 and k = 1 since the other cases correspond to the same signals qφ(t) or their
opposites.

Function G(µ, φ) is a time reversal gap functional since it quantifies the gap between the measure
of the scattered field and the time-reversed input signal rescaled by a real factor. If λ(ω) was constant
in the whole frequency band [ω1, ω2], say λ(ω) = λc, we would have µ± = ±λc and G(µ±, φ±) = 0.
Hence qφ±

(t) would be an eigenvector of the operator J S associated with the eigenvalue ±λc. In this
case, the TR property satisfied in the frequency domain holds true in the time domain: the measure of
the time-dependent scattered field is, up to a real factor ±λc, the time-reversed input signal. Theorem 4
tells us that in the general case, the phase functions φ+ ≡ 0 and φ− ≡ π/2 bring us as close as possible
to this situation: qφ±

(t) is close to some kind of eigenvector of J S. But of course, this is not really an
eigenvector since the time reversal gap ε := G(µ±, φ±) does not vanish in general. It can be interpreted
by means of the notion of pseudospectra [23]: µ± belongs to the ε-pseudospectrum of J S and qφ±

(t) is a
corresponding ε-pseudoeigenvector.
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3.3 Space–time focusing: from active sources to passive scatterers

In the previous section, the link between Theorem 4 and space–time focusing is only based on a heuristic
argument. The purpose of this section is to reinforce this link by a mathematical argument: we show
that under certain conditions, the optimal signals of Theorem 4 yield the same space–time refocusing as
the time reversal experiment for active sources which is mentioned in the introduction.

Mathematical interpretation of the time reversal experiment.

Suppose that at some point y ∈ Rd, an active point-like source emits a short pulse defined by

v
(ℓ)
act(x, t) :=

1

π
Re

∫ ω2

ω1

χact(ω) (−iω)ℓ Ĝ(x, y, ω) e−iωt dω, (23)

where ℓ ∈ N and χact is a cutoff function chosen as in Theorem 4. This wave can be seen as a spectral

truncation of a time-derivative of the time-dependent Green’s function since v
(ℓ)
act(x, t) = (∂ℓ/∂tℓ)G(x, y, t)

if (ω1, ω2) = (0,+∞) and χact ≡ 1 (see (5)). Except in this latter situation, v
(ℓ)
act is not causal but it can

be considered as an approximation of a causal function for a large enough frequency band (ω1, ω2). The

measure of v
(ℓ)
act by the array is then given by

q
(ℓ)(t) =

1

π
Re

∫ ω2

ω1

χact(ω) (−iω)ℓ ĝ(ω) e−iωt dω where

ĝ(ω) := (Ĝ(x1, y, ω), . . . , Ĝ(xN , y, ω))⊤. (24)

The idea of the TR experiment consists in using the time-reversed measure

J q
(ℓ)(t) = q

(ℓ)(−t) =
1

π
Re

∫ ω2

ω1

χact(ω) (iω)
ℓ
ĝ(ω) e−iωt dω (25)

as input signals to emit a new wave

v
(ℓ)
back(x, t) :=

1

π
Re

∫ ω2

ω1

χact(ω) (iω)
ℓ

(
N∑

n=1

Ĝ(xn, y, ω) Ĝ(x, xn, ω)

)
e−iωt dω.

The fact that this wave propagates back to the original source can be understood easily in the case of a
full aperture spherical array located far enough from the inhomogeneities of the medium. Assume that
the family of points xn is distributed regularly on the surface SR := {z ∈ Rd; ‖z‖ = R}. Hence, in the
above formula, the sum can be interpreted as an approximation of an integral on SR, that is,

N∑

n=1

Ĝ(xn, y, ω) Ĝ(x, xn, ω) ≈ C

∫

SR

Ĝ(z, y, ω) Ĝ(x, z, ω) dS(z),

where C > 0 depends on N and the space dimension d. The asymptotic behaviour of the latter integral
for large R follows from the Helmholtz–Kirchhoff formula [11]:

∫

SR

Ĝ(z, y, ω) Ĝ(x, z, ω) dS(z)
R→+∞≈ Ĝ(x, y, ω)− Ĝ(x, y, ω)

2iω
for ‖x‖ ≪ R.

As a consequence,

v
(ℓ)
back(x, t) ≈

C

2π
Re

∫ ω2

ω1

χact(ω) (iω)
ℓ−1

(
Ĝ(x, y, ω)− Ĝ(x, y, ω)

)
e−iωt dω.

Going back to the expression (23) of v
(ℓ)
act, we conclude that

v
(ℓ)
back(x, t) ≈

C

2

(
(−1)ℓ−1v

(ℓ−1)
act (x, t)− v

(ℓ−1)
act (x,−t)

)
.
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In this expression, v
(ℓ−1)
act (x, t) approximates a time-derivative of the Green’s function, which is causal,

whereas the other term v
(ℓ−1)
act (x,−t) represents the time-reversed of this function and then appears as

an approximation of an anti-causal function. As a consequence,

v
(ℓ)
back(x, t) ≈





−C

2
v
(ℓ−1)
act (x,−t) if t < 0,

(−1)ℓ−1C

2
v
(ℓ−1)
act (x, t) if t > 0.

This means that for t < 0, v
(ℓ)
back behaves like a converging wave which propagates towards the initial

source y and refocuses at this point at time t = 0, whereas for t > 0, v
(ℓ)
back diverges from y. This gives us

a mathematical interpretation of the TR experiment.

Back to passive scatterers.

Let us now come back to our problem and suppose for simplicity that there is only one scatterer located
at y. In this case, the expression (13) of the time-harmonic scattering operator simplifies as

Ŝω = σ(ω) ĝ(ω) ĝ(ω)⊤,

where σ(ω) is the reflectivity coefficient of the scatterer (see (9)) and ĝ(ω) is defined in (24). This shows

in particular that the rank of Ŝω is 1. Moreover,

Ŝω ei arg(σ(ω))/2 ĝ(ω) = |σ(ω)| ‖ĝ(ω)‖2
CN

(
ei arg(σ(ω))/2

ĝ(ω)
)
,

which means that

λ(ω) := |σ(ω)| ‖ĝ(ω)‖2
CN and ŵs(ω) :=

e−i arg(σ(ω))/2
ĝ(ω)

‖ĝ(ω)‖CN

are singular elements of the SSVD of Ŝω. From (9), we infer that arg(σ(ω)) either vanishes (if d = 3) or is

small (if d = 2 : the asymptotic of H
(1)
0 for small arguments shows that arg(σ(ω)) = O((ln ε)−1)). Hence

ŵs(ω) ≈ ĝ(ω)/‖ĝ(ω)‖CN . Thus the respective behaviours of the optimal signals of Theorem 4 are given
by

qφ±
(t) ≈ 1

π
Re

∫ ω2

ω1

χ(ω) eiφ±
ĝ(ω)

‖ĝ(ω)‖CN

e−iωt dω,

where we recall that φ+ ≡ 0 and φ− ≡ π/2. Comparing the latter formula with (25), we see that if both
cutoff functions χ and χact satisfy

χ(ω) = χact(ω)ω
ℓ ‖ĝ(ω)‖CN ,

then, up to a change of sign, qφ+
(t) (respectively, qφ−

(t)) behaves like q
(ℓ)(−t) for even ℓ (respectively,

odd ℓ). We conclude that the wave emitted by an optimal signal of Theorem 4 is similar to the back-
propagating wave produced by the TR experiment when the initial wave is some spectral truncation of
a time-derivative of the Green’s function. In short, our method for passive scatterers yields some kind
of optimal space–time focusing. This is justified above for one single scatterer. Using similar arguments
as in [12], it is easy to see that this holds true for distant enough scatterers. The next section illustrates
these results and also shows that the focus quality decreases if the scatterers become close.

3.4 Numerical results

We finally present some numerical experiments which confirm the space–time focusing effect related to
the optimal signals of Theorem 4. We consider the same geometrical configuration as in section 2.2. We
use the family of singular vectors of the SSVD of Ŝω associated with the dominant eigenvalue (which
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Figure 4: In the case of a homogeneous medium, modulus of the field generated by the optimal signal
qφ+

(t) of Theorem 4 at times t = −2.0, −1.4, −1.0, −0.6, 0.0 and 0.4 (the field is rescaled so that its
modulus belongs to [0, 1]).

Figure 5: Same as Figure 4 in the case of a scattering medium.
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focus in space on the biggest scatterer, located at (1.2,0.3)). The cutoff function we have chosen is a
truncated Gaussian function given by

χ(ω) = 1[ω1,ω2](ω) exp

(
(ω − ω0)

2

2γ2

)

where [ω1, ω2] = [20, 100], ω0 = 60 and γ = 10. Note that strictly speaking, this function is not continuous
at ω1 and ω2 as assumed in Theorem 4. However the Gaussian function is very small at these points
(about 3× 10−4).

Figure 4 shows the evolution of the wave generated by the optimal signal qφ+
(t) of Theorem 4 in

the case of a homogeneous medium. The space–time focusing appears very clearly: the array seems to
emit an angular portion of a radial wave which propagates towards the target and concentrates near it
at time t = 0. In this situation, the structure of the signal is very simple: Figure 6 (left) shows that all
the transducers emit approximatively the same signal starting at different times which only depend on
the distances between the transducers and the target.

Figure 5 illustrates the influence of the same scattering medium as in section 2.2, i.e., 500 point-like
scatterers randomly displayed in the rectangle [0.3, 0.8] × [0, 2]. Again space–time focusing is confirmed.
The focal spot observed at time t = 0 is even slightly smaller than in the homogeneous case, which is
the well-known super-resolution effect of a scattering medium (see, e.g., [3, 5]). On the other hand, the
structure of the wave is strongly perturbed. Resonance phenomena are observed inside the scattering
medium, which slow down the propagation of the wave. In order to compensate these effects, a part of the
wave is emitted earlier so that the various components meet at the same time t = 0 near the target. This
is shown in Figure 6 (right) where we recognize a main front whose shape is similar to the homogeneous
case, but which is now preceded by an unstructured contribution.

The above comments remain valid if we use the optimal signal qφ−
(t) of Theorem 4 instead of qφ+

(t).
Actually the differences between both cases are not so easy to detect. Figure 7 shows a zoom on the focal
spots observed at t = 0 in the case of a homogeneous medium. We see that both focal spots are about
the same size. They seem to be shifted by a quarter wavelength, which is consistent with the fact that
in the frequency domain, both signals are in phase quadrature.

In order to quantify the focus quality, we propose an energy criterion which simply consists in com-
paring the acoustic energy concentrated in a given vicinity of the target with the total energy emitted by
the array of transducers. Let u = u(x, t) denote the wave emitted in the reference medium by the array
for some input signal q(t) (see (2)). For a given box B ⊂ Rd around our target, we define a focus quality
function by

QB(t) :=
EB(t)
Etot

where EB(t) :=
1

2

∫

B

(
∂u

∂t
(x, t)

)2

+ |∇u(x, t)|2 dx

represents the local acoustic energy contained in B at time t (see (27)) and Etot stands for the total
energy emitted by the array. As our array consists of point-like transducers, the fact that Etot is finite
is not obvious. As a matter of fact, we show in the appendix that during the emission, this energy is
infinite, but becomes finite as soon as the transducers become silent (provided that the input signals are
regular enough). A suitable expression of Etot is given in Proposition 5.

Figure 8 compares the focus quality functions computed for two signals: on the one hand, the optimal
signal qφ+

(t) of Theorem 4 and on the other hand, the signal (25) of the TR experiment with ℓ = 0
and χact = χ. On the left, we consider the same configuration as in Figure 4, that is, the case of the
homogeneous medium. We see that both curves coincide, which is consistent with the results of section
3.3. The maximum of QB(t) is reached at time t = 0 with 44% of the total energy concentrated in the
box represented in Figure 7. Note that in our model, the array emits the same wave on both sides, so
QB(t) cannot exceed 50%. The case of the scattering medium of Figure 5 is represented in the middle
part. Both curves nearly coincide, which confirms again the results of section 3.3, but here the maximum
of QB(t) is only 15%, which shows that a great part of the energy is ‘lost’ in the scattering medium.
Finally, in the right part, we consider again the scattering medium but the second obstacle is moved
closer to the target. Of course, QB(t) is unchanged for the signal of the TR experiment since it does not
depend on the second obstacle. On the other hand, the focus quality decreases for the optimal signal
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Figure 6: Representation of the optimal signal qφ+
(t) of Theorem 4 (rescaled in [−1,+1]) in the homo-

geneous medium (left) and in the presence of the scattering medium (right). The horizontal coordinate
is time and the vertical one is the transducer’s number.

Figure 7: In the case of a homogeneous medium, zoom in the box [1.0, 1.4]× [0.18, 0.42] of the focal spots
obtained at time t = 0 with the optimal signals qφ+

(t) (left) and qφ−
(t) (right) of Theorem 4.
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Figure 8: Representation of the focus quality function QB(t) for t ∈ [−2,+2] and the box B of Figure
7 in three configurations: the homogeneous medium of Figure 4 (left), the scattering medium of Figure
5 (middle) and the same scattering medium with the second scatterer moved at point (0.5, 1.6) (right).
For each case, the dashed line corresponds to the optimal signal qφ+

(t) of Theorem 4 and the solid line,
the signal (25) of the TR experiment with ℓ = 0 and χact = χ.
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qφ+
(t) (maximum at 12.5%). This is a well-known effect of the DORT method, which maximizes the

energy of the scattered wave and then leads to illuminate all obstacles when they are close to each other.

4 Conclusion

In the present paper, we have shown that the use of the symmetric singular value decomposition (SSVD)
of the time-harmonic scattering operator allows us to synchronize its singular vectors in the frequency
domain in order to achieve space–time focusing. We have developed several theoretical and numerical
arguments which support this assertion. In particular, we have seen that for distant enough scatterers,
the choice of the SSVD for unknown passive scatterers yields the same refocusing as time reversal for
an active source, which can be considered as an optimal refocusing. Nevertheless two criticisms can be
made.

On the one hand, from a practical point of view, the principle of DORT method is based on the
measure of the scattered wave. As mentioned in the introduction, this means that one has to measure
separately the incident and the perturbed waves (that is, in the absence and in the presence of the target)
and compute their difference. In many situations, it is impossible to make this double measure. However
when the medium is weakly inhomogeneous and when the array is located on one side of the medium
(open aperture case), only a tiny part of the incident wave propagates back to the array so that one can
consider that one measures directly the scattered field.

On the other hand, from a mathematical point of view, it is quite frustrating to be unable to relate the
use of the SSVD to a mathematical criterion which should evaluate the quality of space–time focusing.
The energy criterion proposed in section 3.4 seems very natural. But can we affirm that according to this
criterion or another focusing criterion, the best signals are those of Theorem 4? The question remains
open.

Appendix: Energy emitted by point sources

Let Ω be a domain of Rd, bounded or not, with boundary Γ and u = u(x, t) a causal solution to the
acoustic wave equation

∂2u

∂t2
−∆u = f in Ω× R,

for a given causal function f = f(x, t). By multiplying this equation by ∂u/∂t and integrating over Ω, we
deduce classically from Green’s formula the energy conservation law:

d

dt
EΩ(t) = PΩ(t) + FΓ(t), (26)

where EΩ(t) denotes the acoustic energy at time t, PΩ(t) is the power produced by the source f and FΓ(t)
is the incoming energy flux across Γ, which are defined respectively by

EΩ(t) :=
1

2

∫

Ω

(
∂u

∂t
(x, t)

)2

+ |∇u(x, t)|2 dx, (27)

PΩ(t) :=

∫

Ω

f(x, t)
∂u

∂t
(x, t) dx and (28)

FΓ(t) :=

∫

Γ

∂u

∂ν
(x, t)

∂u

∂t
(x, t) dγx, (29)

where ν is the unit normal on Γ pointing outside Ω. Formula (26) holds provided that u is regular enough
so that the definitions above make sense, for instance if f ∈ L2(Ω × R). The purpose of this appendix
is to deal with the case where f represents the excitation produced by point sources located at xn for
n = 1, . . . , N, i.e.,

f(x, t) =
N∑

n=1

qn(t) δ(x− xn),
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where functions qn are assumed causal. In this case, definitions (27)–(29) are not adapted. Indeed,
because of the singular behaviour of u near the sources, the integrals on Ω diverge, which means that
the usual acoustic energy is infinite for point sources. However we show below that this energy becomes
finite as soon as the sources become silent. Our aim is to exhibit an explicit expression of this energy.
Surprisingly, we did not succeed in finding one in the literature!

We consider only the cases of dimensions 2 and 3. Formula (2) provides us the field produced by
point sources. Thanks to the expression (1) of the Green’s function in a homogeneous medium, it can be
written more explicitly as

u =

N∑

n=1

un where (30)

un(x, t) :=





∫ max{t,|x−xn|}

|x−xn|

qn(t− τ)

2π
√
τ2 − |x− xn|2

dτ if d = 2,

qn(t− |x− xn|)
4π|x− xn|

if d = 3.

(31)

We see here that if qn is regular enough, then un has a similar regularity outside a vicinity of xn. Hence,
outside a collection of small balls Bn(ε) := {x ∈ Rd; |x − xn| ≤ ε}, energy conservation (26) holds. We
shall use an integrated version of this equation:

EΩ(ε)(t) =

∫ t

0

FΓ(ε)(s) ds, (32)

where Ω(ε) := Rd \ ∪n=1,NBn(ε) and Γ(ε) := ∂Ω(ε) = ∪n=1,N∂Bn(ε) (note that PΩ(ε)(t) = 0 since f
vanishes in Ω(ε)). The following proposition tells us that we can pass to the limit ε → 0 in this equation
when the sources become silent.

Proposition 5. Suppose that all functions qn belong to C2(R) and have a compact support contained in

[0, T ] for some T > 0. Then for all t > T, the limit limε→0 EΩ(ε)(t) exists and is independent of t. It is
given by

Etot =

N∑

n=1

N∑

m=1

Enm where

Enn :=





∫ T

0

∫ T

τ

q′n(s− τ) qn(s) ds
dτ

2π τ
if d = 2,

∫ T

0

q′n(s)
2

4π
ds if d = 3,

Enm :=

∫ T

0

qn(s)
∂um

∂t
(xn, s) ds for n 6= m.

Remark 6. Using Parseval’s identity, these expressions are easily converted to the frequency domain.
We obtain

Enn :=





−1

2π

∫ T

0

1

τ

d

dτ

(
F−1

(
|q̂n|2

))
(τ) dτ if d = 2,

1

4π2

∫ +∞

0

|ωq̂n(ω)|2 dω if d = 3,

Enm := − 1

π
Re

∫ +∞

0

iωĜ(xm, xn, ω) q̂m(ω) q̂n(ω) dω for n 6= m.

In the above formulas, Enn represents the energy produced by the source located at xn if it was alone,
whereas the other terms Enm for n 6= m stand for the interactions between the sources. In order to prove
Proposition 5, we need to know the behaviour of un near xn, which is summarized in the following lemma.
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Lemma 7. Suppose that qn ∈ C2(R) is causal. Then un ∈ C2((Rd \Bn(ε))×R) for all ε > 0. Moreover,

when ε tends to 0, the following asymptotic expansions hold uniformly for x ∈ ∂Bn(ε) and t ∈ [0, T ] for
any given T > 0 :

∂un

∂t
(x, t) =





1

2π

(∫ max{t,ε}

ε

q′n(t−τ)

τ2

√
τ2−ε2 dτ + q′n(t)

)
+O(ε) if d = 2,

q′n(t)

4πε
− q′′n(t)

4π
+ o(1) if d = 3,

∂un

∂ν
(x, t) =





qn(t)

2πε
+O(1) if d = 2,

qn(t)

4πε2
+O(1) if d = 3.

Moreover, if d = 2, the integral involved in the expression of ∂un/∂t is O(| log ε|).
Proof. The case d = 3 is easy. From (31), we see that un ∈ C2((R3 \Bn(ε))×R) and for x ∈ ∂Bn(ε), we
have

∂un

∂t
(x, t) =

q′n(t− ε)

4πε
and

∂un

∂ν
(x, t) =

q′n(t− ε)

4πε
+

qn(t− ε)

4πε2
.

Using a Taylor expansion of qn(t− ε) and q′n(t− ε), the conclusion follows.
The case d = 2 is more intricate. The C2-regularity of un is easily deduced from its expression (31),

which shows in addition that for x ∈ ∂Bn(ε),

∂un

∂t
(x, t) =

1

2π

∫ tε

ε

q′n(t− τ)

ρε(τ)
dτ

where ρε(τ) :=
√
τ2 − ε2 and tε := max{t, ε}. Noticing that ρ′ε(τ) = τ/ρε(τ) and integrating by part, we

deduce that

∂un

∂t
(x, t) =

1

2π

∫ tε

ε

(
q′n(t− τ)

τ2
+

q′′n(t− τ)

τ

)
ρε(τ) dτ. (33)

The first term in the integral yields the dominant contribution, which is O(| log ε|) because
∣∣∣∣
∫ tε

ε

q′n(t− τ)

τ2
ρε(τ) dτ

∣∣∣∣ ≤ sup
τ∈[0,t]

|q′n(τ)|
∫ tε

ε

dτ

τ
,

since ρε(τ) ≤ τ for all τ ≥ ε. To evaluate the second one, rewrite it as

∫ tε

ε

q′′n(t− τ)

τ
ρε(τ) dτ =

∫ tε

ε

q′′n(t− τ) dτ +

∫ tε

ε

q′′n(t− τ)

(
ρε(τ)

τ
− 1

)
dτ.

The first integral of the right-hand side is equal to q′n(t − ε) = q′n(t) + O(ε) whereas the second one is
O(ε) since |ρε(τ)/τ − 1| ≤ ε2/τ2. This gives the asymptotic behaviour of ∂un/∂t.

We proceed similarly for ∂un/∂ν starting from an expression of un(x, t) similar to (33) (with q′n and
q′′n replaced by qn and q′n, respectively). Taking the normal derivative and using again an integration by
parts, it is easily seen that

∂un

∂ν
(x, t) =

ε

2π

∫ tε

ε

(
3 qn(t− τ)

τ4
+

3 q′n(t− τ)

τ3
+

q′′n(t− τ)

τ2

)
ρε(τ) dτ.

By the same argument as above, the last term in the integral yields a contribution O(ε| log ε|) whereas
the second one is O(1). The dominant contribution is given by the first term. Indeed we have

∫ tε

ε

3qn(t−τ)

τ4
ρε(τ) dτ = qn(t)

∫ tε

ε

3ρε(τ)

τ4
dτ+

∫ tε

ε

3(qn(t−τ)−qn(t))

τ4
ρε(τ) dτ,
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where the last integral is O(ε−1) (since |qn(t− τ)− qn(t)| ≤ C τ for some C > 0) and

∫ tε

ε

3 ρε(τ)

τ4
dτ =

∫ tε

ε

d

dt

(
ρε(τ)

3

ε2τ3

)
dτ =

1

ε2
+O(1).

This completes the proof.

Proof of Proposition 5. From (30) and the definition (29) of the energy flux, the energy conservation law
(32) writes as

EΩ(ε)(t) =

N∑

n,m,p=1

Ep
nm(t, ε) where

Ep
nm(t, ε) :=

∫ t

0

∫

∂Bp(ε)

∂un

∂ν
(x, s)

∂um

∂t
(x, s) dγx ds.

Lemma 7 shows that if p 6= n and p 6= m, then Ep
nm(t, ε) = O(εd−1). Moreover if n 6= m, then Em

nm(t, ε) =
O(ε) if d = 3 (respectively, Em

nm(t, ε) = O(ε| log ε|) if d = 2) whereas

En
nm(t, ε) =

∫ t

0

qn(s)
∂um

∂t
(xn, s) ds+O(ε).

Finally, if n = m, in the three-dimensional case, we have

En
nn(t, ε) =

∫ t

0

(
qn(s) q

′
n(s)

4πε
− qn(s) q

′′
n(s)

4π
+ o(1)

)
ds

=
qn(t)

2

8πε
+

∫ t

0

q′n(s)
2

4π
ds− qn(t) q

′
n(t)

4π
+ o(1).

Thus we see that for all time t such that qn(t) 6= 0, this quantity diverges as O(ε−1) when ε tends to 0.
On the other hand, when qn(t) = 0, it has a finite limit given by the second term.

Similarly, in the two-dimensional case, Lemma 7 shows that

En
nn(t, ε) =

∫ t

ε

∫ s

ε

q′n(s−τ) qn(s)

2π τ2
ρε(τ) dτ ds+

∫ t

0

q′n(s) qn(s)

2π
ds+O(ε| log ε|).

The second integral of the right-hand side is equal to qn(t)
2/(4π). The first one can be rewritten as

∫ t

ε

(∫ t

τ

(q′n(s− τ)− q′n(s)) qn(s) ds+
qn(t)

2 − qn(τ)
2

2

)
ρε(τ)

2π τ2
dτ.

Hence this quantity diverges as O(| log ε|) if qn(t) 6= 0, since

∫ t

ε

ρε(τ)

τ2
dτ =

∫ t

ε

d

dt

(
−ρε(τ)

τ
+ log(ρε(τ) + τ)

)
dτ = − log ε+O(1).

On the other hand, when qn(t) = 0, Lebesgue’s dominated convergence theorem shows that it tends to

∫ t

0

(∫ t

τ

(q′n(s− τ)− q′n(s)) qn(s) ds−
qn(τ)

2

2

)
dτ

2π τ
,

which can be rewritten in the simpler form shown in the proposition.
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