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Abstract 

The major purpose of this study is to predict the dynamic behavior of an on-board rotor mounted on hydrodynamic journal bearings in the presence of 
rigid support movements, the target application being turbochargers of vehicles or rotating machines subject to seismic excitation. The proposed on-
board rotor model is based on Timoshenko beam finite elements. The dynamic modeling takes into account the geometric asymmetry of shaft and/or 
rigid disk as well as the six deterministic translations and rotations of the rotor rigid support. Depending on the type of analysis used for the bearing, 
the fluid film forces computed with the Reynolds equation are linear/non-linear. Thus the application of the Lagrange’s equations yields the 
linear/non-linear equations of motion of the rotating rotor in bending with respect to the moving rigid support which represents a non-inertial frame of 
reference. These equations are solved using the implicit Newmark time-step integration scheme. Due to the geometric asymmetry of the rotor and to 
the rotational motions of the support, the equations of motion include time-varying parametric terms which can lead to lateral dynamic instability. The 
influence of sinusoidal rotational or translational motions of the support, the accuracy of the linear 8-coefficient bearing model and the interest of the 
non-linear model for a hydrodynamic journal bearing are examined and discussed by means of stability charts, orbits of the rotor, time history 
responses, fast Fourier transforms, bifurcation diagrams as well as Poincaré maps. 
 
Keywords: Rotordynamics, asymmetric rotor, on-board rotor, finite element method, hydrodynamic journal bearing, support motion, parametric 
excitation, non-linear dynamics, transient motion, dynamic instability, bifurcation, chaos. 

1. Introduction 

Rotating machines are among the indispensable parts of the modern engineering industries. Due to the nature of the excitations 
applied to the machine rotors, most of them can be considered as on-board rotors affected mainly by both the mass unbalance and the 
support motions. Generator, pump, compressor and gas turbine rotors installed in power plants as well as vehicle turbochargers are 
examples of rotors on moving support. The unavoidable mass unbalance is due to the eccentricity of the center of mass along the 
rotor axis. The rotor balancing aims at reducing the mass unbalance but is not able to cancel it completely (see Xu et al. [1] and Kang 
et al. [2]). Rotors can also be subject to the frequent external movements of their support which can increase the flexural vibration of 
the rotors and create an unstable dynamic behavior. 

In order to enhance the performances, the safety factor, the air-gap and the disk-stator gap have to be reduced. Therefore the 
prediction of dynamic behavior of the rotating machine components must be performed more and more carefully. In this context, the 
literature comprises numerous books studying a wide variety of phenomena related to the dynamics of symmetric/asymmetric 
rigid/flexible rotor systems mounted on linear/non-linear elastic bearings in the case of a fixed support. Just few of them can be cited 
here (Lalanne and Ferraris [3], Genta [4], Bachschmid et al. [5]). Some works observed the instability of parametrically excited 
systems. Dufour and Berlioz [6] accomplished the study of Berlioz et al. [7] on the dynamics of a drill-string. They analyzed the 
time-varying parametric equations of motion of the system by employing the Rayleigh-Ritz method, the Floquet theory and the 
Friedmann approach. The design using a computer opened doors for a technique called “finite element method” to be applied to the 
rotor modeling and numerous studies contributed to this topic. The real breakthrough in the finite element modeling of a rotor was 
presented by Nelson and McVaugh [8] who studied a model called “Rayleigh beam” and taking into account the rotary inertia of the 
shaft and the gyroscopic effects dependent on the speed of rotation of the rotor. Kang et al. [9] modeled rotor-bearing systems using 
Timoshenko beam finite elements and by taking into account the asymmetry of disk, shaft and/or bearing. They showed that the 
resonant speeds could change due to various angles between major axes of disk and shaft, the shaft asymmetry as well as the bearing 
characteristics. Nandi and Neogy [10] proposed an efficient analysis of stability for finite element models of asymmetric rotors and 
investigated whether an unstable rotor could be stabilized using an isotropic viscous damper. Theoretical and experimental 
investigations for the isolated and internal resonances of non-linear forced and parametric oscillations of an asymmetric rotor with 
non-linear spring characteristics were carried out by Ishida et al. [11]. 

Hydrodynamic bearings play a key role in the design of rotor systems and an accurate prediction of the vibration characteristics of 
the rotor-bearing systems must be made. Therefore the hydrodynamic bearing performance is predicted and reported in the extant 
literature by mathematical formulations firmly established. The fluid film forces are strongly non-linear functions of the displacement 
and velocity of the rotor. Although they act locally on the system, rotordynamics is significantly affected and wholly non-linear. 
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Khonsari and Chang [12] showed that there was a stable region in the short bearing clearance circle outside of which, any initial 
conditions for the non-linear transient dynamic problem would yield an unstable orbit even if the hydrodynamic bearing should be 
stable according to the linearized stability analysis. Zhao et al. [13] predicted the linearized stability and presented a comparison 
between linear and non-linear mass unbalance responses of a flexible rotor-hydrodynamic bearing system modeled by the lump mass 
method to reduce the degrees of freedom. Li and Xu [14] studied a Jeffcott rotor supported on oil film infinite-length bearings to 
obtain periodic orbits, their periods and their stability using the generalized shooting method. Harmonic, sub-harmonic, quasi-
periodic and chaotic responses and their Poincaré maps were investigated for a rigid rotor on hydrodynamic short bearings by Brown 
et al. [15], for a finite element rotor model on hydrodynamic elliptical bearings by Zheng and Hasebe [16] and for a rigid rotor on 
hydrodynamic elliptical bearings by Shen et al. [17]. Kishor and Gupta [18] used non-linear analytical characteristics for 
hydrodynamic long bearings and introduced them in a rigid rotor-bearing model with a simplified spur gear model. Baguet and Velex 
[19] combined a finite element shaft model based on the Timoshenko beam theory with both gear and bearing non-linearities which 
were represented by spur gear mesh stiffness and hydrodynamic short bearing forces. Baguet and Jacquenot [20] extended the study 
presented in [19] to include helical gears as well as hydrodynamic finite-length bearings and analyzed parametrically the shaft orbits, 
the dynamic tooth loading factor as well as the hydrodynamic forces. 

Some works focused on the dynamic behavior of a rotor under seismic, random or shock excitations of its support. Srinivasan and 
Soni [21] studied the effect of spin, support rotation as well as axial force and axial torque on the seismic response of a rotor-bearing 
system. Samali et al. [22] used the Monte Carlo simulation to simulate the non-stationary earthquake ground motions and to 
determine the statistics of rotating machinery response. Hori and Kato [23] examined a seismic response of a Jeffcott rotor mounted 
on oil film bearings to a real seismic wave and investigated its stability. Suarez et al. [24] observed that even for strong rotational 
inputs, the parametric terms in the equations of motion of a finite element rotor model subject to six components of support 
excitations could be neglected without affecting its seismic response. Subbiah et al. [25] obtained the amplitude power spectral 
density due to random excitations of the support for studying the rotor response using modal analysis methods. Lee et al. [26] 
proposed a finite element rotor model based on the Timoshenko theory by considering a shock excitation of the support and the state-
space Newmark method and focused on the experimental behavior of a rotor under this excitation. 

The effect of the flexible foundation on rotordynamics was investigated from theoretical and experimental points of view, see, for 
example, Bonello and Brennan [27]. Da Silva Tuckmantel et al. [28] represented the supporting structure (foundation) of a rotating 
system by coupled as well as uncoupled modes and tested the methods of mechanical impedance and mixed coordinates to calculate 
the system responses. The experimental tests of Feng and Hahn [29] showed that even with input data truncated to two significant 
digits, satisfactory identification were possible for a flexibly supported undamped rigid block foundation in rotating machinery. 

Few works are referenced in the literature on the investigation of dynamic behavior of a rotor in the case of a harmonic motion of 
its support. Duchemin et al. [30] observed the motion stability of a rotor under a sinusoidal rotation of the support by employing the 
Rayleigh-Ritz and multiple scales methods. They presented also experimental results to validate the analytical study. The work of 
Driot et al. [31] was based on the model presented in [30], described the numerical orbits of the rotor and compared them with 
experimental ones. El-Saeidy and Sticher [32] derived the equations of motion of a rigid rotor linear/non-linear bearing system 
subject to rotating mass unbalance plus harmonic excitations of the support along or around lateral directions. They presented 
analytical frequency responses in the case of linear bearings, while they discussed numerical results with regards to the time domain, 
the fast Fourier transform as well as the Poincaré map in the case of a bearing cubic non-linearity. Das et al. [33] investigated the 
active vibration control of a flexible rotor system modeled by Rayleigh beam finite elements and excited by a mass unbalance as well 
as a periodic rotational motion of the support. They performed the control with electromagnetic control force provided by an actuator 
placed on the stator in a suitable plane around the rotor and it was successful for avoiding the lateral parametric instability due to the 
sinusoidal rotation of the support. 

A significant number of previously stated papers treat support-excited rotor systems. Nevertheless, few studies focus on the 
harmonically excited on-board rotors. Moreover, these papers focus on constructing simplified models. The adoption of simplified 
models facilitates the understanding of the behavior of such dynamic systems but it is limited in the practical applications and 
reduces the required accuracy between the theoretical rotor models and the realistic ones under the operating conditions. The most 
common simplifications and limitations are linked either with the geometry of the rotor (for example, Jeffcott rotor [23]), with the 
utilization of the Rayleigh-Ritz method instead of the finite element method for the spatial discretization of the rotor model (for 
example, [30,31]), with the rotors supported by elastic bearings with constant damping and stiffness coefficients (for example, 
[32,33]) or with the kind of rotor support motion (simple rotation or translation). 

This paper overcomes the previous limitations and contributes to the construction of an improved on-board rotor model. Namely, 
a rotor with geometric asymmetry due to the shaft and/or the rigid disk is discretized using the finite element method based on the 
Timoshenko beam theory, mounted on hydrodynamic journal bearings of external forces calculated using the Reynolds equation [34], 
and excited by combined deterministic motions (three rotations and three translations) of the support. The vibration analysis focuses 
on the case of bending of the flexible rotor. Eulerian angles are thus employed to describe the orientation of disk and shaft with 
respect to the moving support. The kinetic and strain energies in addition to the virtual work of the flexible rotor components are 
computed. Using the short bearing theory in order to obtain the hydrodynamic fluid forces from the Reynolds equation, two models 
are considered for the hydrodynamic journal bearing: a simplified linearized model with eight constant damping and spring 
coefficients and a non-linear model where the bearing is treated as external non-linear forces acting on the shaft. The Lagrange’s 
equations are applied to establish the linear/non-linear differential equations of vibratory motion of the rotor in bending with respect 
to the rigid support representing a non-inertial reference frame. The governing equations of motion display periodic parametric 
coefficients due to the asymmetry of the rotor and time-varying parametric coefficients due to the support rotations. These parametric 
coefficients are considered as generators of internal excitation and can create lateral dynamic instability. The equations of motion are 
solved by the implicit Newmark time-step integration algorithm which must be combined with the Newton-Raphson iterative 
procedure in the case of a non-linear bearing model. The influence of sinusoidal motions of the support on the dynamics of the on-
board rotor-bearing system is analyzed by means of stability charts, orbits of the rotor, time history responses, fast Fourier transforms 
(FFTs), bifurcation diagrams and Poincaré maps. In addition, a comparison between the linear and non-linear systems is performed to 
assess the validity range of the linearized 8-coefficient bearing model. 
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2. Problem statement and basic considerations 

Let Fig. 1(a) present the basic components of the rotor: the disk (1), the shaft (2), the mass unbalance (3), the bearing (4) and the 
support (5). The mass unbalance is distributed continuously as well as in a generic way and cannot completely be canceled. The 
excitations taken into account are due to the inevitable mass unbalance and to the imposed movements of the support. The transverse 
deflections of the elastic line of the rotor shaft are studied. 

The following assumptions are used: the disk is rigid, the shaft is deformable and modeled by Timoshenko beam elements of 
constant cross-section solicited in bending along two orthogonal directions, the shaft and/or rigid disk can be asymmetric, the mass 
unbalance is modeled by concentrated masses, the bearings supporting the shaft are flexible of hydrodynamic short type, the support 
is rigid and mobile, the rotor rotates at a constant speed Ω . 

The consideration of the support motion may modify the form of the equations of motion of a rotor in bending compared to those 
obtained in the case of a fixed support. In order to develop a modeling as simple as possible, the approach presented by Duchemin et 
al. [30] is adopted. Three frames of reference are utilized to take into account the movement of the rotor with respect to the support 
and that of the support with respect to the ground. 

The derivation of the equations of motion is inspired from the theory described by Lalanne and Ferraris [3]. First, the coordinate 
systems needed to describe the motion of an on-board rotor are defined and the vectors expressing the rotations between them are 
calculated. Then, the kinetic energies for a disk, a shaft element and a concentrated mass unbalance, the strain energy for a shaft 
element as well as the virtual work for a bearing are calculated. Moreover, the rotating flexible rotor is discretized using the 
Timoshenko beam finite elements. Finally, the differential equations of motion of an on-board rotor in bending are deduced from the 
Lagrange’s equations being applied with respect to the generalized coordinates iq  by 

d
d iq

i i i

T T U
F

t q q q

 ∂ ∂ ∂− + = ∂ ∂ ∂ ɺ
  (1) 

with ( )dof dof1n i n≤ ≤  the number of degrees of freedom, T  and U  the kinetic and strain energies respectively, 
iqF  the external forces 

corresponding to iq . The symbol “i ” refers to the differentiation with respect to time t . 

(a) (b)  
Fig. 1. (a) Components and frames of reference of the on-board rotor model, (b) Euler angles for the transformation between the frame linked with the 

moving support R and the local frame Rl. 

3. Kinematics of the on-board rotor 

Three principal Cartesian frames of reference shown in Fig. 1(a) are introduced to take into consideration the movement of the 
rotor support: ( )g g g g, ,R x y z  is the Galilean frame of reference fixed to the ground, ( ), ,R x y z  is the non-inertial frame of reference 

attached to the moving rigid support, ( )l l l l, ,R x y z  is the non-inertial local frame of reference (moving with the rotor during its 

operation) attached to the mass center of the rigid disk or the geometric center of a section of the deformable shaft. The origins of the 
frames of reference gR , R  and lR  are gO , O  and lO  respectively. 

The elastic line of the non-deformed shaft is along the Oy  axis on which the mass center of the disk is located. Moreover xOy 
and yOz are both planes of symmetry for the disk and the non-deformed shaft. Thus Ox , Oy  and Oz  are principal axes of inertia. 

The translational motions of the rotor support are described by the coordinates ( )Ox t , ( )Oy t  and ( )Oz t  of the position vector gO O  

projected in the frame attached to the support R . The rotational motions of the rotor support are described by the components ( )x tω , 

( )y tω  and ( )z tω  of the angular velocity vector 
gR

Rω  of the rigid support R  with respect to the ground gR  projected in the frame R . 

In the classical rotordynamics theory, the transformation between the frames R  and lR  shown in Fig. 1(b) is performed by two 
intermediate coordinate systems ( )1 1 1 1i i i i, ,R x y z  as well as ( )2 2 2 2i i i i, ,R x y z  and the Euler angles ( ),y tψ , ( ),y tθ , ( )tφ  which permit 

describing the angular velocity vector lR

R
ω  of the rotor lR  with respect to its support R . The angular velocity vector of the rotor lR  

with respect to the ground gR  measured in the frame lR  is described by 
g g l l l

l l
l

T

, ,R R R x y z
RR R R

ω ω ω = + =
 

ω ω ω   (2) 

where the superscript T  is the matrix transposition symbol. The components (
lxω ,

lyω ,
lzω ) are formulated as a function of 

(ψ ,θ ,φ ) and their time derivative as well as (xω , yω , zω ). Further details about the kinematics of the on-board rotor can be found in 

[35]. Let us consider an arbitrary point initC  along the elastic line. Namely, it represents the geometric center of the non-deformed 
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shaft. Its coordinates in the frame R  are ( )0, ,0y . Let ( ),u y t  and ( ),w y t  be its time-dependent dynamic lateral displacements due to 

bending along the Ox  and Oz  axes, see Fig. 1(b). As its coordinate along the axial axis is assumed to be a constant with respect to 
the rotor support, the axial displacement along the Oy  axis is not taken into account. 

4. Energy and virtual work calculations of the on-board rotor-bearing system components 

This section includes formulations for the disk, the shaft, the rotating mass unbalance and the hydrodynamic journal bearing. The 
kinetic and strain energies are measured by an observer situated at the ground and their terms are written with respect to the frame 
linked with the rotor rigid support R . The rotary inertia, the gyroscopic inertia, the shear deformation of shaft as well as the 
geometric asymmetry of shaft and/or rigid disk are taken into account. 

4.1. Disk 

According to the assumptions presented in Section 2, the disk is assumed to be rigid and only its kinetic energy dT  is calculated. 

This energy consists of the scalar sum of the absolute translational kinetic energy and the absolute rotational kinetic energy about the 
disk mass center located at the generic abscissa dy  along the Oy  axis, i.e., 

( ) ( )g g g g

l l l l
d d d d d d d d d dd d

T T
mo di mo did

d

1
with diag diag

2 2
R R R R x y z y

m m m m m m m m m mO O R R

m
T I I I I I I I I   = + = = + −   v v ω I ω I  (3) 

where dm  is the mass of the disk, 
g

l
d

R

O
v  is the translational velocity vector of its center and 

dmI  is its principal inertia tensor. 
d

x
mI , 

d

y
mI  

and 
d

z
mI  are the principal moments of inertia of the disk mass about the Ox , Oy  and Oz  axes respectively. In addition, 

d

mo
mI  and 

d

di
mI  

are used to seperate the effects due to the mean moment of inertia of the disk mass and those due to the moment of inertia modeling 
the disk geometric asymmetry. Thus when the disk is asymmetric, the moments of inertia 

d

x
mI  as well as 

d

z
mI  are different and the 

contribution of the moment of inertia 
d

di
mI  in them is not nil. 

The translational velocity vector 
g

l
d

R

O
v  is found through the absolute position vector g l

dO O  of the disk mass center positioned at the 

arbitrary abscissa dy  with respect to the frame R . The latter is observed from the ground and expressed in the frame fixed to the 

support R  by 

[ ] [ ] [ ]T T T

d d d d d d, , , , , ,O O O O O OR R R
x y z u y w u x y y w z= + = + = + + +g l g l

d dO O O O OO  (4) 

Using the transport theorem relating the time derivative of a vector measured from a fixed frame to that of the same vector but 
measured from a moving frame, the derivation of the position vector g l

dO O  yields 
g

g g

l l l l
d d d d

Td d
, ,

d d

R R

R R
R O O O OR

u v w
t t

 = + ∧ = =
 

g l g l
g ld d

d

O O O O
ω O O vɺ ɺ ɺ   (5) 

where l
dO

uɺ , l
dO

vɺ  and l
dO

wɺ  are the components of the translational velocity vector of the disk center. Considering the components 
l

d
xω , 

l

d
yω  and 

l

d
zω  of the vector 

g

l

R

R
ω  for the disk, the expression of its kinetic energy becomes 

( ) ( ) ( )( )l l l l l

l l l
d d dd d d

2 2 2 mo 2 2 2 di 2 2d
d d d d d d

1

2 2
x z y y x z

m m mO O O

m
T u v w I I Iω ω ω ω ω= + + + + + + −ɺ ɺ ɺ  (6) 

The rotor runs at a constant speed of rotation Ω . So the spinning angle φ  and its time derivative φɺ  are replaced by tΩ  and Ω  

respectively. The translational displacements ( )d d,u w , the angles of rotation ( )d d,ψ θ  and their time derivatives are very small. Thus 

the trigonometric functions are replaced by their Taylor series expansion and the resulting expressions are limited at the order 2, then 
2 2
d d

d d d d d dsin ; cos 1 ; sin ; cos 1
2 2

θ ψθ θ θ ψ ψ ψ− −≃ ≃ ≃ ≃  (7) 

4.2. Shaft 

The shaft is assumed to be flexible and is modeled by beam elements of constant cross-section and constant moments of inertia. 
The kinetic energy of the shaft element is obtained by taking a shaft elementary volume similar to a disk of very small thickness dy . 

Considering the components lO
uɺ , lO

vɺ , lO
wɺ  of the vector 

g

l

R

O
v  and the components 

lxω , 
lyω , 

lzω  of the vector 
g

l

R

R
ω , the expression for 

the kinetic energy shT  of the shaft element, whose end-points have the abscissas 1y  and 2y  along the Oy  axis, is written in the 

following form 

( ) ( ) ( )( )l l l l l2 2 2 2

l l l
sh sh sh

1 1 1 1

2 2 2 mo 2 2 mo 2 di 2 2sh sh
sh sh sh sh

1
d d 2 d d

2 2

y y y yx z y x z
S S SO O Oy y y y

S
T u v w y I y I y I y

ρ ρ ω ω ρ ω ρ ω ω= + + + + + + −∫ ∫ ∫ ∫ɺ ɺ ɺ  (8) 

where shρ , shS  and shl  ( sh 2 1l y y= − ) are respectively the density, the cross-sectional area and the length of the shaft element. 

( )
sh sh sh

mo 2x z
S S SI I I= +  and ( )

sh sh sh

di 2x z
S S SI I I= −  are respectively the mean moment of inertia of the cross-sectional area and the moment of 

inertia characterizing the asymmetry of the shaft. 
The rigid support motion relative to the ground has no influence on the strain energy of the shaft because the latter depends only 

on the stresses and therefore on the transverse deflection of the shaft with respect to the rotor support R . In addition to the bending 
deformation, the shear effects introduced by Timoshenko and the second-order (non-linear) terms of the strain field are accounted. 
The non-linear strains are linked with the centrifugal stiffening being proportional to the square of the support angular velocity 
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around the transverse axes and corresponding to the geometric potential energy. Thus the strain energy shU  of the shaft element is 

expressed by 

2 2 2
sh

sh
1 1 1

2 2 2 2 2 2mo mo
sh dish sh sh

sh sh

2 2

di
sh sh sh

1
d d d

2 2 2

y y yS
Sy y y

E I G S u w
U y y E I y

y y y y y y

u w
G S

y y

κψ θ ψ θψ θ

κ ψ θ

                ∂ ∂ ∂ ∂ ∂ ∂     = + + + + − − −                ∂ ∂ ∂ ∂ ∂ ∂                

   ∂ ∂− + − −   ∂ ∂   

∫ ∫ ∫

( )( ) ( )

2 2

sh
1 1

2 2

1 1

di
sh

2 2
2di 2 2 2sh sh

sh sh sh sh 1

d cos 2 d

d sin 2 d
4

y y

Sy y

y y x z

y y

y t E I y
y y

Su w u w
G S y t l y y y

y y y y

ψ θΩ

ρκ ψ θ Ω ω ω

   ∂ ∂  −    ∂ ∂  

       ∂ ∂ ∂ ∂
 − + − + + − + +       ∂ ∂ ∂ ∂        

∫ ∫

∫ ∫

 (9) 

where shE , ( )sh sh sh2 1G E ν= +  and shν  are respectively the Young’s modulus, the shear modulus and the Poisson’s ratio of the 

isotropic shaft material. ( )mo
sh sh sh 2x zκ κ κ= +  and ( )di

sh sh sh 2x zκ κ κ= −  are respectively the mean shear correction factor of the cross-

sectional area and that relative to the section asymmetry of the shaft. 

4.3. Mass unbalance 

The mass unbalance is modeled by a concentrated mass mum  placed at a point muP  with a distance mur  from the geometric center 

of the cross-sectional area of the shaft. Its initial angle with the Oz  axis of the frame R  at rest is muη . The mass unbalance remains in 

a plane perpendicular to the Oy  axis with a constant abscissa muy  along the Oy  axis relative to the rotor support R . Its kinetic 

energy muT  is defined as follows 

( )g g

mu mu

T
mu

mu 2
R R
P P

m
T = v v   (10) 

The translational velocity vector 
g

mu

R
Pv  is deduced from the absolute position vector g

muO P  of the mass unbalance. The latter is 

measured from the ground and written relative to the frame linked with the support R  as 

( ) ( ) T

mu mu mu mu mu mu musin , , cosO O O R
u x r t y y w z r tΩ η Ω η= + + = + + + + + + +  

g g l l
mu mu mu muO P O O OO O P  (11) 

Applying the transport theorem, the time derivative of the position vector g
muO P  is of the following form 

g

g g

mu

d d

d d

R R

R R
R Pt t

= + ∧ =
g g

gmu mu
mu

O P O P
ω O P v   (12) 

The external force vectors obtained by the application of the Lagrange’s equations to the kinetic energy of the mass unbalance 
contain the so-called “centripetal and centrifugal force vectors”, sinusoidal tangential force vectors and sinusoidal force vectors fixed 
in space with respect to the support R . Thus in the presence of sinusoidal rotations of the support, the excitation due to the mass 
unbalance combined with the support rotations is sinusoidal and has not only a frequency equal to the speed of rotation Ω  of the 
rotor but also a combination of frequencies of speed of rotation of the rotor and support rotation. 

4.4. Hydrodynamic journal bearing 

Fig. 2(a) shows a simple representation of a hydrodynamic bearing which consists of a fixed journal (1) including a rotating shaft 
(2) and a lubricant (3) separating these two components. The points O  and lO  are respectively the bearing center and the shaft 
geometric center. The radius, length and clearance of the bearing are respectively ber , bel  and be be shc r r= −  where shr  is the shaft 

radius. 
At a constant speed of rotation Ω  of the rotor and for a constant static load rW  created by the rotor weight, the shaft geometric 

center lO  in the bearing occupies a static equilibrium position 0
beC  defined by the displacement vector 

T0 0 0
be be be,

R
u w =  δ  expressed in 

the frame R  or equivalently by the static eccentricity 0 0
be bee = δ  of the shaft center in the journal and the static attitude angle 0

beϕ  

between the rW  load direction and the line of centers 0
beOC . 

In the dynamic regime, the fluid film pressure distribution in the hydrodynamic bearing is governed by the Reynolds equation and 

its integration over the bearing yields the external hydrodynamic forces 
T

be be be,u w

R
F F =  F  acting on the shaft and projected in the 

Cartesian frame connected to the rotor support R . Denoting the dynamic variation of shaft center position in the bearing (i.e., the 
shaft center describes an orbit situated within a circle whose radius is equal to the radial clearance of the bearing) due to the dynamic 
variation of forces applied to the rotor (mass unbalance, fluid film forces and support excitations), the dynamic transverse 

displacement vector of the shaft center is [ ]T

be be be,
R

u w=δ . The dynamic polar coordinates of the shaft center in the bearing expressed 

in the frame ( )be ,R ta ra  are the relative dynamic eccentricity beε  (relative dynamic radial displacement) and the dynamic attitude 

angle beϕ , see Fig. 2(a). These coordinates and their time derivatives are expressed as 

2 2
be bebe be be be be be be be be be

be be be be2 2 2
be be be be be be be

; tan ; ;
u we u u u w w u w w u

c c w c c
ε ϕ ε ϕ

ε ε
+ + −= = = = =

ɺ ɺ ɺ ɺ
ɺ ɺ  (13) 

In the present paper, the short bearing theory is considered (i.e., be be 1 8l d ≤  where be be2d r= ). Assuming an isothermal and 

laminar flow of an isoviscous incompressible fluid, the dynamic polar (tangential and radial) components of the hydrodynamic force 
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vector can be analytically deduced from the integration of the hydrodynamic fluid pressure field based on the Reynolds equation 
using the Gümbel boundary conditions which discard the negative pressure from the force integral. These dynamic components in the 
polar frame linked with the hydrodynamic bearing beR  are defined by the following formulations [34] 

( )
( )

( )
( ) ( )

23 3
be be2 2be be be be be be be

be be be be be be be2 2 22 2 2 2
bebe be be be

1 2
4 1 2 ; 2 2

2 12 1 2 1

ta rar l r l
F F

c c

πε εµ ε µπε ε Ω ϕ ε Ω ϕ
εε ε

 +   = + − − = − + −     −− −  

ɺ

ɺ ɺ ɺ  (14) 

where beµ  is the fluid film dynamic viscosity. The equation calculating the static solution can be reached by setting the time 

derivatives of beε  and beϕ  in Eq. (14) to zero and by setting the magnitude of the vector sum for the force vector components in Eq. 

(14) to be equal to the static load rW . Thus the resulting non-linear equation is solved by an iterative Newton-Raphson method and 

provides the relative static eccentricity 0beε  and then the static radial displacement 0
bee  of the shaft center in the bearing. The 

components of the static equilibrium position vector 0
beδ  and those of the dynamic fluid force vector beF  are obtained by a classical 

change of basis (see Fig. 2(a)) given as 

( ) ( )be be be be

be be

0 0
T T be be0 0 0be be be

be be0 0 0
be be bebe be be

0 cos sincos sin
; ; ;

sin cossin cos

ta
R R R R

raR R R R
R R

F

e F

ϕ ϕϕ ϕ
ϕ ϕϕ ϕ

−   −    = − = − = =       
       

δ R F R R R  (15) 

where be

0R

R
R  and be

R

R
R  are the rotation matrices of the polar frame beR  with respect to R  in the static and dynamic cases respectively. 

According to Eqs. (13)-(15), since the hydrodynamic force vector components depend non-linearly on the dynamic polar coordinates 

and on their time derivatives, they are non-linear functions of the dynamic transverse displacement and velocity vectors ( )be be,δ δɺ . As 

the bearing contribution appears as forces beF  external to the rotor, their virtual work beWδ  must be established to apply the 

Lagrange’s equations 

( )T
be be be be be,Wδ δ= F δ δ δɺ   (16) 

If the dynamic displacements beδ  of the shaft elastic line are assumed to be small in the vicinity of the static position 0beδ , the 

linear analysis of a bearing is applied by constructing a first-order Taylor expansion of the dynamic fluid forces ( )be be be,F δ δɺ  in the 

vicinity of the static hydrodynamic forces ( )0
be be,F δ 0  as follows 

( ) ( )0
be be be be be be be be be, ,= − −F δ δ F δ 0 c ∆δ k ∆δɺ ɺ   (17) 

with 

( ) ( )00
bebe

0be be be bebe be
be be be be be be be

bebe be be be be,,

; ; ;
xx xz xx xz

zx zz zx zz

c c k k

c c k k

   ∂ ∂= − = = − = = − =   ∂∂    δ 0δ 0

F F
c k ∆δ δ δ ∆δ δ

δδ

ɺ ɺ

ɺ
 (18) 

The bearing force vector ( )0
be be,F δ 0  is related to the static displacement vector 0

beδ  and must equilibrate the constant load rW  

imposed by the rotor weight. The damping and stiffness matrices bec , bek  of the linearized 8-coefficient hydrodynamic bearing (i.e., 

four damping and four stiffness coefficients) (see Fig. 2(b)) depend only on the static position 0
beδ . Actually, they are easier to obtain 

in the polar frame beR , i.e., 
be

be
Rc  and 

be

be
Rk . Their analytical expressions can be found in [34] and deduced from Eq. (14). In addition, 

these expressions are presented in Appendix A. Lastly, it is necessary to execute the transformation between the frames beR  and R  
in the static condition to produce the matrices bec  and bek  in R  as follows 

( ) ( )be be

be be be be

T T0 0 0 0
be be be be;R R R R R R

R R R R
= =c R c R k R k R   (19) 

(a) (b)  
Fig. 2. (a) Schematic diagram of a hydrodynamic bearing, (b) Linearized damping and stiffness coefficients of a bearing model. 
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5. Overall dynamic behavior of the on-board rotor-hydrodynamic bearing system 

5.1. Finite element formulation 

The finite element method is chosen to discretize the on-board rotor in bending. Each node of nodal interpolation includes four 
degrees of freedom (two transverse translations and two rotations). The disk, the mass unbalance and the hydrodynamic journal 
bearing are modeled by one-node finite elements situated at the geometric center of the cross-sectional area of the shaft. On the other 
hand, the shaft is modeled by eshn  two-node beam finite elements based on the Timoshenko beam theory and thus has esh 1n +  nodes. 

Let us consider a non-deformed shaft finite element iesh  which consists of two nodes in  and 1in+  of coordinates sh
iny  and 1

sh
iny +  along 

the Oy  axis. This finite element is of density 
ieshρ , cross-sectional area 

ieshS , length 
ieshl , moments of inertia mo

eshi
SI  and di

eshi
SI , Young’s 

modulus 
ieshE , Poisson’s ratio 

ieshν  as well as shear correction factors mo

ieshκ  and di

ieshκ  where ( )esh1i i n≤ ≤  is the shaft finite element 

number. Its nodal displacement vector n

ieshδ  projected in the coordinate system attached to the rotor rigid support R  is defined by 

1 1 1 1
Tn , , , , , , ,i i i i i i i i

i i i i i i i i i

n n n n n n n n
esh esh esh esh esh esh esh esh eshR

u w u wθ ψ θ ψ+ + + + =  δ   (20) 

The above vector is separated into two vectors n,

i

u
eshδ  and n,

i

w
eshδ  associated with the motions of the nodes in  and 1in+  in the planes 

xOy and yOz, then 

1 1 1 1
T Tn, n,, , , ; , , ,i i i i i i i i

i i i i i i i i i i

n n n n n n n nu w
esh esh esh esh esh esh esh esh esh eshR R

u u w wψ ψ θ θ+ + + +   = =   δ δ  (21) 

The dynamic transverse displacements 
ieshu  and 

ieshw  of any point initC  due to bending respectively along the Ox  and Oz  axes of 

the frame R  as well as the corresponding rotations 
ieshθ  and 

ieshψ  respectively around the Ox  and Oz  directions are formulated as a 

function of the nodal displacement vectors n,

i

u
eshδ  and n,

i

w
eshδ  in what follows 

( ) ( ) ( ) ( )n, n, n, n,; ; ;
i i i i i i i i i i i i

u u u w w w
esh esh esh esh esh esh esh esh esh esh esh eshu y y w y yψ θψ θ= = = =F δ F δ F δ F δ  (22) 

where ( )
i

u
esh yF , ( )

iesh yψF , ( )
i

w
esh yF  and ( )

iesh yθF  are the shape function vectors of a Timoshenko beam finite element. They are third-

degree and second-degree polynomial equations, functions of the dimensionless variable y  (
ieshy y l= ) along the Oy  axis of the 

frame R  and include the shear effects (see Chen and Ku [36]). 

5.2. Equations of motion 

The Lagrange’s equations are applied to the energies for the disk, the shaft finite element and the mass unbalance (see Eqs. (6), 
(8), (9) and (10)) as well as to the virtual work of the hydrodynamic bearing (see Eq. (16)) and the resulting elementary matrices and 
vectors are appropriately assembled. Due to the presence of hydrodynamic bearings, the boundary conditions do not exist and the 
corresponding row and column entries of the assembled matrices and vectors are not eliminated. Thus the obtained global matrices 
and vectors are respectively of dimension g gn n×  and g 1n ×  where ( )g esh4 +1n n=  is the total number of degrees of freedom. The 

obtained non-linear second-order differential equations describing the dynamic behavior of the on-board rotor-bearing system in 
bending are written with respect to the non-inertial frame connected to the rigid support R  as follows 

( ) ( ) ( ) ( ) ( )r r r r r r r be r r,t t t t+ + = +M δ C δ K δ F F δ δɺɺ ɺ ɺ   (23) 

where ( )r tM , ( )r tC  and ( )r tK  are the global mass, damping and stiffness matrices with periodic and time-varying parametric terms 

due to the geometric asymmetry of the rotating rotor and to the rotations of its rigid support respectively. These matrices are not 
affected by the translational motions of the support. rδ

ɺɺ , rδ
ɺ  and rδ  are the global acceleration, velocity and displacement vectors 

conforming to the connectivity of the finite elements. ( )r tF  is the global external force vector containing the excitations due to the 

influence of the mass unbalance as well as to that of the rotational and translational motions of the support. Lastly, the external non-

linear hydrodynamic force vector ( )be r r,F δ δɺ  of the bearing is opposite to the rotor motion. 

The matrices ( )r tM , ( )r tC  and ( )r tK  mentioned in Eq. (23) are defined as follows 

( ) 2 2c s
r d,sh d,sh d,shcos2 sin 2t t tΩ Ω= + +M M M M   (24) 

( ) 2 2g,c g,sg re,
r d,sh d,sh d,sh d,sh,sucos 2 sin 2

y yt t t ωΩ Ω Ω Ω Ω ω= + + +C C C C C  (25) 

( )
( ) ( )

2 2

2 2 2 2 2

2

e,c e,se
r sh sh sh

re, re, re, gse, 2 re, 2 re, gse, 2 re,
d,sh,su d,sh,su d,sh,su d,sh,su d,sh,su d,sh,su d,sh,su d,sh,su

re, ,c
d,sh,su

cos2 sin 2
y y x x y z z x z

y

y y x y z x z

y

t t t

ω Ωω ω ω ω ω ω ω ω

ω

Ω Ω

ω Ωω ω ω ω ω ω

ω

= + +

+ + + + + + + +

+ +

K K K K

K K K K K K K K

K

ɺ

ɺ

ɺ

ɺ( )2 2 2
2 2 2 2 2

2 2
2 2 2 2

re, ,c re, ,c re, ,c re, ,c re, ,c2 2 2
d,sh,su d,sh,su d,sh,su d,sh,su d,sh,su

re, ,s re, ,s re, ,s re, ,s2 2
d,sh,su d,sh,su d,sh,su d,sh,su d,

cos2
y x y z x z

y y x y

y x y z x z

y y x y

tΩω ω ω ω ω ω

ω Ωω ω ω

Ωω ω ω ω ω ω Ω

ω Ωω ω ω

+ + + +

+ + + + +

K K K K K

K K K K Kɺ
ɺ( )2re, ,s

sh,su sin 2
x z x z tω ω ω ω Ω

 (26) 

The subscripts “d ”, “ sh” and “su ” refer to the disk, the shaft as well as the support respectively and express the contribution to 
the phenomena represented by the corresponding matrix. The superscripts “2c ” and “ 2s ” denote the geometric asymmetry of the 

rotor expressed in terms of the time-varying trigonometric functions cos 2 tΩ  and sin 2 tΩ . The superscript “g ” stands for the rotor 
gyroscopic effect, “e ” for the shaft elasticity corresponding to the bending and shear deformations, “re ” for the rotational effects 
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due to the support rotations (these effects come from the kinetic energies of the disk and the shaft) and “gse” for the geometric 
stiffening effects corresponding to the centrifugal stress due to the support rotations (these effects come from the strain energy of the 
shaft). 

The force vector ( )r tF  indicated in Eq. (23) is expressed as follows 

( ) ( ) ( ) ( ) ( ) ( )r 2 2c s
r d,sh mu mu,su d,sh,su d,sh,su d,sh,sucos 2 sin 2Wt t t t t t t tΩ Ω= + + + + +F F F F F F F  (27) 

with 

( )r r 1 1c s2 2
d,sh d,sh r mu mu mu; cos sinW W W t t tΩ Ω Ω Ω= − = +F V F V V  (28) 

( ) ( )
(

2 2 2
1 1 1 1 1 1

2 2 2
1 1 1 1 1

,c ,c ,c ,c ,c ,c2 2 2
mu,su mu,su mu,su mu,su mu,su mu,su mu,su

,s ,s ,s ,s ,s2 2 2
mu,su mu,su mu,su mu,su mu,su mu,su

cos
y y x y z x z

y y x y z x

y y x y z x z

y y x y z

t tω Ωω ω ω ω ω ω

ω Ωω ω ω ω ω ω

ω Ωω ω ω ω ω ω Ω

ω Ωω ω ω ω

= + + + + +

+ + + + + +

F V V V V V V

V V V V V V

ɺ

ɺ

ɺ

ɺ )1,s sin
z x z tω ω Ω

 (29) 

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )

2 2
d,sh,su d,sh,su

2 2
d,sh,su

d,sh,su d,sh,su d,sh,su d,sh,su

2 2

2 2

u y z y x z z x y y z
O O O O O O

w x y x y z y x z x y
O O O O O O

yw x y z yu z x y x y z z

t x z y z y x

z y x y x z

θ ψ

ω ω ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω ω ω

= − + − + + − − − +

− + − + + − − − +

− + + − − + − −

F V

V

V V V V

ɺ ɺɺɺ ɺɺ

ɺ ɺɺ ɺɺɺ

ɺ ɺ ɺ ɺ( )
( ) ( )d,sh,su d,sh,su

x y

y x x y y z y zψ θ

ω ω

Ωω ω ω Ωω ω ω− + + +V V

 (30) 

( ) ( ) ( )2 2 2c ,c ,c
d,sh,su d,sh,su d,sh,su2 2x z y z z x x yt θ ψω Ωω ω ω ω Ωω ω ω= − − − + + +F V Vɺ ɺ  (31) 

( ) ( ) ( )2 2 2s ,s ,s
d,sh,su d,sh,su d,sh,su2 2x z y z z x x yt ψ θω Ωω ω ω ω Ωω ω ω= − − + + +F V Vɺ ɺ  (32) 

where the load vectors muV , d,sh,suV  and mu,suV  and their corresponding force vectors muF , d,sh,suF  and mu,suF  are associated respectively 

with the mass unbalance, the inertia force due to support motions and that due to coupling between both phenomena. The superscripts 
“ 1c ” and “ 1s ” signify the components of the mass unbalance force expressed in terms of the time-varying trigonometric functions 

cos tΩ  and sin tΩ . The superscripts u , w , ψ  and θ  denote the direction of the action force components associated with the rotor 
support motions. 

For the sake of conciseness, the elementary matrices involved in ( )r tM , ( )r tC , ( )r tK  and the elementary vectors involved in 

( )r tF  as well as the validation of the finite element calculations against the Rayleigh-Ritz formulation are not detailed here and can 

be seen in [35]. 
As already stated above, the equations of motion are non-linear. This is due to the hydrodynamic bearings (local components) 

even if they do not concern all the degrees of freedom of the rotor system. In the two following sections (i.e., Sections 5.3 and 5.4), 
the treatment of these equations is detailed. 

5.3. Non-linear dynamic analysis 

5.3.1. Classical transient  analysis 

For large hydrodynamic bearing forces and thereby large displacements of the rotor, the linear dynamic analysis is no longer 
valid. In this case, the non-linear analysis of a bearing is considered. Solving the complete non-linear dynamic problem requires the 
simultaneous solution of the equations of motion (i.e., Eq. (23)) of the rotor-bearing system and Eqs. (13)-(15) calculating the non-
linear bearing forces obtained by the Reynolds equation in the dynamic regime. As a consequence, the analysis uses a complex 
solving algorithm combining the Newton-Raphson incremental-iterative procedure with the Newmark time integration scheme. The 
semi-discrete equations of motion (Eq. (23)) applied at time 1it +  ( ts1 1i n≤ ≤ +  where tsn  is the number of time steps) can yield the 

following residual form 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1
r r r 1 r r 1 r r 1 r r 1 be r r,i i i i i i

i i i it t t t+ + + + + +
+ + + += + + − − =G δ M δ C δ K δ F F δ δ 0ɺɺ ɺ ɺ  (33) 

The velocity and displacement vectors of the rotor nodes between it  and 1i it t t∆+ = + , t∆  being the time step, are approximated by 

the following general formulations of the implicit Newmark scheme 

( )( ) ( ) ( )( )
2

1 1 1 1
r r 1 r 1 r r r r 2 r 2 r1 ; 2 1 2

2
i i i i i i i i it

t t
∆

∆ ξ ξ ∆ ξ ξ+ + + += + + − = + + + −δ δ δ δ δ δ δ δ δɺ ɺ ɺɺ ɺɺ ɺ ɺɺ ɺɺ  (34) 

where the parameters 1 1 2ξ =  and 2 1 4ξ =  define the constant average acceleration scheme and assume an unconditional numerical 

stability and second-order accuracy. Since Eq. (33) is non-linear, an iterative strategy is used to treat the non-linearity. Namely, the 
consistent linearization of Eq. (33) is applied by finding a first-order Taylor series of this equation and the Newton-Raphson iterative 
algorithm is taken into account as follows 

( ) ( )
( )

( ) ( )
1

r

1 1 1 NR 1 NR 1r
r r r r r r r r r r1

r

d

d k i

k i k i k i k i
i

+

+ + + + +
++ = ⇒ = −

δ

G
G δ G δ ∆δ 0 J δ ∆δ G δ

δ
≃  (35) 

where NR 1 1 1
r r r

k i k i+ + += −∆δ δ δ  is the iterative increment of the displacement vector and k  is the Newton-Raphson iteration. The Jacobian 

matrix rJ  is a function of the displacement vector 1r
i+
δ  at iteration k  and is given by 

( )
( )

( ) ( ) ( )
( ) ( )1 1 1

r r r

1 1 1 1
1 r r r r r 1

r r r 1 r 1 r 1 21 1 1 1 1 1
r r r r r r 2, 2

dd d d d d1
with ;

d d d d d dk i k i k i

i i i i
k i be

i i ii i i i i i
t t t

tt

ξ
ξ ∆ξ ∆+ + +

+ + + +
+

+ + ++ + + + + += = + + − = =
δ δ δ

FG δ δ δ δ
J δ M C K I I

δ δ δ δ δ δ
ɺ

ɺɺ ɺ ɺɺ ɺ

 (36) 
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where I  is the identity matrix. The derivatives of the acceleration and velocity vectors 1
r
i+
δɺɺ , 1

r
i+
δɺ  with respect to the displacement 

vector 1
r
i+
δ  are deduced from the approximations of the Newmark scheme (i.e., Eq.(34)). The derivative of the non-linear 

hydrodynamic forces in the Jacobian matrix of Eq. (36) depends on both the displacement and velocity vectors ( )1 1
r r,k i k i+ +
δ δɺ , is 

updated at each iteration k  and is expressed in what follows 

( ) ( ) ( )1 1 1 1 1 1
r r r r r r

1
be be be r

1 1 11
r r rr, , ,

d d

d dk i k i k i k i k i k i

i

i i ii
+ + + + + +

+

+ + ++

∂ ∂= +
∂ ∂

δ δ δ δ δ δ

F F F δ

δ δ δδ
ɺ ɺ ɺ

ɺ

ɺ
  (37) 

The algorithm of the Newton-Raphson incremental-iterative procedure combined with the Newmark time integration scheme is 
presented in Fig. 3. The initial dynamic displacement vector is set to the static equilibrium position 0

rδ  (or to other user-defined 

vectors) and the initial velocity vector is set to zero. When the residual vector ( )1
r r

k i+G δ  is calculated by Eq. (33), a new displacement 

increment NR
r∆δ  is produced by Eq. (35) and thus the displacement, velocity and acceleration vectors are updated as shown in Fig. 3. 

If the ratio ( ) ( )1 1
r r r 1

k i
it

+ +
+G δ F  is less than a convergence criterion NR

nlε , then a converged solution is reached and the algorithm 

shifts to the next time step of the Newmark scheme. Otherwise the non-linear bearing forces are re-evaluated and a new Newton-
Raphson iteration begins. 

In order to reach the steady-state dynamic response in the periodic regime, the Newmark integration scheme must be used over a 
large number of time periods in the case of a harmonic external excitation of the system. This results in a huge computational time 
when the indicated scheme is repeated for a large number of fundamental excitation frequencies, i.e., each fundamental frequency 
corresponds to a large number of time periods. Computational time can be saved by computing directly the periodic solution by 
means of the shooting algorithm which is discussed in the next section. 

5.3.2. Direct computation of the periodic solution (shooting method) 

The following two-point boundary-value problem defined by the periodicity condition is considered, then 

( )( ) ( )( ) ( ) T

r r r r r r r r r r0 , 0 , 0 with ,t tτ τ  = = = − = =  H X X X X 0 X δ δɺ  (38) 

where rτ  is the minimal period of the rotor response. The dependence of the system on the fundamental period exτ  of the harmonic 

exciting forces is assumed, i.e., r exjτ τ=  (with 1,2,3j = … ). Integer multiples of the fundamental period are used to compute sub-

harmonic responses occurring, for instance, after a period-doubling bifurcation. In practice, in order to find the minimal period rτ  of 

the response, the shooting algorithm is first run with r exτ τ=  (harmonic response) and if there is no convergence, it is then run with 

r ex r2 , 3 ,exτ τ τ τ= = …  consecutively (sub-harmonic response). The state-space vector rX  in Eq. (38) represents the solution of Eq. (23) 

at the end of one period rτ  for an approximated initial solution ( )r 0X . This vector is obtained with the non-linear Newmark time 

integration scheme over one period rτ  (see Section 5.3.1 and Fig. 3). An appropriate linearization of Eq. (38) is applied by building a 

first-order Taylor series expansion of this equation and a Newton-Raphson iterative correction is performed, then 

( )( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

r r

1 SH SH SHr
r r r r r r r r r r r r r r

r 0 ,

0 , 0 , 0 , 0 ,
0 k

k k k k

τ

τ τ τ τ+ ∂+ = ⇒ = −
∂

X

H
H X H X ∆X 0 J X ∆X H X

X
≃  (39) 

where ( ) ( )SH 1
r r r0 0k k+= −∆X X X  is the iterative increment of the state-space vector and k  is the Newton-Raphson iteration. The 

Jacobian matrix SH
rJ  is a function of the state-space vector ( )r 0X  at iteration k  and is given by 

( )( ) ( ) ( )( ) ( ) ( )( )r r r r

SH r r
r r r

r r0 , 0 ,

0 ,
0 0k k

k

τ τ

τ ∂ ∂= = −
∂ ∂

X X

H X
J X I

X X
  (40) 

The shooting method algorithm solving simultaneously Eqs. (23) and (38) is presented in Fig. 4. The approximated initial solution 
is set to a user-defined state-space vector ( )1

r 0X . When the residual vector ( )( )r r r0 ,k τH X  is calculated by Eq. (38), a new increment 
SH
r∆X  of the state-space vector is produced by Eq. (39) and thus the approximated initial solution ( )1

r 0k+ X  is updated as shown in 

Fig. 4. If the ratio ( )( ) ( )( )r r r r r r0 , 0 ,k k tτ τ=H X X X  is less than a convergence criterion SHε , then a converged solution is reached 

and the algorithm is terminated. Otherwise the state-space vector ( )( )r r r0 ,k t τ=X X  is re-calculated and a new Newton-Raphson 

iteration begins. 

5.4. Linear dynamic analysis 

5.4.1. Transient  analysis 

The solution technique can be significantly simplified and the computational time can be reduced if the assumption of a linearized 
8-coefficient hydrodynamic bearing model is considered to be valid, i.e., the dynamic displacement vector of the rotor remains small 

in the vicinity of the static position 0rδ  and a first-order Taylor expansion of the dynamic fluid forces ( )be r r,F δ δɺ  is built by 

( ) ( )0
be r r be r be r be r, ,= − −F δ δ F δ 0 C ∆δ K ∆δɺ ɺ   (41) 



   

- 10 - 

with 0
r r r= −∆δ δ δ  and r r=∆δ δɺ ɺ . The hydrodynamic force vector ( )0

be r ,F δ 0  depends on the static solution vector 0
rδ  caused by the 

static equilibrium between the rotor weight vector r
d,sh
WF  and the hydrodynamic bearing reaction (i.e., ( )0

be r ,F δ 0  is opposite and equal 

to r
d,sh
WF ). The global damping and stiffness matrices beC , beK  deduced from the bearing linearization (see Section 4.4) are generated 

by the assembly of the elementary matrices. These matrices are kept constant all along the dynamic simulation. Substituting Eq. (41) 
into Eq. (23), the equations of motion of the on-board rotor-bearing system become linear as follows 

( ) ( )( ) ( )( ) ( ) ( )0 0
r r r be r r be r r be r be r,t t t t+ + + + = + +M δ C C δ K K δ F F δ 0 K δɺɺ ɺ  (42) 

The transient dynamic motion of the rotor nodes is obtained by solving Eq. (42) by means of the implicit Newmark time-step 
integration algorithm based on the average acceleration. The displacement vector 0rδ  of the static equilibrium position 0beC  is used to 

initialize the transient dynamic problem. The final integration time is selected such that the transient effects have disappeared and the 
steady-state regime has been reached. Lastly, it is necessary to establish precisely the validity range of the linear bearing model by 
comparing its results with those of the non-linear bearing model. 

5.4.2. Stability  analysis 

The motion stability of the linear rotor-bearing system is investigated by applying the Floquet theory for one period peτ  of the 

periodic parametric excitation, see Dufour and Berlioz [6] and Dakel et al. [35]. In other words, by calculating the so-called “Floquet 
transition matrix” (or monodromy matrix) during one period peτ  of the parametric excitation and by finding its eigenvalues, the zones 

of instability are identified, i.e., if the modulus of at least one of these eigenvalues is greater than 1, the system is unstable. As 
reported in [37], the Floquet transition matrix can be very efficiently computed using the linear version of the Newmark algorithm. 

 
 

 
Fig. 3. Algorithm used for the non-linear transient analysis of the on-board rotor-hydrodynamic bearing system. 
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Fig. 4. Shooting method algorithm used for the non-linear dynamic analysis of the on-board rotor.  

 
 

 
Fig. 5. On-board rotor-hydrodynamic bearing system configuration. 

 
 

Table 1. Main characteristics of the on-board rotor. 
Density of both disk and shaft material 
Radius, thickness and location of the disk 
Radius and length of the shaft 
Young’s modulus and Poisson’s ratio of the shaft 
Shear correction factor of the shaft 
Mass unbalance phase 

ρd=ρsh=7800 kg/m3 
rd=0.15 m, ed=0.03 m, yd=0.2 m 
rsh=0.04 m, lsh=0.4 m 
Esh=2×1011 N/m2, νsh=0.3 
κsh

x= κsh
z=0.8864 [38] 

ηmu=0° 

 
 

Table 2. Main characteristics of the hydrodynamic short bearings. 
Radius and length of the bearings 
Locations of the bearings 
Radial clearance of the bearings 
Oil film dynamic viscosity 

rbe=0.04 m, lbe=0.01 m 
ybe.# 1=0 m, ybe.# 2=0.4 m 
cbe=2×10-4 m 
µbe=288×10-4 Pa s 

 
 

End of the algorithm Yes 

No 

Loop for the               
N

ew
ton-R

aphson corrections 

Yes 

No 

Increase of the period of the rotor response r ex1 ;j j jτ τ= + =  

Initialization of the algorithm with an approximated initial solution 
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Evaluation of the residual vector ( )( )r r r0 ,k τH X  

Evaluation of the Jacobian matrix ( )( )SH
r r r0 ,k τJ X  

Correction of the initial solution vector at the Newton-Raphson 
iteration k : ( ) ( )1 SH

r r r0 0k k+ = +X X ∆X  

Convergence 
( )( ) ( )( ) SH

r r r r r r0 , 0 ,k k tτ τ ε= ≤H X X X  

Computation of the state-space vector ( )( )r r r0 ,k t τ=X X  with the 

algorithm in Fig. 3 

Newton-Raphson increment ( )( ) ( )( )SH SH
r r r r r r r0 , 0 ,k kτ τ= −J X ∆X H X  

Iterations SHl≤  
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6. Numerical simulations and result discussion 

6.1. Description of the investigated on-board rotor-bearing system 

The symmetric on-board rotor-hydrodynamic short bearing system is presented in Fig. 5. The origin O  of the reference frame R  
coincides with the shaft end-point positioned at the center of the bearing # 1. The symmetric shaft is modeled with eight identical 
two-node Timoshenko beam finite elements, i.e., the total number of degrees of freedom is g 36n = . The symmetric disk is located at 

node 5 and the mass unbalance is placed on it. The hydrodynamic short bearings # 1 and # 2 are located at nodes 1 and 9 
respectively, i.e., the corresponding localized non-linear degrees of freedom are 1-4 and 33-36. The material characteristics and 
geometric properties of the rotor and the bearings are listed in Tables 1 and 2. 

The investigated rotor is subject to rotating mass unbalance excitation combined with sinusoidal rotational or translational 
motions of the support: the rotation around the Ox  axis is given by the angular velocity , cosx x a xtω ω Ω=  in rad/s (i.e., the 

corresponding angular displacement is , sinx a x xtβ ω Ω Ω=  in rad), while the translation along the Oz  axis is expressed as 

cos z
O Oz Z tΩ=  in m. This rotor runs at a constant speed of rotation 1200 rpmΩ =  (=20 Hz=mass unbalance frequency) and its first 

four natural frequencies for the considered speed of rotation and a fixed support in the case of linearized bearings are       33.6 Hz, 
52.7 Hz, 524.8 Hz and 1573 Hz. The relative coordinates of the static equilibrium position 0beC  of the shaft geometric center in the 

fluid film bearings are given by [ ]T0
be be 0.29, 0.88

R
c = − −δ  or equivalently by 0

be be 0.93e c = . The damping and stiffness matrices of the 

linearized 8-coefficient bearing model obtained with Eq. (18) and data from Table 2 are expressed as follows 
3 4 6 6

be be4 4 6 7

3.50 10 1.08 10 1.30 10 1.32 10
N s m ; N m

1.08 10 7.57 10 6.30 10 1.94 10

   × × × ×
= =   × × × ×   

c k  (43) 

The equations of motion of the on-board rotor (see Eqs. (23)-(32)) show that the support rotations have a parametric influence on 
these equations, while the support translations have only an influence on the external force vector. Due to the complexity of the rotor 
motion, the overall dynamic analysis of the on-board rotor is performed by means of stability charts, rotor orbits, time history 
responses, fast Fourier transforms (FFTs), bifurcation diagrams and Poincaré maps. 

6.2. Role of the hydrodynamic bearing models in the stability analysis 

6.2.1. Linearized model 

In this section, the linearized equations of motion are considered (see Eq. (42)) and the dynamic stability of the on-board rotor is 
examined through the Floquet theory. The instability comes from the parametric excitation due to the sinusoidal rotation of the rotor 
support, see Eqs. (24)-(26). For a certain speed of rotation Ω  of the rotor, two factors affect the parametric excitations generated in 
the symmetric rotor: the amplitude ,x aω  of the support rotation and its frequency xΩ . Therefore the stability analysis covers these 

two parameters and uses pe
xτ π Ω=  as the period of the parametric excitation. 

Fig. 6(a) and (b) compare the stability charts investigated in the presence of the rigid short bearings (for which the first four 
natural frequencies of the rotor at 1200 rpmΩ =  are 552.8 Hz, 553.1 Hz, 1608 Hz and 1642.7 Hz) and the linearized hydrodynamic 

short ones respectively. The frequency of the support rotation is contained in the range of interest [ ]0; 2000 HzxΩ ∈  and the 

calculations are performed with 1 Hzx∆Ω =  and ( ), 0.05 radx a x∆ ω Ω = . It is noted that the size of the instability zones increases for 

increasing values of ,x a xω Ω . 

For example, in the case where , 0.5 radx a xω Ω = , the on-board rotor mounted on the rigid bearings can be unstable for 

[ ]508; 536 HzxΩ ∈  and [ ]1507; 2000 HzxΩ ∈  (see Fig. 6(a)), while the rotor mounted on the flexible bearings can be unstable for 

[ ]370; 2000 HzxΩ ∈  (see Fig. 6(b)). Namely, the instability region due to the linearized hydrodynamic bearings is greater than that 

due to the rigid ones because of the presence of the damping in the hydrodynamic bearings. 
 

(a) (b)  
Fig. 6. Stability charts of the rotor running at Ω=1200 rpm, subject to sinusoidal rotations of the support and mounted on:                                    (a) 

rigid bearings, or (b) hydrodynamic bearings. 
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(a) (b)  
Fig. 7. Relative non-linear time history responses of the rotor at the bearing # 2 corresponding to the point A in Fig. 6 with two different initial 

conditions. 
 

6.2.2. Non-linear model 

According to the stability analysis in the case of linearized 8-coefficient hydrodynamic bearings, any operating point below the 
transition curve between the stable and unstable zones is considered to be stable. Namely, the transient dynamic analysis of the 
linearized equations of motion of the rotor (see Eq. (42)) with no external forces except the rotor weight yields the static equilibrium 
position 0

beC  of the shaft center in the bearings for any initial conditions. Unlike the previous case, due to the non-linear bearings, the 

chosen initial conditions for the transient analysis of the non-linear equations of motion (see Eq. (23)) with only the rotor weight as 
external forces can lead to an unstable response instead of the static position. This phenomenon is a form of instability occurring in 
hydrodynamic bearings and called “self-excited vibrations” or “non-loaded bearing vibrations”, see Khonsari and Chang [12]. 

Fig. 7 presents the relative dynamic radial displacement of the rotor at the bearing # 2 (i.e., node 9) in the presence of a non-linear 
bearing model and a sinusoidal rotation of the support of frequency 500 HzxΩ = . The dynamic displacement in the time domain 

corresponding to the point A  (Fig. 6(b)) with the initial conditions 0be be2cδ  (see Fig. 7(a)) settles into a stable point corresponding to 

the static position 0
beC  but becomes unstable with the initial conditions 0be be2c−δ  (see Fig. 7(b)). In the second case of initial 

conditions, the non-loaded bearing vibrations appear. Moreover, a contact between the rotor and the bearing occurs at the instant 
0.012 st =  and the transient dynamic computation is stopped. 

6.3. Comparison of linear and non-linear bearing models 

6.3.1. Influence of the mass unbalance 

All the orbits presented in this paper are made dimensionless with respect to the bearing clearance bec  and are thus plotted within 

a unit circle. 
In this section, the dynamic simulation is performed to present a comparison between rotor orbits obtained with linearized 8-

coefficient and non-linear hydrodynamic bearing models due to three different values of mass unbalance. Since the bearings are 
identical and the disk is positioned at the middle of the shaft (i.e., node 5), the orbits at both bearings (i.e., nodes 1 and 9) are 
identical in the case of a fixed support. These orbits illustrated in Fig. 8 show the transient motion of the shaft geometric center 
within the bearings from the static position 0

beC  to the steady-state harmonic solution which has a period rτ  equal to the inverse of 

the mass unbalance frequency Ω . The periodic non-linear orbits plotted in Fig. 8 are also obtained with the shooting method. As 
expected, they perfectly coincide with the steady-state periodic motion obtained by the transient time integration and thus validate the 
shooting implementation. 

For a small mass unbalance (mu mu 750 g mmm r = ), the linear and non-linear orbits of the rotor exhibit very similar evolutions (see 

Fig. 8(a)). According to Fig. 8(b), the chosen mass unbalance ( mu mu 1500 g mmm r = ) corresponds to the limit of validity of the 

linearized bearing model and is thus used in the next sections. For a very large mass unbalance (mu mu 7500 g mmm r = ), the dynamic 

displacement of the rotor becomes much greater and no longer remains in the vicinity of the static position and a high difference 
between the linear and non-linear orbits shown in Fig. 8(c) is noted. As a consequence, the assumption of constant damping and 
stiffness coefficients of the bearings is no longer valid and the linearized 8-coefficient bearing model yields inaccurate results. 

 

6.3.2. Influence of the support motion frequency 

Figs. 9 and 10 display a comparison between linear orbits of the rotor and non-linear ones (obtained by the transient Newmark 
integration and the shooting algorithm) at the bearing # 2 (node 9) in the presence of the mass unbalance excitation 
( mu mu 1500 g mmm r = ) and the sinusoidal rotational or translational motions of the rotor support for the initial conditions 0

be becδ . In 

Fig. 9, the amplitude of the support rotation is kept constant ( , 21 10 rad sx aω −= × ), while its frequency varies 

( 80 Hz,120 Hz and 200 HzxΩ = ), i.e., the corresponding angular displacement amplitudes of the support are 
, 5 5 62 10 rad,1.33 10 rad and 7.96 10 radx a xω Ω − − −= × × ×  respectively. In Fig. 10, the amplitude of the support translation is kept constant 

( 51 10 mOZ −= × ), while its frequency varies ( 80 Hz,120 Hz and 200 HzzΩ = ). 
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Fig. 8. Comparison of linear and non-linear orbits of the rotor at both bearings for three different values of mass unbalance: mmurmu= (a) 750 g mm, 

(b) 1500 g mm, (c) 7500 g mm. 
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Fig. 9. Comparison of linear and non-linear orbits of the rotor at the bearing # 2 for three different frequencies of sinusoidal rotations of the support: 

ωx=ωx,acosΩxt with ωx,a=1×10-2 rad/s and Ωx= (a) 80 Hz, (b) 120 Hz, (c) 200 Hz. 
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Fig. 10. Comparison of linear and non-linear orbits of the rotor at the bearing # 2 for three different frequencies of sinusoidal translations of the 

support: zO=ZOcosΩzt with ZO=1×10-5 m and Ωz= (a) 80 Hz, (b) 120 Hz, (c) 200 Hz. 
 
 
Unlike the previous section, the sinusoidal rotation of the support makes the orbits at the locations of the bearings different due to 

its normal and tangential accelerations. Focus is thus put on the bearing # 2 which is more affected by the support rotation. 
Since the excitations due to the mass unbalance and to the support motions are sinusoidal and commensurable, the external 

excitation of the rotor is harmonic of period exτ  equal to the inverse of the greatest common factor of the mass unbalance frequency 

Ω  and the support motion frequency xΩ  or zΩ . For example, one period of the first external excitation of the rotor corresponds to 
one period of the mass unbalance excitation (20 HzΩ = ) and to four periods of the support motion for xΩ  or 80 HzzΩ = . In 

addition, the linear and non-linear orbits of the rotor in Figs. 9 and 10 are harmonic of periods r,lτ  and r,nlτ  equal to exτ . As expected 

when the amplitude of the support motions is small, the shape of the linear and non-linear orbits in Figs. 9 and 10 changes a lot with 
frequency and is made more complicated, while their magnitudes are slightly modified when compared to the orbits shown in Fig. 
8(b) corresponding to the fixed support. Lastly, the linear and non-linear orbits are rather similar, i.e., the dynamic motion of the 
rotor remains close to the static equilibrium position 0

beC  and the linear bearing model can still be considered to be acceptable. 

 
The relative linear and non-linear time history responses in the Oz  direction of the rotor at the bearing # 2 due to the mass 

unbalance effect and to the sinusoidal rotational or translational excitations of the support are shown in Figs. 11 and 12. They 
confirm the results provided in Figs. 9(c) and 10(c), i.e., these responses exhibit similar evolutions and their periods r,lτ  and r,nlτ  are 

equal to the period exτ  of the external excitation of the rotor. Moreover, the FFTs of the linear response (see Figs. 11(a) and 12(a)) 

show two frequency components due to the mass unbalance excitation (20 Hz) and the support motions (200 Hz), while the FFTs of 
the non-linear response (see Figs. 11(b) and 12(b)) show additional frequency components which correspond to multiples of 20 Hz 
(super-harmonics) relative to the harmonic motion of the rotor. The peaks at these additional frequencies are relatively small 
compared to those of 20 Hz and 200 Hz. This validates the assumption of small displacements of the rotor in the vicinity of the static 
position 0

beC . 

6.3.3. Influence of the support motion amplitude 

Figs. 13 and 14 introduce a comparison between linear orbits of the rotor and non-linear ones (obtained by the transient Newmark 
scheme and the shooting algorithm) at the bearing # 2 located at node 9 for the mass unbalance excitation ( mu mu 1500 g mmm r = ) and 

the sinusoidal rotational or translational motions of the rotor support and due to the initial conditions 0
be becδ .  
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Fig. 11. (a) Linear, and (b) non-linear responses of the rotor and their FFTs at the bearing # 2 due to a sinusoidal rotation of the support: 
ωx=ωx,acosΩxt with ωx,a=1×10-2 rad/s and Ωx=200 Hz. 
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Fig. 12. (a) Linear, and (b) non-linear responses of the rotor and their FFTs at the bearing # 2 due to a sinusoidal translation of the support: 

zO=ZOcosΩzt with ZO=1×10-5 m and Ωz=200 Hz. 
 
In Fig. 13, the frequency of the support rotation is kept constant ( 80 HzxΩ = ), while its amplitude varies 

( , 2 28 10 rad s and 12 10 rad sx aω − −= × × ), i.e., the corresponding angular displacement amplitudes of the support are 
, 4 41.59 10 rad and 2.39 10 radx a xω Ω − −= × ×  respectively. In Fig. 14, the frequency of the support translation is kept constant 

( 80 HzzΩ = ), while its amplitude varies ( 5 53 10 m and 5 10 mOZ − −= × × ). 

As explained previously, the excitations due to the mass unbalance and to the support motions are sinusoidal and commensurable. 
Thus the external excitation of the rotor is harmonic of period exτ  equal to the inverse of the greatest common factor of the mass 

unbalance frequency Ω  and the support motion frequency xΩ  or zΩ . In the case where , 28 10 rad sx aω −= ×  and 53 10 mOZ −= × , see 

Figs. 13(a) and 14(a), the linear and non-linear orbits of the rotor are harmonic of periods r,lτ and r,nlτ  equal to the period exτ  but they 

are not similar. This justifies that the assumption of small displacements of the rotor in the vicinity of the static equilibrium position 
0
beC  is not verified anymore and the validity range of the linearized bearing model is more affected by the amplitude than by the 

frequency of the support motion. For larger amplitudes of the support motions , 212 10 rad sx aω −= ×  and 55 10 mOZ −= × , the non-linear 

2τr,l=2τex 

2τr,nl=2τex 
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bearing model yields a very complex orbit with a change of dynamic regime, i.e., the appearance of a bifurcation which corresponds 
to a period-doubling orbit with r,nl ex2τ τ= , see Figs. 13(b) and 14(b). It can be noted that this period-doubling motion is also obtained 

when the transient time integration algorithm is used as a checking procedure. As expected, the linear bearing model is unable to 
reproduce this period-doubling motion, i.e., the linear motion of the rotor remains ex1τ -periodic. 
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Fig. 13. Comparison of linear and non-linear orbits of the rotor at the bearing # 2 for two different amplitudes of sinusoidal rotations of the support: 

ωx=ωx,acosΩxt with Ωx=80 Hz and ωx,a= (a) 8×10-2 rad/s, (b) 12×10-2 rad/s. 
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Fig. 14. Comparison of linear and non-linear orbits of the rotor at the bearing # 2 for two different amplitudes of sinusoidal translations of the support: 

zO=ZOcosΩzt with Ωz=80 Hz and ZO= (a) 3×10-5 m, (b) 5×10-5 m. 
 
Figs. 15 and 16 illustrate the linear and non-linear time history responses along the Oz  axis of the shaft geometric center within 

the bearing # 2 for the mass unbalance effect and the sinusoidal rotational or translational excitations of the support. They verify the 
results pointed out in Figs. 13(b) and 14(b), i.e., the non-linear response is ex2τ -periodic because its period r,nlτ  is two times higher 

than the period r,lτ  of the linear response. In addition, the FFTs of the linear response (see Figs. 15(a) and 16(a)) display two 

frequency components due to the mass unbalance (20 Hz) and the support motions (80 Hz), while the FFTs of the non-linear 
response (see Figs. 15(b) and 16(b)) highlight much more frequency components and contain harmonics, sub-harmonics and super-
harmonics relative to the period-doubling motion of the rotor. 

Fig. 17 gives the linear and non-linear orbits of the rotor within the bearing # 1 (node 1) due to the mass unbalance excitation 
( mu mu 1500 g mmm r = ) combined with the sinusoidal rotation (, 212 10 rad sx aω −= ×  and 80 HzxΩ = ) of the support. This figure confirms 

that the orbits at both bearings are very different (see Fig. 13(b)) in the case of the support rotation due to its normal and tangential 
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accelerations. From Fig. 17(b), it can be noticed that the non-linear orbit in the bearing # 1 is also ex2τ -periodic. This demonstrates 

the non-linear couplings between the localized degrees of freedom of the hydrodynamic bearings through the shaft. 
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Fig. 15. (a) Linear, and (b) non-linear responses of the rotor and their FFTs at the bearing # 2 due to a sinusoidal rotation of the support: 

ωx=ωx,acosΩxt with ωx,a=12×10-2 rad/s and Ωx=80 Hz. 
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Fig. 16. (a) Linear, and (b) non-linear responses of the rotor and their FFTs at the bearing # 2 due to a sinusoidal translation of the support: 

zO=ZOcosΩzt with ZO=5×10-5 m and Ωz=80 Hz. 
 

(a) (b)  
Fig. 17. (a) Linear, and (b) non-linear orbits of the rotor at the bearing # 1 in the presence of a sinusoidal rotation of the support: ωx=ωx,acosΩxt with 

ωx,a=12×10-2 rad/s and Ωx=80 Hz. 
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6.4. Route to chaos in the rotor-non-linear hydrodynamic bearing system 

6.4.1. Bifurcation diagrams 

The response of the linear rotor system to a harmonic external excitation of period exτ  is harmonic of same period, i.e., r exτ τ= , 

while the corresponding response of the non-linear rotor system can be non-periodic or can have a different period due to bifurcations 
as seen in Section 6.3.3. Such changes in the non-linear dynamic regime of the system can be investigated by means of diagrams of 
bifurcation of periodic solution. 

Figs. 18 and 19 present the bifurcation diagrams of the rotor at the bearing # 2 (node 9) for the mass unbalance effect 
( mu mu 1500 g mmm r = ) and the sinusoidal rotational or translational motions of the support of frequency xΩ  or 80 HzzΩ = . For each 

diagram, the amplitudes ,x aω  or OZ  of the support motions are used as bifurcation parameters to provide essential information about 

the Poincaré sections. The steps used for the bifurcation parameters ,x aω  and OZ  are 0.05×10-2 rad/s and 0.05×10-5 m respectively. 

The period of the harmonic external excitation of the rotor is ex 1 20 s 0.05 sτ = =  which corresponds to the inverse of the greatest 

common factor of the mass unbalance frequency 20 HzΩ =  and the support motion frequency xΩ  or 80 HzzΩ = . The transient 

numerical simulations are performed with 1000 rotor revolutions (i.e., ex1000τ ) and 512 time steps per period exτ . The data of the 

first 500 revolutions of the rotor are not used in the bifurcation diagrams in order to exclude the transient regime. The Poincaré 
sections are obtained by taking successive intersections of the x  coordinates of the dynamic displacements of the rotor with the 
instants corresponding to the multiples of the period exτ , i.e., ext kτ=  and [ ]501;1000k∈ . The initial conditions for the transient 

simulations are set to 0be becδ . Lastly, Tables 3 and 4 present a summary of the different dynamic regimes observed on the bifurcation 

diagrams of the on-board rotor-bearing system excited by sinusoidal rotational or translational motions of its support as a function of 
the bifurcation parameters. 
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Fig. 18. Bifurcation diagram of the rotor at the bearing # 2 for a sinusoidal rotation of the support: ωx=ωx,acosΩxt with Ωx=80 Hz. 
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Fig. 19. Bifurcation diagram of the rotor at the bearing # 2 for a sinusoidal translation of the support: zO=ZOcosΩzt with Ωz=80 Hz. 

 
 

Table 3. Types of motion identified in the bifurcation diagram due to the sinusoidal rotation of the support. 

Type of the rotor motion Support rotation amplitude ωx,a (10-2 rad/s) 

1τex-periodic [1 - 11.7] 
2τex-periodic [11.75 - 12.05], [12.4 - 12.8] 
4τex-periodic [12.1], [12.85] 
Quasi-periodic [12.15 - 12.35], [12.9 - 13] 
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Table 4. Types of motion identified in the bifurcation diagram due to the sinusoidal translation of the support. 

Type of the rotor motion Support translation amplitude ZO (10-5 m) 

1τex-periodic [1 - 4.95], [5.35 - 6.3], [6.55 - 6.7] 

2τex-periodic 
[5 - 5.1], [6.35 - 6.4], [6.75], [7.65 - 7.8], 
[7.9 - 8.3], [8.4 - 8.5] 

4τex-periodic [8.55 - 8.7] 
8τex-periodic [8.75], [9.45] 
16τex-periodic [8.8] 

Quasi-periodic 
[5.15 - 5.3], [6.45 - 6.5], [6.8], [7.5], [7.6], 
[8.35], [8.85 - 9.4], [9.5 - 9.55], [9.65 - 9.95] 

Chaotic [6.85 - 7.45], [7.55], [7.85], [9.6], [10] 

 

(a)  

(b)  

(c)   
Fig. 20. Orbits and Poincaré maps of the rotor at the bearing # 2 due to sinusoidal rotations of the support: ωx=ωx,acosΩxt with Ωx=80 Hz and ωx,a= (a) 

12.1×10-2 rad/s, (b) 12.15×10-2 rad/s, (c) 13×10-2 rad/s. 

6.4.2. Sub-harmonic, quasi-periodic and chaotic bifurcation responses 

In this section, some orbits of the rotor and their projected Poincaré maps at the bearing # 2 (node 9) corresponding to values of 
interest of the bifurcation parameters ,x aω  or OZ  of the bifurcation diagrams in Figs. 18 and 19 are presented. The relative 

coordinates of the static position of the shaft center in the bearings 0be becδ  are used as initial conditions for the transient dynamic 

computations. The Poincaré maps are produced by considering successive intersections of the relative dynamic displacements of the 
rotor with the instants associated with the multiples of the period ex 0.05 sτ =  of the harmonic external excitation of the rotor starting 

from ex501t τ=  to get rid of the transient regime. 

When the amplitudes ,x aω  of the support rotation are successively equal to 12.1×10-2 rad/s (Fig. 20(a)), 12.15×10-2 rad/s (Fig. 
20(b)) and 13×10-2 rad/s (Fig. 20(c)), the rotor orbits highlight a sub-harmonic motion ( ex4τ -periodic) and quasi-periodic motions 

respectively. When the amplitudes OZ  of the support translation are successively equal to 7.3×10-5 m (Fig. 21(a)), 8.6×10-5 m (Fig. 

21(b)) and  9.5×10-5 m (Fig. 21(c)), the rotor orbits display a chaotic motion, a sub-harmonic motion (ex4τ -periodic) and a quasi-

periodic motion respectively. 
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(a)  

(b)  

(c)  
Fig. 21. Orbits and Poincaré maps of the rotor at the bearing # 2 due to sinusoidal translations of the support: zO=ZOcosΩzt with Ωz=80 Hz and ZO= (a) 

7.3×10-5 m, (b) 8.6×10-5 m, (c) 9.5×10-5 m. 

(a)  

(b)  
Fig. 22. Influence of the initial conditions on the orbits of the rotor in the presence of a mass unbalance (mmurmu=1500 g mm) and sinusoidal rotations 

of the support: ωx=ωx,acosΩxt with ωx,a=12×10-2 rad/s and Ωx=80 Hz. 
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(a)  

(b)  
Fig. 23. Influence of the initial conditions on the orbits of the rotor in the presence of a mass unbalance (mmurmu=1500 g mm) and sinusoidal 

translations of the support: zO=ZOcosΩzt with ZO=5.2×10-5 m and Ωz=80 Hz. 
 

 
 

6.4.3. Sensitivity to initial conditions 

A very small change in the initial conditions for a non-linear rotor system can make an important change in its corresponding 
dynamic trajectory. This phenomenon is called “sensitivity to initial conditions” and is one of the main ways in which a non-linear 
system can be recognized. This is demonstrated in Figs. 22 and 23 which provide different orbits of rotor and their projected Poincaré 
maps at the bearing # 2 (node 9) produced due to different initial conditions for the transient dynamic motion. 

In Fig. 22, the rotor support is excited by a sinusoidal rotation of amplitude , 212 10 rad sx aω −= ×  and frequency 80 HzxΩ = . The 

rotor orbit corresponds to a sub-harmonic motion (ex2τ -periodic), see Fig. 22(a), when the initial conditions are set to the coordinates 

of the static equilibrium position [ ]T0
be be 0.29, 0.88

R
c = − −δ , while it corresponds to a harmonic motion (ex1τ -periodic), see Fig. 22(b), 

when the initial conditions are slightly modified and set to the coordinates [ ]T
0.25, 0.91

R
− − . 

In Fig. 23, the rotor support is excited by a sinusoidal translation of amplitude 55.2 10 mOZ −= ×  and frequency 80 HzzΩ = . The 

rotor orbit corresponds to a quasi-periodic motion, see Fig. 23(a), when the initial conditions are set to [ ]T0
be be 0.29, 0.88

R
c = − −δ , while 

it corresponds to a sub-harmonic motion (ex4τ -periodic), see Fig. 23(b), when the initial conditions are set to [ ]T
0.26, 0.87

R
− − . 

 
 

7. Conclusions 

In order to predict and analyze numerically the role of the sinusoidal rotational or translational motions of the support in the 
dynamic behavior of an on-board rotor-non-linear hydrodynamic journal bearing system, a new finite element model based on the 
Timoshenko beam theory is presented in this paper. This model includes the effects corresponding to the rotary inertia, the 
gyroscopic inertia, the shear deformation of shaft, the geometric asymmetry of shaft and/or rigid disk as well as six types of 
deterministic motions (rotations and translations) of the rotor rigid support. In addition, the rotational effects and the geometric 
stiffening effects associated with the centrifugal stressing caused by the support rotations are taken into consideration. 

The derivation of the equations of motion displays that the rotational motions of the rotor support bring not only a parametric 
contribution in the damping and stiffness matrices of the rotor but also additional external force vectors, while the translational 
motions of the support only add external force vectors. A robust algorithm combining the Newton-Raphson incremental-iterative 
procedure with the Newmark time integration scheme is used to obtain the non-linear transient dynamic motion of the on-board rotor. 
Moreover, a robust shooting algorithm is used to obtain the periodic non-linear responses of the rotor and is validated against the 
transient time integration algorithm. 

When the rotor is excited by a sinusoidal rotation of the support, it is shown that a dynamic instability of the rotor can occur 
because of time-varying parametric coefficients in the linearized equations of motion and that the linearized hydrodynamic bearings 
have an influence greater than the rigid bearings on the size of the instability regions of the rotor. 

It is noted that the shape and the magnitude of the rotor orbits can be significantly affected by the frequency and amplitude of the 
support motions. As expected, the linearized bearing model gives accurate results only for small amplitudes of the support motions. 
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Also, this simplified bearing model cannot account for non-linear phenomena and does not permit to predict the change of dynamic 
regime such as period-doubling motion and transition to chaos. Conversely, these phenomena are observed by means of diagrams of 
bifurcation of dynamic responses when the non-linear bearing model is considered. 

It is observed that depending on the amplitudes of the sinusoidal motions of the support, the non-linear rotor system can exhibit 
sub-harmonic, quasi-periodic and chaotic motions. Lastly, it is well demonstrated that different initial conditions for the non-linear 
transient dynamic motion can lead to different responses of the rotor in the presence of the support motions. 

 

Appendix A 

The analytical expressions of the components of the damping and stiffness matrices 
be

be
Rc  and 

be

be
Rk  in the polar frame linked with 

the bearing beR  are given by 
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