
HAL Id: hal-00935748
https://hal.science/hal-00935748

Submitted on 24 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modular and Distributed Verification of SysML Activity
Diagrams

Messaoud Rahim, Ahmed Hammad, Malika Ioualalen

To cite this version:
Messaoud Rahim, Ahmed Hammad, Malika Ioualalen. Modular and Distributed Verification of SysML
Activity Diagrams. MODELSWARD 2013, 1st Int. Conf. on Model-Driven Engineering and Software
Development, Jan 2013, Spain. pp.202 - 205. �hal-00935748�

https://hal.science/hal-00935748
https://hal.archives-ouvertes.fr


Modular and Distributed Verification of SysML Activity Diagrams

Messaoud Rahim1, Ahmed Hammad2 and Malika Ioualalen3

1Sciences and Technology Faculty, Yahia Fares University, Medea, Algeria
2Institut FEMTO-ST , UMR CNRS 6174, Besancon, France

3LSI, Computer Science department, USTHB, Algiers, Algeria

{rahim mes@yahoo.fr, ahmed.hammad@femto-st.fr, mioualalen@usthb.dz}

Keywords: SysML, Activity diagram, Places bordered Petri nets, Distributed Model-Checking.

Abstract: Model-based development for complex system design has been used to support the increase of systems com-

plexity. SysML is a modeling language that allows a system description with various integrated diagrams, but

SysML lacks formality for the requirement verification. Translating SysML-based specification into Petri nets

allows to enable rigorous system analysis. However, for complex systems, we have to deal with the state space

explosion problem. In this paper, we propose new approach to allow a modular and distributed verification of

SysML Activity Diagram basing on the derived Petri net.

1 Introduction

The System Modeling Language (SysML) is

UML profile that can be used to specify graphically

all aspects of complex systems(Friedenthal et al.,

2008). Nevertheless, despite the various advantages

of SysML, it remains a semi-formal language with-

out possibilities of formally verifying the models

described by it.

Industrial safety-related standards strongly recom-

mend the use of formal methods to validate critical

systems. For that purposes, it is needed to use

SysML in conjunction with formal method to provide

formal verification of the specified system. Several

approaches based on mapping SysML behavioural

diagrams to Petri nets have been proposed (Carneiro

et al., 2008; Andrade et al., 2009; Linhares et al.,

2007). The aim of these approaches was to provide

a way to verify the specified system with a Model

checking technique. However, in the case of complex

systems, we have to deal with the state space explo-

sion problem to analyse the resulting Petri net. A

way to overcome the state space explosion is the use

of modular analysis. Another way that had gained

interest, in the recent years is the use of distributed

processing (Kristensen and Petrucci, 2004; Saad

et al., 2010; Barnat and Rockai, 2008).

In this paper, we propose a global approach for

performing a modular and distributed verification of

the SysML activity diagram. Basing on composite

activities, we derive places-bordered Petri net module

for each activity. The verification of the system can

concern only one simple activity or the global SysML

activity diagram. For the second case, and in order

to deal with the state space explosion problem, we

propose to adapt the distributed verification process

using a cluster of computing nodes(Boukala and

Petrucci, 2011; Abid and Zouari, 2007) for verifying

the derived modular Petri net. For mapping a SysML

activity diagram into places-bordered Petri net, we

propose a translation rule for the call behavior action.

The translation of the other basic SysML activity

constructs is inspired from previous works.

The rest of this paper is organized as follows: in

Section 2, we discuss related works. In Section 3,

we present the SysML activity diagram. In Section

4, we give a definitions of places bordered Petri net.

In section 5, we present the mapping technique. We

present the modular and distributed verification pro-

cess in Section 6. Finally, in Section 7, we conclude

and we outline some ideas for future works.

2 Related Works

The most proposed approaches concerning the

formal specification of SysML diagrams have used

Petri net models due to their expressiveness and for-

mality (Linhares et al., 2007; Carneiro et al., 2008;

Andrade et al., 2009). To our knowledges, this work

is the first that considers the composite structure of the



SysML activity diagram for a verification purposes.

The composite and modular verification approaches

aim to take benefit from some information about the

components of the system and the way they communi-

cate. Modular Petri nets as presented in (Christensen

and Petrucci, 2000) allow designers to specify a sys-

tem as communicating modules. Modules commu-

nicate using shared transitions or fusion places. The

work presented in (Valmari, 1994) proposes a com-

positional verification method for Petri net composed

of place bordered subnets. The verification approach

used in this work is based on Model checking tech-

nique. However, for complex system, we have to

overcome the state space explosion problem. Sev-

eral recent approaches use distributed processing en-

vironments to extend the size of the state space to be

constructed(Boukala and Petrucci, 2011). This work

proposes to adapt these approaches combined with a

modular analysis to verify a SysML activity diagrams.

3 The SysML Activity diagram

In SysML(?), an activity is a formalism for de-

scribing behaviour that specifies the transformation

of inputs to outputs through a controlled sequence of

actions. The basic constructs of an activity are ac-

tions and control nodes as illustrated in Figure 1. Ac-

tions are the building blocks of activities, each ac-

tion can accept inputs and produces outputs, called

tokens. These tokens can correspond to anything that

flows such as information or physical item (e.g., wa-

ter, signal). Control nodes include fork, join, decision,

Figure 1: Activity diagram basic constructs

merge, initial, activity final, and flow final. A call

behavior action permits to invoke an activity when it

starts, and passes the tokens from its input pins to the

input parameter nodes of the invoked activity.

4 Places-bordered Petri nets

Formally a Petri net is (Valmari, 1994):

Definition 1. A Petri net is triplet: PN = (P,T,W ).
Where: P is finite set of places, T is finite set of tran-

sitions, (P∩T = /0) and W : (PXT )∪ (T XP)→ N is

a weight function, W (p, t) (resp. W (t, p)) gives the

weight of the arc from p to t (resp. from t to p).

Usually, an initial marking is associated with the

Petri net:

Definition 2. A marked Petri net (PN,M0), is a Petri

net PN with an initial marking M0 : P→N. The initial

marking of a place p ∈ P is M0(p).

To compose a large Petri net from smaller pieces,

we define a places-bordered Petri (Valmari, 1994). A

places-bordered Petri net modules interface with each

other via common places, called border places.

Definition 3. A places-bordered Petri net module is

the 4-tuple NC = (P,T,W,B). where : P, T , and W

are as in a Petri net, B ⊆ P is the set of border places.

5 The mapping technique

Basing on the previous works that propose a map-

ping of UML and SysML activity diagram to Petri

nets (N. Yang and Qian, 2010; Andrade et al., 2009;

Staines, 2008), our technique defines a mapping for

the call behavior actions and propose to map the

SysML activity diagram to modular Petri net with

border places. The mapping we propose is activity

based decomposition. The decomposition is guided

by the call behavior actions which permits to facili-

tate the mapping of a SysML activity diagram even

it includes several composite activities. The Petri net

derived from the SysML activity diagram is a set of

places-bordered Petri net modules, each one repre-

sents an activity instance.

5.1 Mapping initial and final nodes

Initial node represents the start point of an activity.

As illustrated in figure 2, to map the initial node, we

use one transition (t in Act) with one input place and

two output places. The input place (en Act) is used to

enable the execution of the activity. The first output

place (on Act) is used to indicate that we are execut-

ing the activity and the second output place (Ctl out)
is used to represent the control flow.

Activity final represents the end point of an activity.

As illustrated in figure2, to map final node, we use

one transition (t out Act) with two input places and

one output place. The first input place (on Act) rep-

resents that we are executing the activity and the sec-

ond input place (Ctl in) represents the output flow

enabling the termination of the activity. The output

place (end Act) is used to indicate that the activity is

terminated.



Figure 2: Mapping initial and final activity node

5.2 Mapping actions and object flows

As illustrated in the figure 3, for mapping an ac-

tion with control and data flow into Petri net, places

are used to represent the input and the output flows

(in A,Ctl in A,out A,Ctl out A,) and one transition

(Exec A) is used to represent the action.

For mapping an object flow that connects output pin

of one action A to the input pin of another action B,

we fusion the place (Out A) that represents the out-

put pin of the action A with the place (In B) which

represents the input pin of the action B.

Figure 3: Mapping simple action and Object flows between
actions

5.3 Mapping routing object flows

For mapping a fork node 4 we use a transition

t A f ork that represents the split operation with out A

as input place and in B with in C as output places. For

mapping a join node 4 we use a transition t AB join

that represents the synchronisation between out A and

out B as input places and in C as output place.

Figure 4: Mapping join and fork nodes

5.4 Mapping call behavior action

To map A call behavior action we consider that the

invoked activity is already mapped into places bor-

dered Petri net module. As presented in Figure 5,

the mapping of a call behavior action A that in-

vokes an activity Act with one input and one output

flow is places bordered Petri net module which has

in act,en Act,out Act and end Act as border places

with the Petri net module that represents the calling

activity. The transition t Abact is used to pass all in-

put flows of the call behavior action to the invoked

activity and to enable its execution. When the called

activity terminates, we use the transition t Aeact to

pass all output flows of the invoked activity to the call

behavior action.

Figure 5: Mapping call behavior action

6 The modular and distributed

verification process

As described in the mapping technique, the result-

ing Petri net is set of place bordered Petri net mod-

ules. Modular verification is enabled by the fact that

each Petri net module specifies the behavior of an ac-

tivity. A simple activity can be verified by using only

its related Petri net module. For verifying a compos-

ite activity we have to use its related Petri net mod-

ule and all the Petri net modules corresponding to

their call behavior actions. A modular and distributed

verification can be used to perform the analysis of a

complex composite activities. The main step in the

model-checking is the construction of the state space.

In order to construct the state space of the Petri net

derived from the SysML activity diagram we decom-

pose the state space construction problem into a num-

ber of distributed tasks. The decomposition is guided

by the SysML activities. The approach we propose

is parallel objects based (Kale and Zheng, 2009). For

constructing the state space, we use one main task to

initialize the state space construction process, and a

set of parallel tasks which we call activity tasks to ex-

plore and store the state space. Activity tasks are used

to encode a place bordered Petri net modules. Each

Petri net module is assigned to an activity task which

explores independently the internal states of the mod-

ule. Activity tasks encapsulate informations about

transitions and border places. They perform the ex-

ploration of a given state, the storing of internal suc-

cessors state, seek for previously explored states and

invoke the storing of external states.

Each activity task encapsulates a hash table that is

used to store a fragments of the state space. From a

logical point of view, we consider all the processing

nodes as a unique computing node. The activity tasks

are viewed as an arrays of parallel Tasks. Physically,

all the tasks are mapped over the physical nodes. The

mapping is done when we create the tasks. The Figure

6 presents an example using four (4) computing nodes



to illustrate the logical and the physical architecture of

the distributed application.

Figure 6: Logical and physical view of the application ar-
chitecture

The state space is the basic model on which most

verifications are built. The constructed state space is

modular. It can be used to verify behavioural proper-

ties in the hole activity diagram or just on some ac-

tivities. The properties to verify can be basic such

as reachability, deadlocks, liveness and home state.

We can adopt the approach presented in (Boukala and

Petrucci, 2011) to verify such properties in the dis-

tributed and modular state space. Functional prop-

erties have to be extracted and translated from the

SysML requirements diagram to temporal logic such

as LTL and CTL. Various works have been proposed

to verify LTL and CTL formulas in distributed and

modular state space (Christensen and Petrucci, 2000;

Latvala and Makela, 2004).

7 Conclusion

The paper presents a modular and distributed veri-
fication approach for formally verifying complex sys-
tems described by SysML activity diagrams. A tech-
nique for mapping the SysML activities to Petri net
have been proposed. The mapping is guided by the
call behavior actions. The modular verification is
enabled by analysing each activity using its related
Petri net module. For enabling the verification of
complex and composite activities a modular and dis-
tributed verification technique have been proposed to
overcome the state space explosion problem. As fu-
ture works, it is important to consider the process of
extracting properties as temporal logic formulas from
the SysML requirement diagram to complete the ap-
proach presented in this paper.

REFERENCES

Abid, C. A. and Zouari, B. (2007). A distributed verification
approach for modular petri nets. In on Proceedings
of the 2007 summer computer simulation conference,
pages 681–690.

Andrade, E., Macie, P., Callou, G., and Nogueira, B. (2009).
A methodology for mapping sysml activity diagram to

time petri net for requirement validation of embedded
real-time systems with energy constraints. In Third In-
ternational Conference on Digital Society, ICDS’09,
pages 266–271.

Barnat, J. and Rockai, P. (2008). Shared hash tables in par-
allel model checking. In Electronic Notes in Theoret-
ical Computer Science 198(1), proceedings of the 6th
International Workshop on PDMC 2007.

Boukala, M. and Petrucci, L. (2011). Distributed verifica-
tion of modular systems. In in Proceedings of Com-
poNet and SUMo.

Carneiro, E., Maciel, E., Callou, P., and Tavares, G. (2008).
Mapping sysml state machine diagram to time petri
net for analysis and verification of embedded real-
time systems with energy constraints. In International
Conference On Advances in Electronics and Micro-
electronics ENICS ’08, pages 1–6.

Christensen, S. and Petrucci, L. (2000). Modular analysis
of petri nets. In The Computer Distributed Verification
of Modular Systems Journal 43, pages 224–242.

Friedenthal, S., Moore, A., and Steiner, R. (2008). Omg
systems modeling language (omg sysml) tutorial. In
Published and used by INCOSE.

Kale, L. V. and Zheng, G. (2009). Charm++ and ampi:
Adaptive runtime strategies via migratable objects.
In In M. Parashar, editor, Advanced Computational
Infrastructures for Parallel and Distributed Applica-
tions, page 265282. Wiley-Interscience.

Kristensen, S. and Petrucci, L. (2004). An approach to dis-
tributed state space exploration for coloured petri nets.
In In Proc. 25th Int. Conf. Application and Theory of
Petri Nets (ICATPN2004), Bologna, Italy, pages 474–
483.

Latvala, T. and Makela, M. (2004). Ltl model checking for
modular petri nets. In In in proc. of ICATPN’04, pages
298–311.

Linhares, M.-V., de Oliveira, R.-S., Farines, J.-M., and Ver-
nadat, F. (2007). Introducing the modeling and ver-
ification process in sysml. In 12th IEEE Int. Conf.
on Emerging Technologies and Factory Automation,
ETFA’2007, pages 344–351.

N. Yang, H. Yu, H. S. and Qian, Z. (2010). Mapping uml
activity diagrams to analyzable petri net models. In
Proc. of the 2010 10th Int. Conf. on Quality Software,
IEEE, Zhangjiajie, pages 369–372.

Saad, R., Zilio, S., and Berthomieu, B. (2010). A general
lockfree algorithm for parallel state space construc-
tion. In proceedings of the 9th International Workshop
on Parallel and Distributed Methods in verifiCation,
pages 8–16.

Staines, T. S. (2008). Intuitive mapping of uml 2 activ-
ity diagrams into fundamental modeling concept petri
net diagrams and colored petri nets. In 15th Annual
IEEE International Conference and Workshop on the
Engineering of Computer Based Systems, ECBS 2008,
pages 191–200.

Valmari, A. (1994). Compositional analysis with place-
bordered subnets. In Proceedings of the 15th Interna-
tional Conference on Application and Theory of Petri
Nets, pages 531–547.


