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Abstract
Let P 2Z[X; Y ] be a square free polynomial and C(P ) := f(�; �)2R2; P (�; �) = 0g be the
real algebraic curve de�ned by P . We give a deterministic algorithm for the computation
of the topology of C(P ) i:e a straight-line planar graph isotopic to C(P ). Our main result
is the computation of the local topology in a neighbourhood of each of the singular and
critical points of the projection wrt the X axis inO~(d6�) bit operations where O~ means that
we ignore logarithmic factors in d and � . Combined to state of the art sub-algorithms used
for computing a Cylindrical Algebraic Decomposition, this result avoids a generic shear and
gives a deterministic algorithm for the computation of the topology of C(P ) in O~(d6� + d7)

bit operations.

1 Introduction
Problem description and related works. Let P 2Z[X;Y ] be a square free polynomial of total
degree d and integer coe�cients of bitsize bounded by � and C(P ) := f(x; y)2R2; P (x; y)=0g be
the real algebraic curve de�ned by P . We address the problem of computing the topology of the
curve C(P ) i.e a straight-line planar graph isotopic to C(P ).

Computing the topology of a real algebraic curve is a classical problem in algorithmic real
algebraic geometry and plays an important role in many applications in Computer Aided Geometric
Design. It is extensively studied in the context of symbolic computation. Most papers are based
on some variant of Cylindrical Decomposition : decompose the X-axis into a �nite number of open
intervals and points above which the curve has a cylindrical structure. Supposing that there are
no vertical asymptotes of vertical lines inside the curve, the special values which are the critical
values of the projection onto X and the projections of the singular points de�ne the special �bers
i.e. the points of the curves above these special values. Taking additional points between two such
projections of singular points de�nes some regular �bers as well as a partition of the line (with
intervals bounded by the projections of the special and regular �bers).

Computing a straight-line planar graph isotopic to C(P ) then consists essentially in connecting
the points of a regular �ber to the points of the next (special) �ber (assuming that the �bers are
ordered wrt their projection on the real X axis).

This operation requires :

� computing the special and regular �bers;

� computing the number of branches of the curve that go to each of the points of the special
�ber.

The regular �bers can e�ciently be obtained by computing the real roots of univariate polynomials
with real algebraic coe�cients which are square free so that the main di�culty is the computation
of the special �bers, which is to compute the real roots of univariate polynomials with real algebraic
coe�cients which are not square free. This last problem is e�ciently solved in [MSW2] in O(d5� +
d6) expected bit operations, and O(d6� + d7) bit operations in the worst case (by simply replacing
the expected complexity of the gcd computation of two polynomials by the worst case one - see
[GG].
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The method used for computing the number of half branches of the curve going to a special point
plays a key role in the algorithm. A usual strategy, introduced in [GE1] (see [BPR],[GI],[EKW],
[DMR], [MSW2]), consists in putting the curve in so call generic position, so that each special
�ber contains at most one special point (critical or singular), and identifying this point among the
points of the special �ber. Having a unique special point per special �ber makes it possible to
deduce the number of branches passing through this point instead of computing it explicitly. An
e�cient variant of this strategy can be found in with an expected complexity in O(d5� + d6) bit
operations, the probabilistic behavior being due to some gcd computations and to the choice of
a direction that separate the special points, which is done at random. This approach spoils the
study of the complexity in the worst case by a factor up to O(d4) (the maximum number of non
separating directions) as in [GE1].

Our results.
We combine new results on the computation of the local topology of the curve in an isolating

box of each of its special points (in a sense to be made precise later in the paper) with e�cient
sub-algorithms used for computing Cylindrical Algebraic Decompositions from [MSW2], mainly
the algorithm for isolating and re�ning the roots on univariate polynomials with approximate
coe�cients knowing the number of distinct complex roots and its application to the isolation of
the roots of P (�; Y ), where � is a root of the resultant of P and @XP . We essentially obtain two
new results:

� The �rst one (Theorem 33) is a lower bound to measure the deviation of the curve from
its tangent at a special point. This bound plays a key role in the complexity analysis of
the computation of the local topology of C(P ) inside its special boxes since it permits us
to control the sizes of such isolating special boxes. This result is of independent interest
and could be used outside the present paper, for example to decrease the complexity of the
algorithm from [CLPPRT].

� The second one is an algorithm for reconstructing the local topology of the curve inside
each special box by connecting its boundary points (see subsection 3.4). We build such an
algorithm by examining closely the relative position of the boundary points of the special
box with the special point and by using the signs of the slopes of the tangent lines of C(P )
at the intersection points of C(P ) with the horizontal boundaries of the special box.

We give a deterministic algorithm for the computation of the topology of C(P ) and analyze its bit
complexity. For a square free polynomial P 2Z[X;Y ] of total degree d and integer coe�cients of
bitsize bounded by � , we show that a straight-line planar graph isotopic to C(P ) can be computed
with O~(d6� + d7) bit operations using a deterministic algorithm . Our algorithm does not require
to put the curve in generic position.

Sketch of our algorithm for topology computation. We suppose that the planar algebraic
curve C(P ) is de�ned by a square-free bivariate polynomial P 2 Z[X; Y ], of degree d and bitsize
bounded by � .

1. Reduce to the case where the curve does not contain vertical or horizontal lines or vertical
asymptotes by a linear change of variable. The cost is O~(d3� + d4) bit operations.

2. Perform the Cylindrical Algebraic Decomposition of the curve with the following steps

i. compute

D(X)=ResY (P ; @XP@YP )(X); (1)

ii. isolate the real roots of D,

iii. above each real zero of D, determine the number of complex points of the special
�bers de�ned by D(X) =P (X;Y ) = 0

iv. isolate the real roots of the special �bers and de�ne special boxes containing only a
special point,

v. count the number of intersections of the curve with the vertical boundaries of these
special boxes.
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3. Test whether the curve is in generic position. If so, we combine the results from [MSW2]
for computing the local topology at the singular and critical points and use the classical
connection from [GE1] to compute the topology.

4. Otherwise, if the curve is not in generic position, we avoid the usual technique which is
to enter in a loop calling the same algorithm after changing the direction of projection.
We examine closely the situation at the boundary of a special box of the form [a; b]� [c; d]
containing a unique special point (�; 
), and compute the topology of the curve inside the
box with the following steps :

i. isolate the roots on the horizontal sides on the box. The cost is O~(d6�) bit operations.

ii. evaluate the sign of @XP@YP at these points. The cost is O~(d6�) bit operations.

iii. decide how many roots of P (X; c) are before and after � on the horizontal sides of
the box, and similarly for P (X; d). The cost is O~(d6�) bit operations.

iv. use a connection algorithm reconstituting the topology of the curve from the informa-
tion available on the boundary of the special boxes. The cost is O(d4) bit operations.

Before going through the detailed description and complexity analysis of each step of our algorithm
in Section 3, we recall some de�nitions and basic complexity results which will be useful along this
paper in Section 2, then analyze in details how far the curve deviates from its tangent at a special
point in Section 3, since this plays a key role in the complexity analysis of the computation of the
local topology of C(P ) inside its special boxes in Section 3.

2 Basic de�nitions and complexity results

2.1 De�nitions
Let P 2 Z[X; Y ] be a square-free polynomial and C(P ) = f(x; y) 2 R2: P (x; y) = 0g be the real
algebraic curve de�ned by P .

De�nition 1. [X-critical, Y-critical, Singular points and Regular points.] A point (�; 
) 2 C(P )
is called:

� a X-critical point if @YP (�; 
) = 0 and @XP (�; 
)=/ 0,

� a Y-critical point if @XP (�; 
)= 0 and @YP (�; 
)=/ 0,

� a singular point if @XP (�; 
) =@YP (�; 
)= 0,

� a regular point if @XP (�; 
)=/ 0 and @YP (�; 
) =/ 0.

De�nition 2. [Critical point.] A point (�; 
)2C(P ) is a critical point of C(P ) if it is a X-critical or
a Y-critical or a singular point of C(P ). We denote by Crit(C(P )) the set of critical points of C(P ).

De�nition 3. [Special �ber.] Let P 2Z[X; Y ] be a square-free polynomial and �2R. We call �-
�ber the set

f(�; 
)2R2; P (�; 
) = 0g:

A special �ber is an �-�ber for a real root � of D (see Eq ( 1)).
The set

SpeFib(C(P )) := f(�; 
)2R2; D(�)=P (�; 
)= 0g (2)

is the union of the special �bers.

De�nition 4. [Generic position.] Let �2C and Crit(�) :=#f� 2Cj (�; �)2Crit(C(P ))g. C(P )
is in generic position if :

1. 8�2C;Crit(�)6 1,
2. There is no asymptotic direction of C(P ) parallel to the Y-axis.

Basic definitions and complexity results 3



2.2 Quantitative results
In our complexity analysis we are going to use some quantitative results on the geometry of the
roots. The following result is straightforward.

Proposition 5. If f(X;Y )2Z[X;Y ] has coe�cients of bitsize � and (�; 
)2C2,

jf(�; 
)j6 (degX (f)+ 1) (degY (f)+ 1) 2 �max (1; j�j)degX(f)max (1; j
 j)degY (f):

Notation 6. We consider a univariate polynomial

f = cpX
p+ ���+ cqX

q; p > q; cq cp=/ 0;

with coe�cients in R. We denote

C(f) =
X

q�i�p

���� cicp
����;

c(f) = jcq j
 X
q�i�p

jcij
!¡1

:

Proposition 7. [Cauchy bound][ BPR]
a) The absolute value of any root of f in C is smaller than C(f).
b) The absolute value of any non-zero root of f in C is bigger than c(f).

Proposition 8. [ BPR] Let P be a univariate polynomials of degree p and coe�cients of bitsize
bounded by � and Q of degree q dividing P. Then the coe�cients of Q are of bitsize bounded
q+ � + log (p+1).

De�nition 9. Let f be a univariate polynomial with real coe�cients. We denote by

Zer(f) = fx2Rj f(x) = 0g;
ZerC(f) = fx2Cj f(x)= 0g

ZerCnR(f) = fx2C nRj f(x) = 0g

¡(f) = logmax
�
1; max

ZerC(f)
jy j
�
;

sep(f ; y) = min
z2ZerC(f);z=y

jz¡ y j;

�(f) = ¡
X

ZerC(f)

log sep(f ; y):

Proposition 10. [ BPR] If f is a univariate polynomial of degree d and bitsize at most �

¡(f) =O~(�) ;

�(f)=O~(d �):

Theorem 11. [ KS] Denoting by � the number of real roots of D, and Zer(D)= f�1< ::: <��g,X
i=1

�

¡(P (�i;¡))=O(d2�);

X
i=1

�

�(P (�i;¡))=O(d3�):

2.3 Algorithmic results
Hereafter we recall some complexity results which will be used in the complexity analysis of our
algorithms.
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Proposition 12. [ GG] Let P12K[X] of degree d1 and P22K[X ] of degree d2<d1. The euclidean
division of P1 by P2 can be computed in O~(d1 ) arithmetic operations in K

Proposition 13. [ GG] Let P1 2 Z[X ] of degree d1 with coe�cients of bitsize bounded by � and
P22Z[X] of degree d2<d1.

a) Performing the euclidean division of P1 by P2 has a bit complexity O~(d1 (d1¡ d2) �).
b) Deciding whether P2 divides P1 has a bit complexity of O~(d1(� + d1)).

The de�nition of the subresultant polynomials can be found, for example, in [BPR]. The last
nonzero subresultant polynomial is a a gcd of the input polynomials.

Proposition 14. [Subresultant Computation][ BPR][ GG] Let P 2 K[X] of degree p 6 d and
Q2K[X ] of degree q < p.

The subresultant coe�cients of P and Q and a gcd of P and Q can be computed in O(d)
arithmetic operations in K.

Proposition 15. [Bivariate Subresultant Computation][ BPR][ GG] Let P 2 Z[Y ][X ] of degree
p6 d and Q2Z[Y ][X ] a bivariate polynomial of degree q < p, both of bitsize �.

The subresultant coe�cients of P and Q can be computed in O~(d) arithmetic operations between
univariate polynomials of degree O(d2) and of bitsize O(d�), so with a bit complexity O~(d4�). The
bitsize of the output is O(d4�).

The subresultant polynomials of P and Q can be computed in O(d2) arithmetic operations
between univariate polynomials of degree O(d2) and of bitsize O(d�), so with a bit complexity
O~(d5�). The bitsize of the output is O(d5�).

Proposition 16. [Univariate gcd Computation][ B][ GG] Let P ; G 2Z[X ] be two polynomials of
degree bounded by d and coe�cients of bitsize bounded by �. Computing their gcd has an expected
bit complexity of O~(d (� + d)) and a deterministic bit complexity of O~(d2�).

Proposition 17. [Univariate Polynomial Evaluation][ BZ] Let f 2Z[X] be a polynomial of degree
d with coe�cients of bitsize bounded by � and r a rational number of bitsize �(r). The evaluation
of f at r can be perform in O~(d(� +�(r))) and the bitsize of the output f(r) is O~(� + d �(r)).

Proposition 18. [Root Isolation and Root Re�nement][MSW1] Let f 2 Z[X ] be a square-free
polynomial of degree d with coe�cients of bitsize bounded by �.

One can compute isolating intervals for the real roots of f using O~(d2� +d3) bit operations and
the bitsize of the endpoints of the isolating intervals sums up to O~(d � ). Moreover, we can compute
isolating intervals of all the roots of f of width 2¡L using no more than O~(d2 � + d3 + d L) bit
operations.

3 Computation of the topology of C(P )

3.1 Getting rid of vertical lines and vertical asymptotes
In order to avoid unneeded complications in the description of our algorithms, we ensure that the
curve admits no vertical asymptotes and no horizontal or vertical lines. So, we give the complexity
of shearing the curve so that this condition is ful�lled.

Lemma 19. [ BLPR] We compute C
¡
P~
�
, a shear of C(P ) without vertical lines and without vertical

asymptotes in O~(d3� +d4) bit operations. Moreover, P~ is a polynomial of degree d and coe�cients
of bitsize O~(� + d).

Proof. A straightforward way to get rid of the vertical lines and vertical asymptotes is to shear
the curve so that the leading coe�cient of P with respect to X and with respect to Y is a unit.

Computation of the topology of C(P ) 5



One method for doing that is �rst to compute the leading coe�cient LcY (Q) of the polynomial
Q(S; Y ;X) =P (X ¡ s Y ; Y ). Noting that LcY (Q) belongs to Z[S] and is of degree d, we need to
�nd s2Z such that LcY (Q)(s) =/ 0 and �nally consider P~ = Q(s; X; Y )2Z[X; Y ], whose leading
coe�cient in Y belongs to Z, instead of P 2Z[X;Y ].

Finding s such that LcY (Q)(s)=/ 0 can be performed after trying d+1 values, for example 0; ::::;
d. Then it is needed to substitute s in Q. As there are O(d2) coe�cients in Q which are polynomials
of degree at most d in S with coe�cients of bitsize O~(d+ �), this operation then takesO~(d3(� +d))
bit operations and the �nal result is the polynomial P~ which has coe�cients of bitsize O~(� +d). �

Then a similar change can be performed to avoid also that the curve contains horizontal lines.

3.2 Cylindrical algebraic decomposition
Using the results of [MSW1] and [MSW2] we obtain the following

Proposition 20. [ MSW2] Let P 2Z[X;Y ] be a square-free polynomial of total degree d and integer
coe�cients of bitsize bounded by �. Supposing that, for every real root � of D, deg (gcd (P (�; Y ));
@YP (�; Y )) is known, there is an algorithm with bit complexity O~(d5� + d6) to compute a set of
special boxes

SpeBox= f[ai; bi]� [ci; j ; di; j]j i2 J1; �K; j 2 J1; �i; jKg

isolating all the points of the special �bers. Moreover, we have Eq ( 4) and

X
i=1

� X
j=1

�i; j

�(ci; j)=
X
i=1

� X
j=1

�

�(di; j)=O(d3 �) : (3)

Proposition 20 is proved by combining the following results.

Proposition 21. [ MSW1]The computation of � rational intervals isolating the real roots of D can
be performed in O~(d5� + d6) bit operations. The endpoints ai; bi of the interval containing the real
root �i are rational numbers and their bitsize �(ai); �(bi) satis�es:X

i=1

�

�(ai)=
X
i=1

�

�(bi)=O(d3 �); (4)

Proposition 22. [Vertical Boundaries Computation][ MSW2] The isolation of the real roots of
the following equations:

P (ai; Y ) = 0; P (bi; Y )= 0:

costs O~(d5� + d 6) bit operations.

We now give precisions on the method, slightly di�erent from the one given in [MSW2] but
altogether already known [D], that we use for determining the exact value of deg (gcd (P (�; Y ));
@YP (�; Y ))) for a real root � of D. It uses a family of polynomials Di that we de�ne now.

De�nition 23. We denote by Sri(X;Y ) the ith subresultant polynomial of P (X;Y ) and @XP (X;
Y ) @YP (X;Y ) and sri; j(X) the coe�cient of Y j in Sri(X;Y ). Note that sr00(X)=D(X) (see Eq
( 1)).We de�ne inductively the following polynomials :

�0(X)=
sr0;0(X)

gcd (sr0;0(X); sr0;00 (X))
;

8i2f1; :::; d¡ 1g; �i(X)= gcd (�i¡1(X); sri;i(X)); Di(X)=
�i¡1(X)
�i(X)

:
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Proposition 24.
deg (gcd (P (�; Y ); @YP (�; Y )))= i()Di(�)= 0:

The following result is a direct consequence of the algorithm described in [BLPR] (and related
references), the expected complexity being obtained by replacing the worst case complexity for
univariate gcd's by their expected variant (see [GG]).

Proposition 25. The computation of the sequence (Di(X))i2J1;d¡1K has an expected bit complexity
of O~(d4� + d5) and a deterministic bit complexity of O~(d6� + d7) . The polynomials Di(X) have
degree bounded by d2 and coe�cients of bitsize O(d� + d2).

Proposition 26. Given the polynomials (Di(X))i2J1;d¡1K , computing for every root � of D (see
Eq ( 1)), deg (gcd (P (�; Y )); @YP (�; Y ))) has bit complexity O~(d5� + d6).

3.3 Checking generic position

We give now a generic position test, improves the one proposed by [GE1].

Proposition 27. [ DMR] The curve C(P ) is in generic position if and only if 8k 2f1; :::; d¡ 1g;
8i2f0; :::; k¡ 1g,

k(k¡ i)srk;i(X)srk:k(X)¡ (i+1)srk;k¡1(X)srk;i+1(X)= 0modDk(X):

This proposition gives immediately a test for checking generic position.

Proposition 28. Suppose that the sequence (Di(X))i2J1;d¡1K had already been computed. Testing
whether the curve is in general position using the preceding proposition has a bit complexity of
O~(d5� + d6).

Proof. We de�ne Pk;i=k (k¡ i) srk;i(X) srk:k(X)¡(i+1) srk;k¡1(X) srk;i+1(X)2Z[X] which has
degree in O~(d2) and coe�cients of bitsize in O~(d �). The algorithm decides whether Dk divides
Pk;i using Proposition 13 with bit complexity O~(d2(� d+ d2)) for each couple (k; i). This leeds to
the announced bit complexity. �

If the curve C(P ) is in general position, we can compute its topology using the classical method
of [GE1] (see also [BPR]), since there is only one single special point over a root of D. If the curve
C(P ) is in general position, we can compute its topology using the classical method of [GE1] (see
also [BPR]), since there is only one single special point over a root of D. Otherwise, if the curve
is not in generic position, we avoid the usual technique which is to enter in a loop calling the same
algorithm after changing the direction of projection. We compute the local topology of C(P ) inside
its special boxes to reconstruct the topology of the curve C(P ).

3.4 Computation of the local topology of C(P ) inside its special boxes
At this point, we suppose that all the special boxes are known, i.e. non overlapping boxes that
isolate the intersection of the curve with the special �bers, with the bit estimates coming from
Proposition 20.

The computation of the local topology of C(P ) inside its special boxes is done by an algorithm
we describe in subsection 3.4.4 after we have performed the following 3 steps

¡ count the intersection points of C(P ) with the horizontal boundaries of the special boxes,

¡ evaluate the signs of the slopes of the tangent line of C(P ) at the intersection points of C(P )
with the horizontal boundaries of the special boxes

¡ compare the abscissa of all the intersection points of C(P ) with the horizontal boundaries
of the critical boxes with the abscissa of the corresponding special point

Computation of the topology of C(P ) 7



3.4.1 Isolating horizontal boundary points

We recall that each special box in SpeBox := ([ai; bi] � [ci; j ; di; j])i2J1;�K;j2J1;�iK contains exactly
one point of a special �ber of C(P ). For each special box, we will need to isolate the intersection
points of C(P ) with the horizontal boundary of the box [ai; bi]� [ci; j ; di; j].

Proposition 29. [Boundaries Computation]

a) The isolation of the intersection points of C(P ) with the horizontal boundaries of the boxes
in SpeBox, i.e. isolate the real roots of the following equations:

P (X; ci; j) = 0; P (X; di; j) = 0:

costs O~(d6�) bit operations.

b) If we denote by �(ci; j); �(di; j) the bitsize of the rational numbers ci; j ; di; j, and �i; j ; �i; j0 the

number of roots of of P (X; ci; j); P (X; di; j), and [uk
ci; j; wk

ci; j];
h
uk
di; j; wk

di; j
i
the isolating

intervals of the real roots of P (X;ci; j); P (X;di; j)) that are computed, we have the following
properties: X

k=0

�i; j

�(uk
ci; j) =

X
k=0

�i; j

�(wk
ci; j)=O(d (� + d �(ci; j))) (5)

X
k=0

�i; j
0

�
�
uk
di; j
�
=
X
k=0

�i; j
0

�
�
wk
di; j
�
=O(d (� + d �(di; j))) (6)

Proof. The polynomials P (X; ci; j); P (X; di; j) are of degree d and of bitsize O~(� + d�(ci; j)),
O~(� + d�(di; j)). Using Proposition 18 the isolation costs O~(d2(� + d�(ci; j)) + d3), O~(d2(� +

d�(di; j))+ d3)). Hence the total cost is :

X
i=1

�
0@X

j=1

�i

O~(d2(� + d�(ci; j))+ d3)+
X
j=1

�i
0

O~(d2(� + d�(di; j))+ d3)

1A
By Proposition 20, we have:

X
i=1

� X
j=1

�i

�(ci; j)=
X
i=0

� X
j=1

�i
0

�(di; j)=O(d3�):

and it appears that the total cost is O~(d6�) bit operations. Using Proposition 18, we obtain the
endpoints summation properties. �

3.4.2 Computing sign of derivatives at horizontal boundary points

We also need to evaluate, at each intersection point of C(P ) with the horizontal boundary of a box
in SpeBox, the sign of @XP (X;Y )@YP (X;Y ).

Proposition 30. It costs O~(d6�)bit operations to evaluate the signs of the slopes of the tangent line
of C(P ) at the intersection points of C(P ) with the horizontal boundaries of the boxes in SpeBox.

Proof. Let (xk; ci; j)2C(P ) with xk2 [uk
ci; j; wk

ci;j], k 2 J1; �i; jK the boundary points at the bottom
sides of the boxes [ai; bi]� [ci; j ; di; j]2 SpeBox, i2 J1; �K, j 2 J1; �iK.

To evaluate the signs of the slopes of the tangent lines of C(P ) at the regular points (xk; ci; j),
it su�ce to evaluate the signs of @XP (X;Y )@YP (X;Y ) at these points. Since @XP (xk; ci; j)@YP (xk;
ci; j) =/ 0 (because (xk; ci; j) is a regular point of C(P )), then the polynomial P (X; ci; j)@XP (X;
ci; j)@YP (X;ci; j) is square-free and we can evaluate the sign of @XP (xk; ci; j)@YP (xk; ci; j) as follows :

1. We computed the isolating intervals ([e`; f`])`2J1;O(d)K of the roots of the polynomial @XP (X;

ci; j)@YP (X; ci; j) and evaluate the sign of @XP (X; ci; j)@YP (X; ci; j) at the end points of the
isolating intervals.
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Since the degree of @XP (X; ci; j)@YP (X; ci; j) is O(d) and its coe�cients of bitsize
O~((� + d�(ci; j))), the cost of the isolation process is O~(d2(� + d�(ci; j))) and

P
`=1
O(d)

�(e`)=P
`=1
O(d) �(f`)=O~(d(� +d�(ci; j))). This leeds, using Eq (3), to a total cost of O~(d6�) for the

isolation.
The evaluation of @XP (X; ci; j)@YP (X; ci; j) at e`, using Proposition 17, costs O~(d(� +

d�(ci; j) +�(e`))). Hence

X
i=1

� X
j=1

�i
0 X

`=1

O(d)

O~(d(� + d�(ci; j)+�(e`)))=
X
i=1

� X
j=1

�i
0

O~(d2(� + d�(ci; j))) =O~(d6�)

2. We re�ne the isolating intervals of the roots of P (X;ci; j) up to the separation bound of the
polynomial P (X; ci; j)@XP (X; ci; j)@YP (X; ci; j) which is equal to O~(d(� + d�(ci; j))) since
its degree is O(d) and its coe�cients of bitsize O~((� + d�(ci; j))).

The cost of the re�nement process up to the separation bound O~(d(� + d�(ci; j))) is
O~(d2(� + d�(ci; j))). This leeds, using Eq (3), to a total cost of O~(d6�) for the re�nement.

3. We re�ne the isolating intervals of the roots of @XP (X;ci; j)@YP (X;ci; j) up to the separation
bound of the polynomial P (X; ci; j)@XP (X; ci; j)@YP (X; ci; j) which is equal to O~(d(� +

d�(ci; j))) since its degree is O(d) and its coe�cients of bitsize O~((� + d�(ci; j))).
The cost of the re�nement process up to the separation bound O~(d(� + d�(ci; j))) is

O~(d2(� + d�(ci; j))). This leeds, using Eq (3), to a total cost of O~(d6�) for the re�nement.

4. By ordering the concatenation of the two re�ned list of isolating intervals one can deduce
the signs of @XP (xk; ci; j)@YP (xk; ci; j), i2 J1; �K; j 2 J1; �i0K; k 2 J1; �i; jK.

A similar analysis holds for the signs of the slopes of the tangent line of the boundary points at
the up sides of the boxes [ai; bi]� [ci; j ; di; j]2SpeBox, i2 J1; �K, j 2 J1; �iK. �

3.4.3 Finding the relative position of the abscissa of horizontal boundary points and
special point

Consider a special box [a; b]� [c; d] with special point (�; 
). In order to identify the topology of
the curve inside [a; b]� [c; d], the method we are going to use requires to know how many roots of
P (X; c) are before and after � on the interval [a; b]. The algorithm used for isolating the points
in the �bers computes also their multiplicities so that the regular points are well identi�ed and
thus there is not further work to be done in order to compute the topology local to their isolation
boxes. We thus concentrate on the critical and singular points.

We start by proving Theorem 33, which is a quantitative result on the deviation of the curve
from its tangent at a special point and plays a key role in the complexity analysis (Proposition 36).
This result is of independent interest and could be used outside the present paper, for example to
decrease the complexity of the algorithm from [CLPPRT]. Before stating Theorem 33, we introduce
a de�nition.

De�nition 31. Denote by C(P )k , 06 k6 d, the points (�; 
) of C(P ) such that

1. there exists ` such that @Yk@X` P(�; 
)=0,

2. for every k 0<k @Y
k 0 @X

` P (�; 
)= 0,

3. for every `0<` for every k 0 @Yk
0
@X
` 0P (�; 
) = 0.

Example 32.
If (�; 
) is a regular point of C(P ), (�; 
)2C(P )1:
If (�; 
) is a X-critical point of C(P ), (�; 
)2C(P )2:
If (�; 
)2C(P )k, the order of contact of the vertical line through (�; 
) is k.

Theorem 33. Let (�; 
)2 C(P )k. There exists real numbers A(�; 
) and B(�; 
), such that for
every y, 0< y<B(�; 
), and every x, P (�+x; 
 + y)= 0,

jxj> jy j k jA(�; 
)j:

Computation of the topology of C(P ) 9



Moreover
¡

X
(�;
)2Crit(C(P ))

log (jA(�; 
)j) =¡
X

(�;
)2Crit(C(P ))
log (jB(�; 
)j) =O(d3�):

The proof of Theorem 33 relies on the following two propositions giving an upper bound and
lover bound on the value of speci�c algebraic numbers.

Proposition 34. Let P, Q, be bivariate polynomials, monic with respect to Y, of degree in each
variable dominated by d, and coe�cients of bitsizes less than �. Suppose moreover that the common
roots of P and Q in C are �nite.

Let

Z = f(�; 
)2R 2jP (�; 
)=Q(�; 
)= 0g

Consider a mapping H from Z to the set of polynomials of degree in each variable dominated by d,
and coe�cients of bitsizes less than �, associating to (�; 
) a polynomial H(�;
). ThenX

(�;
)2Z
log
¡��H(�;
)(�; 
)

��� 6 O~(d 2�):

Proof. The claim follows from Proposition 10, Proposition 11 and Proposition 5 since � (resp. 
)
is the root of ResY (P ; Q) (resp. ResX(P ; Q)) which is a polynomial of degree d2 with coe�cients
of bitsize O(d �). �

Proposition 35. Let P, Q, H1; :::; Hk be bivariate polynomials of degree bounded by d and
coe�cients of bitsize bounded by �, monic with respect to Y, of degree in each variable dominated
by d, and coe�cients of bitsizes less than �. Suppose moreover that the common roots of P and Q
in C are �nite.

Let

Z = f(�; 
)2R 2jP (�; 
) =Q(�; 
) = 0g
Zi = f(�; 
)2ZjH1(�; 
) = :::=Hi¡1(�; 
) = 0; Hi(�; 
)=0g

Then

¡
X
i=1

k X
(�;
)2Zi

log (jHi(�; 
)j) 6 O~(d 3�)

Proof.

We are going to prove that
Y
i=1

k Y
(�;
)2Z

H(�; 
)> 1
E

with E 2Z and E of bitsize O(d3�).

Making if necessary a linear change of variable of the form T =X ¡ s Y ;Y = Y , with s
an integer of bitsize O~(1), we can suppose that X separates the elements of Z.

Consider Si(X)=ResY (Q;Hi) and denote by �i a bound on the bitsize of its coe�cients.
Note that �i is in O(d �) There exist polynomials Ui(X;Y ) et Vi(X;Y ) of degree at most d
with respect to Y and at most d2 with respect to X and coe�cients of bitsize O(d �) such
that

Si(X)=Ui(X;Y )Q(X;Y )+Vi(X;Y )Hi(X;Y )

Let (�; 
)2Zi. Since Hi(�; 
)=0 and P and Q are monic in Y then Si(�)=/ 0 and moreover
Si(�)=Vi(�; 
)Hi(�; 
), so that Vi(�; 
)=/ 0.

We are going to prove that.

Y
i=1

k Y
(�;�)2Zi

Hi(�; 
) =
Y
i=1

k

Y
(�;
)2Zi

Si(�)Y
(�;
)2Zi

Vi(�; 
)

10 Section 3



is bigger than the inverse of a natural number of bitsize O(d3�).

We decompose R=ResY (P ; Q) as R=R0
Y
i=1

k

Ri , where the zeroes of Ri contain the

X-projections of Zi and denote by di the degree of Ri.
Then, since

jResX(Ri; Si)j= lcX(Ri)deg(Si)lcX(Si)di
Y

(�;
)2Zi

jSi(�)j
Y

�2ZerCnR(Ri)

jSi(�)j

is a non zero integer, and, for every �2ZerCnR(Ri),

jSi(�)j6 (degX (Si)+ 1) 2 �imax (1; j�j)degX(Si) ;
we have Y

�2ZerCnR(Ri)

jSi(�)j6 (d2+1)di 2 �idi 2¡(Ri)d
2

and Y
�2Zi

jSi(�)j >
1

lcX(Ri)
deg(Si)lcX(Si)di

Y
�2ZerCnR(Ri)

jSi(�)j

> 1

lcX(Ri
)d
2
Ldi(d2+1)di 2 �idi 2¡(Ri)d

2

where L=maxi (jLcX(Si)j).

So that , since
X
i=0

k

di= d2,
X
i=0

k

¡(Ri)=¡(R) =O(d �), �i=O(d �),

Y
i=1

k Y
�2Zi

jSi(�)j > 2¡�

with �=O(d 3�).
To estimate the products of the Vi(�; �), we apply Proposition 5, denoting Ci =

(degX (Vi) + 1) (degY (Vi) + 1) 2�i
0 2 Z where �i

0 is a bound on the bitsize of the
coe�cients of the Vi of bitsize O~(d �), so thatY
(�;
)2Zi

jVi(�; 
)j6Cid
2

 Y
�2Zer(Ri)

max (1; j�j)
!
degX(Vi)

 Y
(�;
)2Z

max (1; j
 j)
!
degY (Vi)

:

De�ning C =maxi (Ci) we obtain, since the Zer(Ri) are disjoint,

Y
i=1

k Y
(�;
)2Zi

jVi(�; 
)j6Cd2
 Y
�2Zer(R)

max (1; j�j)
!
d2
 Y
(�;
)2Z

max (1; j
 j)
!
d

:

Remembering that
Y

�2Zer(R)
max (1; j�j) is bounded by a natural number of bitsize O~(d �)

and that
Y

(�;
)2Z
max (1; j
 j) is bounded by a natural number of bitsize O(d2 �), and given

the degrees of Vi in X;Y , we get that
Y
i=1

k Y
(�;
)2Zi

jVi(�; 
)j is bounded by a natural number

of bitsize O~(d3�).
Finally,

Y
i=1

k Y
(�;
)2Zi

Hi(�; 
)=
Y
i=1

k

Y
(�;
)2Zi

Si(�)Y
(�;
)2Zi

Vi(�; 
)

is bigger that the quotients of two natural numbers of bitsizeO(d3�) and in particular bigger
that the inverse of a natural number of bitsize O~(d3�). �
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Proof. of Theorem 33
By Taylor formula, for (�; 
)2C(P )k, there exists ` such that

P (�+X; 
+Y )=
X
j=`

d

j!Cj(
+Y )X j ;

with

C`(
+Y ) =Y k

 X
i=k

d

i!@Y
i @X

`P (�; 
) Y i¡k

!
:

and, for j > `,

Cj(
+Y )=
X
i=0

d

i! @Y
i @X

jP (�; 
)Y i

By Cauchy bound, for every y such that C`(
 + y)=0, the smallest positive root of P (�+X;

+ y) is at least

jC`(
+ y)j

0@X
j=`

d

jCj(
+ y)j

1A¡1:
For every y, 0< y< 1, X

j=`

d

jCj(
+ y)j6
X
j=`

d X
i=0

d

i!
��@Yi @XjP (�; 
)��:

Let B(�; 
) be smaller that the smallest positive root of the univariate polynomialX
i=k

d

i! @Y
i @X

`P (�; 
)Y i¡k ¡ 1
2
k!@Y

k @X
`P (�; 
);

for example

B(�; 
) = j@Yk @X`P (�; 
)j

 
j@Yk@X`P (�; 
)j+2

X
i=k+1

d
i!
k!
j@Yi @X`P (�; 
)j

!¡1
:

For every y, 0< y<B(�; 
),

jC`(
+ y)j> jy jk
����12 k!@Yk @X`P (�; 
)

����
We �nally de�ne

A(�; 
)=

����12 k!@Yk @X`P (�; 
)
����
0@X

i=`

d X
j=0

d

i!
��@Yi @XjP (�; 
)��

1A¡1:
Once can then combine Proposition 34 and Proposition 35 to get the �nal results. �

Let a(�; 
) = inf (log (jA(�; 
)j); log (jaj); log (jbj)), b(�; 
) = log (jB(�; 
)j). If (�;

)2C(P )1, according to Proposition 33 the distance between � and any root of P (X; c) is at least
2a(�;
)+b(�;
).

The algorithm used for isolating the points in the �bers computes also their multiplicities so
that the regular points are well identi�ed and thus there is not further work to be done in order
to compute the topology local to their isolation boxes..

Proposition 36. It costs O~(d6�) bit operations to compare the abscissa of all the boundary points
of the critical boxes with the abscissa of the corresponding special point.

Proof. If (�; 
)2C(P )k, k > 1, according to Proposition 33 the distance between � and any root
of P (X; c) is at least 2ka(�;
)+b(�;
). To be able to sort the roots of P (X; c) and the roots of D,
we need to re�ne their isolating intervals up to a width of 2ka(�;
)+b(�;
). Such re�nement costs
O(d (k a(�; 
) + b(�; 
))) for the roots of P (X; c) and O(d 2 (k a(�; 
) + b(�; 
))) for the roots of
D up to 2ka(�;
)+b(�;
). The total cost is again O(d6 �) for all the special boxes by Theorem 33. �
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3.4.4 Topology inside a special box

We prove now that given the information already computed i.e.

¡ the number of the intersection points of C(P ) with the horizontal boundaries of a special box

¡ the signs of the slopes of the tangent line of C(P ) at the intersection points of C(P ) with
the horizontal boundaries of a special box

¡ the abscissa of all the intersection points of C(P ) with the horizontal boundary of the special
box with the abscissa of the corresponding special point

we are able to compute the topology of the curve inside a special box.

We introduce some de�nitions.

De�nition 37. [Arc] An arc of C(P ) is a subset of C(P ) homeomorphic to [0; 1]:

De�nition 38. [Monotonic arcs] An arc of C(P ) is monotonic if the polynomial @XP (X;
Y ) @YP (X;Y ) does not vanish at any point of the arc.

Proof. Inside a special box there is at most one critical point of C(P ). Hence in a special box, the
polynomial @XP (X; Y ) @YP (X; Y ) vanishes only at the critical point (�; 
). So, except the arcs
passing through the critical point (�; 
) of the box, all the other arcs of the box are monotonic. �

Proposition 39. An arc of C(P ) contained in a special box [a; b]� [c; d] that does not pass through
a critical point (�; 
) is monotonic.

Consider a special box [a; b] � [c; d] and (�; 
) its special point. We denote respectively by
La Lb, Lc, Ld the intersection points of C(P ) with the left, right, down and up sides of the box
[a; b]� [c; d]. The points inside La, Lb (resp. Lc, Ld) are ordered by increasing value of y (resp. x).

We split Lc into Lc<� and Lc>� where Lc<� and Lc>� are the points of Lc at the left side
and the right side of the critical �ber Fib(�). Similarly, we split Ld into Ld<� and Ld>� where
Ld<� and Ld>� are respectively the points of Ld at the left side and the right side of the critical
�ber Fib(�).

Given a boundary point (x; y) of [a; b]� [c; d], there is one and only one arc of C(P ), contained
in [a; b]� [c;d] starting from (x; y), called a special arc, with exactly one of the following properties

� type 1 : the arc is monotonic and ends at another boundary point, called the matching point
of (x; y)

� type 2 : the arc ends at (�; 
)

Note that two special arcs of type 1 having distinct intersection with the boundary of a special box
do not meet, and that two special arcs of type 2 having distinct intersection with the boundary of
a special box meet only at (�; 
).

Given two boundary points (x; y) and (x0; y 0) of [a; b]� [c; d], there is at most one special arc

of type 1 linking them denoted, when it exists, by (x; y); (x0; y 0).
Given a boundary point (x; y) of [a; b]� [c; d], there is at most one special arc of type 2 linking

(x; y) to �; 
), denoted, when it exists, by (x; y); (�; 
).

Given a list L= [x1; :::; xn], we denote by

L[i] =xi; L¡L[1] = [x2; :::; xm]; L
¡1 := [xn; :::; x1]:

Given two lists L= [x1; :::; xn] and M = [y1; :::; ym] we denote their concatenation by

L+M : =[x1; :::; xn; y1; :::; ym]:

We denote by SlopeSign the function, built from the proof of the Proposition 30, which computes
the sign of the slope of the tangent line at the intersection points of C(P ) with the horizontal
boundaries of the boxes in SpeBox.
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Proposition 40.

1. The points inside Ld<� have the same slope sign. If this slope sign is +, the special arcs
passing through these points are of type 1. The matching point of Ld<�[i] is L[i], where
L=La

¡1+Lc<�. If this slope sign is ¡, the special arcs passing through these points end is
of type 2.

2. The points inside Lc<� have the same slope sign. If this slope sign is ¡, the special arcs
passing through these points are of type 1. The matching point of Lc<�[i] is L[i], where
L=La+Ld<�. If this slope sign is +, the special arcs passing through these points end are
of type 2.

3. The points inside Ld>� have the same slope sign. If this slope sign is ¡, the special passing
throw these points are of type 1. The matching point of Ld>�[i] is L[i], where L = Lb

¡1 +
Lc>�. If this slope sign is +, the special arcs passing through these points end are of type 2.

4. The points inside Lc>� have the same slope sign. If this slope sign is +, the special arcs
passing throw these points are of type 1. The matching point of Lc>�[i] is L[i], where
L=Lb+Lc>�. If this slope sign is ¡, the special arcs passing through these points end are
of type 2.

Proof. Let (x1; d) and (x2; d) be two consecutive points of Ld<� with di�erent slope signs. One
of these four possibilities necessarily hold:

i. (x1; d) and (x2; d) belong to the same connected component of C(P ) and there is a special
point with abscissa in (x1; x2)

ii. (x1; d) and (x2; d) do not belong to the same connected component of C(P )
a) if the connected component C1 of C(P ) containing (x1; d) has a point above x2 and

the connected component C2 of C(P ) containing (x2; d) has a point above x1, then
C1 and C2 have an intersection point with abscissa in (x1; x2)

b) the connected component of C(P ) containing (x1; d) has a local maximum for x
between x1 and x2,

c) the connected component of C(P ) containing (x1; d) has a local maximum for x
between x1 and x2,

In all these four cases, there is a special point with abscissa in (x1; x2). This is a contradiction
since (x1; x2)� (a; �) contains no root of D.

Finally (x1; d) and (x2; d), two consecutive points of Ld<� have same slope signs.
If the slope sign of the elements of Ld<� is + at (x; d), the special arc through (x; d) stays at

the left of the line x=x1 , since the curve has no local minimum at the left of x1 inside the box, so
does not contain (�; 
). So it is a special arc of type 1. The matching point of Ld<�[i] is a point of
the boundary to the left of � and does not belong to Ld<�, so it is a point of L. Consider the �rst
point of Ld<�[i] which is matched to a point L[j] of L with j >i. Then L[i] cannot be matched with
a point of Ld<� since otherwise the special arcs through L[i] and L[j] would have an intersection
in the special box. The special path through L[i] cannot be of type 2 since the special arcs through
L[i] and L[j] would have an intersection in the special box. So we obtained a contradiction.

If the slope sign is ¡ at (x; d), the special arc through (x; d) stays at the right of the line x=x1 ,
since the curve has no local maximum at the left of x1 inside the box, so has to contain (�; 
). So
it is a special arc of type 2.

We omit the proofs of 2), 3) and 4) which are entirely similar. �

The topology of C(P ) inside the special box [a; b] � [c; d] depends only on the combinatorial
information given by the number of elements of La Lb, Lc<�, Lc>�� Ld<�, Ld>� and the SlopeSign
function on Lc<�, Lc>�, Ld<�, Ld>�.

So we can suppose without loss of generality that [a; b]� [c; d]= [¡1; 1]� [¡1;1], (�; 
)= (0;0)
and the points of La Lb, Lc<�, Lc>�� Ld<�, Ld>� share the corresponding segments in equal parts.
This is necessary to obtain a complexity bound on this part of our algorithm which is independent
on � and does not take into account the bitsize of the rational points de�ning the isolation intervals
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We denote by MN the segment between M and N and by O the point (�; 
).

Algorithm 1

Initialize Arcs to the empty list
1. Connection of the points at the left side of the fiber Fib(�)
Input: La, Lc<�, Ld<�.
Output: a �nite list of segments homeomorphic to the topology of C(P ) inside
[a; �]� [c; d]
if #Ld<�>#La then L=La

¡1+Lc<�, else L: =La
¡1 ;

if SlopeSign(Ld<�[1])> 0 then

� Connection from the corner (a; d)
for i from 1 to #Ld<� add L[1]Ld<�[i] to Arcs, L=L¡L[1];

else L=La+Ld<�
If SlopeSign(Lc<�[1])< 0 then

� Connection from the corner (a; c)
for i from 1 to #Lc<� add L[1]Lc<�[i] to Arcs, L=L¡L[1];

else L=L+Lc<�
Connection of the remaining points to (�; 
)
For i from 1 to #L, add L[i]O to Arcs;
2. Connection of the points at right side of the fiber Fib(�).
Input: Lb, Lc>�, Ld>�.
Output: the topology of C(P ) inside [�; b]� [c; d]
The process is entirely symmetrical so we do not include it.

The correctness of Algorithm 1 follows from Proposition 40.

Example 41. The example illustrates the various situations that can happen: the left hand part
of the box has arcs of type 1 from corners (d; a) and (c; a) while the right hand par of the box has
arcs of type 1 from corner (d; b) and an arc of type 1 from a point of Ld>� to a point of Lc>�.

Ld<α Ld>α

d

c

a b

Lc>αLc<α

La Lb

α

γ

+ − − − −+

− − − − −

Figure 1. Connection from the corners (a; d) then (a; c).
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Ld<α Ld>α

d

c

a b

Lc>αLc<α

La Lb

α

γ

+ − − − −+

− − − − −

Figure 2. Connection of the remaining points to (�; 
) and Connection from the corner (b; d) (in the
example no point are connected from (b; c)).

Ld<α Ld>α

d

c

a b

Lc>αLc<α

La Lb

α

γ

+ − − − −+

− − − − −

Figure 3. Connection of the remaining points to (�; 
)

The cost of Algorithm 1 is linear in the number of the points on the boundary of the box.
The total number of such boundary points is bounded by O(d 4):

4 Summary
Let us summarize the result we have obtained.

16 Section 4



Theorem 42. Let P 2Z[X; Y ] a square free polynomial of total degree d and integer coe�cients
of bitsize bounded by �, the algorithm we described computes the topology of C(P ) i:e a straight-line
planar graph isotopic to C(P ) with bit complexity O~(d6 � + d7). The size of the output is O(d4):
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