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ABSTRACT

In this paper, we focus on the restoration of images in mosaic

active imaging. This emerging imaging technique consists in

acquiring a mosaic of images (laser shots) by focusing a laser

beam on a small portion of the target object and subsequently

moving it to scan the whole field of view. In order to restore

the whole image from such a mosaic, a prior work proposed

a simplified forward model assuming a prior on the distribu-

tion of images and the acquisition parameters as well as an

algorithm alternating between the estimation of the restored

image and the estimation of these parameters. The novelty

of this paper is twofold: (i) we show that the results obtained

from this earlier work can be improved when the laser shots

are closer to each others and (ii) that faster convergence can

be achieved for estimating the acquisition parameters.

Index Terms— active imaging, laser imaging, image re-

construction, image estimation, BFGS, graph-cut.

1. INTRODUCTION

In flash laser imaging, the target object is illuminated with

a very short laser flash. A time-gated camera synchronized

with the laser is used to detect and select the photons re-

ceived within a brief time-gate (typically few nano to micro

seconds), after a chosen delay (typically 10−4 to 10−7 sec-

onds) has elapsed. This temporal selection allows to elimi-

nate photons back-scattered by the foreground and the back-

ground. Generally, the field of view of the camera is fully

illuminated by a Nd:YAG laser and acquired at about 10 Hz.

In mosaic active imaging, a 10 kHz fiber laser is used instead.

As the repetition-rate is larger by three orders of magnitude,

the energy per pulse is lowered by the same ratio. To main-

tain the same signal-to-noise ratio, only a reduced part of the

field of view is illuminated at each laser flash. This results in

the successive acquisition of typically 100 to 1000 elementary

images [1] (laser shots) on a square tiling, subject to multi-

ple degradations [2, 3] (see Figure 1). The object of interest

typically have metric dimensions and lies between 10 m and

20 km from the imaging system. The applications can be ei-

ther terrestrial or airborne and typically concern surveillance.

Fig. 1: Acquisition process in mosaic laser imaging. From

left to right: the ideal image we want to estimate, a reduced

part of the field of view with a single laser flash (laser shot),

the image composed of all laser shots where each pixel is as-

signed its maximum intensity over all of them.

Restore the observed scene from the laser shots is a diffi-

cult inverse problem to solve. To our best knowledge, [4] is

the first attempt to give a solution to this problem. They model

laser shots as isotropic Gaussians and assume a Total Varia-

tion (TV) prior on the distribution of images and a Gaussian

prior on the acquisition parameters. A two-stages iterative

algorithm is proposed, alternating between (i) the estimation

of the restored image using graph cuts and (ii) estimation of

these parameters using a standard gradient descent.

The novelty of this paper is twofold: (i) we show that

the results obtained from [4] can be improved when the laser

shots are closer to each others and (ii) that faster convergence

can be achieved for estimating the acquisition parameters.

The rest of this paper is organized as follows. We first

remind in Section 2, the simplified model of the imaging pro-

cess and the restoration algorithm of [4]. In Section 3, we

evaluate the impact of using a different tiling of the laser shots

on the image estimate. Next, we compare the convergence of

several differentiable methods for estimating the acquisition

parameters. Finally, we compare the results obtained with [4].

2. MATHEMATICAL MODELING

In this section, we summarize the imaging process and the

restoration algorithm detailed in [4]. For an integer N > 0,

we denote the set of all pixels by P = {1, . . . , N}2 and the



number of elementary images by K > 0. For every index

k ∈ {1, . . . ,K}, we denote by θk = (ck, wk) ∈ J with

J = (R2 × R
∗
+) the parameters (size and location) of the

light spot (or illumination dome) in each of these images. For

every p ∈ P , a dome Gθk is modeled as an isotropic Gaussian

Gθk(p) = exp
(

−
‖p− ck‖

2

2wk
2

)

, for 1 ≤ k ≤ K, (1)

and where ‖.‖ denotes the Euclidean norm. Let us denote

by v = (vk)1 ≤k≤K with vk ∈ R
P the observed data (laser

shots) and u ∈ R
P the ideal image (i.e. the one that would

have been obtained with an ideal captor and illumination).

The proposed simplified forward model is

v = M(θk)1≤k≤K
u+ n,

where n = (nk)1≤k≤K with nk ∈ R
P is an additive white

Gaussian noise of standard deviation σ, and

M(θk)1≤k≤K
: R

P −→ R
KP ,

u 7−→
(

(Gθk(p)up)p∈P
)

1≤k≤K
.

(2)

Once the acquisition parameters (θk)1≤k≤K are fixed, this

model is linear. Due to some perturbations, these parameters

need however to be estimated. We consider that the parame-

ters ck and wk are independent random variables and assume

that the former follow a Gaussian law of mean ck and stan-

dard deviation σc while the latter follow a Gaussian law of

mean w̄ and standard deviation σc, ∀k ∈ {1, . . . ,K}. We

also assume a TV prior on u and that it is independent of

the parameters (θk)1≤k≤K . Based on these assumptions, the

Maximum A Posteriori (MAP) of u and (θk)1≤k≤K can be

calculated. Given a fixed v ∈ R
KP and for any u ∈ R

P and

(θk)1≤k≤K ∈ J , we denote the minimized function by

F (u, (θk)1≤k≤K) =
‖M(θk)1≤k≤K

u− v‖2

2σ2
+ βTV (u)

+

K
∑

k=1

‖ck − ck‖
2

2σ2
c

+

K
∑

k=1

|wk − w|2

2σ2
w

, (3)

where β, σ, σc, σw, w and ck are known parameters and

TV (u) denotes the TV of u. Since F is non-convex, only a

local minimizer of F can be computed in a reasonable amount

of time. A two-stages iterative process is designed in [4] (see

Algorithm 1) alternating between (i) the estimation of the re-

stored image (line 3) and (ii) the estimation of the acquisition

parameters (line 4), until some accuracy εa is reached. The

former step is solved using graph cuts while the latter step

is solved using a standard gradient descent with Armijo step

size rule 1 until some accuracy

εe = (εmax
e − εmin

e ) exp
(

−
n

σεe

)

+ εmin
e , (4)

1For lack of space, the partial derivatives of F are only available in [4].

varying between εmin
e and εmax

e , is reached. Thus, the estima-

tion of acquisition parameters is expected to be progressively

more accurate as the Algorithm 1 iterates. It is not difficult to

see that such an algorithm computes a local minimizer of F .

However, when σc and σw are small enough, we expect the

global minimizer to be close to (ck, w)1≤k≤K and so a good

property when using this initialization.

Algorithm 1 Algorithm for approximating a minimizer of F .

1. Initialize (θ0k)1≤k≤K = (ck, w)1≤k≤K

2. while ‖un − un−1‖ ≤ εa do

3. un ∈ argminu∈RP F (u, (θnk )1≤k≤K).
4. (θn+1

k )1≤k≤K ∈ argmin(θk)1≤k≤K∈J F (un, (θk)1≤k≤K).
5. endwhile

3. EXPERIMENTAL RESULTS

3.1. Applicative framework and implementation details

The experiments of the subsequent sections are conducted on

simulated data with images of size 256× 256 (i.e.N = 256).

Realistic values are however used (expressed in pixels) for

the parameters σc, σw, w and ck, ∀k ∈ {1, . . . ,K}. In this

setting, we set σc = 0.81, σw = 0.07 and w = 16.2. The way

of how the parameters ck are fixed is discussed in Section 3.2.

For estimating the restored image, we use the max-flow

implementation of [5] and the dyadic parametric scheme

of [6]. For estimating the acquisition parameters, the accu-

racy εe (see (4) in Section 2) is set using εmin
e = 5 × 10−3,

εmax
e = 0.5 and σεe = 2.0. For the accuracy of the Algo-

rithm 1, we found that setting εa = 1.0 is a good tradeoff

between convergence and accuracy 2. Whenever it is possible,

the regularizer β (see (3) in Section (3)) is set by minimizing

the Mean Square Error (MSE) 3 between the image estimate

and the ideal image using Golden Section Search [7]. Also,

we do not provide detailed computing times since we be-

lieve they are not representative of an optimized version (the

restoration of an image typically requires between 1 and 6
minutes on a dodeca core Intel Xeon 3.47 GHz). The esti-

mation of the restored image typically represents 10% of the

overall computation time. Notice that the pixel intensity in

the ideal observed image ranges in [0, 1] and is coded on 8
bits, meaning that the noise levels are scaled accordingly.

In what follows, we provide experiments for a single noise

level σ = 0.1 using the above values of parameters, except if

different ones are mentioned. In practice, the noise level σ is

generally unknown. In such a situation, a reliable estimate of

this parameter can be for instance obtained using [8].

2In particular, that corresponds to an error of one grayscale level for all

pixels between two successive image estimates.
3A description of the MSE and PSNR measures is available at

http://megawave.cmla.ens-cachan.fr/stuff/guid3/

node256.html#fmse.



3.2. Impact of tilings on the image estimate

In this section, we evaluate how two different tilings of the

illumination domes affect the image estimate computed by

the Algorithm 1 (see Section 2). To be as fair as possible, we

impose that the size and location of these domes essentially

do not very by setting σc = 10−5 and σw = 10−5. Due to the

particular values of these parameters and the level of accuracy

εa, we have wk ≃ w̄ and ck ≃ ck, ∀k ∈ {1, . . . ,K}. The

penalty parameter and the noise level are resp. set with β =
3× 104 and σ = 10−5. To accentuate the difference between

the tilings, we also set w = 5. Let us now describe these two

tilings. For the first one, the domes form a square tiling of

size K = K ′×K ′ (see [4]). For any i, j ∈ {0, . . . ,K ′−1}2,

the expected center c̄i×K′+j is defined as

(

N

K ′

(

1

2
+ i

)

,
N

K ′

(

1

2
+ j

))

. (5)

For the second one, the domes form an hexagonal tiling of

size K = K ′2 − ⌊K′

2 ⌋, vertically centered in the image. For

any i ∈ {0, . . . ,K ′ − 1} and any j ∈ {0, . . . ,K ′ − 1 −
mod(i, 2)}, the expected center c̄i×K′−⌊ i

2
⌋+j is defined as

(

1

2

(

N − (K ′ − 1)d

)

+ i× d,
N

K ′

(

1

2−mod(i, 2)
+ j

))

,

(6)

where d = N
√
3

2K′ is the distance separating two successive

rows of domes and mod(x, y) is the remainder of x/y. No-

tice that for any fixed K ′ > 1, the number of domes of an

hexagonal tiling is always smaller than for a square tiling.

The impact of the above tilings on the image estimate is

shown in Figure 2. Each pixel in the left and middle columns

is resp. assigned with its maximum intensity over all k ∈
{1, . . . ,K}. The image estimate is depicted in the right col-

umn. Compared to a square tiling, an hexagonal tiling allows

to recover more details between domes while using a smaller

number of domes. This is due to the fact that the domes are

closer from each other in the hexagonal tiling. In the lat-

ter, less details are however generally recovered near borders

since the number of domes can be smaller than in the square

tiling for some rows. By discarding these borders (i.e. the

pixels for which their Tchebychev distance to the borders is

greater or equal than N
2K′ ), the benefit of using an hexagonal

tiling against a square tiling is confirmed by a significantly

larger Peak Signal-to-Ratio Noise (PSNR) and smaller MSE

when comparing the image estimate to the ideal one.

3.3. Performance for estimating acquisition parameters

The goal of this section is to compare the performance of

several differentiable methods for estimating the acquisition

parameters using an hexagonal tiling of illumination domes

(see (6) in Section 3.2). First, we remind that these parame-

ters are estimated using a Standard Gradient Descent (SGD)

Fig. 2: Impact of a square tiling (top row, see (5)) against an

hexagonal tiling (bottom row, see (6)) on the image estimate.

Each pixel in the left and middle columns resp. is assigned

with its maximum intensity over all k ∈ {1, . . . ,K} in illu-

mination domes and laser shots. The right column represents

the image estimate. In this experiment, we set σc = 10−5,

σw = 10−5, σ = 10−5, w = 5 and β = 3× 104.

with an Armijo step size rule in [4]. Let us denote by T the

desired number of iterations in this rule. Since the computa-

tion of F and its gradient requires O(KN2) operations, the

worst-case complexity of the SGD per iteration is O(TKN2).
Under particular assumptions, it also has a global conver-

gence rate of O(1/t) (t is the number of iterations) and con-

verges linearly when close enough to the local minimizer.

Among first-order methods, the Nesterov’s Accelerated Gra-

dient Descent (AGD) algorithm [9] can however achieves a

better global convergence with a rate of O(1/t2), while keep-

ing the same complexity as SGD.

Since the functional F (see (3) in Section 2) is twice con-

tinuously differentiable and the number of variables is typi-

cally of only several hundred, second-order methods are com-

putationally accessible. Under particular assumptions, the

Newton’s method can for instance locally converges much

faster than SGD. However, it is (i) computationally demand-

ing and (ii) can converge towards to a local maximum or a

saddle point when the functional is not convex (and this is

our case). Broyden-Fletcher-Goldfarb-Shanno (BFGS) over-

comes these difficulties by computing an approximation of

the inverse of the Hessian matrix and (ii) ensuring that this di-

rection is a descent during the iterates. This method converges

superlinearly when close enough to the local minimizer. Us-

ing an Armijo step size rule and if K ≪ N2, the complexity

of BFGS remains the same as the SGD and the AGD.

Based on these observations, from a global point of view,

AGD is probably a better candidate in our situation compared

to SGD. From a local point of view, BFGS however appears

to be a better choice compared to SGD. Without additional



Fig. 3: Performance of the SGD, AGD and BFGS methods

for estimating the acquisition parameters with an initialization

not so far (top row, σc = 0.81, σw = 0.81) and not so close

(bottom row, σc = 4 and σw = 2) from (ck, w)1≤k≤K for any

k ∈ {1, . . . ,K} and for the images "baboon" (left column)

and "factory" (right column).

information on F , it is difficult to guess if SGD, AGD or

BFGS is the most efficient in our situation. We therefore pro-

pose to empirically compare them with two different initial-

izations: for the first one, the parameters σc and σw are set

as described in Section 3.1. For the second initialization, we

set σc = 4 and σ = 2. The remaining parameters are set

as described in Section 3.1. For each initialization, we then

proceed as follows: first, we run these methods for a large

number of iterations by setting εe = 10−4. Next, we compute

a reference energy F ∗ taken as the minimum among the ener-

gies reached by each of these methods. Finally, we run again

these methods using the same parameters, except by setting

εe = 0.05. Also, the image estimate u is taken as the ideal

image. The Figure 3 shows the results of this comparison be-

tween these methods. When the true acquisition parameters

are expected to be not so close from (ck, w)1≤k≤K for any

k ∈ {1, . . . ,K}, BFGS generally converges faster than AGD

while the latter only converges slightly faster than SGD. As

opposite, when the true acquisition parameters are expected to

be not so close from (ck, w)1≤k≤K for any k ∈ {1, . . . ,K},

all methods tend to behave equivalently.

3.4. Accuracy

In this section, we study the quality of the image estimate

provided by the Algorithm 1 (see Section 2) for an hexagonal

tiling (see Section 3.2) and using the BFGS algorithm (see

Section 3.3). The remaining parameters are set as described

in Section 3.1. Let us describe now the experimental setting.

For each image, we independently generate 10 sequences of

laser shots and illumination domes using the above parame-

ters. Next, we apply the Algorithm 1 on each sequence, mea-

sure the PSNR between the image estimate and the ideal im-

age, and compute statistics from all the measures. Also, we

Image PSNR (dB) ∆ PSNR (dB)

baboon 23.89± 0 +0.116
barbara 25.21± 0 +0.131
peppers 28.16± 0 +0.081

cameraman 28.32± 0 +0.441
lena 27.95± 0 +0.278
man 26.07± 0 +0.283
boat 26.83± 0 +0.289

factory 26.99± 0 +0.153

Table 1: Accuracy of the restoration algorithm for a noise

level σ = 0.1. The remaining parameters are set as follows:

σc = 0.81, σw = 0.07 and w = 16.2. The PSNR measures

are calculated over 10 runs and rounded to the nearest value.

Fig. 4: Reconstruction of the images “barbara” (top row) and

“factory” (bottom row) with a noise level σ = 0.1. The re-

maining parameters are set as w = 16.2, σc = 0.81 and

σw = 0.07. The left column correspond to the available data

where each pixel is assigned its maximum intensity over all

laser shots. The middle and right columns correspond resp.

to the image estimate and the ideal image.

compare the obtained results with those reported in [4] by pro-

viding the difference of mean PSNR (denoted as ∆ PSNR).

If ∆ PSNR is positive, the results obtained in this setting are

considered to be better. The results of all these experiments

are summarized in Table 1 and illustrated in Figure 4. In

Figure 4, the selected images correspond to the sequence for

which the MSE between the image estimate and the ideal im-

age is minimum. Also, we provide for each image the ideal

one, the image estimate as well as the partial laser shots. Let

us now briefly comment these results. Despite a substantial

noise level, we observe in Figure 4 that the Algorithm 1 be-

haves globally well. Large flat areas are well denoised while

thin structures and details are well preserved, even between

illumination domes where the knowledge about data is more

incertain. Although the amplitude of the ∆ PSNR measure is

quite low, it is positive for all the presented images.
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