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Abstract

Avian influenza viruses (AlVs) are of great concern worldwide due to their economic impact
and the threat they represent to human health. As wild birds are the natural reservoirs of AlVs,
understanding AIV dynamics in different avian taxa is essential for deciphering the
epidemiological links between wildlife, poultry and humans. To date, only the Anatidae
(ducks, geese and swans) have been widely studied. Here, we aim to shed light on the current
state of knowledge on AlVs in Laridae (gulls, terns and kittiwakes) versus that in Anatidae by
setting forth four fundamental questions: how, when, where and to which host species are
AlVs transmitted? First, we describe ecological differences between Laridae and Anatidae
and discuss how they may explain observed contrasts in preferential transmission routes
and the evolution of specific AIV subtypes. Second, we highlight the dissimilarities in the
temporal patterns of AlV shedding between Laridae and Anatidae and address the role that
immunity likely plays in shaping these patterns. Third, we underscore that Laridae may be key
in promoting intercontinental exchanges of AlVs. Finally, we emphasize the crucial epidemio-
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logical position that Laridae occupy between wildlife, domestic birds and humans.

Introduction

Over the last decades, human activities, including animal
rearing practices, land use changes, and commercial transport,
have given pathogens more opportunities to infect new hosts
(Harvell et al., 1999; Lebarbenchon et al., 2008, 2010a; Patz
et al., 2004). Such opportunities have led to the emergence
of numerous infectious diseases in domestic animals and
humans, most of which were originally circulating in wildlife
(Daszak et al., 2000; Gortazar et al., 2007). As an example, at
the beginning of the century, SARS (Heymann et al., 2004;
Peiris et al., 2004; Wang & Eaton, 2007) and Ebola (Leroy
et al., 2005; Pourrut et al., 2005) viruses, whose natural hosts
are fruit bats, caused disease outbreaks in humans in Asia and
Africa. These emergences were eventually linked to anthropo-
genic activities, in particular the consumption and trade
of bushmeat (Wolfe et al., 2005). This example illustrates
that understanding pathogen dynamics in natural reservoirs is
a critical part of protecting the health of humans and domestic
animals.
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Avian influenza viruses (AIVs) provide another good
example of pathogens that have emerged from wildlife that
are of great concern worldwide due to their economic impacts
and the threat they represent to human and animal health
(Chen et al., 2005; de Wit & Fouchier, 2008; Ferguson et al.,
2005; Li et al., 2004). They are classified into different
subtypes of the form HxNy based on their combination of two
surface proteins, hemagglutinin (H1-17) and neuraminidase
(N1-10), which are important targets for the immune system
(Earn et al., 2002; Olsen et al., 2006; Tong et al., 2012;
Webster et al.,, 1992; Zhu et al., 2012). Low pathogenic
avian influenza viruses (LPAIVs) naturally circulate in wild
birds, in which they generally elicit few or no symptoms.
Nevertheless, LPAIV infection may be exacerbated by other
infections or environmental conditions and has been shown to
sometimes result in delayed migration or weight loss
(Latorre-Margalef et al., 2009; van Gils et al., 2007), although
these effects may not occur consistently (Arsnoe et al., 2011;
Flint et al., 2009). Furthermore, LPAIVs circulating in poultry
can evolve into highly pathogenic avian influenza viruses
(HPAIVs). One example is HSN1 HPAIV strains, which cause
high mortality rates in poultry (Ito et al., 2001; Lebarbenchon
et al., 2010a). To date, only HS and H7 subtypes are known
to be able to evolve from low to high pathogenicity
(Alexander 2000; Banks et al., 2001; Fouchier et al., 2007).
However, the diverse pool of LPAIVs circulating in wild
waterbirds has been and remains a source of AIVs that can
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potentially evolve into virulent strains specific to domestic
species and humans.

Phylogenetic analyses suggest that influenza viruses
evolved from an aquatic bird reservoir into host-specific
lineages (Horimoto & Kawaoka, 2001). Most combinations of
the two surface proteins have been found in Anseriformes and
Charadriiformes, which are the natural reservoirs of LPAIVs
(Earn et al., 2002; Hurst, 2011; Olsen et al., 2006; Webster
et al., 1992), except for HI17N10, which was recently
discovered in bats (Tong et al., 2012; Zhu et al., 2012).
Among Anseriformes, Anatidae (ducks, geese and swans)
represent the vast majority of species (172 out of 176), and the
taxon includes the main host species for AIVs worldwide: the
mallard (Anas platyrhynchos). Among Charadriiformes,
waders (Charadriidae and Scolopacidae) are distinguished
from gulls and terns (Laridae) (IOC, 2012). For various
reasons, including the ease with which hunted species can be
sampled as well as high contact rates between wild ducks and
poultry (Stallknecht & Shane, 1988), most epidemiological
studies have focused on AIV circulation in Anatidae; much
less attention has been given to Laridae (Figure 1). This
difference in the number of studies examining Anatidae and
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Figure 1. Number of studies that have focused on AIVs in Anatidae
versus Laridae from 1899 to July 3, 2013. Research led on Web of
Science using respectively the terms: ‘‘Influenza AND gull OR tern OR
kittiwake’” and ‘‘Influenza AND duck OR geese OR swan’’.

Table 1. Variability in the ecology of Laridae species.
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Laridae may also partly be due to the fact that, historically,
only a single epizootic in domestic birds has been associated
with a gull-specific AIV subtype (i.e. H13; Sivanandan et al.,
1991). However, in order to anticipate and respond to the
emergence of new viruses, it is essential to thoroughly
investigate virus circulation in wild reservoirs without neg-
lecting any key species (Haydon et al., 2002). Thus, Laridae
should not be overlooked when studying AIV reservoirs,
especially because they can be infected by a large diversity
of AIV subtypes, including HS, H7 and H9 (Table 2), which
are virus subtypes that have the potential to become highly
pathogenic in poultry or that can be zoonotic.

In this review, we will focus on Charadriiformes and most
particularly on the Laridae family, which comprises 102
species. We propose that Laridae likely play a major role in
avian influenza virus epidemiological dynamics because:
(i) AIVs have been detected in Laridae worldwide, whereas
AlV incidence in waders varies dramatically across sampling
locations (Hanson et al., 2008; Hurt et al., 2006; Munster
et al., 2007; Munster & Fouchier, 2009; Stallknecht & Brown,
2007; Winker et al., 2008); (ii) most of the AIV strains that
result from a reassortment between American and Eurasian
strains have been detected in Laridae, which suggests the
taxon plays a potential role in AIV genetic exchanges (e.g.
Lebarbenchon et al., 2009; Van Borm et al., 2012; Wille et al.,
2011); (iii) the Laridae family includes several opportunistic
species that live in close contact with humans following
their recent colonization of urban habitats and that have
experienced a subsequent demographic explosion (Duhem
et al., 2008; Lisnizer et al., 2011; Raven & Coulson, 1997),
both of which are factors that could enhance potential public
health risks.

Laridae species are extremely ecologically diverse
(Table 1). Some species found to carry AIVs, such as the
Artic tern (Sterna paradisaea), are present on every continent
and ocean (Del Hoyo, 1996; 10C, 2012). They can also be
long distance migrants, commonly occurring in freshwater
habitats that are favorable to AIV persistence (Brown et al.,
2009), and come in contact with humans and domestic
animals, which highlights the potential importance of this
group for veterinary and public health issues. The aim of this
review is to shed light on current knowledge on AIVs in

Life history traits

Implications

Population size

Habitat

Migration and Movements

Nature of contacts with
humans or domestic
animal species

Abundant (e.g. herring gull;
Larus argentatus)

Live in marine environ-
ments (e.g. black-legged
kittiwake; Rissa
tridactyla),

Intercontinental migration
(e.g. Arctic tern; Sterna
paradisaea)

Direct contacts (e.g. kelp
gull; Larus
dominicanus).

Live in both marine and
freshwater habitats
(e.g. yellow-legged gull;
Larus michahellis)
Local dispersive migration
(e.g. black-tailed gull;
Larus crassirostris)

Habitat sharing (e.g.
herring gull; Larus
argentatus)

Rare (e.g. lava gull;
Leucophaeus
fuliginosus)

Prefer freshwater habitats
(e.g. ring-billed gull;
Larus delawarensis)

Sedentary (e.g. black-
bellied tern; Sterna
acuticauda)

Very limited contact
(e.g. common tern;
Sterna hirundo).

AIV transmission more or
less important

Differential AIV transmis-
sion through abiotic
reservoirs

AIV transmission over
longer or shorter dis-
tances and/or mostly
(or not) during the
breeding season

Interface between AIVs
circulating in humans,
domestic animals, and
wildlife
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Laridae and identify efficient ways to clarify the taxon’s
present and future role in AIV epidemiological dynamics. We
summarize available data on AIVs in Laridae and discuss the
information in the context of the state of knowledge on AIVs
in Anatidae, a system that is much better characterized.
We set forth four fundamental questions: how, when, where,
and to which host species are AIVs transmitted?

How are AlVs transmitted? A two-sided story

Transmission routes are determinant in a pathogen’s evolu-
tionary history (Huyse et al., 2005). The acquisition of new
transmission pathways, including the incorporation of a new
intermediary host or a novel vector, can allow a parasite to
infect new hosts and lead to speciation (Huyse et al., 2005).
Thus, transmission shapes pathogen diversification even
among closely related infectious agents (e.g. Pérez-Tris
et al., 2007). Our review of the literature suggests that the
host specificity of the different LPAIVs, such as the HI3
and H16 subtypes that are almost exclusively maintained in
gull populations (Fouchier et al., 2005; Hinshaw et al., 1983;
Kawaoka et al., 1988; Olsen et al., 2006; Wille et al., 2011;
Yamnikova et al., 2003), may partly be a consequence of
preferential transmission routes.

Transmission of LPAIVs in wild waterfowl is mainly fecal-
oral; individuals are infected when they ingest water
contaminated by infectious feces (Webster et al., 1992).
However, airborne transmission also occurs (Costa et al.,
2011). Currently available data suggest that LPAIV replica-
tion sites and shedding patterns differ between Laridae and
Anatidae, which may subsequently impact the likelihood of
transmission between these bird families. Indeed, in the
mallard, which is the most common host species of the
Anatidae family, LPAIV replication predominantly occurs
in the intestinal tract, and high concentrations of infectious
virus are shed in feces, even if oropharyngeal excretion is
also observed (Costa et al., 2011; Ellstrom et al., 2008;
Fereidouni et al., 2010; Jourdain et al., 2010; Kleijn et al.,
2010; Webster et al., 1978). In contrast, although LPAIVs
in black-headed gulls (Chroicocephalus ridibundus) seem
to demonstrate fecal-oral transmission that is characterized
by minimal pathogenicity (Hofle et al., 2012), some studies
performed on laughing gulls (Leucophaeus atricilla),
Franklin’s gulls (Leucophaeus pipixcan) and ring-billed
gulls (Larus delawarensis) suggest that LPAIVs are primarily
or equally shed via the oropharynx (Bahl & Pomeroy, 1977,
Brown et al., 2012; Costa et al., 2011).

Differences in receptor structure and location potentially
underlie these differences in transmission patterns. Indeed,
in order to enter host cells and then replicate, LPAIVs need
to attach to receptors displayed at the surface of target cells.
Most receptors are glycans terminating in sialic acids (SAs)
(Nicholls et al., 2008; Suzuki, 2005). Two main types of SA
receptors can be distinguished based on the linkage (22,3 or
02,6) between the terminal SA and the glycan chain.
According to the results of histochemistry studies using
vegetal lectins, both types of receptors are present in Anatidae
and humans, but their proportions and locations differ across
species. In humans, o2,6-linked SAs are predominantly found
in the upper respiratory tract, whereas 02,3-linked SAs are
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more numerous in the lower respiratory tract (Shinya et al.,
2006). In the human intestinal tract, «2,6-linked SAs are
found in the endothelium and o2,3-linked SAs are present
in neurons and endothelial cells but not on epithelial
cells (Yao et al., 2008). In mallards and Pekin ducks
(A. platyrhynchos domesticus), lectin studies suggest that
both types of receptors are present in the upper respiratory
and intestinal epithelia but that «2,3-linked SAs predominate
(Ellstrom et al., 2009; Franca et al., 2013; Kuchipudi et al.,
2009; Pillai & Lee, 2010). Conversely, o2,6-linked SA
receptors were found to be strongly expressed in the ciliated
epithelium of the upper respiratory tract of various gull
species (Ellstrdom et al.,, 2009), whereas o2,3-linked SAs
were predominantly detected in the digestive tract (Franca
et al., 2013; Lindskog et al., 2013).

Further research is needed to confirm if these differences
in receptor type and occurrence are systematically observed
in all Laridae species and if they are predictive of species
susceptibility to AIV subtypes. These differences might
reflect the important ecological differences that exist between
Anatidae and Laridae. Indeed, as Anatidae and Laridae often
share wetlands, they could both theoretically become infected
through direct contact or contaminated freshwater (Del Hoyo,
1996). However, the Laridae dietary regime is distinct
from that of Anatidae. Anatidae are generally herbivorous
or granivorous freshwater foragers. Laridae, in contrast, tend
to be generalists in marine ecosystems, often consuming
invertebrates and fishs, and some opportunistic species may
even eat sick or dead birds, thus favoring the direct
transmission of AIVs (Brown et al., 2008). Second, Laridae
breed in high-density colonies in which contact rates may
be high, which could facilitate direct airborne transmission of
viruses (Loehle et al., 1995). Third, orofecal transmission
may be infrequent in the coastal habitats in which gulls and
terns most frequently forage because of salinity’s adverse
effects on LPAIV persistence (Brown et al., 2009; Stallknecht
et al., 1990).

As a consequence of these ecological differences, an
alternative AIV transmission route may be evolutionarily
maintained in Laridae. The maintenance of different prefer-
ential transmission routes could explain the evolution of
different subtypes in the two taxonomic groups. Indeed, H13
and H16 AIV subtypes are almost exclusively maintained in
gull populations (Fouchier et al., 2005; Hinshaw et al., 1983;
Kawaoka et al., 1988; Olsen et al., 2006; Yamnikova et al.,
2003) and account for only a small proportion of the AIVs
found in other avian taxa, including Anatidae (Kang et al.,
2012; Munster et al., 2007; Sivanandan et al., 1991). H13 and
HI16 viruses also have gene segments that are genetically
distinct from those of other AIVs that circulate in different
wild bird hosts (Tgnnessen et al., 2013a; Wille et al., 2011).
This finding suggests that these subtypes diverged from other
LPAIVs relatively recently (Webster et al., 1992; Wille et al.,
2011), although enough time has passed to allow genetic
differentiation (Munster & Fouchier, 2009).

Even if available data are consistent with this hypothetical
scenario, further investigations are clearly needed. Whenever
possible, both cloacal and oropharyngeal swabs should be
collected during field studies, which would provide informa-
tion about the respective importance of these transmission
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routes in Laridae and Anatidae. Further experimental studies
are also required to directly investigate AIV transmission in
wild birds. In particular, future research should be guided
by already published work on influenza virus transmission in
mammals in controlled laboratory conditions (e.g. Lowen
et al., 2007). Studies should investigate the airborne, water-
borne, and contact transmission dynamics of the strains
associated with both Anatidae (e.g. H4 or H7) and Laridae
(H13 or H16).

When? Seasonal patterns and infection peaks

The temporal dynamics of infections are strongly influenced
by host immunity. Infection peaks tend to occur when a large
proportion of the host population is susceptible to a given
infectious agent, while lower incidences are observed when
the population is less vulnerable, perhaps due in part to more
efficient host immune responses (Keeling & Rohani, 2008).
Immune responses are, in turn, shaped by host—pathogen
coevolution; they partly depend on the life history traits of the
host species, including host longevity (Lee, 2006). As Laridae
differ from Anatidae in their life-history traits, their immune
responses, and thus their temporal AIV infection dynamics,
may also differ.

In Anatidae, AIV dynamics follow a clear seasonal pattern.
Infection peaks are observed in the late summer or early fall in
both North America and Europe (Lebarbenchon et al., 2010b;
Wallensten et al., 2007; Webster et al., 1992). These peaks are
thought to be primarily linked to the presence of large
numbers of juveniles, which gather during and after their
migration to wintering grounds and are immunologically
naive (Olsen et al., 2006; Stallknecht & Shane, 1988). These
infection peaks in Anatidae could also be predicted to occur
in Laridae. However, current data do not support the
existence of a similar temporal infection pattern. In fact,
Laridae infection patterns vary tremendously. For example,
in Delaware Bay (North America), where a large AIV
surveillance program is in place (877 Laridae sampled),
most positive samples have been collected during the
breeding period in May (Hanson et al., 2008). In the
Caucasus region, which lies at the border between Europe
and Asia, AIV prevalence peaked in the spring in black-
headed gulls and during the autumn migration in Armenian
gulls, Caspian gulls and yellow-legged gulls (Lewis et al.,
2013). In Northern Europe, virus prevalence in the 2602
Laridae sampled was highest from June to August, and AIVs
were not detected at all in many colonies during the breeding
season (Munster et al., 2007). Furthermore, punctual infection
peaks are seen in gull chicks but not in ducklings, for which
no data exist concerning natural LPAIV infection (Fouchier
et al., 2005; Velarde et al., 2010). This lack of data may be
due to the fact that gull chicks are nidicolous and thus easier
to sample than ducklings, which are nidifugous. Virus
prevalences reported for Laridae (all age groups considered)
are generally lower than those reported for Anatidae. Olsen
et al. (2006) reported a mean AIV prevalence level of 1.4% in
gulls (n=14505) and 9.5% in ducks (n=34503). Because
prevalence levels in Laridae are low, sample sizes need to be
very large to detect seasonal patterns, which could explain
why similar infection peaks have yet to be detected in this
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group. The temporal infection pattern may also depend on the
species, the virus subtype or the environment studied.

The difference in average lifespan between the two bird
families may also partly explain the observed differences in
temporal infection patterns because a longer lifespan means a
greater chance to acquire immunity. Laridae are generally
long-lived birds, while the lifespan of Anatidae is usually
short. This difference is even greater for species that are
hunted, such as the mallard (Stallknecht & Brown, 2007).
For example, the mean annual survival likelihood of adult
mallards in North America and Europe is about 50%
(Schekkerman & Slaterus, 2008), while it usually reaches
90% for adult gulls (Altwegg et al., 2007; Breton et al. 2008;
Oro et al., 2004). This difference in lifespan may have a 2-fold
influence on immunity acquisition and AIV epidemiological
dynamics. First, a long lifespan favors the development of
acquired immune responses, and the protection afforded by
these responses should last longer than that in short-lived
birds (Lee, 2006). Second, the acquired immune response
in adults may be carried through to the next generation by the
maternal transfer of antibodies to chicks through egg yolks
(Boulinier & Staszewski, 2008; Gasparini et al., 2001). Thus,
the low AIV prevalence observed in Laridae could be due
to stronger and/or longer lasting immune responses, which
are linked to longer lifespans. Furthermore, only two AIV
subtypes (H13/H16) predominate in Laridae, potentially
reducing the diversity of antibodies birds need, while subtypes
are much more diverse in Anatidae (e.g. Munster et al., 2007).
Indeed, AIV antibodies seem to be subtype specific in birds
even if cross-immunity exists between related (Fereidouni
et al., 2010; Latorre-Margalef, 2013) and non-related sub-
types (Jourdain et al., 2010; Pepin et al., 2012).

Although few data on immunity in Laridae are available,
they thus far support the idea that antibodies persist longer in
Laridae than in Anatidae. Furthermore, in Laridae popula-
tions, AIV seroprevalence is high and the incidence of
infection is low (De Marco et al., 2005; Maxted et al., 2012;
Velarde et al., 2010). In pink-footed geese (Anatidae: Anser
brachyrhynchus), LPAIV-specific antibodies persisted 343
days on average (Hoye et al., 2011), and when mallards
were experimentally infected with different LPAIV strains,
the strong immune response that was detectable after viral
inoculation lasted less than a year in 7 of the 8 ducks
studied (Fereidouni et al., 2010; Tolf et al., 2013). While the
persistence of influenza-specific antibodies in Laridae has yet
to be assessed, data on other pathogens suggest protection is
longer lasting, although it is, of course, difficult to compare
the persistence of antibodies provoked by different infectious
agents. In a wild population of naturally infected black-legged
kittiwakes (Laridae: Rissa tridactyla), antibody levels against
Borrelia burgdorferi persisted interannually (Staszewski
et al., 2007b). Additionally, in a vaccination study involving
Newcastle disease virus (a pathogen not naturally encountered
in the study population), 13 black-legged kittiwakes still
had high levels of NDV-specific antibodies one year post-
vaccination (Staszewski et al., 2007a). Since a model
examining another long-lived seabird (the Amsterdam alba-
tross, Diomedea amsterdamensis) has shown that maternal
antibodies could strongly influence pathogen circulation
dynamics (Garnier et al., 2012), we speculate that maternal
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antibody transfer may also influence AIV infection dynamics
in Laridae populations. This hypothesis is supported by the
fact that AIV-specific antibodies were detected in a large
proportion of eggs sampled in yellow-legged gull colonies
in France (Larus michahellis, Pearce-Duvet et al., 2009) and
in Tunisia (Hammouda et al., 2011).

Knowledge on AIV immune responses in wild birds
remains scarce (Tolf et al., 2013), and we are still a long
way from fully understanding the mechanisms underlying
AIV epidemiological dynamics. Experimental infection
studies are needed to clarify AIV-specific immune responses
at the individual scale. For instance, an appropriate study
design, which would include rearing Laridae chicks in the lab,
could reveal the duration of protection afforded to chicks
by maternal antibodies. Because chick density in colonies is
high, maternal antibody transfer could have an essential
role in AIV temporal dynamics, particularly if transmission in
Laridae is mostly airborne. Long-term experimental infection
studies in Laridae and Anatidae species would allow us to
assess the duration and variability of antibody persistence
following single or successive LPAIV infections. Studies
designed to investigate the annual epidemiological cycle of
avian influenza in host populations should be implemented;
they should include both virological and serological sampling
to shed light on the temporal dynamics of both infection and
immunity (Tgnnessen et al., 2011).

Where? Migratory movements

The genetic structure of pathogen populations is shaped by
population connectivity and, as a consequence, host migration
(e.g. Monot et al., 2009; Vollmer et al., 2011; Wirth et al.,
2005). Migration favors the spatial spread of pathogens, while
the high densities of hosts on wintering or breeding sites favor
the multiplication and exchange of infectious agents.
Moreover, during migration, exchanges between individuals
originating from different geographic areas and belonging to
different species can take place at stopover sites (Jourdain
et al., 2007). As a result, the distinct migration patterns of
Laridae and Anatidae species may determine the gene
pools of their circulating AIVs; at the same time, the sharing
of habitats may allow AIV exchanges between the two taxa
(Tonnessen et al., 2013b).

At present, data are too scarce to test these hypotheses.
Indeed, AIV studies generally only target a few species.
Of the 102 Laridae species known, epidemiologic data on
AIV circulation is only available for 20 (Table 2). For
example, some Laridae species that feed offshore and breed
in mono-specific colonies, such as the black-legged kittiwake,
might maintain the circulation of specific AIVs because they
have limited contact with other species (although in many
locations they can breed with other cliff-nesting seabirds).
However, most existing studies tend to show that LPAIV
dynamics emerge at the community rather than the population
level, which suggests that such epidemiological isolation
is rare. Indeed, previous studies investigating the effect of
host species, geographic location, and sampling time on
AIV prevalence levels across broad geographical areas and
time scales observed weak support for a species effect and,
instead, found evidence for phylogenetic clustering by
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space and time (Chen & Holmes, 2009; Girard et al., 2012;
Pearce et al., 2010, 2011; Ramey et al., 2010; Van Borm
et al., 2012). These findings suggest that transmission and
reassortment of AIVs between species may be frequent
(Chen & Holmes, 2009; Girard et al., 2012; Pearce et al.,
2010, 2011; Ramey et al., 2010; Reeves et al.,, 2011;
Van Borm et al., 2012), and we hypothesize that migration
may play a key role therein.

Indeed, differences in migration patterns between
Anatidae and Laridae may have an important influence on
AIV reassortment. In North America, Anatidae migration
flyways seem to constrain gene flow among LPAIVs
(Lam et al., 2012). Similarly, Eurasian and North American
LPAIVs isolated from waterbirds (mostly Anatidae) showed
substantial levels of sequence divergence, a result that was
attributed to the geographical separation of the bird popula-
tions (Ito et al., 1991; Kawaoka et al., 1998; Olsen et al., 2006;
Suarez & Perdue 1998; Widjaja et al., 2004). A few Anatidae
species, like northern pintails (Anas acuta) and Steller’s eiders,
(Polysticta stelleri), have been identified as bridge species
that allow exchanges between Eurasian and North American
AIV strains, due to their migration routes and the isolation
of intercontinentally reassorted AIVs from some individuals
(e.g. Pearce et al., 2009; Ramey et al., 2010).

In contrast, numerous Laridae species undergo intercon-
tinental migration, not only between Eurasia and North
America, but also between North America and South America
and between Eurasia and Oceania (Del Hoyo, 1996; Elphick,
2007; Winker & Gibson, 2010). Such movements appear
to result in intercontinental AIV exchanges. Most of the
intercontinentally reassorted viruses that have been identified
to date have been found in Laridae (e.g. Hall et al., 2013;
Lebarbenchon et al., 2009; Pereda et al., 2008; Van Borm
et al., 2012; Wille et al., 2011), which seem to be the main
carriers of reassorted AIV strains, followed by Anatidae
and shorebirds (Krauss et al., 2007; Ramey et al., 2010).
Consequently, Laridae migratory patterns may play a major
role in mediating AIV intercontinental exchanges (Wille
et al., 2011; Winker & Gibson, 2010). Genetic exchanges
appear to be concentrated at key sites, such as in Alaska
(Ramey et al., 2010), Delaware Bay (Wille et al., 2011), and
the Camargue wetlands (Lebarbenchon et al., 2009), where
migratory flyways overlap and birds wintering in different
continents gather in high densities. In Alaska, where birds
from as many as six continents come to breed (Winker et al.,
2007), reassorted Eurasian/North American LPAIV strains
represent up to 85% of those isolated from both Anatidae and
Laridae (Ramey et al., 2010).

To date, few studies have been conducted on other major
potential AIV exchange sites. Efforts should concentrate more
on the Southern Hemisphere, as data on AIV circulation in
wild birds from this region, apart from Southeast Asia, are
scarce. Researchers could take advantage of readily available
ornithological knowledge and focus on species known to
undergo intercontinental migrations, as well as on habitats
situated at the crossroads of several waterbird migratory
routes. For example, the Kamchatka region is the Eurasian
counterpart of Alaska (Wille et al., 2011). The few studies
that detected AIVs in both Laridae and Anatidae in South
America, Africa, and Oceania were mostly conducted in areas
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that were designated as important (Important Bird Areas) by
Birdlife International and that represent important wintering
and/or breeding sites (IBA, Birdlife International, 2013). These
areas include the Djoudj delta in Senegal (Gaidet et al., 2007),
the coast of Tasmania (Haynes et al., 2009), and the Parana
River basin in Argentina (Pereda et al., 2008). Such studies
could reveal the relative roles played by Laridae and Anatidae
in intercontinental AIV exchanges worldwide. Moreover, such
studies would represent the first steps towards a better
understanding of AIV spatial dynamics, which are crucial
components of models of AIV dispersion risks. In particular,
the timing and occurrence of infection within populations
during annual migratory cycles must be understood (Hoye
et al., 2011). Studies of northern pintails have shown that this
migratory species can bring new strains from Eurasia to North
America, which can then spread into populations of sympatric
species (Koehler et al., 2008; Pearce et al., 2009, 2011). Given
such findings, it also appears essential to expand studies to
include species that are sympatric with long-distance migrants
during part of their life cycle.

To which species are AlVs transmitted?
Viral exchanges between Laridae, domestic birds,
and humans

New AIV strains that emerge in humans and domestic birds
often evolve from strains originally circulating in wild birds.
Thus far, research has focused on AIVs that could be spread
by mallards and other Anatidae species that share wetlands
with domestic birds and humans. However, Laridae species
might also play a key role in the production of reassortant
viruses (Hall et al., 2013), particularly since Laridae also
share wetlands with domestic species (Del Hoyo, 1996),
which can favor AIV exchanges (Caron et al., 2010).
Interestingly, the AIV first isolated from a Laridae species
was closely related to an influenza strain pathogenic for
domestic poultry (Becker et al. 1966). Since then, a wide
diversity of subtypes has been detected in Laridae (Table 2).
Virus histochemistry studies showed that a mallard H6N1
LPALIV strain was capable of attaching to tissues (trachea and
colon) of the domestic chicken (Gallus gallus), the herring
gull and Franklin’s gull (Jourdain et al., 2011; Lindskog et al.,
2013). Early experimental infection studies showed that
Franklin’s gulls were capable of shedding an AIV subtype
pathogenic for turkeys (Bahl & Pomeroy, 1977). Another
study found that a LPAIV subtype isolated from Laridae feces
was somewhat pathogenic in poultry, although the symptoms
it provoked were less severe than those caused by certain
other avian influenza viruses (Otsuki et al. 1982). These
examples indicate that Laridae may be permissive hosts
when it comes to AIVs and could therefore contribute to the
interspecific spread of AIV subtypes. With regards to the
H13 and H16 subtypes, at least one LPAIV epizootic in
poultry has been linked to a H13 subtype found in wild gulls
(Laudert et al., 1993; Sivanandan et al., 1991). Furthermore,
a recent study found that a small proportion of domestic
ducks and turkeys that had been experimentally inoculated
with some specific H13 LPAIV strains developed infections
after challenge, which suggests that gull-adapted viruses
can spill over into domestic birds (Brown et al.,, 2012).
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These findings emphasize the potential for AIV exchange
among Anatidae, Laridae and domestic species.

What is particularly worrisome is that Laridae can host
highly pathogenic subtypes that have zoonotic potentials.
At least eight species of Laridae were able to be infected
by H5N1 HPAIVs under natural conditions (Table 3). H5SN1
HPAIVs have occasionally been isolated not only from dead or
severely sick birds (Ellis et al., 2004; Liu et al., 2005), but also
from apparently healthy birds (Muzinic et al., 2010; Savié
et al., 2010). Experimental infection studies have shown that
laughing gulls and herring gulls can serve as healthy carriers of
H5N1 HPAIVs, although the infections are sometimes fatal
(Brown et al.,, 2006, 2008; Perkins & Swayne, 2001).
Additionally, laughing gulls can become infected by consum-
ing meat contaminated with HSN1 HPAIVs, which the gulls
are likely to encounter in nature while scavenging (Brown
et al., 2008). As a result, Laridae do not seem to serve as long-
term reservoirs of HPAIVs. However, because several Laridae
species can be infected by HPAIVs, sometimes without
presenting any symptoms, they could contribute to geograph-
ical and interspecific spread of these viruses.

Other AIV subtypes likely have the potential to infect both
Laridae species and humans. Indeed, several gull species
display o2,6-linked SA receptors, to which human influenza
viruses usually bind, on the surface of their tracheal
epithelium (Ellstrom et al., 2009; Jourdain et al., 2011;
Lindskog et al., 2013). Laridae species can also be infected by
LPAIV subtypes that are known to cause mild infections
(asymptomatic or mild conjunctivitis) in humans, such as H9
and H7 (Sandrock et al., 2007). Thus far, gull-specific H13
and H16 subtypes have never been reported in humans,
although an H16N3 gull virus was found to attach to the
human respiratory tract and eye, which suggests that the first
step necessary for gull to human transmission of this virus can
occur (Lindskog et al., 2013). Another recent study revealed
that an H13N6 exclusively bound to avian o2,3-linked SA
receptors and was not observed to bind to mammalian «2,6-
linked SA receptors (Lu et al., 2013); however, a single amino
acid substitution was shown to result in changes in the binding
patterns of this H13 virus (Lu et al., 2013).

Contact between humans and Laridae as a result of hunting
is limited. Nevertheless, it may occur. For example, terns
are regularly trapped on West African beaches (Boere &
Dodman, 2011). Contact between humans and Laridae is more
commonly due to habitat sharing. Indeed, over the past
decades, several large gull species have dramatically increased
in abundance, especially in Europe and North America
(Blokpoel & Spaans, 1991). These species have colonized
urban areas worldwide by taking advantage of anthropogenic
resources such as garbage and trawling discards (Duhem et al.,
2008; Lisnizer et al., 2011; Raven & Coulson, 1997), and their
contribution to AIV circulation in urban settings should
therefore not be neglected (Verhagen et al., 2012). They
occur at the epidemiological interface between humans and
wildlife; for instance, antibiotic-resistant bacteria originating
in human populations have been found in gulls (Bonnedahl
et al., 2009; Dolejska et al., 2007; Gionechetti et al., 2008).

Overall, we may conclude that Laridae can occasionally
transmit AIVs to humans and domestic birds but such events
are infrequent compared to the number of spillovers from wild
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