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Abstract

The major purpose of this study is to predict tiieanic behavior of an on-board rotor mounted orrdgghamic journal bearings in the presence of
rigid support movements, the target applicatiomgpeurbochargers of vehicles or rotating machingget to seismic excitation. The proposed on-
board rotor model is based on Timoshenko beanefgligments. The dynamic modeling takes into accihngieometric asymmetry of shaft and/or
rigid disk as well as the six deterministic tratislas and rotations of the rotor rigid support. Beging on the type of analysis used for the bearing
the fluid film forces computed with the Reynoldsuation are linear/non-linear. Thus the applicat@inthe Lagrange’s equations yields the
linear/non-linear equations of motion of the ratgtiotor in bending with respect to the movingdigupport which represents a non-inertial frame of
reference. These equations are solved using thicitigewmark time-step integration scheme. Dug¢hte geometric asymmetry of the rotor and to
the rotational motions of the support, the equatioihmotion include time-varying parametric terntsieh can lead to lateral dynamic instability. The
influence of sinusoidal rotational or translationadtions of the support, the accuracy of the lir@apefficient bearing model and the interest ef th
non-linear model for a hydrodynamic journal beararg examined and discussed by means of stabiiyts; orbits of the rotor, time history
responses, fast Fourier transforms, bifurcatiogrdias as well as Poincaré maps.

Keywords Rotordynamics, asymmetric rotor, on-board rdiioite element method, hydrodynamic journal bearsgpport motion, parametric
excitation, non-linear dynamics, transient motidynamic instability, bifurcation, chaos.

1. Introduction

Rotating machines are among the indispensable patte modern engineering industries. Due to theneaof the excitations
applied to the machine rotors, most of them caodmsidered as on-board rotors affected mainly bl bee mass unbalance and the
support motions. Generator, pump, compressor asdughine rotors installed in power plants as waslivehicle turbochargers are
examples of rotors on moving support. The unavd@atass unbalance is due to the eccentricity ofctrger of mass along the
rotor axis. The rotor balancing aims at reducirgriass unbalance but is not able to cancel it cetelgl(see Xu et al. [1] and Kang
et al. [2]). Rotors can also be subject to the femfjexternal movements of their support which cameiase the flexural vibration of
the rotors and create an unstable dynamic behavior.

In order to enhance the performances, the safetprfathe air-gap and the disk-stator gap haveetadnluced. Therefore the
prediction of dynamic behavior of the rotating maehcomponents must be performed more and moréutlgrén this context, the
literature comprises numerous books studying a wialéety of phenomena related to the dynamics a@fregtric/asymmetric
rigid/flexible rotor systems mounted on linear/riorear elastic bearings in the case of a fixed supgdust few of them can be cited
here (Lalanne and Ferraris [3], Genta [Bhchschmid et al. [5]). Some works observed theability of parametrically excited
systems. Dufour and Berlioz [6] accomplished thelstof Berlioz et al. [7] on the dynamics of a dstking. They analyzed the
time-varying parametric equations of motion of gystem by employing the Rayleigh-Ritz method, thegq&éd theory and the
Friedmann approach. The design using a computeregpdoors for a technique called “finite elementhud” to be applied to the
rotor modeling and numerous studies contributethi®topic. The real breakthrough in the finitenséat modeling of a rotor was
presented by Nelson and McVaugh [8] who studiecbdehcalled “Rayleigh beam” and taking into accatlnet rotary inertia of the
shaft and the gyroscopic effects dependent onghedsof rotation of the rotor. Kang et al. [9] miedierotor-bearing systems using
Timoshenko beam finite elements and by taking atoount the asymmetry of disk, shaft and/or beafiingey showed that the
resonant speeds could change due to various dmgfieen major axes of disk and shaft, the shafnamstry as well as the bearing
characteristics. Nandi and Neogy [10] proposedfficient analysis of stability for finite elementadels of asymmetric rotors and
investigated whether an unstable rotor could béilstad using an isotropic viscous damper. Theosgktiand experimental
investigations for the isolated and internal resoea of non-linear forced and parametric oscilf@iof an asymmetric rotor with
non-linear spring characteristics were carriedyutshida et al. [11].

Hydrodynamic bearings play a key role in the desifjrotor systems and an accurate prediction of/itheation characteristics of
the rotor-bearing systems must be made. Theref@édnydrodynamic bearing performance is predicteti reported in the extant
literature by mathematical formulations firmly dsished. The fluid film forces are strongly nondar functions of the displacement
and velocity of the rotor. Although they act logatin the system, rotordynamics is significantlyeaféd and wholly non-linear.
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Khonsari and Chang [12] showed that there was destelgion in the short bearing clearance circlesidigt of which, any initial
conditions for the non-linear transient dynamichpeon would yield an unstable orbit even if the lpgimamic bearing should be
stable according to the linearized stability anialyZhao et al. [13] predicted the linearized digband presented a comparison
between linear and non-linear mass unbalance respaf a flexible rotor-hydrodynamic bearing systaodeled by the lump mass
method to reduce the degrees of freedom. Li and24ii studied a Jeffcott rotor supported on oil filmfinite-length bearings to
obtain periodic orbits, their periods and theirbdity using the generalized shooting method. Hamiwp sub-harmonic, quasi-
periodic and chaotic responses and their Poincapsmwere investigated for a rigid rotor on hydradyit short bearings by Brown
et al. [15], for a finite element rotor model ondnydynamic elliptical bearings by Zheng and Haggléé and for a rigid rotor on
hydrodynamic elliptical bearings by Shen et al.]][1Kishor and Gupta [18] used non-linear analytichlaracteristics for
hydrodynamic long bearings and introduced themrigid rotor-bearing model with a simplified spugag model. Baguet and Velex
[19] combined a finite element shaft model basedhenTimoshenko beam theory with both gear andifgaron-linearities which
were represented by spur gear mesh stiffness ardiynamic short bearing forces. Baguet and Jacqy28pextended the study
presented in [19] to include helical gears as aglhydrodynamic finite-length bearings and analyza@metrically the shaft orbits,
the dynamic tooth loading factor as well as therbgiginamic forces.

Some works focused on the dynamic behavior of@r natder seismic, random or shock excitationso$itpport. Srinivasan and
Soni [21] studied the effect of spin, support notatas well as axial force and axial torque ongbismic response of a rotor-bearing
system. Samali et al. [22] used the Monte Carlo Kitian to simulate the non-stationary earthquakeugd motions and to
determine the statistics of rotating machinery oesg. Hori and Kato [23] examined a seismic resparis Jeffcott rotor mounted
on oil film bearings to a real seismic wave andestigated its stability. Suarez et al. [24] obsértfeat even for strong rotational
inputs, the parametric terms in the equations ofianoof a finite element rotor model subject to si@mponents of support
excitations could be neglected without affecting seismic response. Subbiah et al. [25] obtainedathplitude power spectral
density due to random excitations of the supportstodying the rotor response using modal analysthods. Lee et al. [26]
proposed a finite element rotor model based o im®shenko theory by considering a shock excitatibthe support and the state-
space Newmark method and focused on the experittsatiavior of a rotor under this excitation.

The effect of the flexible foundation on rotordyriesnwas investigated from theoretical and experialgoints of view, see, for
example, Bonello and Brennan [27]. Da Silva Tuckmlagttal. [28] represented the supporting struc{fmandation) of a rotating
system by coupled as well as uncoupled modes atebtéthe methods of mechanical impedance and noizerlinates to calculate
the system responses. The experimental tests af &®th Hahn [29] showed that even with input datadated to two significant
digits, satisfactory identification were possibbe & flexibly supported undamped rigid block foutiola in rotating machinery.

Few works are referenced in the literature on ivestigation of dynamic behavior of a rotor in tase of a harmonic motion of
its support. Duchemin et al. [30] observed the orostability of a rotor under a sinusoidal rotatafrthe support by employing the
Rayleigh-Ritz and multiple scales methods. They prteskalso experimental results to validate theyaical study. The work of
Driot et al. [31] was based on the model preseimef80], described the numerical orbits of the roémd compared them with
experimental ones. El-Saeidy and Sticher [32] @etithe equations of motion of a rigid rotor lineari-linear bearing system
subject to rotating mass unbalance plus harmongitations of the support along or around laterakctions. They presented
analytical frequency responses in the case offibearings, while they discussed numerical resulis regards to the time domain,
the fast Fourier transform as well as the Poincaa@ in the case of a bearing cubic non-linearitys Bt al. [33] investigated the
active vibration control of a flexible rotor systanmodeled by Rayleigh beam finite elements and exdifea mass unbalance as well
as a periodic rotational motion of the support.yrperformed the control with electromagnetic cohtooce provided by an actuator
placed on the stator in a suitable plane aroundadtwe and it was successful for avoiding the ktparametric instability due to the
sinusoidal rotation of the support.

A significant number of previously stated papeeatrsupport-excited rotor systems. Nevertheless,skedies focus on the
harmonically excited on-board rotors. Moreover sthpapers focus on constructing simplified modete adoption of simplified
models facilitates the understanding of the behagfosuch dynamic systems but it is limited in teactical applications and
reduces the required accuracy between the thealretitor models and the realistic ones under treraing conditions. The most
common simplifications and limitations are linkeither with the geometry of the rotor (for exampleffcott rotor [23]), with the
utilization of the Rayleigh-Ritz method instead oé tfinite element method for the spatial discretoratof the rotor model (for
example, [30,31]), with the rotors supported byseétabearings with constant damping and stiffnessfficients (for example,
[32,33]) or with the kind of rotor support motiosiriple rotation or translation).

This paper overcomes the previous limitations amtributes to the construction of an improved oasdarotor model. Namely,
a rotor with geometric asymmetry due to the shaft/ar the rigid disk is discretized using the fn@élement method based on the
Timoshenko beam theory, mounted on hydrodynamimplibearings of external forces calculated udirgReynolds equation [34],
and excited by combined deterministic motions @hi@ations and three translations) of the supddne. vibration analysis focuses
on the case of bending of the flexible rotor. Eialerangles are thus employed to describe the atientof disk and shaft with
respect to the moving support. The kinetic andirsteaergies in addition to the virtual work of tfiexible rotor components are
computed. Using the short bearing theory in ordeshtain the hydrodynamic fluid forces from the Ralgis equation, two models
are considered for the hydrodynamic journal bearimgsimplified linearized model with eight constadtamping and spring
coefficients and a non-linear model where the Ingais treated as external non-linear forces aabimghe shaft. The Lagrange’s
equations are applied to establish the linear/imewt differential equations of vibratory motiontbg rotor in bending with respect
to the rigid support representing a non-inertidemence frame. The governing equations of motispldy periodic parametric
coefficients due to the asymmetry of the rotor ime-varying parametric coefficients due to theuprotations. These parametric
coefficients are considered as generators of iatexxcitation and can create lateral dynamic inbtabThe equations of motion are
solved by the implicit Newmark time-step integratialgorithm which must be combined with the NewRaphson iterative
procedure in the case of a non-linear bearing mdded influence of sinusoidal motions of the supmor the dynamics of the on-
board rotor-bearing system is analyzed by meassability charts, orbits of the rotor, time histogsponses, fast Fourier transforms
(FFTs), bifurcation diagrams and Poincaré mapadifition, a comparison between the linear and imwat systems is performed to
assess the validity range of the linearized 8-azefft bearing model.



2. Problem statement and basic considerations

Let Fig. 1(a) present the basic components ofdbarrthe disk (1), the shaft (2), the mass unlmdaB), the bearing (4) and the
support (5). The mass unbalance is distributedimootisly as well as in a generic way and cannotptetely be canceled. The
excitations taken into account are due to the tablé mass unbalance and to the imposed movemetiis support. The transverse
deflections of the elastic line of the rotor steaft studied.

The following assumptions are used: the disk i@rithe shaft is deformable and modeled by Timokbdream elements of
constant cross-section solicited in bending alomg arthogonal directions, the shaft and/or rigidkdéan be asymmetric, the mass
unbalance is modeled by concentrated masses, #nmde supporting the shaft are flexible of hydnmoayic short type, the support
is rigid and mobile, the rotor rotates at a constpeed .

The consideration of the support motion may mothify form of the equations of motion of a rotor enHing compared to those
obtained in the case of a fixed support. In ordatevelop a modeling as simple as possible, theoaph presented by Duchemin et
al. [30] is adopted. Three frames of referenceusitized to take into account the movement of thr with respect to the support
and that of the support with respect to the ground.

The derivation of the equations of motion is insgifrom the theory described by Lalanne and Fer{8ti First, the coordinate
systems needed to describe the motion of an ordlrotor are defined and the vectors expressingdtetions between them are
calculated. Then, the kinetic energies for a d&skhaft element and a concentrated mass unbaldrecstrain energy for a shaft
element as well as the virtual work for a bearimg ealculated. Moreover, the rotating flexible rote discretized using the
Timoshenko beam finite elements. Finally, the défeial equations of motion of an on-board rotobé@nding are deduced from the
Lagrange’s equations being applied with respetitéaeneralized coordinates by

E al _07T+07U:F (1)
dtloq ) oq oq °

with n,,(1<i<n,) the number of degrees of freedom,andu the kinetic and strain energies respectively,the external forces
corresponding tay . The symbol " refers to the differentiation with respect to &m.
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Fig. 1. (a) Components and frames of reference of theaamebrotor model, (b) Euler angles for the transfation between the frame linked with the
moving supporR and the local framg.

3. Kinematics of the on-board rotor

Three principal Cartesian frames of reference shiowkig. 1(a) are introduced to take into considerathe movement of the
rotor support: Rg(xg, ¥, zg) is the Galilean frame of reference fixed to theumd, R(x y, 3 is the non-inertial frame of reference
attached to the moving rigid suppoﬂ,‘(k, Yy, 2) is the non-inertial local frame of reference (nmayviwith the rotor during its

operation) attached to the mass center of the digikl or the geometric center of a section of thinable shaft. The origins of the
frames of referenc&®, R and R are 0%, O and Q' respectively.

The elastic line of the non-deformed shatft is altmg Oy axis on which the mass center of the disk is kxdaMoreoverxOy
and yOz are both planes of symmetry for the disk and thre-seeformed shaft. ThuSx, Oy and Oz are principal axes of inertia.

The translational motions of the rotor supportdescribed by the coordinateg(t), y,(t) and z,(t) of the position vecto?0
projected in the frame attached to the supporiThe rotational motions of the rotor support aesatibed by the componenis(t),
« (t) and o7 (t) of the angular velocity vectas? of the rigid supporR with respect to the grouns® projected in the frame.

In the classical rotordynamics theory, the transfition between the frame® and R shown in Fig. 1(b) is performed by two
intermediate coordinate systen®$ (x:, y:, ) as well asR:(x:, y*, ) and the Euler angleg(y.t), 8(y.t), ¢(t) which permit
describing the angular velocity vectef; of the rotorR' with respect to its suppor. The angular velocity vector of the rotef

with respect to the groun®® measured in the framg' is described by
T

m:‘g zof +m§ :[a)*,a)&,wklé 2
where the superscripT is the matrix transposition symbol. The compongig ,«” ,«7) are formulated as a function of
(¢, 8, ) and their time derivative as well a&'(, o’ , &’ ). Further details about the kinematics of the oafd rotor can be found in

[35]. Let us consider an arbitrary poiat™ along the elastic line. Namely, it representsghemetric center of the non-deformed
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shaft. Its coordinates in the franfe are (0,y,0) . Let u(y,t) and w(y,t) be its time-dependent dynamic lateral displacesmdne to

bending along thedx and Oz axes, see Fig. 1(b). As its coordinate along i@l axis is assumed to be a constant with resjpect
the rotor support, the axial displacement along@eaxis is not taken into account.

4. Energy and virtual work calculations of the on-boad rotor-bearing system components

This section includes formulations for the disle ghaft, the rotating mass unbalance and the hydamaic journal bearing. The
kinetic and strain energies are measured by amadrssituated at the ground and their terms arétemriwith respect to the frame
linked with the rotor rigid supporR. The rotary inertia, the gyroscopic inertia, thea deformation of shaft as well as the
geometric asymmetry of shaft and/or rigid disktafeen into account.

4.1.Disk

According to the assumptions presented in Sectjdhe?disk is assumed to be rigid and only its tkinenergyT, is calculated.

This energy consists of the scalar sum of the absdtanslational kinetic energy and the absolatational kinetic energy about the
disk mass center located at the generic absgissdong theOy axis, i.e.,

- rnj RY T R 1 R i R : — i X 2= Hi mo i mo i
T = (V) v+ 5(of) twef with 1, =diagl1y 121 )= diadl Y 1 g1 e Y €)
where m, is the mass of the disk/,gf is the translational velocity vector of its cenaerd i, is its principal inertia tenson.’ , (4

and 1} are the principal moments of inertia of the diskssiabout th@x, Oy and Oz axes respectively. In additiom;° and I

are used to seperate the effects due to the mememi®f inertia of the disk mass and those dubdéarioment of inertia modeling
the disk geometric asymmetry. Thus when the disksigmmetric, the moments of inertig as well asi; are different and the
contribution of the moment of inertig}, in them is not nil.

The translational velocity vectorgf is found through the absolute position veats0), of the disk mass center positioned at the
arbitrary abscissay, with respect to the fram®&. The latter is observed from the ground and egekdn the frame fixed to the
supportR by

0%}, =090 +00)}, =[%y, Yo, Zo|r +[ 4. ¥ WIL=[ 4+ ¥, ¥+ ¥ w . (4)

Using the transport theorem relating the time deive of a vector measured from a fixed frame &t tf the same vector but

measured from a moving frame, the derivation ofpsition vectoro®o) yields

do‘o,” _doo, " T
dtd = dtd +of DOQOL:[“o;'Vdd'WdJszz (5)

whereu, , v

Y, andvi, are the components of the translational velooggter of the disk center. Considering the components

@ and«f of the vectore?y for the disk, the expression of its kinetic enebggomes
¥ v Y 1 mo ! y i
R R [ CRUS IR ®

The rotor runs at a constant speed of rotatidbnSo the spinning angle and its time derivativep are replaced by2t and @
respectively. The translational displacemefifsw,), the angles of rotatiofy,,6,) and their time derivatives are very small. Thus
the trigonometric functions are replaced by theiyldr series expansion and the resulting expressiomlimited at the order 2, then

- : 6 .o : vs
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4.2.Shatft

The shaft is assumed to be flexible and is modeledeam elements of constant cross-section andasdnmeoments of inertia.
The kinetic energy of the shaft element is obtaimgdiaking a shaft elementary volume similar task @f very small thicknessly .

Considering the components, , v, , W, of the vectorvg? and the components’ , ' , @ of the vectorm;g , the expression for

the kinetic energyr,, of the shaft element, whose end-points have tlseisgasy, and y, along theOy axis, is written in the
following form

S 2f . . . 1 mof Y2 q mof Y2 i[f Y2
T, =7psh2 Shﬁ (0 + + Wé)dy+§(psh EJ; (wx 240 2)dy+ 20,, EJ; w’ Ty+ p, I :(w* - ot j d)) (8)
where p,,, S, and I, (l,=y,-y,) are respectively the density, the cross-sectiameh and the length of the shaft element.

%h
inertia characterizing the asymmetry of the shatft.

The rigid support motion relative to the ground hasnfluence on the strain energy of the shafahee the latter depends only
on the stresses and therefore on the transverkeiitef of the shaft with respect to the rotor supfR. In addition to the bending
deformation, the shear effects introduced by Tireokb and the second-order (non-linear) terms ofthaén field are accounted.
The non-linear strains are linked with the ceng#ustiffening being proportional to the squaretlvd support angular velocity

1°=(15,+1%)/2 and 1 =(1%, -1%)/2 are respectively the mean moment of inertia ofcttuss-sectional area and the moment of



around the transverse axes and corresponding tgeibwetric potential energy. Thus the strain enesgyof the shaft element is
expressed by

_ET ([0 (96, GurmSapn((ou, VY (aw_ Vot g o (0w _(20)
Uan= 2 jyl[[ay ¥ ay dy+ 2 J.yl 6y+w ¥ ay o) | 2ES“|§"J.V1 ay oy R

2 2
Gsththh w [{ay +lﬂj [ay gj ]dy] cos 22t [EShlth‘yl ay ay (9)
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where E,, G, =E,/2(1+v,) and v, are respectively the Young's modulus, the sheadulws and the Poisson’s ratio of the
isotropic shaft material«f° =(«%,+«%)/2 and «% =(x%,-«%)/2 are respectively the mean shear correction fastahe cross-
sectional area and that relative to the sectiomasstry of the shaft.

4.3.Mass unbalance

The mass unbalance is modeled by a concentratesl masplaced at a poing,, with a distancer,, from the geometric center
of the cross-sectional area of the shaft. Itsah#dngle with theOz axis of the framer at rest isy,,,. The mass unbalance remains in
a plane perpendicular to th@y axis with a constant abscissg, along theOy axis relative to the rotor suppoR. Its kinetic
energyT,, is defined as follows

mu

To = (v ) v (10)

The translational velocity vectov; is deduced from the absolute position veatSP,, of the mass unbalance. The latter is
measured from the ground and written relative &oftame linked with the suppoR as
ongu = OgO+OO:nu + OI P :I:umu + XZ) + rmusm('(‘?t-'—nmu) 'ymu+ yO 'Wmu+ % + I’mucoi'(‘? t+/7 m\)]; (11)

mu’ mu

Applying the transport theorem, the time derivatWehe position vectoo®P,, is of the following form

do’p,, " _do°p,, "
a0
The external force vectors obtained by the apptinadf the Lagrange’s equations to the kinetic gpasf the mass unbalance
contain the so-called “centripetal and centrifugate vectors”, sinusoidal tangential force vectams sinusoidal force vectors fixed
in space with respect to the supp®t Thus in the presence of sinusoidal rotationshefgupport, the excitation due to the mass
unbalance combined with the support rotationsnsisidal and has not only a frequency equal tosged of rotation? of the
rotor but also a combination of frequencies of gpaferotation of the rotor and support rotation.

+oy 0O°P,, = v (12)

4.4.Hydrodynamic journal bearing

Fig. 2(a) shows a simple representation of a hygrachic bearing which consists of a fixed journglifcluding a rotating shaft
(2) and a lubricant (3) separating these two coraptsm The points0 and O' are respectively the bearing center and the shaft
geometric center. The radius, length and clearafiche bearing are respectively,, I,, and ¢, =r,.-r,, wWherer, is the shaft
radius.

At a constant speed of rotatia@ of the rotor and for a constant static load created by the rotor weight, the shaft geometric
centerO' in the bearing occupies a static equilibrium positC’, defined by the displacement vects&:[uge, wobe]; expressed in
the frame R or equivalently by the static eccentricit, =53] of the shaft center in the journal and the statfitude anglegy,

between thew, load direction and the line of centeds), .
In the dynamic regime, the fluid film pressure dizition in the hydrodynamic bearing is governedhry Reynolds equation and
its integration over the bearing yields the extetmalrodynamic forceste=[F;§FbW]:e acting on the shaft and projected in the

e

Cartesian frame connected to the rotor supporDenoting the dynamic variation of shaft centesifjon in the bearing (i.e., the
shaft center describes an orbit situated withiir@decwhose radius is equal to the radial clearafdee bearing) due to the dynamic
variation of forces applied to the rotor (mass uabee, fluid film forces and support excitationf)e dynamic transverse

displacement vector of the shaft centebjs=[u,, wa;. The dynamic polar coordinates of the shaft ceimté¢ine bearing expressed
in the frame R™(ta ra) are the relative dynamic eccentricity, (relative dynamic radial displacement) and theadiyit attitude
angle ¢,., see Fig. 2(a). These coordinates and their tienwatives are expressed as

2 . . . .
JUE + W . U+ W W, u, W= W
£.= Se = Voo ¥ Woe tang,, = e . ¢,= Ut ™ WheWoe By, = oV b ¢ (13)
Cbe Cbe Wbe (’Zbg be (‘2I§ be

In the present paper, the short bearing theoryissidered (i.e.|,./d,.<1/8 where d,,=2r, ). Assuming an isothermal and
laminar flow of an isoviscous incompressible fluide dynamic polar (tangential and radial) compdsmeiithe hydrodynamic force



vector can be analytically deduced from the integnaof the hydrodynamic fluid pressure field basedthe Reynolds equation
using the Giimbel boundary conditions which dis¢hednegative pressure from the force integral. &ltlgmamic components in the

polar frame linked with the hydrodynamic bearirtj are defined by the following formulations [34]

R 2
Flo = Mol bi & be (4 T - o- ) Fr=- Hid biSbe mbe(l 2£be) 262 (0 — 14
i “ul2-2) wf-af | e (272.) o

where 4, is the fluid film dynamic viscosity. The equati@alculating the static solution can be reached dtying the time

derivatives ofe,, and ¢,, in Eq. (14) to zero and by setting the magnitutiéhe vector sum for the force vector component&dn
(14) to be equal to the static lo&d. Thus the resulting non-linear equation is sollgdn iterative Newton-Raphson method and
provides the relative static eccentricigf, and then the static radial displacemefit of the shaft center in the bearing. The

components of the static equilibrium position vecif) and those of the dynamic fluid force vec®y are obtained by a classical
change of basis (see Fig. 2(a)) given as

° =_(RR o)T 0 - E = (RR )T Foe . RRO= cosp,, —sigy| RR = cosp,, — sing,, (15)
U A e o VTR T lsingl cogl ] T T [sing.,  com,

where RY,.° and RY, are the rotation matrices of the polar framfé with respect tor in the static and dynamic cases respectively.
According to Egs. (13)-(15), since the hydrodynafaice vector components depend non-linearly ordiim&mic polar coordinates
and on their time derivatives, they are non-lirfeactions of the dynamic transverse displacemedtvatocity vectors(abe,iibs) . As

the bearing contribution appears as for¢gs external to the rotor, their virtual workw,, must be established to apply the
Lagrange’s equations
OW,, = F-bre(a be® b; (2 (16)
If the dynamic displacements,, of the shaft elastic line are assumed to be simate vicinity of the static positiosy, , the
linear analysis of a bearing is applied by congingca first-order Taylor expansion of the dynarfigd forces Fbe(ﬁbe,ébe) in the

vicinity of the static hydrodynamic forces, (59,,0) as follows

Fbe(ﬁbe's be) =F be(ﬁobeo) -c éﬁ e K A8 (17)
with
Che = _ﬂ |:C2i Cl;i:| P Kpe = - Pee = |: K]Zi zi} P AB=8,,-80, 5 A8 LD, (18)
0Bpel(sp,0) [ oo Coe 0Bpcliyo o) LKoo e

The bearing force vectoFbe(S‘;e,o) is related to the static displacement vecifyr and must equilibrate the constant loag
imposed by the rotor weight. The damping and stgfhmatrices,,, k,, of the linearized 8-coefficient hydrodynamic bearfi.e.,
four damping and four stiffness coefficients) (5&g 2(b)) depend only on the static positiaf). Actually, they are easier to obtain
in the polar frameR™, i.e., & and k® . Their analytical expressions can be found in [@4d deduced from Eq. (14). In addition,

these expressions are presented in Appendix Alyl.dists necessary to execute the transformatietwben the frame&™ and R
in the static condition to produce the matriegsandk,, in R as follows

oo = (RS °) CERRS 5k, (RRO) k¥R RO (19)

Ro Rbe RO

<

&

W,

Che
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Fig. 2. (a) Schematic diagram of a hydrodynamic bearingl inearized damping and stiffness coefficienta éfiearing model.



5. Overall dynamic behavior of the on-board rotor-hydrodynamic bearing system

5.1.Finite element formulation

The finite element method is chosen to discretimedn-board rotor in bending. Each node of noda&irjiolation includes four
degrees of freedom (two transverse translationstandrotations). The disk, the mass unbalance &edhydrodynamic journal
bearing are modeled by one-node finite elementstsitl at the geometric center of the cross-sedtaora of the shaft. On the other
hand, the shaft is modeled by, two-node beam finite elements based on the Timmdshbeam theory and thus hag,+1 nodes.

Let us consider a non-deformed shatft finite elememt which consists of two nodes and n,, of coordinatesyy, and y3* along

the Oy axis. This finite element is of densify,, , cross-sectional areg,, , length|,,,, moments of inertia{® and I , Young's

esh ?

modulus E,,,, Poisson’s ratiov where i(1<i <n.,) is the shaft finite element

esh esh

as well as shear correction factor® and K4

number. Its nodal displacement vectjy, projected in the coordinate system attached todtwe rigid supportr is defined by

n T
Egsm = I:ur;sh’ V\pegh gqesryj ‘ eshun:gswleﬁ‘Tleg{ ‘r‘h;lgh (20)
The above vector is separated into two vecsits and 5.); associated with the motions of the nodesand n,, in the planes

esh

xOy and yOz, then
nu — 41 Ry T . nw — 7 1 1 T
eéh - [ugsh!wnesh uqesnw ey ? ;esh |:Wn‘ sgn‘ EM ghF,L :Lﬁh (21)
The dynamic transverse displacements and w,,, of any pointC™ due to bending respectively along tbe and Oz axes of
the frameR as well as the corresponding rotatiaf)g and ¢, respectively around thex and Oz directions are formulated as a

function of the nodal displacement vectafg and &z in what follows

esh
Uesp =FTe§h(§/)6n:;h VA ﬂ%&)snish oWy eﬁﬁ(;})an:‘ﬁ/ e O . %s?(:})@ n,'w (22)
where FTh(Q) , FTh(Y/) , FTh(Q) and FTh(Y/) are the shape function vectors of a Timoshenkanifigite element. They are third-

degree and second-degree polynomial equationstidmscof the dimensionless variable (y= Y/l ) @long theOy axis of the

esh

frame R and include the shear effects (see Chen and Ki\.[36]
5.2.Equations of motion

The Lagrange’s equations are applied to the erefgrethe disk, the shaft finite element and thessnanbalance (see Egs. (6),
(8), (9) and (10)) as well as to the virtual wofktlee hydrodynamic bearing (see Eq. (16)) and éiselting elementary matrices and
vectors are appropriately assembled. Due to theepee of hydrodynamic bearings, the boundary cionditdo not exist and the
corresponding row and column entries of the assetinbilatrices and vectors are not eliminated. Thebtained global matrices
and vectors are respectively of dimensiapxn, and n,x1 where n =4(n,+1) is the total number of degrees of freedom. The

obtained non-linear second-order differential et describing the dynamic behavior of the on-Baator-bearing system in
bending are written with respect to the non-inéfteame connected to the rigid supp&tas follows

M, (t)3, +C, ()3, +K ()3, =F, (t) +F,.(5,.3,) (23)
where M (t), C,(t) andK,(t) are the global mass, damping and stiffness matuidth periodic and time-varying parametric terms

due to the geometric asymmetry of the rotatingrraied to the rotations of its rigid support respety. These matrices are not
affected by the translational motions of the suppdr,  and s, are the global acceleration, velocity and disptaeet vectors

conforming to the connectivity of the finite elent®nF. (t) is the global external force vector containing éxeitations due to the
influence of the mass unbalance as well as toahtite rotational and translational motions of support. Lastly, the external non-
linear hydrodynamic force vectm'be(a,,sr) of the bearing is opposite to the rotor motion.
The matricesM, (t), C,(t) andK,(t) mentioned in Eq. (23) are defined as follows
M, (t) =M ., +M % cOS20t+M 3 sin 22t (24)
C, (t)=CY,,@+C%%2cos 22t +CILQ sin 22t +C°2;. (25)
K, (t)=K g, +K $2cos20t+K 32 sin 22t
6 +K S 00 + K K T et K g UK, Mt R R
+(K 0 %G + K PEY % Qo) +K B S@? K W SR K T Gy K e juw) cos 20t

d,sh,su d,sh,su d,sh,su ,sh,s! d,sh,st

(26)
(K +K 8 P00 4K 1 B A 4 0% A S S we ) sin 20t
The subscripts d”, “ sh” and “su” refer to the disk, the shaft as well as the suppEspectively and express the contribution to
the phenomena represented by the correspondingxniBitle superscripts¢,” and “s, ” denote the geometric asymmetry of the
rotor expressed in terms of the time-varying trigmetric functionscos 22t and sin 22t . The superscriptd” stands for the rotor
gyroscopic effect, &” for the shaft elasticity corresponding to the they and shear deformationsie™ for the rotational effects



due to the support rotations (these effects commn fihe kinetic energies of the disk and the staft) “gse” for the geometric

stiffening effects corresponding to the centrifugiméss due to the support rotations (these eféectee from the strain energy of the
shaft).
The force vectorF. (t) indicated in Eq. (23) is expressed as follows

F(t) =R+ Fou(t) + F o at) +F gandt) *FZyanlt) cos 22t +F> (1) sin 22t (27)
with
Fra=-Viw, ; F (1) =V%Q°cos@t+V % Q7 sinQt (28)
Frus(t) = (Vﬁuiwy HV QW #V S Y SV R ”’X‘”n;'ggxwz) cos@t 9
( WS VB SQ0 AV LS AV 4 A R Ay s, WZ)Sinm
Faonsult) = —V”dyshvs‘(iéo +27,00" - 2y " + Zo(d)y+wxwz) - )é(d)z—w W ’) - )&(w Pt 2))
Vi, su(ﬁo +2Y0 = 2% .07 + yo(d)* + wywz) - >g(a')y— ww z) - z)(w ‘i w 9)) (30)
-V Su(w +ww’ ) +V dyushs.(d)z—w W >)— gdsh,ilp") Yol )—V v d‘sh(sgu Z—w*wy)
VI o Qw + W)+ 2, [ 0w+ w'w)
Fotnalt) = V5% (@ - 200 - 0'@?) + VI (0™ 200"+ 0w ) (31)
Fitnalt) = V4G (@ - 2007 - 0'0?) +V 5, (0™ 200"+ 0 ) (32)

where the load vectors,,, , V. andVv,, . and their corresponding force vectdats, F,

d,sh,su mu,su

s @Nd F . are associated respectively

with the mass unbalance, the inertia force dueippart motions and that due to coupling betweeh pbenomena. The superscripts
“c,” and “s " signify the components of the mass unbalanceef@xpressed in terms of the time-varying trigoneimdtnctions
cos@t and sin@t . The superscripts, w, ¢ and 8 denote the direction of the action force compos@ssociated with the rotor
support motions.

For the sake of conciseness, the elementary matine®lved inM, (t), C.(t), K, (t) and the elementary vectors involved in

F.(t) as well as the validation of the finite elemeritakations against the Rayleigh-Ritz formulation act detailed here and can
be seen in [35].

As already stated above, the equations of motiennan-linear. This is due to the hydrodynamic begri(local components)
even if they do not concern all the degrees ofdfoee of the rotor system. In the two following seaos (i.e., Sections 5.3 and 5.4),
the treatment of these equations is detailed.

mu ?

5.3.Non-linear dynamic analysis

5.3.1.Classical transient analysis

For large hydrodynamic bearing forces and therabgel displacements of the rotor, the linear dynaanialysis is no longer
valid. In this case, the non-linear analysis ofaring is considered. Solving the complete noralirdynamic problem requires the
simultaneous solution of the equations of motioe.(iEq. (23)) of the rotor-bearing system and E4§3)-(15) calculating the non-
linear bearing forces obtained by the Reynolds éguanh the dynamic regime. As a consequence, tladysis uses a complex
solving algorithm combining the Newton-Raphson inweatal-iterative procedure with the Newmark timegnation scheme. The
semi-discrete equations of motion (Eq. (23)) agph¢ timet,, (1<i<n,+1 wheren, is the number of time steps) can yield the
following residual form

Gr(f’:'ﬂ):Mr(twl)BHl*—C (\+1)6I+1+K (t )Sirﬂ_Fr(Fﬂ)_Fbe(ﬁi:l's}'l):O (33)

The velocity and displacement vectors of the rotmtes between andt,, =t +4, 4t being the time step, are approximated by
the following general formulations of the implidiewmark scheme

871 =8 + (881 +(1-£)8,) 8,*1=8,+At5,+@(24‘25,”+(1- %,)8) (34)

where the parametet§ =1/2 and ¢, =1/4 define the constant average acceleration scheth@assume an unconditional numerical
stability and second-order accuracy. Since Eq. 88Bpn-linear, an iterative strategy is used ¢attthe non-linearity. Namely, the
consistent linearization of Eq. (33) is appliedfimging a first-order Taylor series of this equatiand the Newton-Raphson iterative
algorithm is taken into account as follows

Gr(k+18:+1) ~ Gr ( kﬁir+1) + i;;:l
r

A5 =0 = J("87)As"=-G, ("8 (35)

(rs)

where A3® = 3" - *3!"* is the iterative increment of the displacementmeandk is the Newton-Raphson iteration. The Jacobian

matrix J, is a function of the displacement vec®t at iterationk and is given by

dG dﬁ”l (:Swl dE ) Csm 1 CBM F3
- =M, (t +C, (t,,)—5+K be with —L- = I L

dﬁ:,ﬂ (kﬁ‘ﬂ) r( |+1) d8|+1 r( \+1) cﬁrﬂ r(tn-l) Cslﬂ(k kg 1) cﬂr+1 (,(2 (At)z (8r+1 Q(At

8

3 (*87)= I (36)




where | is the identity matrix. The derivatives of the elecation and velocity vectorg™, & with respect to the displacement
vector 5" are deduced from the approximations of the Newnmswkeme (i.e., Eq.(34)). The derivative of the tioear
hydrodynamic forces in the Jacobian matrix of E3f)(depends on both the displacement and velo&ityovs (kﬁj*l,ki‘;:”), is

updated at each iteratidn and is expressed in what follows
dF,, _OF,, oF,, doi™
dair+1 66|r+1 aéirﬂ dair+1

37)

(kawrolvké\'ﬂ)
The algorithm of the Newton-Raphson incrementahiiee procedure combined with the Newmark timegraéon scheme is
presented in Fig. 3. The initial dynamic displacatmeector is set to the static equilibrium positiéh (or to other user-defined

(karlyké\rcl) (k:’\'ﬂ’k(‘i\rﬂ)

vectors) and the initial velocity vector is sez&yo. When the residual vectar, (kﬁir*l) is calculated by Eg. (33), a new displacement

incrementAs'™® is produced by Eq. (35) and thus the displacenvefacity and acceleration vectors are updatedhaws in Fig. 3.

Gr (k+15:+1) /HFr (ti+1)
shifts to the next time step of the Newmark sche@taerwise the non-linear bearing forces are réueted and a new Newton-
Raphson iteration begins.

In order to reach the steady-state dynamic respionte periodic regime, the Newmark integratiohesne must be used over a
large number of time periods in the case of a haimexternal excitation of the system. This resirta huge computational time
when the indicated scheme is repeated for a langeber of fundamental excitation frequencies, each fundamental frequency
corresponds to a large number of time periods. Goatipnal time can be saved by computing diredtly periodic solution by
means of the shooting algorithm which is discussdtie next section.

If the ratio ‘ is less than a convergence criterigjf , then a converged solution is reached and theitiigo

5.3.2.Direct computation of the periodic solution (shogtimethod)
The following two-point boundary-value problem a&fil by the periodicity condition is considerednthe
H, (X, (0) t=7,)=X, (X, (0) t=7,) X ,(9=0 with X =[5, 5] (38)

where 7, is the minimal period of the rotor response. Tepahdence of the system on the fundamental petjodf the harmonic
exciting forces is assumed, i.a,,= jr,, (with j=1,2,3..). Integer multiples of the fundamental period ased to compute sub-
harmonic responses occurring, for instance, affgraod-doubling bifurcation. In practice, in orderfind the minimal periodr, of
the response, the shooting algorithm is first ruthw, =7, (harmonic response) and if there is no convergeahéethen run with
T,=21,,,7T, =3,

ex? tr ex 1t

consecutively (sub-harmonic response). The sgaeesvectorX, in Eq. (38) represents the solution of Eq. (23)
at the end of one period for an approximated initial solutiox, (0) . This vector is obtained with the non-linear Newkntime
integration scheme over one peripd(see Section 5.3.1 and Fig. 3). An appropriatediization of Eq. (38) is applied by building a
first-order Taylor series expansion of this equaand a Newton-Raphson iterative correction is peréal, then

oH,
o, (0)

H, (X, (0).7,)=H (X, (0) 7,) +

AX$=0 = JI(*X,(0).7,)AXH=-H ("X, (0) 7,) (39)
(“x.(0))
where AXS" =*X (0)-*X,(0) is the iterative increment of the state-spaceoreand k is the Newton-Raphson iteration. The
Jacobian matrix3?" is a function of the state-space vectq(0) at iterationk and is given by

X,

JrSH(ka(O)’Tf):L axr(o)

x (5 -1 (40)

(“x.(0).7,) (“%.(9) %)
The shooting method algorithm solving simultanepliis. (23) and (38) is presented in Fig. 4. Theadmated initial solution
is set to a user-defined state-space vettp(0) . When the residual vecta, (kxr (0) ,r,) is calculated by Eq. (38), a new increment

AX:" of the state-space vector is produced by Eq. §88)thus the approximated initial solutié?Xx, (0) is updated as shown in
Fig. 4. If the ratio|H, (X, (0).7,)|/

and the algorithm is terminated. Otherwise theessaace vectmx,(kx,(o) ,t=rr) is re-calculated and a new Newton-Raphson
iteration begins.

X, ("%, (0 t=1,)

is less than a convergence criterigtt, then a converged solution is reached

5.4.Linear dynamic analysis

5.4.1.Transient analysis

The solution technique can be significantly simetifand the computational time can be reduceceifigsumption of a linearized
8-coefficient hydrodynamic bearing model is consdeto be valid, i.e., the dynamic displacementareaf the rotor remains small

in the vicinity of the static positioa® and a first-order Taylor expansion of the dynafhiicl forces Fbe(ﬁr,is,) is built by

I:be(fs r’ér) = Fbe(aor'o) -C bésa r K béﬁ (41)



with As, =8, -&° and Aé, =8, . The hydrodynamic force vect(rrbe(fs?,o) depends on the static solution vecjr caused by the
static equilibrium between the rotor weight vecgf, and the hydrodynamic bearing reaction (i}ge(ﬁ?,o) is opposite and equal

to F)% ). The global damping and stiffness matriegs, K,, deduced from the bearing linearization (see Seectid) are generated

by the assembly of the elementary matrices. Theseaas are kept constant all along the dynamiaksition. Substituting Eq. (41)
into Eq. (23), the equations of motion of the omabrotor-bearing system become linear as follows

M r (t)ar +(Cr (t) +Cbe)$r +(K r(t) +K l:nre)6 r: Fr(t) + Fbe(ﬁoﬂo) + K b§ov (42)
The transient dynamic motion of the rotor nodeshtained by solving Eq. (42) by means of the inipfiewmark time-step
integration algorithm based on the average act@ararhe displacement vectef of the static equilibrium positioe?, is used to

initialize the transient dynamic problem. The filrgegration time is selected such that the tramig&ects have disappeared and the
steady-state regime has been reached. Lastlyn#dsssary to establish precisely the validity eaofithe linear bearing model by
comparing its results with those of the non-lineearing model.

5.4.2.Stability analysis

The motion stability of the linear rotor-bearings®m is investigated by applying the Floguet thdoryone periodr,, of the

periodic parametric excitation, see Dufour and Ber[6] and Dakel et al. [35]. In other words, byoccdating the so-called “Floquet
transition matrix” (or monodromy matrix) during operiod r,, of the parametric excitation and by finding itgeivalues, the zones

of instability are identified, i.e., if the modulud at least one of these eigenvalues is greatar i the system is unstable. As
reported in [37], the Floquet transition matrix ¢esnvery efficiently computed using the linear i@nsof the Newmark algorithm.

Initialization of the algorithm with the initial calitions
8" =5,(0);8:=0:5"=MY(O)(F (0+E, (8:8)-C,(95'-K,(9s]

_,[ Time increment,,, =t + 4t ]

1
[ Initialization of the correction iterations (Newrkaﬂpproximations)‘

2
Predictor step’s!"*=4! ; %8/*'=5, + A3, ; '8, '=8, + A48, + %3,

Evaluation of the hydrodynamic bearing fordéog(lﬁifl, 1Sir*1)
1

Evaluation of the residual vector
Gr (16ir+1) = M r (ti +1) lsir+1+ Cr (ti +1) 18ir+ 1+ K r('; +l) Léi: '
-F, (ti+1) _ Fbe(lﬁirﬂ' 15ir+1)

1
[ Evaluation of the Jacobian matrq+s:)
1
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| |
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g. 3. Algorithm used for the non-linear transient anialysf the on-board rotor-hydrodynamic bearing syste
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—)I Increase of the period of the rotor responsej +1 ; 1, =j7,, ]
r CE—

Initialization of the algorithm with an approximdtenitial solution
X.(0)

( A

Computation of the state-space veckQ(*X,(0) .t =7,) with the

A

algorithm in Fig. 3
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( Evaluation of the Jacobian matrix(xx, (0).7,) | 3
I 2 1)
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Convergence
HH((kX((O)’Tr) /HX((kX ((0) ’t = Tr)
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End of the algorithm
Fig. 4. Shooting method algorithm used for the non-lirdaramic analysis of the on-board rotor.
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Fig. 5.0n-board rotor-hydrodynamic bearing system coméijan.

Table 1.Main characteristics of the on-board rotor.

Density of both disk and shaft material pa=ps=7800 kg/m

Radius, thickness and location of the disk r=0.15 m,e;=0.03 m,y;=0.2 m
Radius and length of the shaft rs=0.04 m,l4=0.4 m

Young's modulus and Poisson'’s ratio of the shafEq=2x10" N/m?, v¢=0.3
Shear correction factor of the shaft Ksh= Kksiv=0.8864 [38]

Mass unbalance phase 7m=0°

Table 2.Main characteristics of the hydrodynamic shortrinegs.

Radius and length of the bearings rpe=0.04 m|,e=0.01 m
Locations of the bearings Yoe# 70 M, Ype # 0.4 M
Radial clearance of the bearings Co=2x10*m

QOil film dynamic viscosity 1n=288x10" Pa s
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6. Numerical simulations and result discussion

6.1. Description of the investigated on-board rotor-biegrsystem

The symmetric on-board rotor-hydrodynamic shortringesystem is presented in Fig. 5. The originof the reference fram&
coincides with the shaft end-point positioned & tenter of the bearing # 1. The symmetric shafhasleled with eight identical
two-node Timoshenko beam finite elements, i.e. toh& number of degrees of freedomnjs=36. The symmetric disk is located at
node 5 and the mass unbalance is placed on it.hjdeodynamic short bearings # 1 and # 2 are locatedodes 1 and 9

respectively, i.e., the corresponding localized -tioear degrees of freedom are 1-4 and 33-36. Thtemal characteristics and
geometric properties of the rotor and the bearargdisted in Tables 1 and 2.

The investigated rotor is subject to rotating maebalance excitation combined with sinusoidal fotatl or translational
motions of the support: the rotation around tbe axis is given by the angular velocity* = w**cos@’t in rad/s (i.e., the
corresponding angular displacement &= w**/2*sin@*t in rad), while the translation along th@z axis is expressed as
z, = Z,cos@*t in m. This rotor runs at a constant speed of imtat2 =1200 rpm (=20 Hz=mass unbalance frequency) and its first
four natural frequencies for the considered spdedtation and a fixed support in the case of Il bearings are 33.6 Hz,
52.7 Hz, 524.8 Hz and 1573 Hz. The relative coatdia of the static equilibrium positiatf, of the shaft geometric center in the

fluid film bearings are given by}, /c,.=[-0.29-0.84, or equivalently bye},/c, =0.93. The damping and stiffness matrices of the

linearized 8-coefficient bearing model obtainedwiy. (18) and data from Table 2 are expressedllasvé

_[350x10 108 10} NS/m K { 130 f0 132 4
1.08x10 7.5% 10 | 630 f0 184 1
The equations of motion of the on-board rotor (gs. (23)-(32)) show that the support rotationsehaparametric influence on

these equations, while the support translationg laaNy an influence on the external force vectare Bo the complexity of the rotor

motion, the overall dynamic analysis of the on-boastor is performed by means of stability chartgpr orbits, time history
responses, fast Fourier transforms (FFTs), bifisnaliagrams and Poincaré maps.

N'm (43)

Cbe

6.2.Role of the hydrodynamic bearing models in theiktalanalysis

6.2.1.Linearized model

In this section, the linearized equations of motwe considered (see Eq. (42)) and the dynamidistadf the on-board rotor is
examined through the Floquet theory. The instabd@mes from the parametric excitation due to thasmidal rotation of the rotor
support, see Eqgs. (24)-(26). For a certain speedtafion @ of the rotor, two factors affect the parametricitations generated in

the symmetric rotor: the amplitude*® of the support rotation and its frequency . Therefore the stability analysis covers these
two parameters and useg = 77/.2* as the period of the parametric excitation.

Fig. 6(a) and (b) compare the stability charts stigated in the presence of the rigid short bearifigr which the first four
natural frequencies of the rotor &=1200 rpm are 552.8 Hz, 553.1 Hz, 1608 Hz and 1642.7 Hz)thadinearized hydrodynamic

short ones respectively. The frequency of the stppaation is contained in the range of intera3t0[0;2000H and the
calculations are performed withQ*=1Hz and A(w‘-a/fzx) =0.05rad. It is noted that the size of the instability zenecreases for
increasing values ofs*®/ Q* .

For example, in the case whewe*®/Q*=0.5rad, the on-board rotor mounted on the rigid bearicgs be unstable for
©*0[508;536 H} and ©*0[1507;2000 H} (see Fig. 6(a)), while the rotor mounted on thexifile bearings can be unstable for

©*0[370;2000 H} (see Fig. 6(b)). Namely, the instability regionedo the linearized hydrodynamic bearings is grethian that
due to the rigid ones because of the presenceeafaimping in the hydrodynamic bearings.

0.5

0.5

0.45 - 0.45 \\
0.4t - - 0.4t
S0 ; - S0 \\ Unstable
£ 03t S - £ 03t
025 . |4 - 025 Stable
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Fig. 6. Stability charts of the rotor running @:1200 rpm, subject to sinusoidal rotations of tingp®rt and mounted on: (@)

rigid bearings, or (b) hydrodynamic bearings.
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Fig. 7. Relative non-linear time history responses ofrtiter at the bearing # 2 corresponding to the paiim Fig. 6 with two different initial
conditions.

6.2.2.Non-linear model

According to the stability analysis in the casdioéarized 8-coefficient hydrodynamic bearings, aperating point below the
transition curve between the stable and unstabhesds considered to be stable. Namely, the trahsignamic analysis of the
linearized equations of motion of the rotor (see @8)) with no external forces except the rotorgheyields the static equilibrium

position C2. of the shaft center in the bearings for any ihitanditions. Unlike the previous case, due tortba-linear bearings, the

chosen initial conditions for the transient analysi the non-linear equations of motion (see Eg))(%ith only the rotor weight as
external forces can lead to an unstable resposseaith of the static position. This phenomenonf@m of instability occurring in
hydrodynamic bearings and called “self-excited ailams” or “non-loaded bearing vibrations”, see Kkari and Chang [12].

Fig. 7 presents the relative dynamic radial disgiaent of the rotor at the bearing # 2 (i.e., nodia ¢he presence of a non-linear

bearing model and a sinusoidal rotation of the euppf frequency 2* =500 Hz. The dynamic displacement in the time domain
corresponding to the poink (Fig. 6(b)) with the initial conditions?,/2c,, (see Fig. 7(a)) settles into a stable point cpoading to

the static positionC?, but becomes unstable with the initial conditions? /2c,. (see Fig. 7(b)). In the second case of initial

conditions, the non-loaded bearing vibrations appE@reover, a contact between the rotor and treibg occurs at the instant
t=0.012s and the transient dynamic computation is stopped.

6.3.Comparison of linear and non-linear bearing models

6.3.1.Influence of the mass unbalance

All the orbits presented in this paper are madeedsionless with respect to the bearing clearagcand are thus plotted within

a unit circle.

In this section, the dynamic simulation is perfodre present a comparison between rotor orbitsimédawith linearized 8-
coefficient and non-linear hydrodynamic bearing elecdue to three different values of mass unbalaBoee the bearings are
identical and the disk is positioned at the middiehe shaft (i.e., node 5), the orbits at bothrineg (i.e., nodes 1 and 9) are
identical in the case of a fixed support. Thesdtertlustrated in Fig. 8 show the transient motiohthe shaft geometric center

within the bearings from the static positi@j, to the steady-state harmonic solution which hasriod 7, equal to the inverse of

the mass unbalance frequengy. The periodic non-linear orbits plotted in Figa& also obtained with the shooting method. As
expected, they perfectly coincide with the steatdyesperiodic motion obtained by the transient timegration and thus validate the
shooting implementation.

For a small mass unbalancey(r,, =750g mm), the linear and non-linear orbits of the rotohiéi very similar evolutions (see
Fig. 8(a)). According to Fig. 8(b), the chosen masdalance f,,r,,=1500g mm) corresponds to the limit of validity of the
linearized bearing model and is thus used in the sections. For a very large mass unbalanag r(,, = 7500 g mrr), the dynamic

displacement of the rotor becomes much greatermanibnger remains in the vicinity of the static ifios and a high difference
between the linear and non-linear orbits showni@ B(c) is noted. As a consequence, the assumpfiaonstant damping and
stiffness coefficients of the bearings is no longgdid and the linearized 8-coefficient bearing mloglelds inaccurate results.

6.3.2.Influence of the support motion frequency

Figs. 9 and 10 display a comparison between lio€aits of the rotor and non-linear ones (obtaingdHe transient Newmark
integration and the shooting algorithm) at the imepr# 2 (node 9) in the presence of the mass unbelaexcitation

(m,,r,,=1500g mm) and the sinusoidal rotational or translationatiors of the rotor support for the initial condit®s?,/c,.. In
Fig. 9, the amplitude of the support rotation isptkeconstant §**=1x107 rad <), while its frequency varies
(02*=80Hz,120Hzand200H), i.e., the corresponding angular displacement liaumes of the support are
W'/ Q*=2x10° rad,1.38 10 radand 7.86 20 1 respectively. In Fig. 10, the amplitude of the o translation is kept constant
(Z, =1x10° m), while its frequency varies®’ =80 Hz, 120 Hz and 200 H).
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Unlike the previous section, the sinusoidal rotatid the support makes the orbits at the locatafrthe bearings different due to
its normal and tangential accelerations. Foculsus put on the bearing # 2 which is more affectethb support rotation.

Since the excitations due to the mass unbalancetaride support motions are sinusoidal and commebse; the external
excitation of the rotor is harmonic of periag, equal to the inverse of the greatest common faafttiie mass unbalance frequency

£ and the support motion frequeney* or Q7. For example, one period of the first externalitation of the rotor corresponds to
one period of the mass unbalance excitati@h=20 Hz) and to four periods of the support motion f&* or ©*=80Hz. In
addition, the linear and non-linear orbits of theor in Figs. 9 and 10 are harmonic of periagsand r,,, equal tor,, . As expected
when the amplitude of the support motions is sntiladl, shape of the linear and non-linear orbitsigs.® and 10 changes a lot with
frequency and is made more complicated, while theignitudes are slightly modified when compareth® orbits shown in Fig.
8(b) corresponding to the fixed support. Lastlye timear and non-linear orbits are rather simil&r.,, the dynamic motion of the

rotor remains close to the static equilibrium positC], and the linear bearing model can still be considéo be acceptable.

The relative linear and non-linear time historyp@sses in theOz direction of the rotor at the bearing # 2 duehe mass
unbalance effect and to the sinusoidal rotatiomairanslational excitations of the support are show Figs. 11 and 12. They
confirm the results provided in Figs. 9(c) and }0(e., these responses exhibit similar evolutiand their periods,, andr,, are

equal to the period,, of the external excitation of the rotor. Moreovitre FFTs of the linear response (see Figs. 11(@)12(a))

show two frequency components due to the mass ambalexcitation (20 Hz) and the support motion$ (#20), while the FFTs of
the non-linear response (see Figs. 11(b) and 12wy additional frequency components which cowadpo multiples of 20 Hz
(super-harmonics) relative to the harmonic motidnthe rotor. The peaks at these additional fregigsneare relatively small
compared to those of 20 Hz and 200 Hz. This vad&lgtie assumption of small displacements of tha intthe vicinity of the static

position C, .
6.3.3.Influence of the support motion amplitude

Figs. 13 and 14 introduce a comparison betweeadiagbits of the rotor and non-linear ones (obtdibg the transient Newmark
scheme and the shooting algorithm) at the beariBdatated at node 9 for the mass unbalance ebcitém,, r,,, =1500 g mm) and

u rmu

the sinusoidal rotational or translational motiofishe rotor support and due to the initial corutiti 8% /c,, .
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In Fig. 13, the frequency of the support rotatios kept constant @*=80Hz), while its amplitude varies
(w**=8x10%rad sand12 16 rad), i.e., the corresponding angular displacement liamjes of the support are
W/ Q*=159x 10* radand 2.39 10 r: respectively. In Fig. 14, the frequency of the mup translation is kept constant
(£27 =80 Hz), while its amplitude variesZ, =3x10° mand % 10 n).

As explained previously, the excitations due tortiess unbalance and to the support motions are@dal and commensurable.

Thus the external excitation of the rotor is harinaf period r,, equal to the inverse of the greatest common famftdhe mass
unbalance frequency? and the support motion frequeney* or Q°. In the case wheres*=8x10” rad < and Z, =3x10° m, see
Figs. 13(a) and 14(a), the linear and non-linehit®of the rotor are harmonic of periodsand r,,, equal to the period,, but they

are not similar. This justifies that the assumptidrsmall displacements of the rotor in the vigirif the static equilibrium position
Ce, is not verified anymore and the validity rangettoé linearized bearing model is more affected kg amplitude than by the

frequency of the support motion. For larger amplisi of the support motions** =12x10? rad < and Z, =5x10° m, the non-linear

-16 -



bearing model yields a very complex orbit with ape of dynamic regime, i.e., the appearance dliechtion which corresponds
to a period-doubling orbit witlr, , = 2r,, , see Figs. 13(b) and 14(b). It can be noted thiatderiod-doubling motion is also obtained

ex !

when the transient time integration algorithm iediss a checking procedure. As expected, the linearng model is unable to
reproduce this period-doubling motion, i.e., timeér motion of the rotor remains,, -periodic.
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Figs. 15 and 16 illustrate the linear and non-lirt@ae history responses along tle axis of the shaft geometric center within
the bearing # 2 for the mass unbalance effect lmadinusoidal rotational or translational excitati@f the support. They verify the
results pointed out in Figs. 13(b) and 14(b), tlee, non-linear response ., -periodic because its periog, is two times higher
than the periodr,, of the linear response. In addition, the FFTshef linear response (see Figs. 15(a) and 16(a))agligpo

frequency components due to the mass unbalancéi£2Cand the support motions (80 Hz), while the FBTshe non-linear
response (see Figs. 15(b) and 16(b)) highlight maohe frequency components and contain harmonidsharmonics and super-
harmonics relative to the period-doubling motiorttad rotor.

Fig. 17 gives the linear and non-linear orbitsta# totor within the bearing # 1 (node 1) due toress unbalance excitation

(m,,r,,=1500 g mm) combined with the sinusoidal rotation(* =12x10” ragd < and 2* =80 Hz) of the support. This figure confirms
that the orbits at both bearings are very diffe{see Fig. 13(b)) in the case of the support matiue to its normal and tangential
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accelerations. From Fig. 17(b), it can be notideat the non-linear orbit in the bearing # 1 is afsg -periodic. This demonstrates
the non-linear couplings between the localized elegof freedom of the hydrodynamic bearings thrahglshatft.
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6.4.Route to chaos in the rotor-non-linear hydrodynatmaring system

6.4.1.Bifurcation diagrams

The response of the linear rotor system to a haicrexternal excitation of period,, is harmonic of same period, i.e,,=r,,,

while the corresponding response of the non-limetr system can be non-periodic or can have ardifft period due to bifurcations
as seen in Section 6.3.3. Such changes in theimearldynamic regime of the system can be investighy means of diagrams of
bifurcation of periodic solution.

Figs. 18 and 19 present the bifurcation diagramgshef rotor at the bearing # 2 (node 9) for the maskalance effect

(m,,r,,=1500g mm) and the sinusoidal rotational or translationatiores of the support of frequencg* or ©*=80Hz. For each
diagram, the amplitudes** or z, of the support motions are used as bifurcatioampaters to provide essential information about
the Poincaré sections. The steps used for thechiion parameters/® and z, are 0.05x18 rad/s and 0.05x10m respectively.
The period of the harmonic external excitation o totor isz, =1/20s= 0.05¢ which corresponds to the inverse of the greatest

common factor of the mass unbalance frequery20Hz and the support motion frequenay* or ©Q?=80Hz. The transient
numerical simulations are performed with 1000 rotolutions (i.e.,1000r,,) and 512 time steps per periag . The data of the
first 500 revolutions of the rotor are not usedte bifurcation diagrams in order to exclude thensient regime. The Poincaré
sections are obtained by taking successive intéosescof the x coordinates of the dynamic displacements of therrwith the
instants corresponding to the multiples of the qabri,,, i.e., t=kr,, and kO[501;1200¢ . The initial conditions for the transient

ex !

simulations are set t67./c,. . Lastly, Tables 3 and 4 present a summary of iffiereint dynamic regimes observed on the bifureatio

diagrams of the on-board rotor-bearing system eadity sinusoidal rotational or translational masiaf its support as a function of
the bifurcation parameters.
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Fig. 18.Bifurcation diagram of the rotor at the bearing for a sinusoidal rotation of the suppest=w**cos2’t with 2*=80 Hz.
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Fig. 19.Bifurcation diagram of the rotor at the bearing fér a sinusoidal translation of the suppast:Zocos2’t with =80 Hz.

Table 3.Types of motion identified in the bifurcation diagn due to the sinusoidal rotation of the support.

Type of the rotor motion Support rotation amplitude (102 rad/s)
1z.,-periodic [1-11.7]

2te-periodic [11.75 - 12.05], [12.4 - 12.8]
4ze-periodic [12.1], [12.85]

Quasi-periodic [12.15 - 12.35], [12.9 - 13]
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Table 4. Types of motion identified in the bifurcation diag due to the sinusoidal translation of the sujppor
Type of the rotor motion Support translation amyul&Z, (10° m)
1r.,-periodic [1-4.95], [5.35 - 6.3], [6.55 - 6.7]

[5-5.1], [6.35 - 6.4], [6.75], [7.65 - 7.8],
[7.9-8.3],[8.4-8.5]

2te-periodic

Az.,-periodic [8.55 - 8.7]
8re,-periodic [8.75], [9.45]
16t.,-periodic [8.8]

[5.15 - 5.3], [6.45 - 6.5, [6.8], [7.5], [7.6],

Quasi-periodic [8.35], [8.85 - 9.4], [9.5 - 9.55], [9.65 - 9.95]

Chaotic [6.85 - 7.45], [7.55], [7.85], [9.6], [10]
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Fig. 20.Orbits and Poincaré maps of the rotor at the hgati2 due to sinusoidal rotations of the suppoitn**cog2*t with =80 Hz and»**= (a)
12.1x10% rad/s, (b) 12.15xIdrad/s, (c) 13x18rad/s.

6.4.2.Sub-harmonic, quasi-periodic and chaotic bifurcati@sponses
In this section, some orbits of the rotor and tipegjected Poincaré maps at the bearing # 2 (npaderdesponding to values of
interest of the bifurcation parametets® or z, of the bifurcation diagrams in Figs. 18 and 19 presented. The relative

coordinates of the static position of the shaftteem the bearings?./c,. are used as initial conditions for the transigyrainic

computations. The Poincaré maps are produced ksidEnmng successive intersections of the relatiwgachic displacements of the
rotor with the instants associated with the mudtipdf the periodr,, =0.05s of the harmonic external excitation of the rot@rsng

from t =501, to get rid of the transient regime.

When the amplitudess* of the support rotation are successively equal2d x10? rad/s (Fig. 20(a)), 12.15xF0rad/s (Fig.
20(b)) and 13x18 rad/s (Fig. 20(c)), the rotor orbits highlight @bsharmonic motion 4z, -periodic) and quasi-periodic motions
respectively. When the amplitudes of the support translation are successively equ@l3x10° m (Fig. 21(a)), 8.6xI®m (Fig.
21(b)) and 9.5x1®m (Fig. 21(c)), the rotor orbits display a chaatiotion, a sub-harmonic motionif, -periodic) and a quasi-
periodic motion respectively.
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6.4.3.Sensitivity to initial conditions

A very small change in the initial conditions foman-linear rotor system can make an important gban its corresponding
dynamic trajectory. This phenomenon is called “#&sity to initial conditions” and is one of the nmaways in which a non-linear
system can be recognized. This is demonstratedys £2 and 23 which provide different orbits aforoand their projected Poincaré
maps at the bearing # 2 (node 9) produced dudferetit initial conditions for the transient dynarmotion.

In Fig. 22, the rotor support is excited by a soidal rotation of amplitudev*® =12x10? rad < and frequencyQ* =80 Hz. The
rotor orbit corresponds to a sub-harmonic motien, (periodic), see Fig. 22(a), when the initial coiutit are set to the coordinates

of the static equilibrium positios},/c,,=[-0.29- 0.8&];;, while it corresponds to a harmonic motiam (-periodic), see Fig. 22(b),
when the initial conditions are slightly modifieddaset to the coordinat§s0.25- 0.9].;.

In Fig. 23, the rotor support is excited by a saidal translation of amplitud&, =5.2x 10> m and frequency®’ =80 Hz. The
rotor orbit corresponds to a quasi-periodic motiee Fig. 23(a), when the initial conditions aretses),/c,, =[-0.29,- 0.85];;, while

it corresponds to a sub-harmonic motien,(-periodic), see Fig. 23(b), when the initial corudis are set t¢-0.26,- 0.8‘];.

7. Conclusions

In order to predict and analyze numerically theerof the sinusoidal rotational or translational ime$ of the support in the
dynamic behavior of an on-board rotor-non-lineadreglynamic journal bearing system, a new finitarelet model based on the
Timoshenko beam theory is presented in this papkeis model includes the effects corresponding te thtary inertia, the
gyroscopic inertia, the shear deformation of shtifé geometric asymmetry of shaft and/or rigid diskwell as six types of
deterministic motions (rotations and translatioat}he rotor rigid support. In addition, the rotatal effects and the geometric
stiffening effects associated with the centrifusfaéssing caused by the support rotations are takeiconsideration.

The derivation of the equations of motion displélyat the rotational motions of the rotor suppoihdpmot only a parametric
contribution in the damping and stiffness matrioéghe rotor but also additional external force tees, while the translational
motions of the support only add external force @extA robust algorithm combining the Newton-Raphgacremental-iterative
procedure with the Newmark time integration sché&nesed to obtain the non-linear transient dynamation of the on-board rotor.
Moreover, a robust shooting algorithm is used ttaiobthe periodic non-linear responses of the ratud is validated against the
transient time integration algorithm.

When the rotor is excited by a sinusoidal rotatidrthe support, it is shown that a dynamic instgbibf the rotor can occur
because of time-varying parametric coefficientshia linearized equations of motion and that thediized hydrodynamic bearings
have an influence greater than the rigid bearimgthe size of the instability regions of the rotor.

It is noted that the shape and the magnitude ofdtue orbits can be significantly affected by frequency and amplitude of the
support motions. As expected, the linearized bgamodel gives accurate results only for small amgés of the support motions.
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Also, this simplified bearing model cannot accofartnon-linear phenomena and does not permit tdigr¢he change of dynamic
regime such as period-doubling motion and transittochaos. Conversely, these phenomena are oddeyvmeans of diagrams of
bifurcation of dynamic responses when the non-litegring model is considered.

It is observed that depending on the amplitudeth@fsinusoidal motions of the support, the nondim®tor system can exhibit
sub-harmonic, quasi-periodic and chaotic motiorastly, it is well demonstrated that different iaitconditions for the non-linear
transient dynamic motion can lead to different ceses of the rotor in the presence of the suppotioms.

Appendix A

The analytical expressions of the components ofiitaping and stiffness matrice§ and k?" in the polar frame linked with

the bearingrR™ are given by
tata tara tata tara
Cs‘: - er |:Cbe Che :| : k;%:e - W |: kbe kbe:| (Al)

rata rara

Ge2[ o G| K ke
with
G  =2ki" 5 oo =—2KpT 5 Chi=-2KE0 5 Cho=-2KGE
{1+ 2£°2 1-g02 8(1+£°2?
ktljae[a :4fbe(£obe) : kllf:;a: gl?e( 1_8522) fbt(gobl : krag;: 7T, ggegbe £ !(égo le : Karie: E__é.g::) f (Ugo )t (A2)
fo(£5) = (16622 + 7(1-22))7
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