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motions
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Abstract

In the transportation domain, on-board rotors in bending are subjected not only to rotating mass
unbalance but also to several movements of their base. The main objective of this article is to predict
the dynamic behavior of a rotor in the presence of base excitations. The proposed on-board rotor
model is based on the Timoshenko beam finite element. It takes into account the effects
corresponding to the rotary inertia, the gyroscopic inertia, the shear deformation of shaft as well as the
geometric asymmetry of disk and/or shaft and considers six types of deterministic motions (rotations
and translations) of the rotor rigid base. The use of Lagrange’s equations associated with the finite
element method yields the linear second-order differential equations of vibratory motion of the rotating
rotor in bending relative to the moving rigid base which forms a non-inertial frame of reference. The
linear equations of motion highlight periodic parametric terms due to the geometric asymmetry of the
rotor components and time-varying parametric terms due to the rotational motions of the rotor rigid
base. These parametric terms are considered as sources of internal excitation and can lead to lateral
dynamic instability. In the presented applications, the rotor is excited by a rotating mass unbalance
combined with constant rotation and sinusoidal translation of the base. Quasi-analytical and numerical
solutions for two different rotor configurations (symmetric and asymmetric) are analyzed by means of
stability charts, Campbell diagrams, steady-state responses as well as orbits of the rotor.
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1. Introduction

Rotating machines play a paramount role in many enodndustrial applications. Most of them can be
considered as on-board machines affected mainlynbags unbalance and support excitations. Automotive
turbocharger, ship and aircraft turbines as wellog®motive electrical generators are examplesotdrs on
moving base. The undesirable mass unbalance itodbe eccentricity of the center of mass alongtiter axis
and can be caused by material non-homogeneities fagturing defaults, assembly and service conuitid he
rotor balancing aims at minimizing the mass unbadanut generally does not lead to a complete claticel,
see, for example, Kang et al. (2003) and Levecqad ¢2011). A rotor can also be excited by thevement of

its base which can increase the lateral vibratibrthe rotor and create a dynamic instability pheanom.
Therefore a rotor dynamic model taking into accaumtti-source excitations is of prime interest la¢ tlesign
stage in order to product rotating machines asbkdi as possible and avoid catastrophic failurenguthe
operation phase.

The literature comprises numerous books concerttiagprediction of dynamics of symmetric/asymmetric
rigid/flexible rotor systems mounted on linear/rlovear elastic bearings in the case of a fixed {Rs®, 1992;
Lalanne and Ferraris, 1998; Genta, 2005). The agtryndue to the disk, the shaft and/or the beavilag
treated in some works. Guilhen et al. (1988) ndbed differential equations without periodic coeiféints could
be obtained either in the inertial coordinate syste in the frame moving with the rotor. The dynarsiability
was investigated using the Floquet theory and thesnunbalance response was computed with the Néwmar
scheme. Kang et al. (1992) employed the Timoshdidam finite elements (FEs) for modeling rotor-begri
systems by taking into account the asymmetry df,dibaft and/or bearing. They calculated the masslance
response using the harmonic balance method. Acuptdi their work, the resonant speeds could chaogeto
various angles between major axes of disk and ,stheftshaft asymmetry as well as the bearing cheniatics.
Oncescu et al. (2001) generalized a FE proceduredimr-bearing systems to include the effects d t



asymmetry of shaft and/or bearing. They gave thérices corresponding to the asymmetric shaft FE and
applied the time-transfer matrix method based @ Rloquet theory to the linear equations of motiath
periodic coefficients expressed in the inertiahfeaof reference. As shown in their study, the iathd method
was a convenient way for predicting the dynamicavér of the asymmetric rotor-bearing systems. 8abu
and Evran (2006) studied the motion stability ofasymmetric blade induced by a lateral parametiitation
using the Timoshenko beam FEs. They discussedffésetof the shear coefficient, the beam lengttiati@an,
the rotational speed and the coupling due to timeceof flexure distance from the centroid on thymamic
instability regions. Beley-Sayettat (1994) studiled influence of the shaft asymmetry and the eagke on the
dynamic behavior of a rotor. In the case of an asginic shaft, the equations of motion are developeithe
Galilean frame (fixed in space) and in the rotatiragne using the Rayleigh-Ritz method and the FEhote
Employing the Floquet theory for the stability atheé Newmark method for the dynamic response, thawer
of a turbogenerator of aircraft carriers was iniggged in the cases of a construction asymmetrpding) and
an accidental asymmetry (crack). In the case @isnsc motion, the equations of motion were derif@dthe
rigid support (mono-excitation) and the flexiblepport (multi-excitation). A spectral method with naplex
modes was employed for solving the equations ofanot

Many studies concentrated on the dynamic behaviarrotor under seismic or shock excitations obise.
Hori and Kato (1990) examined a seismic responsa déffcott rotor supported by oil film bearingsaaeal
seismic wave and investigated its stability by gkting the locations of the disk and journal cenf@ising the
Runge-Kutta-Gill method). Suarez et al. (1992) eméad without any derivation the equations of motba FE
rotor model subjected to six components of baséagians and studied its seismic response. Thegrvbsd that
even for strong rotational inputs, the paramegiois in these equations could be neglected withibecting the
rotor response. Gaganis et al. (1999) consideradin-linear bearing coefficients to be piecewisestant and
modeled the excitation due to the earthquake asvement of the base of the rotor-bearing systermg) uke El
Centro earthquake data. In their work, the resp@me the variation of the dynamic properties of tbtr-
bearing systems were investigated. Bachelet ¢2@06) predicted the dynamic behavior of an asymmasdtor
excited by a seismic translational base excitadioth developed an original spectral approach tocxopate the
rotor response. They discussed the results ofgbetiml approach through a comparison with the Eld@arlo
simulation results. Lee et al. (2006) proposed arétr model considering a shock base excitatioth wie
state-space Newmark method based on the averageityetoncept. They focused also on the experinhenta
behavior of a rotor under this shock base excitatiod compared it with the numerical results.

Some other works incorporated the foundation fldigybinto the rotordynamics prediction. Kang et al
(2000) studied the effect of the flexible suppdoufdation) on the dynamic characteristics of th®mrbearing
systems using a FE modeling. Edwards et al. (208fjied experimentally a method which identifiesth the
excitation and the flexible support parameters ofotor-bearing-foundation system. Cavalca et aQ08)
estimated experimentally the modal parametersefdtindation from frequency response functionsstndied
the effect of the flexible foundation on the dynantharacteristics of the rotor-bearing systems. The
experimental tests of Feng and Hahn (2011) shohetdetven with input data truncated to two significdigits,
satisfactory identification were possible for axftdy supported undamped rigid block foundationratating
machinery.

A few number of works deal with the investigatidndgnamic behavior of a rotor during a harmonic imot
of its support. Tan et al. (1997) developed theadiqns of motion of a rotating cantilever beam icetdl by a
base excitation by employing the Euler-Bernoullafvetheory. They used the method of multiple scédes
determining the instability regions and presentecherical results to illustrate the influence of théb radius to
length ratio, the steady-state rotational speedthadase excitation frequency on the dynamic liialoif the
system. Duchemin et al. (2006) developed the egstyf motion by employing the Rayleigh-Ritz (RR3thod
to study the basic phenomena of a simple rotor odder a sinusoidal support rotation. They applieel
method of multiple scales to observe the motiohikta of the rotor and presented experimental lssto
validate the quasi-analytical study. Driot et @D@6) obtained two gyroscopic and parametric caliptpuations
of motion of a rotor induced by a harmonic rotatibhase movement using the RR method. They desktiiee
orbits using two numerical methods (the seventhwbigrder continuous Runge-Kutta method and thenabr
form method). From their work, the comparison betwehe numerical and experimental results was quite
satisfactory. El-Saeidy and Sticher (2010) deritleel equations of motion of a rigid rotor linear/Horear
bearing system subjected to rotating mass unbalphtse harmonic base excitations along or arounerat
directions. In the case of linear bearings, thessented analytical solutions and obtained the systatural
frequencies as a function of the speed of rotaibthe rotor in addition to the frequency respofrs@aximum
amplitude of vibrations with respect to the baseitakon frequency). In the case of a bearing cuino-
linearity, they found results from a time integoatischeme and discussed them with regards tortteedomain,
the fast Fourier transform as well as the Poincaaip. Das et al. (2010) investigated the activeation control
of a flexible rotor system excited by a mass unt@daand a periodic rotational motion of the badeeyT
performed the control with electromagnetic contimice provided by an actuator placed on the statoa
suitable plane around the rotor. As shown in tip@iper, a numerical simulation of the flexible rotystem
modeled by Rayleigh beam FEs was performed anddhiee control was successful for avoiding therkilte
parametric instability due to the sinusoidal ratatof the base.



Most of the works mentioned above dealing with bexegited rotor systems are based on a simplified
modeling. Thus they limit the satisfactory adequbeyween the theoretical rotor models and the salones
under operating conditions. The most common singglifons concern either the geometry of the rofor (
example, the Jeffcott rotor (Hori and Kato, 199@)g use of the RR method instead of the FE metbiothe
spatial discretization of the rotor model (Ducheratral., 2006; Driot et al., 2006) or the type aké motion
(simple rotation or translation).

The present paper proposes an original contributioimprove an on-board rotor model. Namely, a rroto
with geometric asymmetry due to the disk and/or ghaft is discretized using the FE method basedhen
Timoshenko beam theory and excited by combinedrahgtéstic base motions (three rotations and three
translations). The vibration analysis focuses @ndéise of bending of the flexible rotor. Euleriaglas are thus
used to describe the orientation of disk and sWift respect to the moving rigid base. The kinetitl strain
energies of the rotating flexible rotor componeats calculated. Timoshenko beam FEs including ffexts
relative to the rotary inertia, the gyroscopic tigrthe shear deformation of shaft as well asghemetric
asymmetry of disk and/or shaft are considered Herdynamic modeling of the on-board rotor. Applyihg
Lagrange’s equations, the linear second-orderréifiigal equations of motion due to the flexuralratiion of the
rotor relative to the rigid base (which forms a +#io@rtial coordinate system) are derived. They aonperiodic
parametric coefficients relative to the geometsgrametry of some rotor components (disk and slaaift) time-
varying parametric coefficients corresponding te ttinree rotations of the rotor base. These parametr
coefficients can be a source of lateral dynamitainitity. In the proposed numerical examples, sytnimand
asymmetric rotating rotors, whose rigid supposubjected to combined constant angular velocitylardionic
translation, are studied. Their dynamic behavioanalytically and numerically investigated by dissing the
influence of the base motions on stability cha@ampbell diagrams, steady-state responses and arfbihe
rotor.

2. Basic description and assumptions

Let Figure 1 sketch the basic components of therratisk (1), shaft (2), mass unbalance (3), bga(#) and
support (5). The mass unbalance is distributedimootisly as well as in a generic way and cannotptetaly be
canceled. The excitations taken into account are wuthe residual mass unbalance and to the imposed
movements of the support. The transverse deflectibithe elastic line of the rotor shaft are stddie

Let the assumptions be: the disk is rigid, the tsimfdeformable and modeled with Timoshenko beam
elements of constant cross-section solicited irdimgnalong two orthogonal directions, the bearingporting
the shaft is rigid, the disk and/or the shaft canabBymmetric, the mass unbalance is modeled byeotrated
masses, the support is rigid and mobile, the natos at a constant speed of rotati@n

The consideration of the base motion modifies threnfof the equations of motion of a rotor in bemgdin
compared to those obtained in the case of a fixes@.bin order to undertake a modeling as simplgoasible,
the approach presented by Duchemin et al. (2006)idpted. Three frames of reference are used ®itda&
account the movement of the rotor with respechéltase and that of the base with respect to thengr

The derivation of the equations of motion is insgdifrom the theory described in Lalanne and Fexrari
(1998). First, the coordinate systems needed toritbesthe motion of an on-board rotor are defined the
vectors expressing the rotations between themaloelated. Then, the kinetic energy of a disk, kimetic and
strain energies of a shaft element as well as itetik energy of a concentrated mass unbalanceadcalated.
Moreover, the rotating flexible rotor is discretizesing the Timoshenko beam FEs. Finally, the difiéal
equations of motion of an on-board rotor in bending deduced from the Lagrange’s equations beipteap
with respect to the generalized coordinagedy the following form

dfor)_oT ou_.- 1)
dtlog ) aq aq °

with ny (15 i< ndf) the number of degrees of freedom,and U the kinetic and strain energies respectively
and F, the external forces corresponding dp. The symbol " refers to the differentiation with respect to
time t.

3. Preliminary calculations

The utilization of more than one frame of referemeeds to establish the relationships between ifferaht
defined systems. Three principal Cartesian franfegference shown in Figure 1 are introduced tee tako

account the mobility of the rotor suppoR®® (xg Ve, zg) is the Galilean frame of reference fixed to theugd,

R(x ¥ 2 is the non-inertial frame of reference attachethtomoving rigid supportR ()&, Y, 2) is the non-

inertial local frame of reference (moving with ttegor during its operation) attached to the cenfanass of the
rigid disk or the geometric center of a sectionttef deformable shaft. The origins of the frameseférence

R’, R andR areQ?, O andO' respectively.



The elastic line of the undeformed shaft is alomg ©y axis on which the disk mass center is located.
Moreover, xOy and yOz are both planes of symmetry for the disk and theéetormed shaft. Thu®x, Oy
and Oz are principal axes of inertia.

Figure 1. Mechanical components and frames of reference of the on-board rotor model.

Let us consider an arbitrary poi@® along the elastic line, i.e., it represents thengetric center of the
undeformed shaft. Its coordinates in the fraReare (O,y,O). Let its lateral displacements along tBx and
Oz axes beu(y,t) and w(y,t), see Figure 2. As its coordinate along tbg axial axis is assumed to be a
constant with respect to the rotor baRe the axial displacement along tl@y axis is not taken into account.

In classical rotordynamics theory, the transfororatbetween the frameR and R shown in Figure 3 is
performed by the Euler angles(y,t), 6(y.t), ¢(t) and two intermediate coordinate systeRis( X, ¥, 21)

and R: ()&2, V2, 22). The relationship between the components of amyoveV expressed inR and those

expressed irR is described by
V]g =0% V], @)
where
cogy coyp— s S si@  sih cgsr  aps 6in @n—  6os ¢sin
of = —siny cos cog/ cod s 3)
cogy sinp+ siy sif cog  sin sp— cops €n gos  Bos s
is the rotation matrix of the rotdR' with respect to its bask .
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Figure 2. Lateral displacements of the rotor in bending.
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Figure 3. Passage from the frame linked with the rotor base R to the local frame R
Using the intermediate coordinate systeRis( X, ¥, 23) and R* ( X, ¥, 24) as well as the Euler angles

a(t), B(t) and y(t), see Figure 4, the relationship between the coeptsrof any vectoV projected inR?
and those projected iR is expressed as follows
V=08 Vi, 4)
where
cosa coy - sim sif sip sim cpst aws #n gin-  Bos )Sin
of = -sina cosB cog cof si (5)
cosa siny+ simr siff cog sm S cas g@n g¢os  Bos Qs

is the rotation matrix of the rotor bage with respect to the grounig® .
Computing the energies of the rotor componentsiregjestablishing the angular velocity vectors tod t

coordinate systems and the position vectors of Wégins. The instantaneous angular velocity vean‘z. of
the frameR' with respect to the framR is written as

of =0x" +gy' +yz, (6)
where X, y' and z are unit vectors along th®'x:, O'y and O'z axes. Leta) , o’ and «f be the
components of the angular velocity vecmi. projected in the local fram&' . Their expression is given by

o —cosh sinp+ 6 cop
oy = o} = Ysinf+g ) (7)
of ¢ cost cop+ 6 sip "

o
As before, the instantaneous angular velocity \reaixﬁg which achieves the orientation of the frame
attached to the rotor ba$e with respect to the Galilean frant® is expressed in the franfe by
W —-acosp siny + B coy
of =lw} = asing+y , (8)
o o acospB coy+ S siy o

where o*, «’ and «# are the components of the angular velocity veolégr defined in the coordinate system

fixed to the baseR . Let agl , ag‘ and ag‘ be the components of the angular velocity vear of the rigid

base R with respect to the groundR? projected in the local framdéR'. Their expression is obtained by
equations (2) and (3) defining the relationshipasen the frame®k andR', i.e.,

2) o
of =lat =0% 0’} . 9)
o | )

R



AP=x X
Figure 4. Passage from the Galilean frame R to the frame linked with the rotor base R.
Finally, the instantaneous angular velocity vectoﬁ,g of the rotor R with respect to the groundr®

expressed in the local coordinate syst&n represents the sum of the vectané. and mﬁg presented in
equations (7) and (9), then

R y y —

Pzoftof =i’ Hw)l =10l . (10)

(DR‘

R R R
The absolute position vectdd®0O of the origin O of the frame attached to the baRe expressed in the
Galilean frame of referencB® is given by
X3
0% =1yst . (11)
2]
Using equations (4) and (5) expressing the relatignbetween the frameR® and R, the position vector
090 is expressed in the franfe as

X X3
00 =1yt =0%1y3t - (12)
% )

In what follows, the calculations are performedngsithe rotationalw(t), «’(t), «(t) and the

translationalx, (t), ¥, (t), z(t) base motion components as well as their derivativieh respect to time.

4. Energy calculations of the rotor components

This section includes formulations for the disle #haft and the rotating mass unbalance. The &iaati strain
energies are measured by an observer located gtabhad and their terms are written with respedhsframe
linked with the rotor rigid bas® . The rotatory inertia, the gyroscopic inertia, #ear deformation of shaft as
well as the geometric asymmetry of disk and/or tshiaf taken into consideration.

4.1 Disk

According to the assumptions presented in Sectjdhe2disk is assumed to be rigid. Therefore otdykinetic
energy T, is calculated. This energy is composed of theascalm of the absolute translational kinetic energy

and the absolute rotational kinetic energy aboeidisk mass center located at the generic absgjssdong the
Oy axis
g T 1 T
T, =%(Vf§\;) vy +7(0)Rg) (O (13)
with



X mo di
10 of [ir+1d o 0
I,=| 0 14 ol=[ o 12 0 | (14)
z mo di
0 0 I 0 0 Ipe-1

where the superscript is the matrix transposition symbal, is the mass of the dlsk/,g,1 is the translational
velocity vector of its center anlf, is its principal inertia tenson.” | Igh and Irfh are the principal moments

of inertia of the disk mass about tl8x, C°y and C°z axes respectively. In additiorhwmh" and If,; are used to
explain the effects due to the mean moment of imeift the disk mass and those due to the momeinteofia
modeling the geometric asymmetry of the disk. Tinuthe presence of an asymmetry, the moments ofiane

Inx,d and Irfh are different and the contribution of the momefinertia Ir‘,’L in them is not nil.

The translational velocity vectovgg is found through the absolute position vec®fO), of the disk mass
d

center positioned at the arbitrary absciggarelative to the frameR . The latter is observed from the ground and
expressed in the frame attached to the rotor lfadsy
X Uy U+ %
0%04 =0°0+004 =1Yor *1Va( =1 Ya* Yo - (15)
g Mg (Wt %),
Using the transport theorem relating the time deiwe of a vector measured from a fixed frame &t tf
the same vector but measured from a moving franeedérivation of the position vect@°0), yields

i F 9n! R
PO =L L of 000, =vf, (16)
then

U+ 3%+ (W + )@’ = (y+ w)ar] | Y
Vg: =1 Vo (W + z)a +(uy+ %) =1Y o (17
Wd+zo+(Yd+yo)a)x_(L{1+ %)wy R W,

O J R

where uo‘ , \'/O‘ and v'vd are the components of the translational velooitgter of the disk center. Considering
d d d

the componentsijXI , & andaf of the vectorm;g for the disk, the expression of its kinetic enebbggomes

_my (. : : 1 mof ? i b 'z
T, = uéb +\/fjd + Wéd)+_2( I (a)d 2+ 2)+ I%a)d“+ I%(mdz—wdz)). (18)
The spinning anglep is replaced byQt and its time derivativep by the constant speed of rotatiéh of
the rotor. The translational displacemefits, w, ) , the angles of rotatiofy,,6,) and their time derivatives are

very small. Thus the trigonometric functions arplaeed by their Taylor series expansion and theltiag
expressions are limited at the order 2, i.e.,

92
sing, ~ 6, ; coY, ~ 1—3d ,
) (19)
sing, =y, ; cogp, = £ L8

4.2 Shaft

The kinetic energy of the shaft element can beiobthby taking a shaft elementary volume which ban
considered as a disk of very small thicknelys Considering the components, , v, , W, of the vectorvg.g

and the component&f‘ , @, o of the vectorm;‘.g , the expression for the kinetic ener@y, of the shaft
element, whose end-points have the abscigsasd y, along theOy axis, is written in the following form

T = LS00+ + 0 ) dye 2 o, €] (@7 4 0'7) aye 20, 0T @0 e o 2] (077 0) . (20)

where p,,, S, andl, (I, =y, -Y,) are respectively the density, the cross-sectiaread and the length of the
shaft element. The mean moment of inertia of thessisectional area and the inertia characteriziy t
asymmetry of the shaft are

Imo:(lésh+lz§h) . |di :(l x%h_l Z%h) (21)

S 2 ’ Sh 2



The rigid base motion relative to the ground hasnfloence on the strain energy of the shaft begdahe
latter depends only on the stresses and therefotieeotransverse deflection of the shaft with respethe rotor
baseR. In addition to the bending deformation, the sheffects highlighted by Timoshenko and the second-
order (non-linear) terms of the strain field are@amted. The non-linear strains are linked with ¢eatrifugal
stiffening which is proportional to the square loé tbase angular velocity around the transverse ax@ésvhich
corresponds to the geometric potential energy. Teistrain energy, of the shaft element is defined by

S (S8 g o] 5 et 55

" P low ) B %0y 060
Gsththhyl [[ l//] (ay 9) de]COSZ)t [Eshléhj. dy ay y (22)

~CuriSal, [f WJ[*-HJ dVJSMH”S“ 2 (4 v 9)[(3;} [‘;Vyvj]dwum)

with

E Kyt K Ky K>
G. = sh : mo — M sh sh : di — sh sr: 23
sh 2(l+ Vsh) sh 2 sh 2 ( )

where E,,, G, andv,, are respectively the Young's modulus, the sheatutus and the Poisson’s ratio of the

isotropic shaft materialk° and x5 are respectively the mean shear correction fadttre cross-sectional area
and that relative to the section asymmetry of tradts

4.3 Mass unbalance

The mass unbalance is modeled by a concentratesl mgsplaced at a poin®,, with a distancer,, from the
geometric center of the cross-sectional area o$tiaét. Its initial angle with th€®z axis of the frameR at rest
is 17.,,- The mass unbalance remains in a plane perpeaditutheOy axis with a constant abscissg,, along

the Oy axis relative to the basR . Its kinetic energyT, , is expressed as follows

T =%(VF,§,:“)TV§U. (24)

mu

The translational velocity vectovsmgu is obtained using the absolute position vec®#P,, of the mass

unbalance. The latter is measured from the gronddaaitten relative to the frame linked with thesbaR as
Upy + Xo + I SIN(Qt+7,.)
Ongu = Ogo + OOI + O:nu mu = ymu + yO " (25)
Wmu + ZO+ rmuCOth-F” mL) R
Applying the transport theorem, the time derivatifehe position vecto©®P, , is of the following form

doep, ' _do°p,,*

o " +of OO%,, =Vf, (26)
l‘]mu + XO+ rmPCOS(Qt+,7mU)+(Wmu+ ZO+ rmuCO£Qt+,7 n).l)a)y _( y m-\'f y )WZ
Vi = Yo = (We* Zo+ rcodQt+n ) +(u s X 1osi(Qt+n ))of (27)

Vi, + 2o = 1,Qsin(Qt+7, )+ (Y et ygwx—( U, Xg r.8in(Qt+n ,,)Ja)y .

The external force vectors obtained by the apptioadf the Lagrange’s equations to the kinetic gpeof
the mass unbalance contain the so-called “censtlipetd centrifugal force vectors”, harmonic tangerfbrce
vectors and harmonic force vectors fixed in spadé vespect to the basB . Thus the excitation due to the
mass unbalance combined with the base rotatiogiausoidal and has a frequency equal to the spieedation
Q of the rotor.

5. Equations of motion of an on-board rotor
5.1 Finite element procedure

The FE analysis is selected to discretize the liatbending. Therefore each node of nodal intetpmiacontains
four degrees of freedom (two lateral translationsl &vo rotations). The disk and the mass unbalaree
modeled by one-node FEs situated at the geomedntec of the cross-sectional area of the shaftth@rother
hand, the shaft is modeled by, two-node beam FEs based on the Timoshenko beawnytl@d thus has

n.,+1 nodes. Let us consider an undeformed shaftedsk which consists of two nodeg and n,, of

coordinatesyg, and yg* along theOy axis. This FE is of density,, , cross-sectional are§,, , lengthl|

esh 1



moments of inertial g:"h

and 1 , Young's modulusE

e

s Poisson’s ratiov,, as well as shear correction

factors k™ and k%

esh esh

wherei(1<i <n,,) is the shaft FE number. Its nodal displacementovet;

esh

expressed
in the coordinate system attached to the rotod tigiseR is given by
Ly = (U Wi Ol " o™ ™ (28)
The above vector is separated into two vecﬁ§§§ and 8. corresponding to the motions of the nodes

esh

and n_, in the planesxOy and yOz, i.e.,
0. T nw n T
Zslrjp = <u2§h!wne5humelshw ‘;s}—\R ; ',esﬁ < W“ eﬁn, eéﬁln‘ﬂ éh;‘ll >r?§h' (29)
The lateral displacements,, and w,, of any pointC® due to bending respectively along t@x and Oz
axes of the frameR as well as the corresponding rotatiofys, and ¢, respectively around th®x and Oz

"Uoand 8™y as follows

esh esh
Uesy :Esh(g’)ﬁné:h Y T FT?S(&)ﬁn’;S'
Wesh :@(Q)ﬁnévsvh O e Fﬁﬁ@)ﬁn.ﬁsr

where Fy,, (Y/) F7(§/) F_W(§/) and FZ

esh esh esh

directions are described as a function of the nddglacement vectors,

(30)

(9) are the shape function vectors of a Timoshenkonbea. They

are third-degree and second-degree polynomial Eogat functions of the dimensionless variabfe
(S/ = y/ l.s, ) @long the axiDy and contain the shear effect (see chen and Ki2)199

The Lagrange’s equations are applied to the enefgrethe disk, the shaft FEs as well as the mabalance
(see equations (18), (20), (22) and (24)) and #salting elementary vectors and matrices are apiatefy
assembled. In order to deal with the boundary ¢ n,, the corresponding row and column entries of the
assembled vectors and matrices are set to zerelammdated. Thus the obtained global vectors antfioes are
respectively of dimensiom, x1 and n,xn, where n, =4(n,,+1) - n,, is the total number of degrees of

freedom after canceling those relative to the bawndconditions n,,. The obtained linear second-order

differential equations describing the behaviortef FE on-board rotor in bending are written withpect to the
non-inertial frame connected to the rigid bdeas follows

M. (1)3, +C, (t)5, +K, ()3 =F (t), (31)

r

where 9, , Sr and S'r are the global displacement, velocity and acctteravectors conforming to the
connectivity of the FEsM, (t), C, (t) and K, (t) are the global mass, damping and stiffness matridth
time-varying parameters due to the geometric asymynad the rotating rotor and to the rotations t3f moving
base. These matrices are not affected by the &timshl motions of the rotor base. Lastl&;,(t) is the global
external force vector including the excitations du¢he influence of the mass unbalance as web #sat of the
rotational and translational base motions. In wiodbws, two different rotor configurations (symmietand
asymmetric) are to be treated and their governiiiferdntial equations for the transverse vibratica®
presented. The following abbreviations and termedus the equations are detailed hereafter. Thecsigts
“d”, “sh” and “b"” refer to the disk, the shaft as well as the baspectively and express the contribution to
the phenomena represented by the correspondingxmatre superscript il ” stands for the rotor internal
damping introduced by estimating the Rayleigh damgmoefficients, ‘g” for the rotor gyroscopic effect,&”
for the shaft elasticity corresponding to the bagdind shear deformations;e” for the rotational effects due
to the base rotations (these effects come fronkithetic energies of the disk and the shaft) anggde” for the

geometric stiffening effects associated with thetidtigal stressing due to the base rotations &ledfects come
from the strain energy of the shaft). In additithre superscripts¢” and “s” denote the coefficients of the time-

varying trigonometric (cosine and sine) functionhe load vectorsV,,, V,., and V . and their

corresponding force vectorg,,, F, .., and F,, are associated respectively with the mass unba/ahe
inertia force due to base motions and that duetpling between both phenomena.

5.2 Symmetric rotor

The disk and the shaft are symmetric. Moreover,rther is excited by a mass unbalance and baseonsoti
which consist of a constant angular velocity (or «’) around theOx axis (or theOy axis) and a harmonic

translation along th®z axis given byz, = Z,sinQ*t. The resulting linear second-order differentiali@ipns
of the dynamic system include constant terms aadalved by analytical methods in order to displey major
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basic phenomena occurring in rotordynamics withebrastions. The equations of motion (31) are reamitin
equation (32) due to the rotatian’ and equation (34) due to the rotatias

M 4B, +C3 Q8 r+(K§h+ (k5K g;:’ﬁz)w’z)a =F ©gosQt +F ° sirt

dshb (32)
+Fo, 1 COSQt +F5 , SIMt+F¢  , cOQT+F 3, si@E+F°, .y,
where
Fro=Vi® 3 FLEVIQT § Flu=Voup® § FlusV i ® (33)
Fionu=0 7 Faigu=Viad ((szerm) D Flar V%Rt
M, od, +(C%, Q+CEY g)y)S + (K K 0wV % g "2)6 =F °cosOt +F ° sinQt (34)
+F;, COSQt+F; o SIMt+FG, , cOVT+F5 , siRt
where
oo = V295 QY +V 2w FS =V 0w i+V @ o %, (35)

Fione="2Vaad Q@ ;| Fias=V ad (’Q 2+w)2)'
In equations (33) and (35%.,, Fuo,» Fruos Foupr Fy

mu ! mu ! mu,b? mu,b? d,shb?

Fi ¢ are the amplitudes of sinusoidal force
vectors, whileF; , , is a constant force vector.

As ' and «¥ have similar influences on rotordynamics, only is considered in this study.

5.3 Asymmetric rotor

The disk is assumed to be asymmetric, while thédt shaymmetric. The rigid base and thereby therare
subjected to the same excitations as indicatecati® 5.2. However, the left-hand side of thedinequations
of motion contains periodic parametric coefficieatsl their right-hand side contains load vectorftiplied by
trigonometric functions due to the geometric asymnynef the rotor. Thus the equations containing Ragleigh
damping are solved by a numerical time integratioethod. The equations of motion (31) are rewriften
equation (36) due to the motiag* and equation (38) due to the motiar

(MM 5 4COSTA+M %, sin D) +(C #C°% Q+C85Q cos@t+C5Q, sint)s

r

+(K§h+(K rew +K 9;;;’“)&« W Pcos UK VA ‘sinmt)ﬁ =F © coft+F S sifit (36)

dshb

SiMt+F;

d,sh i

cosQt +F3

mu, bl

+F¢

mu, kil

CORt+Fy, SIRE+F’ ( #F S g COSH+F 5y o iR
where
Fionie = 2VEn Qe | Fige= V0 Q0" (37)
(MM S 4CoS DA +M %, sinBt)§ +(C #C% Q+CO5Q cos@t+C°5Q, s

+CLe.'é‘éybwy)5r+(K§h+K QWK T e +K P00 K % g0 ¥ cos Dot
(38)

(K8 0w +K 8w *)sin Z)t)ﬁ =FS,Cot+F 3, Sit+F ¢, , coBt+F S . st

+F] 2 COSQT+F , SIM T .

The elementary vectors and matrices involved iragqas (32) to (38) are presented in Appendix A.

6. Dynamic analysis

Deterministic rotational and translational exctas of the rotor base have been stated in theqaregection for
two rotor configurations. The first one is a symritetotor and treated through analytical methodsedek its
natural frequencies and to compute its steady-s&sjgonses and its orbits. The second one is anrasiric
rotor and examined through the Floquet theory &leate its dynamic stability as well as the Newmadthod
to predict its steady-state orbits in the time dioma

6.1 Equations with constant coefficients

In this case, the system of linear differential a&guns (31) contains constant matrices (accordingquations
(32) and (34)). It is transformed into a first-ordifferential equation by introducing the statesp vectorD, ,
ie.,

D, =AD, +B,, (39)
where
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0, ) _ 0 | ] _ 0
D':{s} / Af‘{—w« mr} ' B"{Mfa(t)}' (40)

6.1.1 Natural frequencies

The rotor is studied in free motion and the homegeis system is thus considered, i.e., equationW@f)no
external forces. The eigenvalues of the mathix are calculated for seeking the natural frequendjesf the

rotor. Therefore the Campbell diagram can be pdotiberepresent the frequencids as a function of the speed
of rotation Q of the rotor.
6.1.2 Steady-state responses and orbits

Since the steady-state responses are sought,fenpatticular solution of the equations of motisrtonsidered.
Due to the form of the external force vectors ia tight-hand side, this solution adopts the follogvi

5, =85, cos(Qt) +83, si{Qt) +8 coéQ Zt) +9; Si(Q f) +3', (41)

8c,, 8,, 85, 8 and &) are unknown displacement amplitude vectors. Using the velocity as well as
acceleration vectorér , Sr are obtained. Substituting them into equation (88gs the steady-state solutions
K -M Q> C,Q b Fou *Fr
o = s (42)
_CrQ Kr _MrQ 5ﬁm F;u+F§1ub
- 22 z 6C ch
Kr MrQ CrQ . b - d,sh,b i (43)
-C.0° K, =M, Q° 5 Fds.shb
o =K'F o (44)

The constant vectod; is nil in the case of the angular velocity', i.e., of the base motion around tBy

axial axis (see equation 34) but not in the case/afi.e., of the base motion around t@ transverse axis (see
equation 32). It is concluded that equation (42)ded to investigate the mass unbalance resportbe obtor,
equation (43) is employed to observe the frequemsponse of the rotor to the translational baseomatnd
equation (41) helps to illustrate the steady-stabéts described by the points situated along Hadtlastic line.

6.2 Equations with time-varying coefficients

In this case, the system of linear differential &ipns (31) has periodic parametric coefficientscgading to
equations (36) and (38)) of perigd= 77/Q .

6.2.1 Dynamic stability

The stability of the periodic solution is predictéy employing the Floquet theory. In other wordy, b
determining the so-called “Floquet transition mdtr(or monodromy matrix) during one period of the
parametric excitation and by finding its eigenvalude zones of instability are identified, see relx@anowski
(1976), Dufour and Berlioz (1998) as well as Berlet al. (2000). First, the application of the Rletjtheory
requires a homogeneous differential system repteden the state-space form. Namely, the lineaosg®rder
differential equations (31) of the rotor become bgeneous and have to be transformed into a fidgr@mystem

D, =AD,. (45)
Then, the system of equation (45) of the rotontsdrated over one periad=77/Q using the Runge-Kutta
time-step integration scheme with the followindialiconditions at time =0
D, (0)=(0,0,.. 1. .0 (46)
where only thei-th component is not nil and equal to 1. For eaclgiatigon, the vectoD, (r) is obtained and
represents the solution of equation (45) at theadrahe periodr and thei-th column of the Floquet transition
matrix ¢, (r) . To provide the Floquet transition matrix at time 7, 2n, integrations are necessary where
is the total number of degrees of freedom of equatBl). The eigenvalues or characteristic muéigliof the
Floquet transition matrixp, (r) of the system (45) are calculated. Finally, thetam (45) is unstable if the
modulus of at least one of the characteristic pligtis is greater than 1.

6.2.2 Time history responses and orbits

In the presence of time-varying parametric coedfits, the linear equations of motion (31) are sbivsing the
Newmark time-step integration algorithm based anatierage acceleration to predict the rotor omeiten the
steady-state responses are reached, i.e., therdtiteg algorithm requires the presence of the damgd
overcome the transient regime.
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7. Simulation results and discussion
7.1 Symmetric rotor

7.1.1 Configuration and data

Figure 5 and Table 1 present the components anchémacteristics of the symmetric on-board rotdre ©rigin
O of the reference fram® coincides with the shaft end-point positionedhat tenter of the bearing # 1. The
symmetric shaft is modeled with 12 identical twadadrimoshenko beam FEs. The symmetric disk is éatat
node 5. The rigid short bearings # 1 and # 2 gémexrginned-pinned rotor and are located at nodmsd113.
Thus the corresponding degrees of freedom are leghcEhe mass unbalance is placed on the disk.

The investigated rotor runs at a constant speedtafion Q and is subjected to mass unbalance excitation
as well as to combined constant rotation and haigrtoanslation of the rigid base: the constanttiotaaround

the Ox axis (or theOy axis) is given byaw* (or «’), while the harmonic translation along tiz axis is

expressed ag, = Z,sinQ*t. The steady-state dynamic analysis is performedbgns of Campbell diagrams,

mass unbalance responses, responses to the hanmamsiational base excitations and rotor orbitsaddition,
the equations of motion of the on-board rotor aaeametrically affected (i.e., the left-hand sideeqgliations
(32) and (34)) by the base rotations, while theelieanslations have only an effect on the exteiorake vector
(i.e., on the right-hand side). Therefore the odehavior is analyzed as a function of the basation.

1 2 3 4 S 6 7 8 9 10 11 12 13
*———0—0—0—0—0—0—0—0—0—0

41 Ta o 42

! Q
L J

. ,
oy .
) M mud mu

!s.v‘r

A
A A
wde

Figure 5. Symmetric on-board rotor configuration.
Table 1. Main characteristics of the investigated rotor

Disk material density pa= 7800 kg/m
Disk radius r=0.15m
Disk thickness €~=0.03m
Disk location Y¢=0.4/3 m
Shaft material density psi=7800 kg/m
Shaft radius re=0.01 m
Shaft length ls=0.4 m
Young's modulus of the shaft Eg=2x10* N/m?
Poisson'’s ratio of the shaft ver=0.3
Shear correction factor of the shaft Ksh= ks =0.8864
Mass unbalance and its phase Myt m =150 g mmym=0°

7.1.2 Campbell diagrams

In the case of a symmetric rotor, the linear equmstiof motion always display constant coefficiersse
equations (32) and (34). It should be mentioneddHaed base or a rotating base around@ye axis keep the

system isotropic, while a base rotation around @ axis makes it anisotropic. Moreover, the sign o t
components of the damping and stiffness matriceemntts on the direction of the base rotation aroGydbut
not on that of the base rotation arou@. In the case of a positive direction (countercluisie) of the base
rotation aroundOy and any direction aroun®x, the symmetric stiffness matrices can lose thesitjve

definiteness because of the presence of negatgmudal terms containing the angular veloaiy or «”’ . Thus
a possible dynamic instability of the rotor canucdn the presented application, since the eigeiegaof the
state-space system (39) with no external forcegarely imaginary quantities whatever the constargular

velocity of the base rotations in the zone of iesteJ* or w” D[O; 10 Hz] , the on-board rotor is stable for all the

considered mode shapes included in its operatinger& D[O; 6000 rpn}. The natural frequencie$, being
deduced from these eigenvalues depend on the gf@ethtion Q of the rotor and on the angular velocity of
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the base rotations either arou@k or Oy. They are represented by the Campbell diagrantteplin Figure 6

for the rotor subjected to the angular velocitheitw* or «’. When the rotor base is fixedX = w’ =0), the
system is isotropic and therefore the dynamic biehaf the rotor is symmetric, i.e., the naturaduencies of
each pair of backward and forward whirl modes agjaak at rest Q =0). Even if the natural frequencies

strongly do not change, the base rotatoh breaks the symmetry of the rotor behavior, seer€ig(a). Since
the corresponding stiffness matrices are symmetith anisotropic terms and there is no damping ixatr
associated withw*, the zoom shows that the natural frequenciesefitbt backward and forward whirl modes
at rest are non-equal, this justifies that the biglaof the rotor is non-symmetric. The rotatiomdfects due to
" decrease the natural frequencies, while the geamstiffening effects associated with the centél
stressing relative t@as* increase them. Unlike the previous case, theitatiien due to the base rotation around
Oy does not bring any asymmetry to the dynamic bemaofi the rotor (because the corresponding matiaces
symmetric and skew-symmetric with isotropic terrbs) shifts and changes the natural frequencies {due
additional terms in the damping and stiffness roat), see Figure 6(c). The damping matrix assatiatth «”
makes the pairs of backward and forward whirl magtegst unequal and reversed compared to theofdised
base and that oé)*. Increasing the speed of rotatié@h of the rotor decreases the backward whirl fregigsnc
and increases the forward ones. Table 2 introdceegarisons between the first four natural freqieend, of

the rotor relative to the base rotations eitheuadoOx or Oy. At any angular velocitiesw’ has an influence

greater thanaw on the natural frequencies, i.e., the naturaldesgies of the rotor corresponding to the base
rotation around th&®y axis are more different when compared to thosaioétl when the base is fixed.

10Q
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Figure 6. Campbell diagrams for the first three natural frequencies of the rotor subjected to the base angular
velocity: (a) w”, or (¢) w”, with the values: 0 (solid line), 5 Hz (dashed line), 10 Hz (dotted line), (b) Zoom on the
intersection of the first forward whirl frequency with the speed of rotation of the rotor.

Table 2. Natural frequencies as a function of the speed of rotation of the rotor and the constant rotations of the
base (B and F stand for backward and forward whirl modes)

) " o’
Q |_f|’ 'T)'XEd Hz Hz
nm z ase 5 10 3 10
f,° 44.93 44.96 45.04 49.42 53.88
0 7 44.93 45.19 45.93 40.42 35.88
2 123.79 123.80 123.84 124.49 125.42
)" 123.79 123.88 124.15 123.32 123.09
1500 2 42.28 42.40 42.73 46.65 50.99
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- 47.02 47.17 47.66 42.40 37.76

2 104.64 104.70 104.90 106.48 108.54
foF 148.73 148.77 148.90 149.40 150.27
fi° 39.07 39.18 39.48 43.36 47.63
3000 fif 48.62 48.78 49.27 43.92 39.20
2 90.93 91.02 91.27 93.76 96.75
fF 179.05 179.08 179.18 180.69 182.49
fi,® 35.53 35.62 35.86 39.79 44.04
4500 i 49.86 50.02 50.51 45.10 40.32
2 81.66 81.76 82.07 85.22 88.89
fo 213.80 213.83 213.92 216.20 218.73
fi? 31.96 32.03 32.23 36.26 40.56
6000 fif 50.82 50.99 51.48 46.02 41.20
2 75.55 75.67 76.03 79.60 83.72
T, 251.95 251.97 252.05 254.91 257.97

7.1.3 Responses to the mass unbalance or to the translational base excitation

The rotor response due to the mass unbalance eHecbe related to the constant rotational baséongtsee
equations (32) to (35). Figure 7 presents the mabalance responses at the middle of the shaftrioele 7) of
the rotor excited by the angular velocity eithet or «’. In the operating rang® D[O; 6000 rpn}, the rotor

exhibits one principal critical speed of rotatiamé¢ peakll ) when the base is fixed. It exhibits only one peak
the presence of the base rotati@ (due to the isotropic system), see Figure 7 (b thmee peaksl(, Il , 11l )

in the presence ofs* (due to the anisotropic system), see Figure T(agse peaks correspond to the intersection
of the straight linef =Q/60 (Q in rpm) with the natural frequencies of the raasrshown in Figure 6, i.e., the
intersection with the frequencies of the first aedond backward whirl modes$ ( 11l ) and of the first forward
whirl mode (Il ) for «* and the intersection with the frequencies of ih& forward whirl mode forw’. The
responses confirm that the rotor keeps a symmaymamic behavior in the case of the base rotationral Oy

but has a non-symmetric dynamic behavior in the cdthe base rotation arour@x as stated in Section 7.1.2
and presented in Figure 6. For increasing values/ofthe principal critical speedll() increases slightly as
shown by the points4, B, C) in Figure 6(b) and the amplitudes of the add#iopeaks ( , Ill ) become
larger and larger. As shown by the points,(B, C) in Figure 6(c), the critical speed position isfteldl down
when the angular velocity’ increases because the backward and forward whides at rest@ =0) are
reversed. It is also observed that even if therrigtat rest, the amplitudes of the mass unbaleeg@onse are not
nil due to the presence of the base rotation edihaundOx or Oy . In addition, these amplitudes become larger
when the angular velocity of the base rotationéases, see Table 3. At the highest speeds ofamwtafithe
rotor, the corresponding response amplitudes réfelimiting values which are roughly equal to 31410° m

for o and 11.512x18&m for .

Under combined motions of the base, the rotor nespalue to the harmonic translational base motions
depends on the constant rotations of the basescugaions (32) to (35). Figure 8 presents the ¢ioviwf the
frequency responses at the middle of the shaft, (nede 7) of the rotor running at a speed of imtat

Q =1500 rpmr (=25 Hz) and excited by a harmonic base transiatibamplitude Z, =1x10° m in the Oz
direction. The frequency of the base translationdstained in the range of intere§f’ D[O; 200 Hz]. In the
presence of the angular velocity or «’, the responses always exhibit four critical fretties (four peaks)
corresponding to the natural frequencies of therrat Q =1500 rpmm, see also the Campbell diagrams plotted in

Figure 6 and presented in Table 2. In the casearéasing values of”’ , the peak relative to the third natural
frequency and produced by the harmonic base trémslalong theOz axis becomes smaller and smaller, see
Figure 8(b). This is because equation (34) presemtsgative cosine term containing the freque@®y of the
base translation. Lastly, it is noted that the apeg zones of the frequency responses alongxheaxis do not
change mostly for the angular velocity , while they can change significantly fas' .
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Figure 7. Mass unbalance responses of the rotor in the case of the constant rotation of the base around:
(a) the Ox axis, or (b) the Oy axis.
Table 3. Amplitudes of the mass unbalance responses of the rotor at rest for the angular velocity either w* or w”’

" Amplitude @ Amplitude
Hz m Hz m

5 0.107x10° 5 0.109x10°
10 0.428x10° 10 0.449x10°

7.1.4 Influence of the base excitations on the orbits

In this section, the orbits of the symmetric ragabjected successively to a translation, a rotatimh combined
rotation and translation of the base are calculaitii the finite element (FE) method. For validatipurposes, a
comparison is performed with results obtained yRiayleigh-Ritz (RR) method which is based on tloekvof
Duchemin (2003) and which has been extended iptbsent paper to account for a pure rotation antbawed
motions of the rotor base. The FE model is based8odegrees of freedom, while the RR method usbsare

classical trigonometric function as a displacenienttion, i.e., two generalized coordinaggt) and g, (t)

u :sin(fy] q ; w= sir{lnyJ Q. (47)

7.1.4.1 Pure translation of the base and validation against the Rayleigh-Ritz method

The orbits presented in Figure 9 are producedeantiddle of the rotor presented in Section 7.1d subjected
to mass unbalancen(,r,,=15g mm and 77,,, =0°) and to harmonic base translation with,(=0.1 m and
Q* =2 Hz) for a constant speed of rotatidh = 20000 rpm. Figure 9(a) compares the orbits obtained with the

RR approaches and no deviation can be observagleeM(b) presents the orbit predicted with thenkdtlel. It
is qualitatively similar to that of Figure 9(a) aeahibits very small magnitude deviations: tRemagnitude
deviation is¢, =4.23% and thez magnitude deviation ig,, = —0.58%. In conclusion, the RR and FE models

developed in this paper are validated regardindrkiRenodel developed by Duchemin (2003).
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Figure 8. Frequency responses of the rotor to the sinusoidal base translation for a speed of rotation Q=1500 rpm
and the constant rotation of the base around: (a) the Ox axis, or (b) the Oy axis.
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Figure 9. Orbits at the middle of the rotor running at Q=20000 rpm and subjected to a harmonic base translation
with Zo=0.1 m and Q=2 Hz using: (a) RR method, (b) FE method.

7.1.4.2 Pure rotation w” (or w’) of the base

Figure 10(a) displays the classical orbit at theldi@ of the rotor (node 7) due to the mass unbaldac a
constant speed of rotatio =1500 rpir (=25 Hz=the mass unbalance frequency) and a fideex. Since the
matrices of the rotor system are symmetric and skawmetric with isotropic diagonal and cross-coogli
components, the dynamic behavior is symmetric &edarbit is circular and periodic of period equalthe
inverse of the mass unbalance frequerizy The orbit center coincides with the poit (bearing center)
because the bearings are rigid and the motion &rdpliof the rotor in botlOx and Oz directions is 3.628x10
m at its middle. Figures 10(b) and 10(c) compakre dteady-state mass unbalance orbits in the caaepafe
rotation of the base either arou@k or Oy, see the solution in equation (41).

For the base angular velocitw® =5 Hz, the corresponding trajectory illustrated by thbits oscillates
about a static positiorC,, due to the constant Coriolis force vectBf ., = -V¥, Qu* acting in the Ox

direction, see equation (32). The displacementlingl the static positiorC,, is calculated using equation (44)

and its coordinate alongx is approximately equal to 3.2x30m. The coordinate of the static position
displacement is very large compared to the orbigmitade (dynamic displacement amplitude of the moémd
thus forces the plot to adopt the pofy, as an origin. In addition, the periodic orbit isellipse due to the non-

symmetric dynamic behavior of the rotor and itshogonal axes defining th& and z amplitudes of the
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flexural vibrations at the middle of the shaft &&54x1F m and 3.784x10 m respectively, i.e., they are
slightly different.

For the base angular velocity’ =5 Hz, there is no such a static position and the aduiter remains at the

bearing centerO. The periodic orbit keeps a circular shape becalusesymmetric dynamic behavior of the
rotor is never broken, while its radius represantime x and z vibration amplitudes becomes greater than that
obtained for a fixed base because the mass unleakwitation increases in a way more important tthen
stiffness matrix of the rotor. Lastly, this radiiss6.183x1¢ m at the middle of the shaft, i.e., the amplitude
increases by a factor of about 1.7 in both trarsvefirections. The RR and FE mass unbalance caalsts
qualitatively similar and show quantitatively véoyv x and z magnitude deviationss, = &, = -5.75%.
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Figure 10. Mass unbalance orbits at the middle of the rotor running at Q=1500 rpm and subjected to three values
of base rotation: (a) w*=w’=0, i.e., fixed base, (b) w*=5 Hz, w’=0, (¢) w*=0, W’'=5 Hz.

7.1.4.3 Combination of translation zo=ZsinQ’t and rotation w” (or w”) of the base

Because the differential equations describing tterrmotion are linear (see equations (32) and)(3Ag rotor

orbits contain the response to the mass unbalawi@gon superimposed with the response to thatiaal and

translational base motions. Thus the orbit charesties (shape and size) depend on both excitatioreddition,

the steady-state orbits are periodic because ttegna excitations due to both the mass unbalandetlse base

translation are sinusoidal and commensurable,feeedlution in equation (41). The period of theitsrts equal
to the inverse of the greatest common factor fer itass unbalance frequen€y and the base translation

frequencyQ?. Figures 11 to 13 give the orbits at the middl¢hef shaft (node 7) for a constant speed of ratatio
Q =1500 rpr (=25 Hz) and different cases of combined rotafi@mal translational motions of the rotor base.
In Figure 11, the base translation is kept constZat=1x10° m and Q* = 200 Hz), while the base rotation

varies (w* or «’ =5 Hz and 10 H:). Due to the sinusoidal base translation, comfdit@rbits appear instead of

the classical circle or ellipse. As shown previgushen the rotor is subjected to the angular vigjoei” , the
rotor orbits oscillate about a static positi@y,. The coordinates alon@®x of the displacements yielding the

static position are calculated using equation (ddl increase withaw*. They are roughly 3.2x10m for
w* =5Hz and 6.3x18 m for w* =10 Hz. The plot adopts the static positi@), as an origin. The magnitudes

of the orbits remain almost the same for increasialyies of w*. When the rotor is excited by the angular
velocity «”, the plot adopts the bearing cent®r as an origin. The magnitudes of the orbits inczefms

increasing values otw’ because the mass unbalance excitation increasasniay more important than the
stiffness matrix of the rotor. In Figure 12, thesbaotation and the amplitude of the harmonic heseslation
are kept constantef* or «’ =5Hz and Z, =1x10° m), while the frequency of the base translation agri

(Q?* =100 Hz and 120 H). The frequency of the harmonic translational basgtation changes extremely the

shape of the orbits, while it modifies slightly thmagnitudes (when compared to those shown inrEigad). As
stated previously, the orbit period is equal to itheerse of the greatest common factor of the namlance

frequencyQ and the base translation frequer@y. Namely, one period of the above orbit correspdndsne
period of the mass unbalance excitation and to pewiods of the base translation f&* =100 Hz, while one
period of the below orbit corresponds to five pdsi@f the mass unbalance excitation and to 24 ged the
base translation in the case whe&2é =120 Hz. It should be noted that for several base traisidtequencies

different from the mass unbalance frequency, tlmt ehapes become more complicated with respetiiase
obtained when the base is subjected to the pusadiont see Figures 10(b) and 10(c). In Figure h8, hase

rotation and the frequency of the base translaienkept constant«f or &’ =5 Hz and Q* = 200 Hz), while

the amplitude of the harmonic base translation egar(Z, =5x10° mand1& 10 r). Increasing the
amplitudes makes the orbits much larger and moraptioated especially when compared with the mass
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unbalance orbits for a base excited by a pureiootasee Figure 10. The base translation has e laftuence
on the z orbit magnitudes but a slight influence on thenagnitudes.
The RR and FE orbits shown in Figure 14 are qualély the same but quantitatively different. Theand

z magnitude deviations are, =—6.27% and &, =0.04% for «* as well asg, =—-8.18% and &,

for w’. The static position coordinate deviationgg = -5.96%.
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Figure 12. Influence of the frequency Q7 of the base translation: zo=Zosin(Q%) with Zo=1x10° m. Orbits at the
middle of the rotor running at Q=1500 rpm and subjected to two angular velocities of the base:
w"=5 Hz or w'=5 Hz.
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Figure 13. Influence of the amplitude Zo of the base translation: zo=Zosin(Qt) with Q=200 Hz. Orbits at the
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7.2 Asymmetric rotor

7.2.1 Configuration and data

The description of the asymmetric rotating rotosimmilar to that in Section 7.1 but the disk isragyetric and
its geometric properties change. The shape ofitleptesented in Figure 15 is defined as a funatiime angle

6, with the C°x axis of the frameR . The rotor data are the same as given in Tabléd.rotor is subjected to
the same excitations as indicated in the previaesion. The shaft is discretized into 12 identitab-node
Timoshenko beam FEs. The disk as well as the shatt bearings # 1 and # 2 are located at nodésafd 13
respectively. Thus the degrees of freedom of tlaibg nodes are eliminated. The linear differergigliations
of motion have time-varying periodic parametricnter In order to treat them and predict the stedalges
behavior, the Runge-Kutta and Newmark time-stepgiration methods are used. The proportional Rayleig
damping Cij”sh =a®'M " ++BFK ¢, of the rotating parts (disk and shaft) is taketo iaccount (see Spears and

Jensen, 2009) and its corresponding coefficierttmated for a modal damping factd™ = 0.03 are given by

a®® =12.43 and B"* =5.66x 10°. The dynamic analysis is performed by means dfilgiacharts, rotor orbits

and fast Fourier transforms (FFTs). In additior, élguations of motion of the on-board rotor (sas#qgns (36)
and (38)) show that the base rotations have a prenmfluence on these equations, while the hemgslations
have only an influence on the external force vecttierefore the overall behavior is evaluated &mation of
the base rotation.

Figure 15. Geometry of the asymmetric disk.

7.2.2 Stability charts

The instability coming from the parametric excivatidue to the geometric asymmetry of the rotorlmnelated
to the base rotations, see equations (36) and E&8)a certain angular velocity of the rotor base factors
affect the parametric excitations generated inathyanmetric rotor: the speed of rotatién of the rotor and the

moment of inertialr‘f\‘1 . The latter depends on the andle describing the geometric asymmetry of the disk.
Therefore the stability analysis covers the twoapsetersQ as well asg, and the stability charts of the rotor
shown in Figures 16 and 17 are established forptiraary resonance witilhg, =5° and AQ =5rpm. The

zones of instability are bounded by transition estvThe increase of the base angular velogityroughly does
not change the size of the instability zones arghs} shifts them down (see Figure 16). For th@sidered

values of the anglé9,, the on-board rotor can become unstablemﬂ[2980; 3715 rpdw and W =5Hz as
well as for QD[2965; 3700 rpr]1 and ' =10 Hz. In the same way, the increase @f does not change the
size of the instability zones but this time, thinits are remarkably shifted down (see Figure IH)r the
considered values of,, the rotor can be unstable f@ D[2690; 3420 rpli1 and &’ =5Hz as well as for
Q0[2390; 3120 rprh and w’ =10 Hz.

The stability chart plotted in Figure 18(a) is poteld with the RR method. Figure 18(b) compares the
bounds of the primary instability regions calcuthbsy the RR and FE methods. As can be seen iffighise, the
bounds predicted by the RR method are 4-7% grehtar those predicted by the FE method and the FE
instability region is narrower.

21



7.2.3 Orbits

7.2.3.1 Pure rotation w” (or w”) of the base
Figure 19(a) presents the mass unbalance orhiiteainiddle of the asymmetric rotor (node 7) for agla of
disk asymmetryg, =45, Q =1500 rpr (=25 Hz) and a fixed base (i.ed* =@’ =0). The predicted orbit is
circular but slightly smaller than that of the syetnit rotor because the mass and the inertia ofdte are
reduced. The predicted orbit corresponding to #éeetangular velocity” =5 Hz is also slightly smaller, see
Figure 19(c). On the opposite side, the predictdit corresponding taw* =5 Hz is much greater than that of
the symmetric rotor due to high external forcesxqdained in the next section, see Figure 19(b).

€0,
0y,

o ” (degrees)
P
n

Stable

Unstable

Stable

(@)

Q (rpm)

;}‘350 3050 3150 3250 3350 3450 3550 3650 3750 3850 3950 4050

€0,
0y,

o ” (degrees)
P
n

Stable

Stable |

Unstable

(@)

%SO 2450 2550 2650 2750 2850 2950 3050 3150 3250 3350 3450

Q (rpm)

€0,
0y,

o ” (degrees)
P
n

U

Stable

N

Stable

nstable

(@)

;}%50 2750 2850 2950 3050 3150 3250 3350 3450 3550 3650 3750

Q (rpm)

55 Stable
g 50F
& 45
2 . Unstable
N s
35+
Stable

Q (rpm)

;}‘350 3050 3150 3250 3350 3450 3550 3650 3750 3850 3950 4050

Figure 16. Stability charts of the rotor due to two base angular velocities: (a) w*=5 Hz, (b) w*=10 Hz.
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7.2.3.2 Combination of translation zo=ZsinQ’t and rotation w” (or w”) of the base

Since the equations of motion are linear with pdidgarametric coefficients (see equations (36) @&)), the
steady-state response to the mass unbalance isisppeed with the steady-state response to the base
excitations. Therefore the orbit characteristias i@lated to both excitations. Figure 20 presdmsorbits and
their FFTs at the middle of the asymmetric rotard@ 7) for 8, =45, Q =1500 rpm (=25 Hz) and combined
rotational and translational excitations of theordiase. In this figure, the base rotation andathelitude of the
harmonic base translation are kept constasit ¢r «/ =5Hz and Z, =1x10° m), while the frequency of the

base translation variesQ =100 Hz,120 Hz and 200 ). When the rotor is excited by the base angular
velocity w* =5 Hz, the stabilized orbits at the middle of the slaa elliptical and the displacement amplitudes

are mostly the same as shown in Section 7.2.3.1ewbathe value of the base translation freque@éy FFTs
exhibit only one frequency component equabHz= 22 because of the presence @f in the cos Xt and

sin 2Qt terms of the external excitation produced by thergetric asymmetry of the rotor, which are previalen
regarding the other forcing terms, see equatior). (8fhen the rotor is excited by the base anguldocity

«’ =5Hz, the frequency of the harmonic base translatios ddimited influence on the magnitudes of the

orbits. In addition, the stabilized orbits have s more complex than those obtained for the synunetor
(see Figure 12) since they involve frequency coreptsrdue to the mass unbalance excitation (25 tdzjhe
harmonic base translations (100 Hz, 120 Hz and B8P and to the combination of frequencies of both
excitations as shown in FFTs of Figure 20.

The RR and FE orbits seen in Figure 21 have theesdrape but quantitatively are different. Theand z

magnitude deviations are, = -36.74% and &, = -36.96% for " as well as¢, =-5.26% and ¢, =3.36%
for . The static position coordinate deviationdg =—6.98%. The observed deviations are due to the fact

that the RR expansion is based only on two geredicoordinates, while the FE model is built wighdegrees
of freedom, i.e., the FE model is more flexible &ngse it uses more degrees of freedom than the RiRImo

8. Conclusions

The dynamics of two different rotor configuratiqisgmmetric and asymmetric), whose rigid base iestibd to
combined constant rotation and sinusoidal trarstatire analytically and numerically investigatddiew finite
element model based on the Timoshenko beam theqmesented to analyze the steady-state dynamaviogh
of the on-board rotor mounted on rigid bearingscdhtains the effects associated with the rotaeytia, the
gyroscopic inertia, the shear deformation of shhf, geometric asymmetry of disk and/or shaft ab agesix
types of deterministic motions (rotations and thatisns) of the rotor rigid base. Moreover, theatmtnal effects
and the geometric stiffening effects relative te ttentrifugal stressing caused by the base rotatwa taken
into account. The derivation of the equations oftiomo has shown that the base rotation brings ndg an
parametric contribution to them but also additioesiernal force vectors, while the base translatioly adds
external force vectors.

In the case of the symmetric rotor, the equatidnsation always are ordinary differential equatiomigh
constant coefficients. A dynamic instability carcocin the rotor due to the presence of negatiegatial terms
containing the angular velocities of the base | shmmetric stiffness matrices which can lose thesitive
definiteness. It is shown that the base rotatidrange not only the natural frequencies of the rbtdralso can
break the symmetry of the dynamic behavior in thgecof the rotation around a transverse axis. Trusaidal
base translation does not change the natural freige of the rotor. It has only an influence on the
corresponding response amplitudes as well as om#gmitude and the shape of the rotor orbits.

The asymmetric rotor introduces time-varying peidogarametric coefficients in the linear equatiarfs
motion. Thus possible regions of instability of tfidor can occur and their sizes cannot be relaidtie base
rotations. On the other hand, the base rotatioift thie instability regions along the speed of tata of the
rotor. The sinusoidal base translation has no émfte on the instability regions but only an infloeron the
magnitude and the shape of the rotor orbits.

The finite element calculations have been validatgdinst the Rayleigh-Ritz formulation. Using thaté
element method is useful because it is more acearad can be used for industrial rotating machinepgeling.
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Figure 20. Influence of the frequency Q of the base translation: zo=Zosin(Qt) with Zo=1x10" m. Orbits of the asymmetric
rotor running at Q=1500 rpm and subjected to two angular velocities of the base: w*=5 Hz or w’=5 Hz.
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Angular velocity of the base rotation
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Appendix A: Elementary matrices and vectors for the disk, the shaft and the mass
unbalance
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