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MEROMORPHIC ALMOST RIGID GEOMETRIC

STRUCTURES

SORIN DUMITRESCU

Dedicated to Bob Zimmer

Abstract. We study the local Killing Lie algebra of meromorphic al-

most rigid geometric structures on complex manifolds. This leads to

classification results for compact complex manifolds admitting holomor-

phic rigid geometric structures.

1. Introduction

Zimmer and Gromov have conjectured that “big” actions of Lie groups

that preserve unimodular rigid geometric structures (for example, a pseudo-

Riemannian metric or an affine connection together with a volume form) are

“essentially classifiable” [2, 28, 64, 65, 66, 67].

We try to adress here this general question in the framework of the com-

plex geometry. We study holomorphic (and meromorphic) unimodular geo-

metric structures on compact complex manifolds. We show that in many

cases the holomorphic rigidity implies that the situation is classifiable (even
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2 S. DUMITRESCU

without assuming any isometric group action). This is a survey paper, but

some results are new (see theorem 2.1, corollary 2.2 and theorem 5.10).

In the sequel all complex manifolds are supposed to be smooth and con-

nected.

Consider a complex n-manifold M and, for all integers r ≥ 1, consider the

associated bundle Rr(M) of r-frames, which is a Dr(Cn)-principal bundle

over M , with Dr(Cn)-the (algebraic) group of r-jets at the origin of local

biholomorphisms of Cn fixing 0 [2, 28, 7, 12, 22, 63].

Let us consider, as in [2, 28], the following

Definition 1.1. A meromorphic geometric structure (of order r) φ on a

complex manifoldM is aDr(Cn)-equivariant meromorphic map from Rr(M)

to a quasiprojective variety Z endowed with an algebraic action of Dr(Cn).

If Z is an affine variety, we say that φ is of affine type.

In holomorphic local coordinates U on M , the geometric structure φ is

given by a meromorphic map φU : U → Z.

Denote by P ⊂ M the analytic subset of poles of φ and by M∗ = M \ P

the open dense subset of M where φ is holomorphic. If P is the empty set,

then φ is a holomorphic geometric structure on M .

If φ uniquely determines a holomorphic volume form on M∗, then φ is

called unimodular.

Definition 1.2. The meromorphic geometric structure φ is called almost

rigid if, away from an analytic subset of M of positive codimension, φ is

(holomorphic and) rigid in Gromov’s sense [2, 28].
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A holomorphic geometric structure on M is called rigid if it is rigid in

Gromov’s sense on all of M .

Notice that our definiton of almost rigidity is not exactly the same as

in [9].

Examples. On a complex connected n-manifold M the following mero-

morphic geometric structures are almost rigid.

• A meromorphic map φ from M to a projective space PN (C), which

is an embedding on some nontrivial open subset of M . In this case

M is of algebraic dimension n (see section 2). If φ is a holomorphic

embedding, then φ is rigid.

• A familyX1, X2, . . . , Xn of meromorphic vector fields such that there

exists an open (dense) subset of M where the Xi span the holo-

morphic tangent bundle TM . Any homogeneous manifold admits a

holomorphic family of such vector fields. They pull-back after the

blow up of a point (or a submanifold) in the homogeneous manifold

in a meromorphic family of such vector fields.

In the special case whereX1, X2, . . . , Xn are holomorphic and span

TM on all of M , the corresponding geometric structure is called a

holomorphic parallelisation of the tangent bundle and it is a (uni-

modular) holomorphic rigid geometric structure of affine type.

• A meromorphic section g of the bundle S2(T ∗M) of complex qua-

dratic forms such that g is nondegenerate on an open (dense) subset.

If g is holomorphic and nondegenerate on M then g is a holomorphic
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rigid geometric structure of affine type called holomorphic Riemann-

ian metric. Up to a double cover of M , a holomorphic Riemannian

metric is unimodular.

A holomorphic Riemannian metric has nothing to do with the

more usual Hermitian metric. It is in fact nothing but the com-

plex version of a (pseudo-)Riemannian metric. Observe that since

complex quadratic forms have no signature, there is no distinction

here between the Riemannian and pseudo-Riemannian cases. This

observation was at the origin of the nice use by F. Gauß of the com-

plexification technic of (analytic) Riemannian metrics on surfaces,

in order to find conformal coordinates for them. Actually, the com-

plexification of analytic Riemannian metrics leading to holomorphic

ones, is becoming a standard trick (see for instance [23]).

In the blow up process, the pull-back of a holomorphic Riemannian

metric will stay nondegenerate away from the exceptional set and will

vanish on the exceptional set.

More general, if g is a meromorpic section of S2(T ∗M) nondegen-

erate on an open dense set, then any complex manifold M̃ bimero-

morphic to M inherits a similar section g̃. Moreover, if g is holo-

morphic, then g̃ is also holomorphic. This comes from the fact that

indeterminacy points of a meromorphic map are of codimension at

least 2 (see theorem 2.5 in [57]) and from Levi’s extension principle

(see [57] for the details).
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• Meromorphic affine or projective connections or meromorphic con-

formal structures in dimension ≥ 3. For example, in local holo-

morphic coordinates (z1, . . . , zn) on the manifold M , a meromorphic

affine connection ∇ is determined by the meromorphic functions Γk
ij

such that ∇ ∂
∂zi

∂
∂zj

= Γk
ij

∂
∂zk

, for all i, j, k ∈ {1, . . . , n}.

Affine connections are geometric structures of affine type, but pro-

jective connections or conformal structures are not of affine type.

• If φ is a meromorphic almost rigid geometric structure of order r1

and g is a meromorphic geometric structure of order r2, then we can

put together φ and g in some meromorphic almost rigid geometric

structure of order max(r1, r2), denoted by (φ, g) [28, 2, 7, 12, 22, 63].

• The s-jet (prolongation) φ(s) of a meromorphic almost rigid geomet-

ric structure φ is still a meromorphic almost rigid geometric struc-

ture [28, 2, 7, 12, 22, 63].

Recall that local biholomorphisms of M which preserve a meromorphic

geometric structure φ are called local isometries. Note that local isometries

of (φ, g) are the local isometries of φ which preserve also g.

The set of local isometries of a holomorphic rigid geometric structure φ is

a Lie pseudogroup Isloc(φ) generated by a Lie algebra of local vector fields

called (local) Killing Lie algebra. If the local Killing Lie algebra is transitive

on M , then φ is called locally homogeneous.

2. Local isometries and meromorphic functions

The maximal number of algebraically independent meromorphic functions

on a complex manifold M is called the algebraic dimension a(M) of M .
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Recall that a theorem of Siegel proves that a complex n-manifold M

admits at most n algebraically independent meromorphic functions [57].

Then a(M) ∈ {0, 1, . . . , n} and for algebraic manifolds a(M) = n.

We will say that two points in M are in the same fiber of the algebraic

reduction of M if any meromorphic function on M takes the same value at

the two points. There exists some open dense set in M where the fibers

of the algebraic reduction are the fibers of a holomorphic fibration on an

algebraic manifold of dimension a(M) and any meromorphic function on M

is the pull-back of a meromorphic function on the basis [57].

The following theorem shows that the fibers of the algebraic reduction are

in the same orbit of the pseudogroup of local isometries for any meromorphic

almost rigid geometric structure on M . This is a meromorphic version of

the celebrated Gromov’s open-dense orbit theorem [2, 28] (see also [7, 12,

22, 63]).

Theorem 2.1. Let M be a connected complex manifold of dimension n

which admits a meromorphic almost rigid geometric structure φ. Then, there

exists a nowhere dense analytic subset S in M , such that M \ S is Isloc(φ)-

invariant and the orbits of Isloc(φ) in M \S are the fibers of a holomorphic

fibration of constant rank. The dimension of the fibers is ≥ n−a(M), where

a(M) is the algebraic dimension of M .

Recall that g′ = (φ, g) is still almost rigid for any meromorphic (not

necessarily almost rigid) geometric structure g on M . This yields to the

following:
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Corollary 2.2. If g is a meromorphic geometric structure on M , then,

away from a nowhere dense analytic subset, the Isloc(g)-orbits are of di-

mension ≥ n− a(M).

In particular, if a(M) = 0, then g is locally homogeneous outside a

nowhere dense analytic subset of M (the Killing Lie algebra G of g′ = (φ, g)

is transitive on an open dense set). Moreover, if φ is unimodular and G is

unimodular and simply transitive, then g is locally homogeneous on all of

the open dense set where φ and g are holomorphic and φ is rigid. In this

case, if φ is unimodular holomorphic and rigid and g is holomorphic, then

g is locally homogeneous on M .

Proof. Let φ be of order r, given by a map φ : Rr(M) → Z. For each positive

integer s we consider the s-jet φ(s) of φ. This is a D(r+s)(Cn)-equivariant

meromorphic map R(r+s)(M) → Z(s), where Z(s) is the algebraic variety of

the s-jets at the origin of holomorphic maps from C
n to Z. One can find

the expression of the (algebraic) D(r+s)(Cn)-action on Z(s) in [12, 22].

Since φ is almost rigid, there exists a nowhere dense analytic subset S′ in

M , containing the poles of φ, and a positive integer s such that two points

m,m′ in M \ S′ are in the same orbit of Isloc(φ) if and only if φ(s) sends

the fibers of R(r+s)(M) above m and m′ on the same D(r+s)(Cn)-orbit in

Z(s) [28, 2].

Rosenlicht’s theorem (see [49]) shows that there exists a D(r+s)(Cn)-

invariant stratification

Z(s) = Z0 ⊃ . . . ⊃ Zl,
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such that Zi+1 is Zariski closed in Zi, the quotient of Zi\Zi+1 by D(r+s)(Cn)

is a complex manifold and rational D(r+s)(Cn)-invariant functions on Zi

separate orbits in Zi \ Zi+1.

Consider the open dense Isloc(φ)-invariant subset U in M \ S′, such that

φ(s) is of constant rank above U and the image of R(r+s)(M)|U through

φ(s) lies in Zi \ Zi+1, but not in Zi+1. Then the orbits of Isloc(φ) in U are

the fibers of a fibration of constant rank (on the quotient of Zi \ Zi+1 by

D(r+s)(Cn)). Obviously, U = M \ S, where S is a nowhere dense analytic

subset in M .

If m and n are two points in U which are not in the same Isloc(φ)-

orbit, then the corresponding fibers of R(r+s)(M)|U are sent by φ(s) on two

distinct D(r+s)(Cn)-orbits in Zi \Zi+1. By Rosenlicht’s theorem there exists

a D(r+s)(Cn)-invariant rational function F : Zi \ Zi+1 → C, which takes

distincts values at these two orbits.

The meromorphic function F ◦ φ(s) : R(r+s)(M) → C is D(r+s)(Cn)-

invariant and descends in a Isloc(φ)-invariant meromorphic function on M

which takes distincts values at m and at n.

Consequently, the complex codimension in U of the Isloc(φ)-orbits is ≤

a(M), which finishes the proof. �

We deduce now the corollary:

Proof. It is convenient to put together φ and g in some extra geometric

structure g′ = (φ, g). Now g′ is a meromorphic almost rigid geometric

structure and theorem 2.1 shows that the complex dimension of a generic
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Isloc(g′)-orbit is ≥ n − a(M). As each Isloc(g′)-orbit is contained in a

Isloc(g)-orbit, the result follows also for g.

If a(M) = 0, the Killing Lie algebra G of g′ is transitive on a maximal

open dense subset U in M . Suppose now that φ is unimodular and also that

G is unimodular. The other inclusion being trivial, it is enough to show that

U contains the maximal subset of M where φ and g are holomorphic and φ

is rigid.

Pick up a point m in the previous subset. We want to show that m is in

U . Since g′ = (φ, g) is holomorphic and rigid in the neighborhood of m, it

follows that m admits an open neighborhood Um in M such that any local

holomorphic Killing field of g′ defined on a connected open subset in Um

extends on all of Um [48, 1].

Since G acts transitively on U , choose local linearly independent Killing

fields X1, . . . , Xn on a connected open set included in U ∩ Um. As φ is uni-

modular, it determines a holomorphic volume form vol on Um (if necessary

we restrict to a smaller Um) which is preserved by Isloc(g′). But Isloc(g′)

acts transitively on U ∩ Um and G is supposed to be unimodular. This im-

plies that the function vol(X1, . . . , Xn) is G-invariant and, consequently, a

(non-zero) constant on U ∩ Um.

On the other hand X1, . . . , Xn extend in some holomorphic Killing fields

X̃1, . . . , X̃n defined on all of Um. The holomorphic function vol(X̃1, . . . , X̃n)

is a non-zero constant on Um: in particular, X̃1(m), . . . , X̃n(m) are linearly

independent. We proved that G acts transitively in the neighborhood of m

and thus m ∈ U . �



10 S. DUMITRESCU

3. Classification results

Parallelisations of the tangent bundle. We begin with the classification

of compact complex manifolds which admit a holomorphic parallelisation of

the tangent bundle [60].

Theorem 3.1. (Wang) Let M be a compact connected complex manifold

with a holomorphic parallelisation of the tangent bundle. Then M is a quo-

tient Γ\G, where G is a connected simply connected complex Lie group and

Γ is a uniform lattice in G.

Moreover, M is Kaehler if and only if G is abelian (and M is a complex

torus).

Proof. Let n be the complex dimension of M and consider X1, X2, . . . , Xn

global holomorphic vector fields on M which span TM . Then, for all 1 ≤

i, j ≤ n, we have

[Xi, Xj ] = f ij
1 X1 + f ij

2 X2 + . . .+ f ij
n Xn,

with f ij
k holomorphic functions on M . Since M is compact, these func-

tions have to be constant and, consequently, X1, X2, . . . , Xn generate a n-

dimensional Lie algebra G which acts simply transitively on M . By Lie’s

theorem there exists a unique connected simply connected complex Lie group

G corresponding to G.

In particular, the holomorphic parallelisation is locally homogenous, lo-

cally modelled on the parallelisation given by translation-invariant vector

fields on the Lie group G.
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Since M is compact, the Xi are complete and they define a holomorphic

simply transitive action of G on M . Hence M is a quotient of G by a

cocompact discrete subgroup Γ in G.

Assume now M is Kaehler. Then, any holomorphic form on M has

to be closed [27]. Consider ω1, ω2, . . . , ωn the dual basis with respect to

X1, X2, . . . , Xn. The one forms ωi are holomorphic and translation-invariant

on G (they descend on Γ\G). The Lie-Cartan formula

dωi(Xj , Xk) = −ωi([Xj , Xk]),

shows that the one forms ωi are all closed if and only if G is abelian and

thus M is a complex torus. �

Holomorphic Riemannian metrics. As in the real case, a holomorphic

Riemannian metric on M gives rise to a covariant differential calculus, i.e.

a Levi-Civita (holomorphic) affine connection, and to geometric features:

curvature tensors, geodesic (complex) curves [40, 41].

Locally, a holomorphic Riemannian metric has the expression Σgij(z)dzidzj ,

where (gij(z)) is a complex inversible symmetric matrix depending holomor-

phically on z. The standard example is that of the global flat holomorphic

Riemannian metric dz21 + dz22 + . . .+ dz2n on C
n. This metric is translation-

invariant and thus descends to any quotient of Cn by a lattice. Hence com-

plex tori possess (flat) holomorphic Riemannian metrics. This is however

a very special situation since, contrary to real case, only few compact com-

plex manifolds admit holomorphic Riemannian metrics. In fact, Yau’s proof
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of the Calabi conjecture shows that, up to finite unramified covers, com-

plex tori are the only compact Kaehler manifolds admitting holomorphic

Riemannian metrics [34].

However, very interesting examples, constructed by Ghys in [25], do exist

on 3-dimensional complex non-Kaehler manifolds and deserve classification.

Notice that parallelisable manifolds admit holomorphic Riemannian metrics

coming from left invariant holomorphic Riemannian metrics on G (which

can be constructed by left translating any complex nondegenerate quadratic

form defined on the Lie algebra G).

Ghys’ examples of 3-dimensional compact complex manifolds endowed

with holomorphic Riemannian metrics are obtained by deformation of the

complex structure on parallelisable manifolds Γ\SL(2,C) [25]. They are

nonstandard, meaning they do not admit parallelisable manifolds as finite

unramified covers. Those nonstandard examples will be described latter on.

A first obstruction to the existence of a holomorphic Riemannian metric

on a compact complex manifold is the vanishing of its first Chern class.

Indeed, a holomorphic Riemannian metric on M provides an isomorphism

between TM and T ∗M . In particular, the canonical bundle K is isomorphic

to the anti-canonical bundle K−1 and thus K2 is trivial. This means that

the first Chern class of M vanishes and, up to a double unramified cover,

M possesses a holomorphic volume form.

The following proposition describes holomorphic Riemannian metrics on

parallelisable manifolds:
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Proposition 3.2. Let M = Γ\G a compact parallelisable manifold, with G

a simply connected complex Lie group and Γ a uniform lattice in G. Then,

any holomorphic Riemannian metric g on M comes from a nondegener-

ate complex quadratic form on the Lie algebra G of G. In particular, the

pull-back of g is left invariant on the universal cover G (and g is locally

homogeneous on M).

Moreover, any compact parallelisable 3-manifold admits a holomorphic

Riemannian metric of constant sectional curvature. The metric is flat ex-

actly when G is solvable.

Proof. Consider X1, X2, . . . , Xn the fundamental vector fields corresponding

to the locally free G-action on M . Let g be a holomorphic Riemannian

metric on M and denote also by g the associated complex symmetric bilinear

form. Then g(Xi, Xj) is a holomorphic function on M and thus constant, for

all 1 ≤ i, j ≤ n. This implies that g comes from a left invariant holomorphic

Riemannian metric on G.

Assume now G is a connected simply connected complex unimodular Lie

group of dimension 3. We have only four such Lie groups: C3, the complex

Heisenberg group, the complex SOL group and SL(2,C) [35]. Note that

the group SOL is the complexification of the affine isometry group of the

Minkowski plane R1,1 or equivalently the isometry group of C2 endowed with

its flat holomorphic Riemannian metric.

We begin with the case G = C
3. We have seen that C

3 admits a flat

translation-invariant holomorphic Riemannian metric. The isometry group
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of this metric is O(3,C)⋉C
3. We recall here that O(3,C) and SL(2,C) are

locally isomorphic.

Consider now the case G = SL(2,C). The Killing form of the Lie algebra

sl(2,C) is a nondegenerate complex quadratic form which endows SL(2,C)

with a left invariant holomorphic Riemannian metric of constant sectional

curvature. Since the Killing quadratic form is invariant by the adjoint repre-

sentation, the isometry group contains also all right translations. In fact, the

connected component of the isometry group is SL(2,C) × SL(2,C) acting

by left and right translation. On the other hand, Γ\SL(2,C) doesn’t ad-

mit flat torsion-free affine connections (neither flat holomorphic Riemannian

metrics) [19].

It is an easy exercice to exhibit in the isometry group O(3,C)⋉C
3 of the

flat holomorphic Riemannian space, copies of the complex Heisenberg group

and of the complex SOL group which act simply transitively [19]. Thus

the flat holomorphic Riemannian space also admits models which are given

by left invariant metrics on the Heisenberg group and on the SOL group.

One can get explicit expression of these holomorphic Riemannian metrics by

complexification of flat left invariant Lorentz metrics on the real Heisenberg

and SOL groups [51, 52].

On the other hand, there exists no 3-dimensional solvable subgroups in

SL(2,C)× SL(2,C) acting with an open orbit on SL(2,C). It follows that

the compact quotients of 3-dimensional solvable groups don’t admit holo-

morphic Riemannian metrics of non-zero constant sectional curvature. �
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Ghys nonstandard examples. As above, for any cocompact lattice Γ in

SL(2,C), the quotient M = Γ\SL(2,C) admits a holomorphic Riemannian

metric of non-zero constant sectional curvature. It is convenient to consider

M as a quotient of S3 = O(4,C)/O(3,C) = SL(2,C) × SL(2,C)/SL(2,C)

by Γ, seen as a subgroup of SL(2,C) × SL(2,C) by the trivial embedding

γ ∈ Γ 7→ (γ, 1) ∈ SL(2,C)× SL(2,C).

New interesting examples of manifolds admitting holomorphic Riemann-

ian metrics of non-zero constant sectional curvature have been constructed

in [25] by deformation of this embedding of Γ.

Those deformations are constructed choosing a morphism u : Γ → SL(2,C)

and considering the embedding γ 7→ (γ, u(γ)). Algebraically, the action is

given by:

(γ,m) ∈ Γ× SL(2,C) → γmu(γ−1) ∈ SL(2,C).

It is proved in [25] that, for u close enough to the trivial morphism, Γ

acts properly (and freely) on S3(∼= SL(2,C)) such that the quotient Mu is a

complex compact manifold (covered by SL(2,C)) admitting a holomorphic

Riemannian metric of non-zero constant sectional curvature. In general,

these examples do not admit parallelisable manifolds as finite covers.

Note that left invariant holomorphic Riemannian metrics on SL(2,C)

which are not right invariant, in general, will not descend on Mu.

Let us notice that despite this systematic study in [25], there are still

many open questions regarding these examples (including the question of

completeness). A real version of this study is in [39, 26, 53].
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Dimension 3. The classification of complex compact manifolds admit-

ting holomorphic Riemannian metrics is simple in complex dimension 2 (see

section 5). An important step toward the classification in dimension 3 was

made in [17] with the following result:

Theorem 3.3. Any holomorphic Riemannian metric on a compact con-

nected complex 3-manifold is locally homogeneous. More generally, if a

compact connected complex 3-manifold M admits a holomorphic Riemann-

ian metric, then any holomorphic geometric structure of affine type on M

is locally homogeneous.

Observe that the previous result is trivial in dimension 2, since the sec-

tional curvature is a holomorphic function and thus constant on compact

complex surfaces: this implies the local homogeneity [61]. In dimension

3, the sectional curvature will be, in general, a non constant meromorphic

function on the 2-grassmanian of the holomorphic tangent space with poles

at the degenerate planes.

Thanks to theorem 3.3, our manifold M is locally modelled on a (G,G/I)-

geometry in Thurston’s sense [55], where I is a closed subgroup of the Lie

group G such that the G-action on G/I preserves some holomorphic Rie-

mannian metric (see [18] for details and notice that the local Killing Lie

algebra of the holomorphic Riemannian metric is the Lie algebra of G). In

this context we have a developing map from the universal cover of M into

G/I which is a local diffeomorphism and which is equivariant with respect

to the action of the fundamental group on M̃ by deck transformations and

on G/I via the holonomy morphism ρ : π1(M) → G [55].
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Recall that the (G,G/I)-geometry is called complete if the developing

map is a diffeomorphism and, consequently, Γ = ρ(π1(M)) acts properly on

G/I such that M is a compact quotient Γ\G/I.

A second step was achieved in [18] were, in a commun work with Zeghib,

we proved the following result which can be seen, in particular, as a com-

pleteness result in the case where G is solvable.

Theorem 3.4. Let M be a compact connected complex 3-manifold which

admits a (locally homogeneous) holomorphic Riemannian metric g. Then:

(i) If the Killing Lie algebra of g has a nontrivial semi-simple part, then

it preserves some holomorphic Riemannian metric on M with constant sec-

tional curvature.

(ii) If the Killing Lie algebra of g is solvable, then, up to a finite unramified

cover, M is a quotient either of the complex Heisenberg group, or of the

complex SOL group by a lattice.

Remark 3.5. If g is flat, its Killing Lie algebra corresponds to O(3,C)⋉C
3,

which has nontrivial semi-simple part. Thus, flat holomorphic Riemannian

metrics on complex tori are part of point (i) in theorem 3.4.

The point (ii) of the previous theorem is not only about completeness,

but also gives a rigidity result in Bieberbach’s sense [61]: G contains a

3-dimensional closed subgroup H (either isomorphic to the complex Heisen-

berg group, or to the complex SOL group) which acts simply transitively

(and so identifies) with G/I and (up to a finite index) the image Γ of the ho-

lonomy morphism lies in H. It follows that, up to a finite cover, M identifies

with Γ\H.
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Since the Heisenberg and SOL groups admit left invariant flat holomor-

phic Riemannian metrics this leads to:

Corollary 3.6. If a compact connected complex 3-manifold M admits a

holomorphic Riemannian metric, then, up to a finite unramified cover, M

admits a holomorphic Riemannian metric of constant sectional curvature.

Theorem 3.4 does not end the story, even in dimension 3, essentially

because of remaining completeness questions, and those on the algebraic

structure of the fundamental group.

It remains to classify the compact complex 3-manifolds endowed with a

holomorphic Riemannian metric of constant sectional curvature.

Flat case. In this case M admits a (O(3,C) ⋉ C
3,C3)-geometry. The

challenge remains:

1) Markus conjecture: Is M complete?

2) Auslander conjecture: Assuming M complete, is Γ solvable?

Note that these questions are settled in the setting of (real) flat Lorentz

manifolds [13, 24], but unsolved for general (real) pseudo-Riemannian met-

rics. The real part of the holomorphic Riemannian metric is a (real) pseudo-

Riemannian metric of signature (3, 3) for which both previous conjectures

are still open.

Nonflat case. In this case G = SL(2,C) × SL(2,C) and I = SL(2,C)

is diagonally embedded in the product. The completeness of this geometry

on compact complex manifolds is still an open problem, despite a local re-

sult of Ghys [25]. Recall that the real analogous of this problem, i.e. the
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completeness of compact manifolds endowed with Lorentz metrics of nega-

tive constant sectional curvature, was solved in [37], but the proof cannot

generalize to other signatures.

Higher dimension. One interesting problem in differential geometry

is to decide whether a given homogeneous space G/I possesses or not a

compact quotient. A more general related question is to decide whether

there exists compact manifolds locally modelled on (G,G/I) (see, for in-

stance, [6, 8, 38]).

The case I = 1, or more generally I compact, reduces to the classical

question of existence of cocompact lattices in Lie groups. For homogeneous

spaces of non-Riemannian type (i.e. I non compact) the problem is much

harder.

The case Sn = O(n + 1,C)/O(n,C) is a geometric situation where these

questions can be tested. It turns out that compact quotients of Sn are known

to exist only for n = 1, 3 or 7. We discussed the case n = 3 above, and the

existence of a compact quotient of S7 was proved in [38]. Here, we dare ask

with [38]:

Conjecture 3.7. [38] Sn has no compact quotients, for n 6= 1, 3, 7.

A stronger version of this question was proved in [6] for Sn, if n has the

form 4m+ 1, with m ∈ N.

Keeping in mind our geometric approach, we generalize the question to

manifolds locally modelled on Sn. More exactly:
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Conjecture 3.8. [18] A compact complex manifold endowed with a holomor-

phic Riemannian metric of constant non-vanishing curvature is complete. In

particular, such a manifold has dimension 3 or 7.

4. Applications to simply connected manifolds

Remark first that theorem 3.3 has the following direct consequence:

Corollary 4.1. A compact connected simply connected 3-manifold admits

no holomorphic Riemannian metrics.

Proof. Assume, by contradiction, (M, g) being as in the statement of the

corollary. Then theorems 3.3 implies that g is locally homogeneous. Since

M is simply connected, the local Killing fields of the Killing algebra G extend

on all of M : the unique connected simply connected complex Lie group G

associated to G acts isometrically and transitively on M . Then M is a

homogeneous space G/H. Moreover, up to a double cover, G/H admits

a holomorphic volume form vol coming from the holomorphic Riemannian

metric.

Take X1, X2, X3 three global Killing fields on M which are linearly in-

dependent at some point. Since vol(X1, X2, X3) is a holomorphic function

on M , it is a non-zero constant and, consequently, X1, X2, X3 are linearly

independent on M . Hence Wang’s theorem implies that M is a quotient of

a three dimensional connected simply connected complex Lie group G1 by

a discrete subgroup. Since M is simply connected, this discrete subgroup

has to be trivial and M identifies with G1. But there is no compact simply

connected complex Lie group: a contradiction. �
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Theorem 4.2. A compact connected simply connected complex n-manifold

without nonconstant meromorphic functions admits no holomorphic unimod-

ular rigid geometric structures.

Proof. Assume, by contradiction, that (M,φ) verifies the hypothesis. Since

a(M) = 0, theorem 2.1 implies φ is locally homogeneous on an open dense

set U . As M is simply connected, elements in the Killing algebra G extend

on all ofM : the connected simply connected complex Lie group G associated

to G acts isometrically on M with an open dense orbit. The open dense orbit

U identifies with a homogeneous space G/H, where H is a closed subgroup

of G.

Consider X1, X2, . . . , Xn global Killing fields on M which are linearly in-

dependent at some point of the open orbit U . As before, vol(X1, X2, . . . , Xn)

is a non-zero constant, where vol is the holomorphic volume form associated

to φ. Thus the Xi give a holomorphic parallelisation of TM and Wang’s

theorem enables us to conclude as in the previous proof. �

For non-unimodular rigid geometric structures we have the following less

precise:

Theorem 4.3. [15] Let M be a compact connected simply connected com-

plex n-manifold without nonconstant meromorphic functions and admitting

a holomorphic rigid geometric structure φ. Then M is a equivariant com-

pactification of Γ\G, where Γ is a discrete non cocompact subgroup in a

complex Lie group G.
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Proof. Since a(M) = 0, theorem 2.1 implies φ is locally homogeneous on an

open dense set U . As before, the extension property of local Killing fields

implies U is a complex homogeneous space G/H, where G is a connected

simply connected complex Lie group and H is a closed subgroup in G.

We show now thatH is a discrete subgroup ofG. Assume by contradiction

the Lie algebra of H is nontrivial. Take at any point u ∈ U , the isotropy

subalgebra Hu (i.e. the Lie subalgebra of Killing fields vanishing at u).

Remark that Hgu = Ad(g)Hu, for any g ∈ G and u ∈ U , where Ad is the

adjoint representation.

The map u → Hu is a meromorphic map from M to the grassmanian of

d-dimensional vector spaces in G. But M doesn’t admit any nonconstant

meromorphic function and this map has to be constant. It follows that Hu

is Ad(G)-invariant and H is a normal subgroup of G: a contradiction, since

the G-action on M is faithful. Thus G is of dimension n and H identifies to

a lattice Γ in G.

As M is simply connected, U has to be strictly contained in M and M is

a equivariant compactification of Γ\G. �

We don’t know if such equivariant compactifications of Γ\G admit equi-

variant holomorphic rigid geometric structures, but the previous result has

the following application.

Recall that a well-known open question asks whether the 6-dimensional

real sphere S6 admits complex structures or not. In this context, we have

the following:
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Corollary 4.4. If S6 admits a complex structure M , then M admits no

holomorphic rigid geometric structures.

Proof. The starting point of the proof is a result of [11] where it is proved

that M doesn’t admit nonconstant meromorphic functions. If M supports

holomorphic rigid geometric structures, then theorem 4.3 implies that M is

a equivariant compactification of a homogeneous space. This is in contra-

diction with the main theorem of [30]. �

As forKaehler manifolds we have proved in [15] the following more precise:

Theorem 4.5. Let M be a compact connected Kaehler manifold endowed

with a holomorphic unimodular rigid geometric structure φ of affine type.

Then, up to a finite unramified cover, M is a complex torus (quotient of Cn

by a lattice) and φ is translation-invariant.

The proof is done in two steps. First we prove that φ is locally homoge-

neous. Then we use a splitting theorem [5] which asserts that such compact

Kaehler manifolds with a holomorphic volume form (Calabi-Yau manifolds)

are biholomorphic, up to a finite cover, to a direct product of a complex

torus and a compact simply connected Kaehler manifold with a holomorphic

volume form. Starting with φ and using the product structure, we con-

struct a holomorphic unimodular rigid geometric structure on the simply

connected factor which is locally homogeneous. We conclude as in the proof

of theorem 4.2 that the simply connected factor is trivial.
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Recently, we adapted this proof in [20] to all holomorphic Cartan ge-

ometries of algebraic type on Calabi-Yau manifolds. A similar result was

independently proved in [10].

One can also find a classification of certain holomorphic G-structures of

order one on uniruled projective manifolds in [31].

5. Applications to complex surfaces

Theorem 5.1. Let S be a compact complex surface endowed with a holo-

morphic unimodular rigid geometric structure φ of affine type. Then the

Killing Lie algebra of φ is nontrivial.

The assumption on φ to be affine is essential:

Remark 5.2. If S is a compact complex algebraic surface with trivial canon-

ical bundle (for example, a complex torus or an algebraic K3 surface), the

geometric structure given by a holomorphic volume forme on S together with

a holomorphic embedding of S in a complex projective space doesn’t admit

any nontrivial local isometry. However this geometric structure is not of

affine type.

Proof. The proof is a simply corollary of theorems 4.5 and 2.1. Indeed,

theorem 2.1 implies the Killing Lie algebra of φ is trivial only if the algebraic

dimension a(S) equals 2. But in this case S is algebraic [4] and thus Kaehler.

Then theorem 4.5 applies and the Killing Lie algebra is transitive on S and

hence of dimension at least 2. �

Recall that a complex surface is called minimal if it does not contain any

copy of P 1(C) with self-intersection −1 (see [4], page 91). Then we have:
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Theorem 5.3. Let S be a compact minimal complex surface which is not

biholomorphic to a non-algebraic K3 surface or to a non-affine Hopf surface.

Then S admits holomorphic rigid geometric structures.

Remark 5.4. By definition, a complex algebraic manifold admits an em-

bedding in a complex projectif space, which was seen to be a holomorphic

rigid geometric structure (of order zero).

Proof. By the previous remark, it remains to consider the case of non-

algebraic complex surfaces. Then the Enriques-Kodaira classification shows

that, up to a finite unramified cover, any minimal non-algebraic complex

compact surface is biholomorphic to one of the following complex surfaces:

a complex tori, a Hopf surface, an Inoue surface, a K3 surface, a principal

elliptic principal bundle over an elliptic curve or a principal elliptic bundle

over a Riemann surface of genus g ≥ 2, with odd first Betti number (see [4],

p. 244).

However, it is known that complex tori, Inoue surfaces, affine Hopf sur-

faces, principal elliptic bundles over elliptic curves and principal elliptic bun-

dles over a Riemann surface of genus g ≥ 2, with odd first Betti number,

admit flat holomorphic affine connections [34, 36, 43, 54, 58, 59]. �

The classification of compact complex surfaces admitting holomorphic

affine connections (see [34, 36, 43, 58, 59]) implies the following result:

Theorem 5.5. Let S be a compact complex surface admitting a holomorphic

unimodular affine connection. Then, up to a finite unramified cover, either

S is a complex torus and the connection is translation-invariant, or S is an
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elliptic principal bundle over an elliptic curve and the connection is locally

modelled on a translation-invariant connection on a complex torus.

Since any complex manifold endowed with a holomorphic Riemannian

metric inherits a holomorphic (unimodular) affine (Levi-Civita) connection [40,

41], this easily implies the following [17]:

Corollary 5.6. Let S be a complex compact surface admitting a holomorphic

Riemannian metric g. Then, up to a finite unramified cover, S is a complex

torus and g is (flat) translation-invariant.

In [21] we classified the local geometry of all torsion-free holomorphic

affine connections ∇ on compact complex surfaces. In particular, we proved

that either ∇ is locally homogeneous, locally isomorphic to a translation

invariant connection on C
2, or ∇ is a nonflat connection on a principal

elliptic bundle over a Riemann surface of genus g ≥ 2 with odd first Betti

number and the local Killing Lie algebra of ∇ is one-dimensional generated

by the fundamental vector field of the principal fibration. In all cases, ∇ is

projectively flat.

As a consequence we proved in [21] the following:

Theorem 5.7. Normal holomorphic projective connections on compact com-

plex surfaces are flat.

Inoue surfaces. Recall that Inoue surface are compact complex surfaces

in the class V II0, which are not Hopf, and have a vanishing second Betti

number [4, 33].
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In [34, 36] it is proved that any Inoue surface admits a (unique) flat

torsion-free holomorphic affine connection. Here we prove the following:

Theorem 5.8. Holomorphic geometric structures on Inoue surfaces are lo-

cally homogeneous.

Remark 5.9. Inoue surfaces don’t admit nonconstant meromorphic func-

tions [4].

Proof. Let τ be a holomorphic geometric structure on a Inoue surface S.

Let ∇0 be a flat torsion-free holomorphic affine connection on S. We

prove that the holomorphic rigid geometric structure τ ′ = (τ,∇0) is locally

homogeneous. Since a(S) = 0, theorem 2.1 implies τ ′ is locally homogeneous

on some maximal open dense set S\E, where E is a compact analytic subset

of S of positive codimension.

We want to show that E is empty.

We prove first that, up to a double cover of S, the subset E is a smooth

submanifold in S (this is always true if S is a finite set; but here S might

have components of complex dimension one).

Assume, by contradiction, that E is not a smooth submanifold in S.

Choose p ∈ E a singular point in E. In particular, p is not isolated

in E, but p is isolated among the singular points of E. Since Isloc(τ ′)

preserves E, it has to preserve the set of its singular points and thus it fixes

p. Consequently any local Killing field defined in the neighborhood of p, has

to vanish at p.

Denote by G the Lie algebra of local Killing fields in the neighborhood of

p. Since G acts transitively on an open set, its dimension is at least 2.
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Each element of G preserves ∇ and fixes p. In exponential coordinates

the G-action in the neighborhood of p is linear. This gives an embedding of

G in the Lie algebra of GL(2,C) (the image of the isotropy representation

at p). In particular, G is of dimension ≤ 4.

Suppose first that G is of dimension 2. The corresponding subgroups of

GL(2,C) are conjugated either to the group of diagonal matrices, or to one of

the following subgroups









a b

0 a−1









, with a ∈ C
∗ and b ∈ C,









1 m

0 n









,

with m ∈ C and n ∈ C
∗, or









m′ n′

0 1









, with m′ ∈ C
∗ and n′ ∈ C.

In the first case, the invariant closed subset E lies, in exponential coor-

dinates, in the union of the two eigendirections. In the last two cases, E

locally lies in the invariant line y = 0. In all situations, up to a double cover

of S, the analytic set E is smooth: a contradiction.

We settle now the case where G is of dimension 3 ou 4. Then the image

of G by the isotropy representation in p is conjugated in GL(2,C) to one

of the following subgroups: SL(2,C), GL(2,C) or the group of inversible

upper triangular matrices. But GL(2,C) and SL(2,C) don’t admit invariant

subsets other than p, which will be an isolated point in E: impossible.

In the last situation, E locally coincides, as before, with the unique in-

variant line and it is smooth.

Up to a double cover, E is a holomorphic submanifold in S. If E admits a

component of dimension one, then this component will be a union of closed

curves. But Inoue surfaces contain no curves [33].
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This proves that E is a finite set. Assume, by contradiction, that E is

not empty and consider p ∈ E.

The previous arguments show that the Lie algebra G is isomorphic either

to sl(2,C), or to gl(2,C).

Assume first G = sl(2,C). As before, the local action of G in the neigh-

borhood of p is conjugated to the action of G on TpS which coincides with

the standard linear action of sl(2,C) on C
2. This action has two orbits: the

point p and C
2 \ {p}.

The stabilizer H in SL(2,C) of a non-zero vector x ∈ TpS is conjugated to

the following one-parameter subgroup of SL(2,C):









1 b

0 1









, with b ∈ C.

Observe that the action of G on G/H preserves a nontrivial holomorphic

vector field. The expression of this vector field in linear coordinates (z1, z2)

in the neighborhood of p is z1
∂

∂z1
+ z2

∂

∂z2
.

Since S\E is locally modelled on (G,G/H), this vector field is well defined

on S\E. But, E is of complex codimension 2 in S and the extension theorem

of Hartogs [27] shows that the vector field extends to a global nontrivial

holomorphic vector field X on S. The vector field X is G-invariant on S \E

and hence on all of S. Since the isotropy action of SL(2,C) at p doesn’t

preserve nontrivial vectors in TpS ≃ C
2, it follows that X(p) = 0. This is

impossible, since Inoue surfaces don’t admit singular nontrivial holomorphic

vector fields [33].

The proof is the same in the case G = gl(2,C). �
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Meromorphic affine connections. In the following theorem we describe

some meromorphic affine connections on non-Kaehler principal elliptic bun-

dles over a compact Riemann surface of genus g ≥ 2.

Theorem 5.10. Let S be a principal elliptic bundle over a compact Riemann

surface Σ of genus g ≥ 2, with odd first Betti number.

i) A meromorphic torsion-free affine connection ∇ on S is invariant by

the principal fibration (i.e. the fundamental vector field of the principal

fibration is a Killing field) if and only if the set of its poles intersects only a

finite set of fibers.

ii) The space of those previous connections admitting simple poles on a

single fiber, above a point ξ0 ∈ Σ, is a complex affine space of dimension

5g+1 and its underlying vector space identifies with H0
ξ0
(K2

Σ)×M2
2,ξ0

, where

H0
ξ0
(K2

Σ) is the vector space of meromorphic quadratic differentials on Σ

with a single pole of order at most two at ξ0 and M2,ξ0 is the vector space of

quasimodular forms of weight 2 on Σ with a single simple pole at ξ0.

iii) If ∇ is generic among the meromorphic affine connections which sat-

isfy ii), then the local Killing Lie algebra of ∇ is generated by the funda-

mental vector field of the principal fibration.

iv) The meromorphic affine connections which satisfy ii) are projectively

flat away from the poles.

Recall that a quasimodular form of weight 2 on Σ is a holomorphic func-

tion f defined on the upper half-plane H such that, for some K ∈ C, we

have f(ξ) = f(γξ)(cγξ + dγ)
−2 −K(cγξ + dγ)

−1, for all γ =









aγ bγ

cγ dγ









∈
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SL(2,R) in the fundamental group of Σ [3, 62]. If K = 0, then f is a clas-

sical modular form. Theorem 9 in [3] shows that the space of quasimodular

forms of weight 2 on Σ which admit a simple pole in a single orbit is a

complex vector space of dimension g + 1 (i.e. the quotient of the space of

such quasimodular forms over those which are modular is one-dimensional).

Remark 5.11. The proof below shows that S admits a (flat) holomorphic

affine connection. Theorem 2.1 applies and, since any meromorphic function

on S is a pull-back of a meromorphic function on Σ [4], the orbits of the

pseudogroup of local isometries of any meromorphic geometric structure on

S contain the fibers of S.

Proof. i) The projection of the set of poles of ∇ on Σ is a closed analytic

set which is either a finite set of points, or all of Σ. If this projection is Σ

and ∇ is invariant by the principal fibration, then each point of S is a pole,

which is impossible. This proves the easy sense of the implication.

We will describe now the space of connections ∇, such that only a finite

set of fibers contain poles of ∇. Up to a finite unramified cover and a

finite quotient, S admits holomorphic affine structures (i.e. flat torsion-free

holomorphic affine connections) which can be built in the following way [36]:

Consider Γ a discrete torsion-free subgroup in PSL(2,R) such that Σ =

Γ\H, with H the upper-half plane. Take any holomorphic projective struc-

ture on Σ, its developping map τ : H → P 1(C) and its holonomy morphism

ρ : Γ → PSL(2,C). This embedding of Γ into PSL(2,C) lifts to SL(2,C)

(this follows from the fact that orientable (real) closed 3-manifolds have a

trivial second Stiefel-Whitney class [47]). Choose such a lift and consider Γ
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as a subgroup of SL(2,C). Denote by W = C
2\{0} the C∗-tautological bun-

dle over P 1(C). The canonical affine structure of C2 induces a Γ-invariant

affine structure on W and hence a Γ-invariant holomorphic affine structure

on the pull-back τ∗(W ) ≃ C
∗ ×H. The Γ-action on τ∗(W ) comes from the

action by deck transformation on H and from the ρ-action on W .

The previous holomorphic affine structure on τ∗(W ) is also invariant by

the homotheties in the fibers (which commute with the Γ-action). Consider

now ∆ ≃ Z a lattice in C
∗ which acts by multiplication on the fibers of

τ∗(W ) and take the quotient of τ∗(W ) by ∆×Γ. The quotient is a principal

elliptic bundle over Σ, with fiber ∆\C∗, biholomorphic to S.

The affine structure inherited by the universal cover C × H of S is the

pull-back of the previous affine structure on C
∗ ×H by the map

C×H → C
∗ ×H

(z, ξ) → (ez, ξ).

In the following we will consider the flat torsion-free holomorphic affine

connection ∇0 on S given by the case where τ is the standard embedding

of H into P 1(C). In this case, the action of γ =









a b

c d









∈ Γ ⊂ SL(2,R)

on the universal cover C×H of S is easily seen to be given by [36]:

γ(z, ξ) = (z + log(cξ + d), γξ), ∀(z, ξ) ∈ C×H,

where log is a determination of the logarithm and the γ-action on H comes

from the standard action of SL(2,R) on H.
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The difference ∇−∇0 is a meromorphic (2, 1)-tensor ω on S, or, equiv-

alently, a ∆× Γ-invariant mermorphic (2,1)-tensor ω̃ on the universal cover

C×H. Moreover, ω̃ is invariant by t(z, ξ) = (z + 2iπ, ξ).

Then we have,

ω̃ = f11(z, ξ)dz⊗dz⊗
∂

∂z
+f12(z, ξ)dz⊗dξ⊗

∂

∂z
+f21(z, ξ)dz⊗dz⊗

∂

∂ξ
+f22(z, ξ)dz⊗dξ⊗

∂

∂ξ
+

g11(z, ξ)dξ⊗dz⊗
∂

∂z
+g12(z, ξ)dξ⊗dξ⊗

∂

∂z
+g21(z, ξ)dξ⊗dz⊗

∂

∂ξ
+g22(z, ξ)dξ⊗dξ⊗

∂

∂ξ
,

with fij , gij meromorphic functions on C × H, and fij(·, ξ), gij(·, ξ) holo-

morphic except for ξ lying in the union of a finite number of Γ-orbits in

H.

Notice that the difference between ∇0 and the standard affine structure

of C × H is given by f11 = f22 = g21 = 1, the others fij , gij being trivial

(see the straightforward computation in [36]).

Since ω̃ is ∆-invariant and t-invariant, the functions fij(·, ξ) and gij(·, ξ)

descend on a elliptic curve, for all ξ ∈ H. They are constant for all ξ ∈ H for

which they are holomorphic. It follows that fij(·, ξ) and gij(·, ξ) are constant

for ξ lying in a open dense subset of H and, consequently, for all ξ ∈ H.

It follows that the functions fij and gij depend only on ξ. Consequently,

the flow of ∂
∂z

preserves ω̃. Since the fundamental generator of the principal

fibration ∂
∂z

preserves also ∇0, it is a Killing field for ∇.

ii) In the following we consider only torsion-free connections: f12 = g11

and f22 = g21.

The Γ-invariance of ω̃ yields the following equations:
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(1)f11(ξ) = f11(γξ)− cf21(γξ)(cξ + d)

(2)f12(ξ) = f12(γξ)(cξ+d)−2−2c2f21(γξ)−cf22(γξ)(cξ+d)−1+2cf11(γξ)(cξ+

d)−1

(3)f21(ξ) = f21(γξ)(cξ + d)2

(4)f22(ξ) = 2f21(γξ)c(cξ + d) + f22(γξ)

(5)g12(ξ) = g12(γξ)(cξ+d)−4+ c2f11(γξ)(cξ+d)−2+ cf12(γξ)(cξ+d)−3−

c3f21(γξ)(cξ + d)−1 − c2f22(γξ)(cξ + d)−2 − cg22(γξ)(cξ + d)−3

(6)g22(ξ) = g22(γξ)(cξ + d)−2 + cf22(γξ)(cξ + d)−1 + c2f21(γξ),

for all γ =









a b

c d









∈ Γ.

The equation (3) implies that f21 is a meromorphic vector field on the

compact Riemann surface Σ. Since a single pole of order at most one is

allowed, we get f21 = 0 as a direct consequence of Riemann-Roch theorem

and Serre duality [27] (page 245).

The equations (1) and (4) imply then that f11 and f22 are meromorphic

functions on Σ with a single pole of order at most one. If f11, f22 are not

constant, they give a biholomorphism between Σ and the projective line

P 1(C) [27]: a contradiction, since the genus of Σ is ≥ 2.
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We conclude that f11 and f22 are constants.

Then we have :

(2′)f12(ξ) = f12(γξ)(cξ + d)−2 − cf22(cξ + d)−1 + 2cf11(cξ + d)−1

(5′)g12(ξ) = g12(γξ)(cξ+d)−4+c2(f11−f22)(cξ+d)−2+c(f12−g22)(γξ)(cξ+

d)−3

(6′)g22(ξ) = g22(γξ)(cξ + d)−2 + cf22(cξ + d)−1.

It follows from (2′) and (6′) that f12 and g22 are quasimodular forms of

weight two on Σ with a single simple pole. The space of those quasimodular

forms is a complex vector space of dimension g + 1 (see [3], theorem 9).

Equation (5′) is equivalent to the Γ-invariance of the quadratic differential

w(ξ)dξ2, where w = 2g12 + f ′

12 − g′22. It follows that 2g12 + f ′

12 − g′22 is a

meromorphic quadratic differential on Σ with a single pole of order at most

two.

It is classicaly known (as an application of Riemann-Roch theorem and

Serre duality) that the space of quadratic differentials with a single pole of

order at most 2 is of complex dimension 3g − 1 (see, for example, [27]).

iii) Let X = a(z, ξ) ∂
∂z

+ b(z, ξ) ∂
∂ξ

be a local holomorphic Killing field of a

generic connection∇, in the neighborhood of a point where∇ is holomorphic

(a and b are holomorphic local functions on C×H).
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The equation of the Killing field is

[X,∇Y Z] = ∇[X,Y ]Z +∇Y [X,Z],

for all Y, Z tangents to S. It is enough to verify the equation for (Y, Z)

corresponding to ( ∂
∂z
, ∂
∂ξ
), ( ∂

∂z
, ∂
∂z
) et ( ∂

∂ξ
, ∂
∂ξ
).

This lieds to the following PDE system:

(1) azz + (1 + f11)az + 2f12bz = 0

(2) bzz + (1 + 2f22 − f11)bz = 0

(3) azξ + (f11 − f22)aξ + g12bz + g11bξ +
∂f12
∂ξ

b = 0

(4) bzξ + (1 + f22)az + (g22 − f12)bz = 0

(5) aξξ − g12az + (2f12 − g12)aξ + 2g12bξ +
∂g12
∂ξ

b = 0

(6) bξξ + 2(1 + f22)aξ − g12bz + g22bξ +
∂g22
∂ξ

b = 0.

The general solution of the first equation is b = ν(ξ)e−µz + C(ξ), with

ν, C holomorphic functions of ξ and µ = 1 + 2f22 − f11.

We replace bz in the first equation and we get

az =
µ

f11 − f22
f12(ξ)ν(ξ)e

−µz +A(ξ)e−(1+f11)z,

with A a holomorphic function of ξ.

Then equation (4) lieds to

µ[−ν ′(ξ) + (
1 + f11
f11 − f22

f12 − g22)ν(ξ)]e
−µz + (1 + f22)A(ξ)e−(1+f11)z = 0.
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For a generic ∇, we have f11 6= f22, thus µ 6= 1 + f11 and the functions

e−µz, e−(1+f11)z are C-linearly independent. This implies (1 + f22)A(ξ) = 0

and, since for a generic ∇, f22 6= −1, we have A(ξ) = 0.

We also get

(I) ν ′(ξ) = ν(ξ)(
1 + f11
f11 − f22

f12 − g22).

Now we check equation (3). We replace the partial derivatives of a and b

in (3) and we get the following

µ[
f12

f11 − f22
ν ′(ξ)− (g12 −

f ′

12

f11 − f22
)ν(ξ)]e−µz + (f12C)′ = 0.

Since generically µ 6= 0, the functions e−µz and 1 are linearly independent,

which yields to (f12C)′ = 0 and to

(II) ν ′(ξ) = ν(ξ)
1

f12
[(f11 − f22)g12 − f ′

12].

Relations (I) et (II) are compatible, for a generic connection, only if

ν = 0. This implies b = C(ξ), a = B(ξ).

Our PDE system becomes:

(3′) (f11 − g21)a
′ + f ′

12b+ f12b
′ = 0

(5′) a′′ + (2f12 − g12)a
′ + 2g12b

′ − g′12b = 0

(6′) b′′ + 2(1 + 2g21)a
′ + g22b

′ + g′22b = 0.

Since (f12b)
′ = 0, we have a′ = 0 and thus a is a constant function.

Equation (5′) implies then 2g12b
′ − g′12b = 0, which, for a generic ∇, is

compatible with f12b
′ + f ′

12b = 0 only if b = 0.
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It follows that X is a constant multiple of ∂
∂z
.

iv) The projective connection associated to the affine connection ∇ is

given by the following second order ODE [14]:

ξ′′ = K0(z, ξ) +K1(z, ξ)ξ′ +K2(z, ξ)(ξ′)2 +K3(z, ξ)(ξ′)3,

where K0 = −f21 = 0, K1 = (1 + f11) − 2(1 + f22), K
2 = −(g22 − 2f12) et

K3 = g12 (see [14]).

Liouville [42], followed by Tresse [56] and Cartan [14], proved that this

projective connection is projectively flat if and only if both of the following

invariants vanish:

L1 = 2K1
zξ−K2

zz−3K0
ξξ−6K0K3

z−3K3K0
z+3K0K2

ξ+3K2K0
ξ+K1K2

z−2K1K1
ξ ,

L2 = 2K2
zξ−K1

ξξ−3K3
zz+6K3K0

ξ+3K0K3
ξ−3K3K1

z−3K1K3
z−K2K1

ξ+2K2K2
z .

Here K0 = 0, K1 is a constant function and K2,K3 depend only of ξ.

This implies the vanishing of both invariants L1 and L2. �

I would like to thank G. Chenevier and G. Dloussky for helpful conversa-

tions.
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Publ. Math. I.H.E.S., 76, (1992), 99-109.

[9] J. Benveniste, D. Fisher, Nonexistence of invariant rigid structures and invariant

almost rigid structures, Comm. Anal. Geom., 13(1), (2005), 89-111.

[10] I. Biswas, B. McKay, Holomorphic Cartan geometries and Calabi-Yau manifolds,

Arxiv.

[11] F. Campana, J-P. Demailly, T. Peternell , The algebraic dimension of compact

complex threefolds with vanishing second Betti number, Compositio Math., 112(1)

(1998) 77-91.

[12] A. Candel, R. Quiroga-Barranco, Gromov’s centralizer theorem, Geom. Dedicata

100, (2003), 123-155.

[13] Y. Carrière, Autour de la conjecture de L. Markus sur les variétés affines, Invent.

Math., 95, (1989), 615-628.
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MEROMORPHIC GEOMETRIC STRUCTURES 43

[63] A. Zeghib, On Gromov’s theory of rigid transformation groups: a dual approach,

Ergodic Th. Dyn. Syst., 20(3), (2000), 935-946.

[64] R. Zimmer, On the automorphism group of a compact Lorentz manifold and other

geometric manifolds, Invent. Math., 83, (1986), 411-426.

[65] R. Zimmer, Actions of semisimple groups and discrete subgroups, Proc. Internat.

Cong. Math., Berkeley, (1986), 1247-1258.

[66] R. Zimmer, Automorphisms groups of geometric manifolds, Proc. Symp. Pure

Math., 54(3), (1993), 693-710.

[67] R. Zimmer, Ergodic theory and semisimple Lie groups, Birkhaüser, (1984), Boston.
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