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motions 
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Université de Lyon, CNRS, INSA-Lyon, LaMCoS UMR5259, F-69621, France 

Abstract 

In the transportation domain, on-board rotors in bending are subjected not only to rotating mass 
unbalance but also to several movements of their base. The main objective of this article is to predict 
the dynamic behavior of a rotor in the presence of base excitations. The proposed on-board rotor 
model is based on the Timoshenko beam finite element. It takes into account the effects 
corresponding to the rotary inertia, the gyroscopic inertia, the shear deformation of shaft as well as the 
geometric asymmetry of disk and/or shaft and considers six types of deterministic motions (rotations 
and translations) of the rotor rigid base. The use of Lagrange’s equations associated with the finite 
element method yields the linear second-order differential equations of vibratory motion of the rotating 
rotor in bending relative to the moving rigid base which forms a non-inertial frame of reference. The 
linear equations of motion highlight periodic parametric terms due to the geometric asymmetry of the 
rotor components and time-varying parametric terms due to the rotational motions of the rotor rigid 
base. These parametric terms are considered as sources of internal excitation and can lead to lateral 
dynamic instability. In the presented applications, the rotor is excited by a rotating mass unbalance 
combined with constant rotation and sinusoidal translation of the base. Quasi-analytical and numerical 
solutions for two different rotor configurations (symmetric and asymmetric) are analyzed by means of 
stability charts, Campbell diagrams, steady-state responses as well as orbits of the rotor. 
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1. Introduction 

Rotating machines play a paramount role in many modern industrial applications. Most of them can be 
considered as on-board machines affected mainly by mass unbalance and support excitations. Automotive 
turbocharger, ship and aircraft turbines as well as locomotive electrical generators are examples of rotors on 
moving base. The undesirable mass unbalance is due to the eccentricity of the center of mass along the rotor axis 
and can be caused by material non-homogeneities, manufacturing defaults, assembly and service conditions. The 
rotor balancing aims at minimizing the mass unbalance but generally does not lead to a complete cancellation, 
see, for example, Kang et al. (2003) and Levecque et al. (2011). A rotor can also be excited by the movement of 
its base which can increase the lateral vibration of the rotor and create a dynamic instability phenomenon. 
Therefore a rotor dynamic model taking into account multi-source excitations is of prime interest at the design 
stage in order to product rotating machines as reliable as possible and avoid catastrophic failure during the 
operation phase.  

The literature comprises numerous books concerning the prediction of dynamics of symmetric/asymmetric 
rigid/flexible rotor systems mounted on linear/non-linear elastic bearings in the case of a fixed base (Rao, 1992; 
Lalanne and Ferraris, 1998; Genta, 2005). The asymmetry due to the disk, the shaft and/or the bearing was 
treated in some works. Guilhen et al. (1988) noted that differential equations without periodic coefficients could 
be obtained either in the inertial coordinate system or in the frame moving with the rotor. The dynamic stability 
was investigated using the Floquet theory and the mass unbalance response was computed with the Newmark 
scheme. Kang et al. (1992) employed the Timoshenko beam finite elements (FEs) for modeling rotor-bearing 
systems by taking into account the asymmetry of disk, shaft and/or bearing. They calculated the mass unbalance 
response using the harmonic balance method. According to their work, the resonant speeds could change due to 
various angles between major axes of disk and shaft, the shaft asymmetry as well as the bearing characteristics. 
Oncescu et al. (2001) generalized a FE procedure for rotor-bearing systems to include the effects of the 
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asymmetry of shaft and/or bearing. They gave the matrices corresponding to the asymmetric shaft FE and 
applied the time-transfer matrix method based on the Floquet theory to the linear equations of motion with 
periodic coefficients expressed in the inertial frame of reference. As shown in their study, the indicated method 
was a convenient way for predicting the dynamic behavior of the asymmetric rotor-bearing systems. Sabuncu 
and Evran (2006) studied the motion stability of an asymmetric blade induced by a lateral parametric excitation 
using the Timoshenko beam FEs. They discussed the effects of the shear coefficient, the beam length variation, 
the rotational speed and the coupling due to the center of flexure distance from the centroid on the dynamic 
instability regions. Beley-Sayettat (1994) studied the influence of the shaft asymmetry and the earthquake on the 
dynamic behavior of a rotor. In the case of an asymmetric shaft, the equations of motion are developed in the 
Galilean frame (fixed in space) and in the rotating frame using the Rayleigh-Ritz method and the FE method. 
Employing the Floquet theory for the stability and the Newmark method for the dynamic response, the behavior 
of a turbogenerator of aircraft carriers was investigated in the cases of a construction asymmetry (winding) and 
an accidental asymmetry (crack). In the case of a seismic motion, the equations of motion were derived for the 
rigid support (mono-excitation) and the flexible support (multi-excitation). A spectral method with complex 
modes was employed for solving the equations of motion. 

Many studies concentrated on the dynamic behavior of a rotor under seismic or shock excitations of its base. 
Hori and Kato (1990) examined a seismic response of a Jeffcott rotor supported by oil film bearings to a real 
seismic wave and investigated its stability by calculating the locations of the disk and journal centers (using the 
Runge-Kutta-Gill method). Suarez et al. (1992) presented without any derivation the equations of motion of a FE 
rotor model subjected to six components of base excitations and studied its seismic response. They observed that 
even for strong rotational inputs, the parametric terms in these equations could be neglected without affecting the 
rotor response. Gaganis et al. (1999) considered the non-linear bearing coefficients to be piecewise constant and 
modeled the excitation due to the earthquake as a movement of the base of the rotor-bearing systems using the El 
Centro earthquake data. In their work, the response and the variation of the dynamic properties of the rotor-
bearing systems were investigated. Bachelet et al. (2006) predicted the dynamic behavior of an asymmetric rotor 
excited by a seismic translational base excitation and developed an original spectral approach to approximate the 
rotor response. They discussed the results of the spectral approach through a comparison with the Monte Carlo 
simulation results. Lee et al. (2006) proposed a FE rotor model considering a shock base excitation with the 
state-space Newmark method based on the average velocity concept. They focused also on the experimental 
behavior of a rotor under this shock base excitation and compared it with the numerical results. 

Some other works incorporated the foundation flexibility into the rotordynamics prediction. Kang et al. 
(2000) studied the effect of the flexible support (foundation) on the dynamic characteristics of the rotor-bearing 
systems using a FE modeling. Edwards et al. (2000) verified experimentally a method which identifies both the 
excitation and the flexible support parameters of a rotor-bearing-foundation system. Cavalca et al. (2005) 
estimated experimentally the modal parameters of the foundation from frequency response functions and studied 
the effect of the flexible foundation on the dynamic characteristics of the rotor-bearing systems. The 
experimental tests of Feng and Hahn (2011) showed that even with input data truncated to two significant digits, 
satisfactory identification were possible for a flexibly supported undamped rigid block foundation in rotating 
machinery. 

A few number of works deal with the investigation of dynamic behavior of a rotor during a harmonic motion 
of its support. Tan et al. (1997) developed the equations of motion of a rotating cantilever beam induced by a 
base excitation by employing the Euler-Bernoulli beam theory. They used the method of multiple scales for 
determining the instability regions and presented numerical results to illustrate the influence of the hub radius to 
length ratio, the steady-state rotational speed and the base excitation frequency on the dynamic stability of the 
system. Duchemin et al. (2006) developed the equations of motion by employing the Rayleigh-Ritz (RR) method 
to study the basic phenomena of a simple rotor model under a sinusoidal support rotation. They applied the 
method of multiple scales to observe the motion stability of the rotor and presented experimental results to 
validate the quasi-analytical study. Driot et al. (2006) obtained two gyroscopic and parametric coupled equations 
of motion of a rotor induced by a harmonic rotational base movement using the RR method. They described the 
orbits using two numerical methods (the seventh-eighth-order continuous Runge-Kutta method and the normal 
form method). From their work, the comparison between the numerical and experimental results was quite 
satisfactory. El-Saeidy and Sticher (2010) derived the equations of motion of a rigid rotor linear/non-linear 
bearing system subjected to rotating mass unbalance plus harmonic base excitations along or around lateral 
directions. In the case of linear bearings, they presented analytical solutions and obtained the system natural 
frequencies as a function of the speed of rotation of the rotor in addition to the frequency response (maximum 
amplitude of vibrations with respect to the base excitation frequency). In the case of a bearing cubic non-
linearity, they found results from a time integration scheme and discussed them with regards to the time domain, 
the fast Fourier transform as well as the Poincaré map. Das et al. (2010) investigated the active vibration control 
of a flexible rotor system excited by a mass unbalance and a periodic rotational motion of the base. They 
performed the control with electromagnetic control force provided by an actuator placed on the stator in a 
suitable plane around the rotor. As shown in their paper, a numerical simulation of the flexible rotor system 
modeled by Rayleigh beam FEs was performed and the active control was successful for avoiding the lateral 
parametric instability due to the sinusoidal rotation of the base. 
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Most of the works mentioned above dealing with base-excited rotor systems are based on a simplified 
modeling. Thus they limit the satisfactory adequacy between the theoretical rotor models and the realistic ones 
under operating conditions. The most common simplifications concern either the geometry of the rotor (for 
example, the Jeffcott rotor (Hori and Kato, 1990)), the use of the RR method instead of the FE method for the 
spatial discretization of the rotor model (Duchemin et al., 2006; Driot et al., 2006) or the type of base motion 
(simple rotation or translation). 

The present paper proposes an original contribution to improve an on-board rotor model. Namely, a rotor 
with geometric asymmetry due to the disk and/or the shaft is discretized using the FE method based on the 
Timoshenko beam theory and excited by combined deterministic base motions (three rotations and three 
translations). The vibration analysis focuses on the case of bending of the flexible rotor. Eulerian angles are thus 
used to describe the orientation of disk and shaft with respect to the moving rigid base. The kinetic and strain 
energies of the rotating flexible rotor components are calculated. Timoshenko beam FEs including the effects 
relative to the rotary inertia, the gyroscopic inertia, the shear deformation of shaft as well as the geometric 
asymmetry of disk and/or shaft are considered for the dynamic modeling of the on-board rotor. Applying the 
Lagrange’s equations, the linear second-order differential equations of motion due to the flexural vibration of the 
rotor relative to the rigid base (which forms a non-inertial coordinate system) are derived. They contain periodic 
parametric coefficients relative to the geometric asymmetry of some rotor components (disk and shaft) and time-
varying parametric coefficients corresponding to the three rotations of the rotor base. These parametric 
coefficients can be a source of lateral dynamic instability. In the proposed numerical examples, symmetric and 
asymmetric rotating rotors, whose rigid support is subjected to combined constant angular velocity and harmonic 
translation, are studied. Their dynamic behavior is analytically and numerically investigated by discussing the 
influence of the base motions on stability charts, Campbell diagrams, steady-state responses and orbits of the 
rotor. 

2. Basic description and assumptions 

Let Figure 1 sketch the basic components of the rotor: disk (1), shaft (2), mass unbalance (3), bearing (4) and 
support (5). The mass unbalance is distributed continuously as well as in a generic way and cannot completely be 
canceled. The excitations taken into account are due to the residual mass unbalance and to the imposed 
movements of the support. The transverse deflections of the elastic line of the rotor shaft are studied. 

Let the assumptions be: the disk is rigid, the shaft is deformable and modeled with Timoshenko beam 
elements of constant cross-section solicited in bending along two orthogonal directions, the bearing supporting 
the shaft is rigid, the disk and/or the shaft can be asymmetric, the mass unbalance is modeled by concentrated 
masses, the support is rigid and mobile, the rotor runs at a constant speed of rotation Ω . 

The consideration of the base motion modifies the form of the equations of motion of a rotor in bending 
compared to those obtained in the case of a fixed base. In order to undertake a modeling as simple as possible, 
the approach presented by Duchemin et al. (2006) is adopted. Three frames of reference are used to take into 
account the movement of the rotor with respect to the base and that of the base with respect to the ground.  

The derivation of the equations of motion is inspired from the theory described in Lalanne and Ferraris 
(1998). First, the coordinate systems needed to describe the motion of an on-board rotor are defined and the 
vectors expressing the rotations between them are calculated. Then, the kinetic energy of a disk, the kinetic and 
strain energies of a shaft element as well as the kinetic energy of a concentrated mass unbalance are calculated. 
Moreover, the rotating flexible rotor is discretized using the Timoshenko beam FEs. Finally, the differential 
equations of motion of an on-board rotor in bending are deduced from the Lagrange’s equations being applied 
with respect to the generalized coordinates iq  by the following form 

 ,
iq

i i i

d T T U
F

dt q q q

 ∂ ∂ ∂− + = ∂ ∂ ∂ ɺ
 (1) 

with ( )1df dfn i n≤ ≤  the number of degrees of freedom, T  and U  the kinetic and strain energies respectively 

and 
iqF  the external forces corresponding to iq . The symbol “i ” refers to the differentiation with respect to 

time t . 

3. Preliminary calculations 

The utilization of more than one frame of reference needs to establish the relationships between the different 
defined systems. Three principal Cartesian frames of reference shown in Figure 1 are introduced to take into 

account the mobility of the rotor support: ( ), ,g g g gR x y z  is the Galilean frame of reference fixed to the ground, 

( ), ,R x y z  is the non-inertial frame of reference attached to the moving rigid support, ( ), ,l l l lR x y z  is the non-

inertial local frame of reference (moving with the rotor during its operation) attached to the center of mass of the 
rigid disk or the geometric center of a section of the deformable shaft. The origins of the frames of reference 

gR , R  and lR  are gO , O  and lO  respectively. 
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The elastic line of the undeformed shaft is along the Oy  axis on which the disk mass center is located. 

Moreover, xOy  and yOz are both planes of symmetry for the disk and the undeformed shaft. Thus Ox, Oy  

and Oz are principal axes of inertia. 

 
Figure 1.  Mechanical components and frames of reference of the on-board rotor model. 

 
Let us consider an arbitrary point 0C  along the elastic line, i.e., it represents the geometric center of the 

undeformed shaft. Its coordinates in the frame R  are ( )0, ,0y . Let its lateral displacements along the Ox and 

Oz axes be ( ),u y t  and ( ),w y t , see Figure 2. As its coordinate along the Oy  axial axis is assumed to be a 

constant with respect to the rotor base R , the axial displacement along the Oy  axis is not taken into account. 

In classical rotordynamics theory, the transformation between the frames R  and lR  shown in Figure 3 is 

performed by the Euler angles ( ),y tψ , ( ),y tθ , ( )tφ  and two intermediate coordinate systems ( )1 1 1 1, ,i i i iR x y z  

and ( )2 2 2 2, ,i i i iR x y z . The relationship between the components of any vector V  expressed in R  and those 

expressed in lR  is described by 
 ,l l

R

R R R
V V= ℜ= ℜ= ℜ= ℜ  (2) 

where 

 
cos cos sin sin sin sin cos cos sin sin cos sin

sin cos cos cos sin ,

cos sin sin sin cos sin sin cos sin cos cos cos
l

R

R

ψ φ ψ θ φ ψ φ ψ θ φ θ φ
ψ θ ψ θ θ

ψ φ ψ θ φ ψ φ ψ θ φ θ φ

− + − 
 = − 
 + − 

ℜℜℜℜ  (3) 

is the rotation matrix of the rotor lR  with respect to its base R . 

 
Figure 2.  Lateral displacements of the rotor in bending. 
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Figure 3.  Passage from the frame linked with the rotor base R to the local frame Rl. 

Using the intermediate coordinate systems ( )3 3 3 3, ,i i i iR x y z  and ( )4 4 4 4, ,i i i iR x y z  as well as the Euler angles 

( )tα , ( )tβ  and ( )tγ , see Figure 4, the relationship between the components of any vector V  projected in gR  

and those projected in R  is expressed as follows 

 ,
g

g

R
RR R

V V= ℜ= ℜ= ℜ= ℜ  (4) 

where 

 
cos cos sin sin sin sin cos cos sin sin cos sin

sin cos cos cos sin ,

cos sin sin sin cos sin sin cos sin cos cos cos

gR
R

α γ α β γ α γ α β γ β γ
α β α β β

α γ α β γ α γ α β γ β γ

− + − 
 = − 
 + − 

ℜℜℜℜ  (5) 

is the rotation matrix of the rotor base R  with respect to the ground gR . 
Computing the energies of the rotor components requires establishing the angular velocity vectors of the 

coordinate systems and the position vectors of their origins. The instantaneous angular velocity vector l

R

R
ω  of 

the frame lR  with respect to the frame R  is written as 
 ,l

R

R
θ φ ψ= + +1i l

ω x y zɺ ɺ ɺ  (6) 

where 1ix , ly  and z  are unit vectors along the 1ilO x , l lO y  and lO z  axes. Let 1

lxω , 1

lyω  and 1

lzω  be the 

components of the angular velocity vector l
R

R
ω  projected in the local frame lR . Their expression is given by 

 
1

1

1

cos sin cos

sin .

cos cos sin

l

l

l

l

l
l

x

R y

R

z
R

R

ω ψ θ φ θ φ
ω ψ θ φ

ψ θ φ θ φω

   − +    = = +   
   +   

ω

ɺɺ

ɺɺ

ɺɺ

 (7) 

As before, the instantaneous angular velocity vector 
gR

Rω  which achieves the orientation of the frame 

attached to the rotor base R  with respect to the Galilean frame gR  is expressed in the frame R  by 

 
cos sin cos

sin ,

cos cos sin

g

x

R y
R

z

R R

ω α β γ β γ
ω α β γ
ω α β γ β γ

   − +
  = = +   

   +   

ω

ɺɺ

ɺ ɺ

ɺɺ

 (8) 

where xω , yω  and zω  are the components of the angular velocity vector 
gR

Rω  defined in the coordinate system 

fixed to the base R . Let 2

lxω , 2

lyω  and 2

lzω  be the components of the angular velocity vector 
gR

Rω  of the rigid 

base R  with respect to the ground gR  projected in the local frame lR . Their expression is obtained by 
equations (2) and (3) defining the relationship between the frames R  and lR , i.e., 

 
2

2

2

.

l

g l

l

l

l

x x

R y R y
R R

zz
R

R

ω ω
ω ω

ωω

   
    = =   
   

   

ω ℜℜℜℜ  (9) 



 

 7  

 

 
Figure 4.  Passage from the Galilean frame Rg to the frame linked with the rotor base R. 

Finally, the instantaneous angular velocity vector 
g

l

R

R
ω  of the rotor lR  with respect to the ground gR  

expressed in the local coordinate system lR  represents the sum of the vectors l
R

R
ω  and 

gR
Rω  presented in 

equations (7) and (9), then 

 
1 2

1 2

1 2

.

l l l

g g l l l

l l

l l l

l l l

x x x

R R R y y y
RR R

z z z

R R R

ω ω ω

ω ω ω

ω ω ω

     
          = + = + =     
     
          

ω ω ω  (10) 

The absolute position vector gO O  of the origin O  of the frame attached to the base R  expressed in the 
Galilean frame of reference gR  is given by 

 .

g

g
O

g
O

g
O R

x

y

z

gO O

     = 
     

 (11) 

Using equations (4) and (5) expressing the relationship between the frames gR  and R , the position vector 
gO O  is expressed in the frame R  as 

 .
g

g

g
O O

R g
O R O

g
O OR R

x x

y y

z z

gO O ℜℜℜℜ

              = =   
              

 (12) 

In what follows, the calculations are performed using the rotational ( )x tω , ( )y tω , ( )z tω  and the 

translational ( )Ox t , ( )Oy t , ( )Oz t  base motion components as well as their derivatives with respect to time t . 

4. Energy calculations of the rotor components 

This section includes formulations for the disk, the shaft and the rotating mass unbalance. The kinetic and strain 
energies are measured by an observer located at the ground and their terms are written with respect to the frame 
linked with the rotor rigid base R . The rotatory inertia, the gyroscopic inertia, the shear deformation of shaft as 
well as the geometric asymmetry of disk and/or shaft are taken into consideration. 

4.1 Disk 

According to the assumptions presented in Section 2, the disk is assumed to be rigid. Therefore only its kinetic 
energy dT  is calculated. This energy is composed of the scalar sum of the absolute translational kinetic energy 

and the absolute rotational kinetic energy about the disk mass center located at the generic abscissa dy  along the 

Oy  axis 

 ( ) ( )1
,

2 2

g g g g

l l l l
dd d

T T
R R R Rd

d mO O R R

m
T = +v v ω I ω  (13) 

with 



 

 8  

 

 

0 0 0 0

0 0 0 0 ,

0 0 0 0

d d d

d d d

d d d

x mo di
m m m

y y
m m m

z mo di
m m m

I I I

I I

I I I

   +
   

= =   
   −      

I  (14) 

where the superscript T  is the matrix transposition symbol, dm  is the mass of the disk, 
g

l
d

R

O
v  is the translational 

velocity vector of its center and 
dmI  is its principal inertia tensor. 

d

x
mI , 

d

y
mI  and 

d

z
mI  are the principal moments 

of inertia of the disk mass about the 0C x , 0C y  and 0C z axes respectively. In addition, 
d

mo
mI  and 

d

di
mI  are used to 

explain the effects due to the mean moment of inertia of the disk mass and those due to the moment of inertia 
modeling the geometric asymmetry of the disk. Thus in the presence of an asymmetry, the moments of inertia 

d

x
mI  and 

d

z
mI  are different and the contribution of the moment of inertia 

d

di
mI  in them is not nil. 

The translational velocity vector 
g

l
d

R

O
v  is found through the absolute position vector g l

dO O  of the disk mass 

center positioned at the arbitrary abscissa dy  relative to the frame R . The latter is observed from the ground and 

expressed in the frame attached to the rotor base R  by 

 .
O d d O

O d d O

O d d OR R R

x u u x

y y y y

z w w z

+     
     = + = + = +     
     +     

g l g l
d dO O O O OO  (15) 

Using the transport theorem relating the time derivative of a vector measured from a fixed frame to that of 
the same vector but measured from a moving frame, the derivation of the position vector g l

dO O  yields 

 ,

g

g g

l
d

R R

R R
R O

d d

dt dt
= + ∧ =

g l g l
g ld d

d

O O O O
ω O O v  (16) 

then 

 
( ) ( )

( ) ( )
( ) ( )

,

l
d

g

l l
d d

l
d

y z
Od O d O d O

R x z
O d O d OO O

x y
d O d O d O R O R

uu x w z y y

y w z u x v

w z y y u x w

ω ω
ω ω

ω ω

  + + + − +     = − + + + =   
   + + + − +    

v

ɺɺ ɺ

ɺ ɺ

ɺ ɺ ɺ

 (17) 

where l
dO

uɺ , l
dO

vɺ  and l
dO

wɺ  are the components of the translational velocity vector of the disk center. Considering 

the components 
lx

dω , 
ly

dω  and 
lz

dω  of the vector 
g

l

R

R
ω  for the disk, the expression of its kinetic energy becomes 

 ( ) ( ) ( )( )2 2 2 2 2 2 2 21
.

2 2

l l l l l

l l l
d d dd d d

mo x z y y di x zd
d m d d m d m d dO O O

m
T u v w I I Iω ω ω ω ω= + + + + + + −ɺ ɺ ɺ  (18) 

The spinning angle φ  is replaced by tΩ  and its time derivative φɺ  by the constant speed of rotation Ω  of 

the rotor. The translational displacements ( ),d du w , the angles of rotation ( ),d dψ θ  and their time derivatives are 

very small. Thus the trigonometric functions are replaced by their Taylor series expansion and the resulting 
expressions are limited at the order 2, i.e., 

 

2

2

sin ; cos 1 ,
2

sin ; cos 1 .
2

d
d d d

d
d d d

θθ θ θ

ψψ ψ ψ

−

−

≃ ≃

≃ ≃

 (19) 

4.2 Shaft 

The kinetic energy of the shaft element can be obtained by taking a shaft elementary volume which can be 

considered as a disk of very small thickness dy . Considering the components lO
uɺ , lO

vɺ , lO
wɺ  of the vector 

g

l

R

O
v  

and the components 
lxω , 

lyω , 
lzω  of the vector 

g

l

R

R
ω , the expression for the kinetic energy shT  of the shaft 

element, whose end-points have the abscissas 1y  and 2y  along the Oy  axis, is written in the following form 

 ( ) ( ) ( )( )2 2 2 2

1 1 1

2 2 2 2 2 2 2 2

1

1
2 ,

2 2

l l l l l

l l l
sh sh sh

y y y ymo x z mo y di x zsh sh
sh sh S sh S sh SO O Oy y y y

S
T u v w dy I dy I dy I dy

ρ ρ ω ω ρ ω ρ ω ω= + + + + + + −∫ ∫ ∫ ∫ɺ ɺ ɺ (20) 

where shρ , shS  and shl  ( 2 1shl y y= − ) are respectively the density, the cross-sectional area and the length of the 

shaft element. The mean moment of inertia of the cross-sectional area and the inertia characterizing the 
asymmetry of the shaft are 

 
( ) ( )

;
2 2

sh sh sh sh

sh sh

x z x z
S S S Smo di

S S

I I I I
I I

+ −
= =  (21) 
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The rigid base motion relative to the ground has no influence on the strain energy of the shaft because the 
latter depends only on the stresses and therefore on the transverse deflection of the shaft with respect to the rotor 
base R . In addition to the bending deformation, the shear effects highlighted by Timoshenko and the second-
order (non-linear) terms of the strain field are accounted. The non-linear strains are linked with the centrifugal 
stiffening which is proportional to the square of the base angular velocity around the transverse axes and which 
corresponds to the geometric potential energy. Thus the strain energy shU  of the shaft element is defined by 

 

2 2 2

1 1 1

2 2 2 2 2 2

2 2

1
2 2 2

sh

sh

mo mo
y y ysh S dish sh sh

sh sh Sy y y

di
sh sh sh

E I G S u w
U dy dy E I dy

y y y y y y

u w
G S

y y

κψ θ ψ θψ θ

κ ψ θ

                ∂ ∂ ∂ ∂ ∂ ∂     = + + + + − − −                ∂ ∂ ∂ ∂ ∂ ∂                

   ∂ ∂− + − −   ∂ ∂   

∫ ∫ ∫

( )( ) ( )

2 2

1 1

2 2

1 1

2 2
2 2 2 2

1

cos2

sin 2 ,
4

sh

y ydi
sh Sy y

y ydi x zsh sh
sh sh sh shy y

dy t E I dy
y y

Su w u w
G S dy t l y y dy

y y y y

ψ θ

ρκ ψ θ ω ω

   ∂ ∂  Ω −    ∂ ∂  

       ∂ ∂ ∂ ∂
 − + − Ω + + − + +       ∂ ∂ ∂ ∂        

∫ ∫

∫ ∫

 (22) 

with 

 ( ) ; ; ,
2 1 2 2

x z x z
mo dish sh sh sh sh

sh sh sh
sh

E
G

κ κ κ κκ κ
ν

+ −= = =
+

 (23) 

where shE , shG  and shν  are respectively the Young’s modulus, the shear modulus and the Poisson’s ratio of the 

isotropic shaft material. mo
shκ  and di

shκ  are respectively the mean shear correction factor of the cross-sectional area 

and that relative to the section asymmetry of the shaft. 

4.3 Mass unbalance 

The mass unbalance is modeled by a concentrated mass mum  placed at a point muP  with a distance mur  from the 

geometric center of the cross-sectional area of the shaft. Its initial angle with the Oz axis of the frame R  at rest 
is muη . The mass unbalance remains in a plane perpendicular to the Oy  axis with a constant abscissa muy  along 

the Oy  axis relative to the base R . Its kinetic energy muT  is expressed as follows 

 ( ) .
2

g g

mu mu

T
R Rmu

mu P P

m
T = v v  (24) 

The translational velocity vector 
g

mu

R
Pv  is obtained using the absolute position vector g

muO P  of the mass 

unbalance. The latter is measured from the ground and written relative to the frame linked with the base R  as 

 
( )

( )

sin

.

cos

mu O mu mu

mu O

mu O mu mu R

u x r t

y y

w z r t

η

η

 + + Ω + 
 = + + = + 
 + + Ω + 

g g l l
mu mu mu muO P O O OO O P  (25) 

Applying the transport theorem, the time derivative of the position vector g
muO P  is of the following form 

 ,

g

g g

mu

R R

R R
R P

d d

dt dt
= + ∧ =

g g
gmu mu

mu

O P O P
ω O P v  (26) 

 

( ) ( )( ) ( )
( )( ) ( )( )

( ) ( ) ( )( )

cos cos

cos sin .

sin sin

g

mu

y z
mu O mu mu mu O mu mu mu O

R x z
P O mu O mu mu mu O mu mu

x y
mu O mu mu mu O mu O mu mu R

u x r t w z r t y y

y w z r t u x r t

w z r t y y u x r t

η η ω ω
η ω η ω

η ω η ω

 + + Ω Ω + + + + Ω + − +
  = − + + Ω + + + + Ω + 
 + − Ω Ω + + + − + + Ω +  

v

ɺ ɺ

ɺ

ɺ ɺ

 (27) 

The external force vectors obtained by the application of the Lagrange’s equations to the kinetic energy of 
the mass unbalance contain the so-called “centripetal and centrifugal force vectors”, harmonic tangential force 
vectors and harmonic force vectors fixed in space with respect to the base R . Thus the excitation due to the 
mass unbalance combined with the base rotations is sinusoidal and has a frequency equal to the speed of rotation 
Ω  of the rotor. 

5. Equations of motion of an on-board rotor 

5.1 Finite element procedure 

The FE analysis is selected to discretize the rotor in bending. Therefore each node of nodal interpolation contains 
four degrees of freedom (two lateral translations and two rotations). The disk and the mass unbalance are 
modeled by one-node FEs situated at the geometric center of the cross-sectional area of the shaft. On the other 
hand, the shaft is modeled by eshn  two-node beam FEs based on the Timoshenko beam theory and thus has 

1eshn +  nodes. Let us consider an undeformed shaft FE iesh which consists of two nodes in  and 1in +  of 

coordinates in
shy  and 1in

shy +  along the Oy  axis. This FE is of density 
ieshρ , cross-sectional area 

ieshS , length 
ieshl , 
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moments of inertia 
eshi

mo
SI  and 

eshi

di
SI , Young’s modulus 

ieshE , Poisson’s ratio 
ieshν  as well as shear correction 

factors 
i

mo
eshκ  and 

i

di
eshκ  where ( )1 eshi i n≤ ≤  is the shaft FE number. Its nodal displacement vector 

i

n
eshδ  expressed 

in the coordinate system attached to the rotor rigid base R  is given by 

 1 1 1 1, , , , , , , .i i i i i i i i

i i i i i i i i i

Tn n n n n n n nn
esh esh esh esh esh esh esh esh eshR

u w u wθ ψ θ ψ+ + + +=δ  (28) 

The above vector is separated into two vectors ,

i

n u
eshδ  and ,

i

n w
eshδ  corresponding to the motions of the nodes in  

and 1in +  in the planes xOy  and yOz, i.e., 

 1 1 1 1, ,, , , ; , , , .i i i i i i i i

i i i i i i i i i i

T Tn n n n n n n nn u n w
esh esh esh esh esh esh esh esh esh eshR R

u u w wψ ψ θ θ+ + + += =δ δ  (29) 

The lateral displacements 
ieshu  and 

ieshw  of any point 0C  due to bending respectively along the Ox and Oz 

axes of the frame R  as well as the corresponding rotations 
ieshθ  and 

ieshψ  respectively around the Ox and Oz 

directions are described as a function of the nodal displacement vectors ,

i

n u
eshδ  and ,

i

n w
eshδ  as follows 

 
( ) ( )
( ) ( )

, ,

, ,

; ,

; ,

i i i i i i

i i i i i i

u n u n u
esh esh esh esh esh esh

w n w n w
esh esh esh esh esh esh

u y y

w y y

ψ

θ

ψ

θ

= =

= =

F δ F δ

F δ F δ
 (30) 

where ( )i

u
esh yF , ( )iesh yψF , ( )i

w
esh yF  and ( )iesh yθF  are the shape function vectors of a Timoshenko beam FE. They 

are third-degree and second-degree polynomial equations, functions of the dimensionless variable y  

(
ieshy y l= ) along the axis Oy  and contain the shear effect (see chen and Ku, 1992). 

The Lagrange’s equations are applied to the energies for the disk, the shaft FEs as well as the mass unbalance 
(see equations (18), (20), (22) and (24)) and the resulting elementary vectors and matrices are appropriately 
assembled. In order to deal with the boundary conditions bcn , the corresponding row and column entries of the 

assembled vectors and matrices are set to zero and eliminated. Thus the obtained global vectors and matrices are 
respectively of dimension 1gn ×  and g gn n×  where ( )4 +1g esh bcn n n= −  is the total number of degrees of 

freedom after canceling those relative to the boundary conditions bcn . The obtained linear second-order 

differential equations describing the behavior of the FE on-board rotor in bending are written with respect to the 
non-inertial frame connected to the rigid base R  as follows 

 ( ) ( ) ( ) ( ),r r r r r r rt t t t+ + =M δ C δ K δ Fɺɺ ɺ  (31) 

where rδ , rδ
ɺ  and rδ

ɺɺ  are the global displacement, velocity and acceleration vectors conforming to the 

connectivity of the FEs. ( )r tM , ( )r tC  and ( )r tK  are the global mass, damping and stiffness matrices with 

time-varying parameters due to the geometric asymmetry of the rotating rotor and to the rotations of its moving 
base. These matrices are not affected by the translational motions of the rotor base. Lastly, ( )r tF  is the global 

external force vector including the excitations due to the influence of the mass unbalance as well as to that of the 
rotational and translational base motions. In what follows, two different rotor configurations (symmetric and 
asymmetric) are to be treated and their governing differential equations for the transverse vibrations are 
presented. The following abbreviations and terms used in the equations are detailed hereafter. The subscripts 
“ d ”, “ sh” and “b ” refer to the disk, the shaft as well as the base respectively and express the contribution to 
the phenomena represented by the corresponding matrix. The superscript “id ” stands for the rotor internal 
damping introduced by estimating the Rayleigh damping coefficients, “g ” for the rotor gyroscopic effect, “e” 

for the shaft elasticity corresponding to the bending and shear deformations, “re ” for the rotational effects due 
to the base rotations (these effects come from the kinetic energies of the disk and the shaft) and “gse” for  the 

geometric stiffening effects associated with the centrifugal stressing due to the base rotations (these effects come 
from the strain energy of the shaft). In addition, the superscripts “c ” and “ s ” denote the coefficients of the time-
varying trigonometric (cosine and sine) functions. The load vectors muV , , ,d sh bV  and ,mu bV  and their 

corresponding force vectors muF , , ,d sh bF  and ,mu bF  are associated respectively with the mass unbalance, the 

inertia force due to base motions and that due to coupling between both phenomena. 

5.2 Symmetric rotor 

The disk and the shaft are symmetric. Moreover, the rotor is excited by a mass unbalance and base motions 
which consist of a constant angular velocity xω  (or yω ) around the Ox axis (or the Oy  axis) and a harmonic 

translation along the Oz axis given by sin z
O Oz Z t= Ω . The resulting linear second-order differential equations 

of the dynamic system include constant terms and are solved by analytical methods in order to display the major 
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basic phenomena occurring in rotordynamics with base motions. The equations of motion (31) are rewritten in 
equation (32) due to the rotation xω  and equation (34) due to the rotation yω  

 
( )( )2 2, , 2

, , , , ,

0
, 1 , 1 , , 1 , , 1 , ,

cos sin

cos sin cos sin ,

x xg e re gse x c s
d sh r d sh r sh d sh b sh b r mu mu

c s c z s z
mu b mu b d sh b d sh b d sh b

t t

t t t t

ω ω ω+ Ω + + + = Ω + Ω

+ Ω + Ω + Ω + Ω +

M δ C δ K K K δ F F

F F F F F

ɺɺ ɺ

 (32) 

where 

 
( )

2 22 2 , 2 , 2
, 1 , , 1 ,

2 2 0
, , 1 , , 1 , , , , , ,

; ; ; ,

; ; .

x xc c s s c c x s s x
mu mu mu mu mu b mu b mu b mu b

c s w z x y x
d sh b d sh b d sh b O d sh b d sh bZ

ω ω

ψ

ω ω

ω ω

= Ω = Ω = =

= = Ω + = − Ω

F V F V F V F V

F 0 F V F V
 (33) 

 
( ) ( )2, , , 2

, , , , , , , ,

, 2 , 2 , , 2 , , 2

cos sin

cos sin cos sin ,

y y yg re y e re y re y c s
d sh r d sh d sh b r sh d sh b d sh b r mu mu

c s c z s z
mu b mu b d sh b d sh b

t t

t t t t

ω ω ωω ω ωΩ+ Ω + + + Ω + = Ω + Ω

+ Ω + Ω + Ω + Ω

M δ C C δ K K K δ F F

F F F F

ɺɺ ɺ

 (34) 

where 

 
( )

2 2, , 2 , , 2
, 2 , , , 2 , ,

2 2
, , 2 , , , , 2 , ,

; ,

2 ; .

y y y yc c y c y s s y s y
mu b mu b mu b mu b mu b mu b

c u z y s w z y
d sh b d sh b O d sh b d sh b OZ Z

ω ω ω ωω ω ω ω

ω ω

Ω Ω= Ω + = Ω +

= − Ω = Ω +

F V V F V V

F V F V
 (35) 

In equations (33) and (35), cmuF , s
muF , ,

c
mu bF , ,

s
mu bF , , ,

c
d sh bF , , ,

s
d sh bF  are the amplitudes of sinusoidal force 

vectors, while 0
, ,d sh bF  is a constant force vector. 

As xω  and zω  have similar influences on rotordynamics, only xω  is considered in this study. 

5.3 Asymmetric rotor 

The disk is assumed to be asymmetric, while the shaft is symmetric. The rigid base and thereby the rotor are 
subjected to the same excitations as indicated in Section 5.2. However, the left-hand side of the linear equations 
of motion contains periodic parametric coefficients and their right-hand side contains load vectors multiplied by 
trigonometric functions due to the geometric asymmetry of the rotor. Thus the equations containing the Rayleigh 
damping are solved by a numerical time integration method. The equations of motion (31) are rewritten in 
equation (36) due to the motion xω  and equation (38) due to the motion yω  

 

( ) ( )
( )( )2 2 2 2

, ,
, , , , , , ,

, , 2 , , 2 , , 2
, , , , , , ,

, 1

cos2 sin 2 cos2 sin 2

cos2 sin 2 cos sin
x x x x

c s id g g c g s
d sh d sh d sh r d sh d sh d sh d sh r

e re gse x re c x re s x c s
sh d sh b sh b d sh b d sh b r mu mu

mu b

t t t t

t t t tω ω ω ωω ω ω

+ Ω + Ω + + Ω + Ω Ω + Ω Ω

+ + + + Ω + Ω = Ω + Ω

+

M M M δ C C C C δ

K K K K K δ F F

F

ɺɺ ɺ

0
, 1 , , 1 , , 1 , , , , 3 , , 3cos sin cos sin cos2 sin 2 ,c s c z s z c s

mu b d sh b d sh b d sh b d sh b d sh bt t t t t tΩ + Ω + Ω + Ω + + Ω + ΩF F F F F F

 (36) 

where 
 , ,

, , 3 , , , , 3 , ,2 ; 2 .c di x s di x
d sh b d sh b d sh b d sh b

ψ θω ω= Ω = ΩF V F V  (37) 

 

( ) (
) ( )( 2 2

, ,
, , , , , , ,

, , , 2 , , , , 2
, , , , , , , , , ,

, ,
, ,

cos2 sin 2 cos2 sin 2

cos2
y y y y y

y

c s id g g c g s
d sh d sh d sh r d sh d sh d sh d sh

re y e re y re y re c y re c y
d sh b r sh d sh b d sh b d sh b d sh b

re s
d sh b

t t t t

tω ω ω ω ω

ω

ω ω ω ω ωΩ Ω

Ω

+ Ω + Ω + + Ω + Ω Ω + Ω Ω

+ + + Ω + + Ω + Ω

+

M M M δ C C C C

C δ K K K K K

K

ɺɺ

ɺ

( ) )2, , 2
, , , 2 , 2

, , 2 , , 2

sin 2 cos sin cos sin

cos sin .

yy re s y c s c s
d sh b r mu mu mu b mu b

c z s z
d sh b d sh b

t t t t t

t t

ωω ωΩ + Ω = Ω + Ω + Ω + Ω

+ Ω + Ω

K δ F F F F

F F

 (38) 

The elementary vectors and matrices involved in equations (32) to (38) are presented in Appendix A. 
 

6. Dynamic analysis 

Deterministic rotational and translational excitations of the rotor base have been stated in the previous section for 
two rotor configurations. The first one is a symmetric rotor and treated through analytical methods to seek its 
natural frequencies and to compute its steady-state responses and its orbits. The second one is an asymmetric 
rotor and examined through the Floquet theory to evaluate its dynamic stability as well as the Newmark method 
to predict its steady-state orbits in the time domain. 

6.1 Equations with constant coefficients 

In this case, the system of linear differential equations (31) contains constant matrices (according to equations 
(32) and (34)). It is transformed into a first-order differential equation by introducing the state-space vector rD , 

i.e., 
 ,r r r r= +D A D Bɺ  (39) 

where 
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 ( )-1-1 -1; ; .r
r r r

r rr r r r r t

    
= = =    − −     

0δ 0 I
D A B

M Fδ M K M Cɺ
 (40) 

6.1.1 Natural frequencies 

The rotor is studied in free motion and the homogeneous system is thus considered, i.e., equation (39) with no 
external forces. The eigenvalues of the matrix rA  are calculated for seeking the natural frequencies rf  of the 

rotor. Therefore the Campbell diagram can be plotted to represent the frequencies rf  as a function of the speed 

of rotation Ω  of the rotor. 

6.1.2 Steady-state responses and orbits 

Since the steady-state responses are sought, only the particular solution of the equations of motion is considered. 
Due to the form of the external force vectors in the right-hand side, this solution adopts the following 

 ( ) ( ) ( ) ( ) 0cos sin cos sin ,c s c z s z
r mu mu b b bt t t t= Ω + Ω + Ω + Ω +δ δ δ δ δ δ  (41) 

c
muδ , s

muδ , c
bδ , s

bδ  and 0
bδ  are unknown displacement amplitude vectors. Using rδ , the velocity as well as 

acceleration vectors rδ
ɺ , rδ
ɺɺ  are obtained. Substituting them into equation (39) yields the steady-state solutions 

 
2

,

2
,

,
c cc
mu mu bmur r r

s s s
r r r mu mu mu b

 +  − Ω Ω    =    − Ω − Ω +       

F FδK M C

C K M δ F F
 (42 ) 

 
2

, ,

2
, ,

,
ccz z
d sh bbr r r

z z s s
r r r b d sh b

   − Ω Ω    =    − Ω − Ω        

FδK M C

C K M δ F
 (43) 

 0 -1 0
, , .b r d sh b=δ Κ F  (44) 

The constant vector 0bδ  is nil in the case of the angular velocity yω , i.e., of the base motion around the Oy  

axial axis (see equation 34) but not in the case of xω , i.e., of the base motion around the Ox transverse axis (see 
equation 32). It is concluded that equation (42) is used to investigate the mass unbalance response of the rotor, 
equation (43) is employed to observe the frequency response of the rotor to the translational base motion and 
equation (41) helps to illustrate the steady-state orbits described by the points situated along the shaft elastic line. 

6.2 Equations with time-varying coefficients 

In this case, the system of linear differential equations (31) has periodic parametric coefficients (according to 
equations (36) and (38)) of period τ π= Ω . 

6.2.1 Dynamic stability 

The stability of the periodic solution is predicted by employing the Floquet theory. In other words, by 
determining the so-called “Floquet transition matrix” (or monodromy matrix) during one period of the 
parametric excitation and by finding its eigenvalues, the zones of instability are identified, see Evan-Iwanowski 
(1976), Dufour and Berlioz (1998) as well as Berlioz et al. (2000). First, the application of the Floquet theory 
requires a homogeneous differential system represented in the state-space form. Namely, the linear second-order 
differential equations (31) of the rotor become homogeneous and have to be transformed into a first-order system 

 .r r r=D A Dɺ  (45) 

Then, the system of equation (45) of the rotor is integrated over one period τ π= Ω  using the Runge-Kutta 

time-step integration scheme with the following initial conditions at time 0t =  

 ( )0 0,0, ,1, ,0 ,
T

r =D … …  (46) 

where only the -thi  component is not nil and equal to 1. For each integration, the vector ( )r τD  is obtained and 

represents the solution of equation (45) at the end of one period τ  and the -thi  column of the Floquet transition 

matrix ( )r τφ . To provide the Floquet transition matrix at time t τ= , 2 gn  integrations are necessary where gn  

is the total number of degrees of freedom of equation (31). The eigenvalues or characteristic multipliers of the 
Floquet transition matrix ( )r τφ  of the system (45) are calculated. Finally, the system (45) is unstable if the 

modulus of at least one of the characteristic multipliers is greater than 1. 

6.2.2 Time history responses and orbits 

In the presence of time-varying parametric coefficients, the linear equations of motion (31) are solved using the 
Newmark time-step integration algorithm based on the average acceleration to predict the rotor orbits when the 
steady-state responses are reached, i.e., the integration algorithm requires the presence of the damping to 
overcome the transient regime. 
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7. Simulation results and discussion 

7.1 Symmetric rotor 

7.1.1 Configuration and data 

Figure 5 and Table 1 present the components and the characteristics of the symmetric on-board rotor. The origin 
O  of the reference frame R  coincides with the shaft end-point positioned at the center of the bearing # 1. The 
symmetric shaft is modeled with 12 identical two-node Timoshenko beam FEs. The symmetric disk is located at 
node 5. The rigid short bearings # 1 and # 2 generate a pinned-pinned rotor and are located at nodes 1 and 13. 
Thus the corresponding degrees of freedom are canceled. The mass unbalance is placed on the disk. 

The investigated rotor runs at a constant speed of rotation Ω  and is subjected to mass unbalance excitation 
as well as to combined constant rotation and harmonic translation of the rigid base: the constant rotation around 
the Ox axis (or the Oy  axis) is given by xω  (or yω ), while the harmonic translation along the Oz axis is 

expressed as sin z
O Oz Z t= Ω . The steady-state dynamic analysis is performed by means of Campbell diagrams, 

mass unbalance responses, responses to the harmonic translational base excitations and rotor orbits. In addition, 
the equations of motion of the on-board rotor are parametrically affected (i.e., the left-hand side of equations 
(32) and (34)) by the base rotations, while the base translations have only an effect on the external force vector 
(i.e., on the right-hand side). Therefore the overall behavior is analyzed as a function of the base rotation. 

 
Figure 5.  Symmetric on-board rotor configuration. 

Table 1.  Main characteristics of the investigated rotor 
Disk material density 

Disk radius 
Disk thickness 
Disk location 

Shaft material density 
Shaft radius 
Shaft length 

Young’s modulus of the shaft 
Poisson’s ratio of the shaft 

Shear correction factor of the shaft 
Mass unbalance and its phase 

ρd= 7800 kg/m3 
rd=0.15 m 
ed=0.03 m 
yd=0.4/3 m 

ρsh=7800 kg/m3 
rsh=0.01 m 
lsh=0.4 m 

Esh=2×1011 N/m2 
νsh=0.3 

κsh
x= κsh

z =0.8864 
mmurmu=150 g mm, ηmu=0° 

 

7.1.2 Campbell diagrams 

In the case of a symmetric rotor, the linear equations of motion always display constant coefficients, see 
equations (32) and (34). It should be mentioned that a fixed base or a rotating base around the Oy  axis keep the 

system isotropic, while a base rotation around the Ox axis makes it anisotropic. Moreover, the sign of the 
components of the damping and stiffness matrices depends on the direction of the base rotation around Oy  but 

not on that of the base rotation around Ox. In the case of a positive direction (counterclockwise) of the base 
rotation around Oy  and any direction around Ox, the symmetric stiffness matrices can lose their positive 

definiteness because of the presence of negative diagonal terms containing the angular velocity xω  or yω . Thus 
a possible dynamic instability of the rotor can occur. In the presented application, since the eigenvalues of the 
state-space system (39) with no external forces are purely imaginary quantities whatever the constant angular 
velocity of the base rotations in the zone of interest [ ]or 0;10 Hzx yω ω ∈ , the on-board rotor is stable for all the 

considered mode shapes included in its operating range [ ]0; 6000 rpmΩ ∈ . The natural frequencies rf  being 

deduced from these eigenvalues depend on the speed of rotation Ω  of the rotor and on the angular velocity of 
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the base rotations either around Ox or Oy . They are represented by the Campbell diagrams plotted in Figure 6 

for the rotor subjected to the angular velocity either xω  or yω . When the rotor base is fixed ( 0x yω ω= = ), the 
system is isotropic and therefore the dynamic behavior of the rotor is symmetric, i.e., the natural frequencies of 
each pair of backward and forward whirl modes are equal at rest ( 0Ω = ). Even if the natural frequencies 

strongly do not change, the base rotation xω  breaks the symmetry of the rotor behavior, see Figure 6(a). Since 
the corresponding stiffness matrices are symmetric with anisotropic terms and there is no damping matrix 
associated with xω , the zoom shows that the natural frequencies of the first backward and forward whirl modes 
at rest are non-equal, this justifies that the behavior of the rotor is non-symmetric. The rotational effects due to 

xω  decrease the natural frequencies, while the geometric stiffening effects associated with the centrifugal 

stressing relative to xω  increase them. Unlike the previous case, the solicitation due to the base rotation around 
Oy  does not bring any asymmetry to the dynamic behavior of the rotor (because the corresponding matrices are 

symmetric and skew-symmetric with isotropic terms) but shifts and changes the natural frequencies (due to 
additional terms in the damping and stiffness matrices), see Figure 6(c). The damping matrix associated with yω  
makes the pairs of backward and forward whirl modes at rest unequal and reversed compared to the case of fixed 
base and that of xω . Increasing the speed of rotation Ω  of the rotor decreases the backward whirl frequencies 
and increases the forward ones. Table 2 introduces comparisons between the first four natural frequencies rf  of 

the rotor relative to the base rotations either around Ox or Oy . At any angular velocities, yω  has an influence 

greater than xω  on the natural frequencies, i.e., the natural frequencies of the rotor corresponding to the base 
rotation around the Oy  axis are more different when compared to those obtained when the base is fixed. 
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Figure 6.  Campbell diagrams for the first three natural frequencies of the rotor subjected to the base angular 

velocity: (a) ωx, or (c) ωy, with the values: 0 (solid line), 5 Hz (dashed line), 10 Hz (dotted line), (b) Zoom on the 
intersection of the first forward whirl frequency with the speed of rotation of the rotor. 

Table 2.  Natural frequencies as a function of the speed of rotation of the rotor and the constant rotations of the 
base (B and F stand for backward and forward whirl modes) 

Ω          
rpm 

fr             
Hz 

Fixed      
base 

ω
x                      

Hz 
5 10 

  

ω
y                      

Hz 
5 10 

  

0 

f1
B 

f1
F 

f2
B 

f2
F 

44.93 
44.93 
123.79 
123.79 

44.96 
45.19 
123.80 
123.88 

45.04 
45.93 
123.84 
124.15 

 

49.42 
40.42 
124.49 
123.32 

53.88 
35.88 
125.42 
123.09 

 

1500 f1
B 42.28 42.40 42.73 46.65 50.99 

0 1500
40

50

f=Ω/60 
 

f=Ω/60 
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f1
F 

f2
B 

f2
F 

47.02 
104.64 
148.73 

47.17 
104.70 
148.77 

47.66 
104.90 
148.90 

 

42.40 
106.48 
149.40 

37.76 
108.54 
150.27 

 

3000 

f1
B 

f1
F 

f2
B 

f2
F 

39.07 
48.62 
90.93 
179.05 

39.18 
48.78 
91.02 
179.08 

39.48 
49.27 
91.27 
179.18 

 

43.36 
43.92 
93.76 
180.69 

47.63 
39.20 
96.75 
182.49 

 

4500 

f1
B 

f1
F 

f2
B 

f2
F 

35.53 
49.86 
81.66 
213.80 

35.62 
50.02 
81.76 
213.83 

35.86 
50.51 
82.07 
213.92 

 

39.79 
45.10 
85.22 
216.20 

44.04 
40.32 
88.89 
218.73 

 

6000 

f1
B 

f1
F 

f2
B 

f2
F 

31.96 
50.82 
75.55 
251.95 

32.03 
50.99 
75.67 
251.97 

32.23 
51.48 
76.03 
252.05 

 

36.26 
46.02 
79.60 
254.91 

40.56 
41.20 
83.72 
257.97 

 

 

7.1.3 Responses to the mass unbalance or to the translational base excitation 

The rotor response due to the mass unbalance effect can be related to the constant rotational base motions, see 
equations (32) to (35). Figure 7 presents the mass unbalance responses at the middle of the shaft (i.e., node 7) of 
the rotor excited by the angular velocity either xω  or yω . In the operating range [ ]0; 6000 rpmΩ ∈ , the rotor 

exhibits one principal critical speed of rotation (one peak II ) when the base is fixed. It exhibits only one peak in 
the presence of the base rotation yω  (due to the isotropic system), see Figure 7(b), but three peaks (I , II , III ) 

in the presence of xω  (due to the anisotropic system), see Figure 7(a). These peaks correspond to the intersection 
of the straight line 60f = Ω  ( Ω  in rpm) with the natural frequencies of the rotor as shown in Figure 6, i.e., the 

intersection with the frequencies of the first and second backward whirl modes (I , III ) and of the first forward 
whirl mode (II ) for xω  and the intersection with the frequencies of the first forward whirl mode for yω . The 
responses confirm that the rotor keeps a symmetric dynamic behavior in the case of the base rotation around Oy  

but has a non-symmetric dynamic behavior in the case of the base rotation around Ox as stated in Section 7.1.2 

and presented in Figure 6. For increasing values of xω , the principal critical speed (II ) increases slightly as 
shown by the points (A , B , C ) in Figure 6(b) and the amplitudes of the additional peaks (I , III ) become 
larger and larger. As shown by the points (A , B , C ) in Figure 6(c), the critical speed position is shifted down 

when the angular velocity yω  increases because the backward and forward whirl modes at rest ( 0Ω = ) are 
reversed. It is also observed that even if the rotor is at rest, the amplitudes of the mass unbalance response are not 
nil due to the presence of the base rotation either around Ox or Oy . In addition, these amplitudes become larger 

when the angular velocity of the base rotation increases, see Table 3. At the highest speeds of rotation of the 
rotor, the corresponding response amplitudes reach the limiting values which are roughly equal to 12.431×10-6 m 
for xω  and 11.512×10-6 m for yω . 

Under combined motions of the base, the rotor response due to the harmonic translational base motions 
depends on the constant rotations of the base, see equations (32) to (35). Figure 8 presents the evolution of the 
frequency responses at the middle of the shaft (i.e., node 7) of the rotor running at a speed of rotation 

1500 rpmΩ =  (=25 Hz) and excited by a harmonic base translation of amplitude 61 10 mOZ −= ×  in the Oz 

direction. The frequency of the base translation is contained in the range of interest [ ]0; 200 HzzΩ ∈ . In the 

presence of the angular velocity xω  or yω , the responses always exhibit four critical frequencies (four peaks) 
corresponding to the natural frequencies of the rotor at 1500 rpmΩ = , see also the Campbell diagrams plotted in 

Figure 6 and presented in Table 2. In the case of increasing values of yω , the peak relative to the third natural 
frequency and produced by the harmonic base translation along the Oz axis becomes smaller and smaller, see 
Figure 8(b). This is because equation (34) presents a negative cosine term containing the frequency zΩ  of the 
base translation. Lastly, it is noted that the operating zones of the frequency responses along the zΩ  axis do not 
change mostly for the angular velocity xω , while they can change significantly for yω . 
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(a)  

(b)  
Figure 7.  Mass unbalance responses of the rotor in the case of the constant rotation of the base around:           

(a) the Ox axis, or (b) the Oy axis. 
Table 3.  Amplitudes of the mass unbalance responses of the rotor at rest for the angular velocity either ωx or ωy 

ω
x               

Hz 
Amplitude   

m 
ω

y              
Hz 

Amplitude   
m 

5 
10 

0.107×10-6 
0.428×10-6 

5 
10 

0.109×10-6 
0.449×10-6 

 

7.1.4 Influence of the base excitations on the orbits 

In this section, the orbits of the symmetric rotor subjected successively to a translation, a rotation and combined 
rotation and translation of the base are calculated with the finite element (FE) method. For validation purposes, a 
comparison is performed with results obtained by the Rayleigh-Ritz (RR) method which is based on the work of 
Duchemin (2003) and which has been extended in the present paper to account for a pure rotation and combined 
motions of the rotor base. The FE model is based on 48 degrees of freedom, while the RR method uses only one 
classical trigonometric function as a displacement function, i.e., two generalized coordinates ( )1q t  and ( )2q t  

 1 2sin ; sin .
sh sh

y y
u q w q

l l

π π   
= =   

   
 (47) 

7.1.4.1 Pure translation of the base and validation against the Rayleigh-Ritz method 

The orbits presented in Figure 9 are produced at the middle of the rotor presented in Section 7.1.1 and subjected 
to mass unbalance ( 15 g mmmu mum r =  and 0muη = � ) and to harmonic base translation with ( 0.1 mOZ =  and 

2 HzzΩ = ) for a constant speed of rotation 20000 rpmΩ = . Figure 9(a) compares the orbits obtained with the 

RR approaches and no deviation can be observable. Figure 9(b) presents the orbit predicted with the FE model. It 
is qualitatively similar to that of Figure 9(a) and exhibits very small magnitude deviations: the x  magnitude 
deviation is 4.23%uε =  and the z  magnitude deviation is 0.58%wε = − . In conclusion, the RR and FE models 

developed in this paper are validated regarding the RR model developed by Duchemin (2003). 

III 
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(a)  

(b)  
Figure 8.  Frequency responses of the rotor to the sinusoidal base translation for a speed of rotation Ω=1500 rpm 

and the constant rotation of the base around: (a) the Ox axis, or (b) the Oy axis. 
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Figure 9.  Orbits at the middle of the rotor running at Ω=20000 rpm and subjected to a harmonic base translation 

with ZO=0.1 m and Ωz=2 Hz using: (a) RR method, (b) FE method. 

7.1.4.2 Pure rotation ωx (or ωy) of the base 

Figure 10(a) displays the classical orbit at the middle of the rotor (node 7) due to the mass unbalance for a 
constant speed of rotation 1500 rpmΩ =  (=25 Hz=the mass unbalance frequency) and a fixed base. Since the 

matrices of the rotor system are symmetric and skew-symmetric with isotropic diagonal and cross-coupling 
components, the dynamic behavior is symmetric and the orbit is circular and periodic of period equal to the 
inverse of the mass unbalance frequency Ω . The orbit center coincides with the point O  (bearing center) 
because the bearings are rigid and the motion amplitude of the rotor in both Ox and Oz directions is 3.628×10-6 
m at its middle. Figures 10(b) and 10(c) compare the steady-state mass unbalance orbits in the case of a pure 
rotation of the base either around Ox or Oy , see the solution in equation (41). 

For the base angular velocity 5 Hzxω = , the corresponding trajectory illustrated by the orbits oscillates 

about a static position spC  due to the constant Coriolis force vector 0
, , , ,

y x
d sh b d sh b

ψ ω= − ΩF V  acting in the Ox 

direction, see equation (32). The displacement yielding the static position spC  is calculated using equation (44) 

and its coordinate along Ox is approximately equal to 3.2×10-3 m. The coordinate of the static position 
displacement is very large compared to the orbit magnitude (dynamic displacement amplitude of the rotor) and 
thus forces the plot to adopt the point spC  as an origin. In addition, the periodic orbit is an ellipse due to the non-

symmetric dynamic behavior of the rotor and its orthogonal axes defining the x  and z  amplitudes of the 

O 
 

O 
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flexural vibrations at the middle of the shaft are 3.554×10-6 m and 3.784×10-6 m respectively, i.e., they are 
slightly different. 

For the base angular velocity 5 Hzyω = , there is no such a static position and the orbit center remains at the 

bearing center O . The periodic orbit keeps a circular shape because the symmetric dynamic behavior of the 
rotor is never broken, while its radius representing the x  and z  vibration amplitudes becomes greater than that 
obtained for a fixed base because the mass unbalance excitation increases in a way more important than the 
stiffness matrix of the rotor. Lastly, this radius is 6.183×10-6 m at the middle of the shaft, i.e., the amplitude 
increases by a factor of about 1.7 in both transverse directions. The RR and FE mass unbalance orbits are 
qualitatively similar and show quantitatively very low x  and z  magnitude deviations: 5.75%u wε ε= = − . 

 
 

(a) (b) (c)  
Figure 10.  Mass unbalance orbits at the middle of the rotor running at Ω=1500 rpm and subjected to three values 

of base rotation: (a) ωx=ωy=0, i.e., fixed base, (b) ωx=5 Hz, ωy=0, (c) ωx=0, ωy=5 Hz. 

7.1.4.3 Combination of translation zO=ZOsinΩzt and rotation ωx (or ωy) of the base 

Because the differential equations describing the rotor motion are linear (see equations (32) and (34)), the rotor 
orbits contain the response to the mass unbalance excitation superimposed with the response to the rotational and 
translational base motions. Thus the orbit characteristics (shape and size) depend on both excitations. In addition, 
the steady-state orbits are periodic because the external excitations due to both the mass unbalance and the base 
translation are sinusoidal and commensurable, see the solution in equation (41). The period of the orbits is equal 
to the inverse of the greatest common factor for the mass unbalance frequency Ω  and the base translation 
frequency zΩ . Figures 11 to 13 give the orbits at the middle of the shaft (node 7) for a constant speed of rotation 

1500 rpmΩ =  (=25 Hz) and different cases of combined rotational and translational motions of the rotor base. 

In Figure 11, the base translation is kept constant ( 61 10 mOZ −= ×  and 200 HzzΩ = ), while the base rotation 

varies ( xω  or 5 Hz and 10 Hzyω = ). Due to the sinusoidal base translation, complicated orbits appear instead of 

the classical circle or ellipse. As shown previously when the rotor is subjected to the angular velocity xω , the 
rotor orbits oscillate about a static position spC . The coordinates along Ox of the displacements yielding the 

static position are calculated using equation (44) and increase with xω . They are roughly 3.2×10-3 m for 

5 Hzxω =  and 6.3×10-3 m for 10 Hzxω = . The plot adopts the static position spC  as an origin. The magnitudes 

of the orbits remain almost the same for increasing values of xω . When the rotor is excited by the angular 

velocity yω , the plot adopts the bearing center O  as an origin. The magnitudes of the orbits increase for 

increasing values of yω  because the mass unbalance excitation increases in a way more important than the 
stiffness matrix of the rotor. In Figure 12, the base rotation and the amplitude of the harmonic base translation 
are kept constant (xω  or 5 Hzyω =  and 61 10 mOZ −= × ), while the frequency of the base translation varies 

( 100 Hz and 120 HzzΩ = ). The frequency of the harmonic translational base excitation changes extremely the 

shape of the orbits, while it modifies slightly their magnitudes (when compared to those shown in Figure 11). As 
stated previously, the orbit period is equal to the inverse of the greatest common factor of the mass unbalance 
frequency Ω  and the base translation frequency zΩ . Namely, one period of the above orbit corresponds to one 
period of the mass unbalance excitation and to four periods of the base translation for 100 HzzΩ = , while one 

period of the below orbit corresponds to five periods of the mass unbalance excitation and to 24 periods of the 
base translation in the case where 120 HzzΩ = . It should be noted that for several base translation frequencies 

different from the mass unbalance frequency, the orbit shapes become more complicated with respect to those 
obtained when the base is subjected to the pure rotation, see Figures 10(b) and 10(c). In Figure 13, the base 
rotation and the frequency of the base translation are kept constant (xω  or 5 Hzyω =  and 200 HzzΩ = ), while 

the amplitude of the harmonic base translation varies ( 6 65 10 m and 10 10 mOZ − −= × × ). Increasing the 

amplitudes makes the orbits much larger and more complicated especially when compared with the mass 

O Csp O 
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unbalance orbits for a base excited by a pure rotation, see Figure 10. The base translation has a large influence 
on the z  orbit magnitudes but a slight influence on the x  magnitudes. 

The RR and FE orbits shown in Figure 14 are qualitatively the same but quantitatively different. The x  and 

z  magnitude deviations are 6.27%uε = −  and 0.04%wε =  for xω  as well as 8.18%uε = −  and 4.03%wε = −  

for yω . The static position coordinate deviation is 5.96%spε = − . 
 Angular velocity of the base rotation 
 ω
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Figure 11.  Influence of the angular velocity ωx and ωy of the base. Orbits at the middle of the rotor running at 
Ω=1500 rpm (=25 Hz) and subjected to a base translation: zO=ZOsin(Ωzt) with ZO=1×10-6 m and Ωz=200 Hz. 
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Figure 12.  Influence of the frequency Ωz of the base translation: zO=ZOsin(Ωzt) with ZO=1×10-6 m. Orbits at the 
middle of the rotor running at Ω=1500 rpm and subjected to two angular velocities of the base:                        

ω
x=5 Hz or ωy=5 Hz. 
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Figure 13.  Influence of the amplitude ZO of the base translation: zO=ZOsin(Ωzt) with Ωz=200 Hz. Orbits at the 

middle of the rotor running at Ω=1500 rpm and subjected to two angular velocities of the base:                        
ω

x=5 Hz or ωy=5 Hz. 
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Figure 14.  Comparison of RR and FE orbits at the middle of the rotor running at Ω=1500 rpm and subjected to a 

base translation: zO=ZOsin(Ωzt) with ZO=1×10-6 m and Ωz=120 Hz, combined with two angular velocities of the 
base: ωx=5 Hz or ωy=5 Hz. 
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7.2 Asymmetric rotor 

7.2.1 Configuration and data 

The description of the asymmetric rotating rotor is similar to that in Section 7.1 but the disk is asymmetric and 
its geometric properties change. The shape of the disk presented in Figure 15 is defined as a function of the angle 

dθ  with the 0C x  axis of the frame R . The rotor data are the same as given in Table 1. The rotor is subjected to 

the same excitations as indicated in the previous section. The shaft is discretized into 12 identical two-node 
Timoshenko beam FEs. The disk as well as the rigid short bearings # 1 and # 2 are located at nodes 5, 1 and 13 
respectively. Thus the degrees of freedom of the bearing nodes are eliminated. The linear differential equations 
of motion have time-varying periodic parametric terms. In order to treat them and predict the steady-state 
behavior, the Runge-Kutta and Newmark time-step integration methods are used. The proportional Rayleigh 
damping , ,

id Rd Rd e
d sh d sh shα β= +C M K  of the rotating parts (disk and shaft) is taken into account (see Spears and 

Jensen, 2009) and its corresponding coefficients estimated for a modal damping factor 0.03mdξ =  are given by 

12.43Rdα =  and 55.66 10Rdβ −= × . The dynamic analysis is performed by means of stability charts, rotor orbits 

and fast Fourier transforms (FFTs). In addition, the equations of motion of the on-board rotor (see equations (36) 
and (38)) show that the base rotations have a parametric influence on these equations, while the base translations 
have only an influence on the external force vector. Therefore the overall behavior is evaluated as a function of 
the base rotation. 

 
Figure 15.  Geometry of the asymmetric disk. 

 

7.2.2 Stability charts 

The instability coming from the parametric excitation due to the geometric asymmetry of the rotor can be related 
to the base rotations, see equations (36) and (38). For a certain angular velocity of the rotor base, two factors 
affect the parametric excitations generated in the asymmetric rotor: the speed of rotation Ω  of the rotor and the 
moment of inertia 

d

di
mI . The latter depends on the angle dθ  describing the geometric asymmetry of the disk. 

Therefore the stability analysis covers the two parameters Ω  as well as dθ  and the stability charts of the rotor 

shown in Figures 16 and 17 are established for the primary resonance with 5dθ∆ = �  and 5 rpm∆Ω = . The 

zones of instability are bounded by transition curves. The increase of the base angular velocity xω  roughly does 
not change the size of the instability zones and slightly shifts them down (see Figure 16). For the considered 
values of the angle dθ , the on-board rotor can become unstable for [ ]2980; 3715 rpmΩ ∈  and 5 Hzxω =  as 

well as for [ ]2965; 3700 rpmΩ ∈  and 10 Hzxω = . In the same way, the increase of yω  does not change the 

size of the instability zones but this time, their limits are remarkably shifted down (see Figure 17). For the 
considered values of dθ , the rotor can be unstable for [ ]2690; 3420 rpmΩ ∈  and 5 Hzyω =  as well as for 

[ ]2390; 3120 rpmΩ ∈  and 10 Hzyω = . 

The stability chart plotted in Figure 18(a) is predicted with the RR method. Figure 18(b) compares the 
bounds of the primary instability regions calculated by the RR and FE methods. As can be seen in this figure, the 
bounds predicted by the RR method are 4-7% greater than those predicted by the FE method and the FE 
instability region is narrower. 
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7.2.3 Orbits 

7.2.3.1 Pure rotation ωx (or ωy) of the base 

Figure 19(a) presents the mass unbalance orbit at the middle of the asymmetric rotor (node 7) for an angle of 
disk asymmetry 45dθ = � , 1500 rpmΩ =  (=25 Hz) and a fixed base (i.e., 0x yω ω= = ). The predicted orbit is 

circular but slightly smaller than that of the symmetric rotor because the mass and the inertia of the rotor are 
reduced. The predicted orbit corresponding to the base angular velocity 5 Hzyω =  is also slightly smaller, see 

Figure 19(c). On the opposite side, the predicted orbit corresponding to 5 Hzxω =  is much greater than that of 

the symmetric rotor due to high external forces as explained in the next section, see Figure 19(b). 

(a) (b)  
Figure 16.  Stability charts of the rotor due to two base angular velocities: (a) ωx=5 Hz, (b) ωx=10 Hz. 

(a) (b)  
Figure 17.  Stability charts of the rotor due to two base angular velocities: (a) ωy=5 Hz, (b) ωy=10 Hz. 

(a) (b)  
Figure 18.  (a) Stability chart of the rotor due to a base angular velocity ωy=5 Hz using the RR method,               

(b) Deviations of onsets and ends of the instability zones. 

(a) (b) (c)  
Figure 19.  Orbits of the asymmetric rotor running at Ω=1500 rpm and subjected to mass unbalance and three 

values of base rotation: (a) ωx=ωy=0, i.e., fixed base, (b) ωx=5 Hz, ωy=0, (c) ωx=0, ωy=5 Hz. 
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7.2.3.2 Combination of translation zO=ZOsinΩzt and rotation ωx (or ωy) of the base 

Since the equations of motion are linear with periodic parametric coefficients (see equations (36) and (38)), the 
steady-state response to the mass unbalance is superimposed with the steady-state response to the base 
excitations. Therefore the orbit characteristics are related to both excitations. Figure 20 presents the orbits and 
their FFTs at the middle of the asymmetric rotor (node 7) for 45dθ = � , 1500 rpmΩ =  (=25 Hz) and combined 

rotational and translational excitations of the rotor base. In this figure, the base rotation and the amplitude of the 
harmonic base translation are kept constant (xω  or 5 Hzyω =  and 61 10 mOZ −= × ), while the frequency of the 

base translation varies ( 100 Hz,120 Hz and 200 HzzΩ = ). When the rotor is excited by the base angular 

velocity 5 Hzxω = , the stabilized orbits at the middle of the shaft are elliptical and the displacement amplitudes 

are mostly the same as shown in Section 7.2.3.1 whatever the value of the base translation frequency zΩ . FFTs 
exhibit only one frequency component equal to 50 Hz 2= Ω  because of the presence of xω  in the cos 2 tΩ  and 

sin 2 tΩ  terms of the external excitation produced by the geometric asymmetry of the rotor, which are prevalent 
regarding the other forcing terms, see equation (36). When the rotor is excited by the base angular velocity 

5 Hzyω = , the frequency of the harmonic base translation has a limited influence on the magnitudes of the 

orbits. In addition, the stabilized orbits have shapes more complex than those obtained for the symmetric rotor 
(see Figure 12) since they involve frequency components due to the mass unbalance excitation (25 Hz), to the 
harmonic base translations (100 Hz, 120 Hz and 200 Hz) and to the combination of frequencies of both 
excitations as shown in FFTs of Figure 20. 

The RR and FE orbits seen in Figure 21 have the same shape but quantitatively are different. The x  and z  

magnitude deviations are 36.74%uε = −  and 36.96%wε = −  for xω  as well as 5.26%uε = −  and 3.36%wε =  

for yω . The static position coordinate deviation is 6.98%spε = − . The observed deviations are due to the fact 

that the RR expansion is based only on two generalized coordinates, while the FE model is built with 48 degrees 
of freedom, i.e., the FE model is more flexible because it uses more degrees of freedom than the RR model. 

 

8. Conclusions 

The dynamics of two different rotor configurations (symmetric and asymmetric), whose rigid base is subjected to 
combined constant rotation and sinusoidal translation, are analytically and numerically investigated. A new finite 
element model based on the Timoshenko beam theory is presented to analyze the steady-state dynamic behavior 
of the on-board rotor mounted on rigid bearings. It contains the effects associated with the rotary inertia, the 
gyroscopic inertia, the shear deformation of shaft, the geometric asymmetry of disk and/or shaft as well as six 
types of deterministic motions (rotations and translations) of the rotor rigid base. Moreover, the rotational effects 
and the geometric stiffening effects relative to the centrifugal stressing caused by the base rotations are taken 
into account. The derivation of the equations of motion has shown that the base rotation brings not only a 
parametric contribution to them but also additional external force vectors, while the base translation only adds 
external force vectors. 

In the case of the symmetric rotor, the equations of motion always are ordinary differential equations with 
constant coefficients. A dynamic instability can occur in the rotor due to the presence of negative diagonal terms 
containing the angular velocities of the base in the symmetric stiffness matrices which can lose their positive 
definiteness. It is shown that the base rotations change not only the natural frequencies of the rotor but also can 
break the symmetry of the dynamic behavior in the case of the rotation around a transverse axis. The sinusoidal 
base translation does not change the natural frequencies of the rotor. It has only an influence on the 
corresponding response amplitudes as well as on the magnitude and the shape of the rotor orbits. 

The asymmetric rotor introduces time-varying periodic parametric coefficients in the linear equations of 
motion. Thus possible regions of instability of the rotor can occur and their sizes cannot be related to the base 
rotations. On the other hand, the base rotations shift the instability regions along the speed of rotation of the 
rotor. The sinusoidal base translation has no influence on the instability regions but only an influence on the 
magnitude and the shape of the rotor orbits. 

The finite element calculations have been validated against the Rayleigh-Ritz formulation. Using the finite 
element method is useful because it is more accurate and can be used for industrial rotating machinery modeling. 
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Figure 20.  Influence of the frequency Ωz of the base translation: zO=ZOsin(Ωzt) with ZO=1×10-6 m. Orbits of the asymmetric 

rotor running at Ω=1500 rpm and subjected to two angular velocities of the base: ωx=5 Hz or ωy=5 Hz. 
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Figure 21.  Comparison of RR and FE orbits at the middle of the asymmetric rotor running at Ω=1500 rpm and subjected to 

a base translation: zO=ZOsin(Ωzt) with ZO=1×10-6 m and Ωz=100 Hz, combined with two angular velocities of the base: 
ω

x=5 Hz or ωy=5 Hz. 
 
 
 
 

References 

Bachelet L, Driot N and Ferraris G (2006) Rotors under seismic excitation: A spectral approach. In: Proceedings of 
IFToMM 7th International Conference on Rotor Dynamics, Vienna, Austria, 25-28 September. 

Beley-Sayettat A (1994) Effet des dissymétries et effet sismique en dynamique des rotors (in French). PhD Thesis, INSA-
Lyon, France. 

Berlioz A, Dufour R and Sinha SC (2000) Bifurcation in a nonlinear autoparametric system using experimental and 
numerical investigations. Nonlinear Dynamics 23(2): 175-187. 

Cavalca KL, Cavalcante PF and Okabe EP (2005) An investigation on the influence of the supporting structure on the 
dynamics of the rotor system. Mechanical Systems and Signal Processing 19(1): 157-174. 

Chen L-W and Ku D-M (1992) Dynamic stability of a cantilever shaft-disk system. ASME Journal of Vibration and 
Acoustics 114(3): 326-329. 

Das AS, Dutt JK and Ray K (2010) Active vibration control of unbalanced flexible rotor-shaft systems parametrically 
excited due to base motion. Applied Mathematical Modelling 34(9): 2353-2369. 

Driot N, Lamarque CH and Berlioz A (2006) Theoretical and experimental analysis of a base-excited rotor. ASME 
Journal of Computational and Nonlinear Dynamics 1(3): 257-263. 

Duchemin M (2003) Contribution à l’étude du comportement dynamique d’un rotor embarqué (in French). PhD Thesis, 
INSA-Lyon, France. 

Duchemin M, Berlioz A and Ferraris G (2006) Dynamic behavior and stability of a rotor under base excitation. ASME 
Journal of Vibration and Acoustics 128(5): 576-585. 

Dufour R and Berlioz A (1998) Parametric instability of a beam due to axial excitations and to boundary conditions. 
ASME Journal of Vibration and Acoustics 120(2): 461-467. 

Edwards S, Lees AW and Friswell MI (2000) Experimental identification of excitation and support parameters of a 
flexible rotor-bearings-foundation system from a single run-down. Journal of Sound and Vibration 232(5): 963-
992. 

El-Saeidy FMA and Sticher F (2010) Dynamics of a rigid rotor linear/nonlinear bearings system subject to rotating 
unbalance and base excitations. Journal of Vibration and Control 16(3): 403-438. 

Evan-Iwanowski RM (1976) Resonance Oscillations in Mechanical Systems. New York: Elsevier. 
Feng N and Hahn E (2011) Rotor-model-based identification of foundations in rotating machinery using modal 

parameters. In: Proceedings of the Tenth International Conference on Vibration Problems, Prague, Czech 
Republic, 5-8 September. 

Gaganis BJ, Zisimopoulos AK, Nikolakopoulos PG and Papadopoulos CA (1999) Modal analysis of rotor on piecewise 
linear journal bearings under seismic excitation. ASME Journal of Vibration and Acoustics 121(2): 190-196. 

Csp 
 

Csp 
 

O 
 

O 
 



 

 26  

 

Genta G (2005) Dynamics of Rotating Systems. New York: Springer. 
Guilhen PM, Berthier P, Ferraris G and Lalanne M (1988) Instability and unbalance response of dissymmetric rotor-

bearing systems. ASME Journal of Vibration, Acoustics, Stress and Reliability in Design 110(3): 288-294.   
Hori Y and Kato T (1990) Earthquake-induced instability of a rotor supported by oil film bearings. ASME Journal of 

Vibration and Acoustics 112(2): 160-165. 
Kang Y, Shih Y-P and Lee A-C (1992) Investigation on the steady-state responses of asymmetric rotors. ASME Journal 

of Vibration and Acoustics 114(2): 194-208. 
Kang Y, Chang Y-P, Tsai J-W, Mu L-H and Chang Y-F (2000) An investigation in stiffness effects on dynamics of rotor-

bearing-foundation systems. Journal of Sound and Vibration 231(2): 343-374. 
Kang Y, Tseng M-H, Wang S-M, Chiang C-P and Wang C-C (2003) An accuracy improvement for balancing 

crankshafts. Mechanism and Machine Theory 38(12): 1449-1467. 
Lalanne M and Ferraris G (1998) Rotordynamics Prediction in Engineering. Chichester: Wiley. 
Lee AS, Kim BO and Kim Y-C (2006) A finite element transient response analysis method of a rotor-bearing system to 

base shock excitations using the state-space Newmark scheme and comparisons with experiments. Journal of 
Sound and Vibration 297(3-5): 595-615. 

Levecque N, Mahfoud J, Violette D, Ferraris G and Dufour R (2011) Vibration reduction of a single cylinder 
reciprocating compressor based on multi-stage balancing. Mechanism and Machine Theory 46(1): 1-9. 

Oncescu F, Lakis AA and Ostiguy G (2001) Investigation of the stability and steady state response of asymmetric rotors, 
using finite element formulation. Journal of Sound and Vibration 245(2): 303-328. 

Rao JS (1992) Rotor Dynamics. New York: Wiley. 
Sabuncu M and Evran K (2006) The dynamic stability of a rotating asymmetric cross-section Timoshenko beam 

subjected to lateral parametric excitation. Finite Elements in Analysis and Design 42(5): 454-469. 
Spears RE and Jensen SR (2009) Approach for selection of Rayleigh damping parameters used for time history analysis. 

In: Proceedings of the ASME 2009 Pressure Vessels and Piping Division Conference, Prague, Czech Republic, 
26-30 July. 

Suarez LE, Singh MP and Rohanimanesh MS (1992) Seismic response of rotating machines. Earthquake Engineering 
and Structural Dynamics 21(1): 21-36. 

Tan TH, Lee HP and Leng GSB (1997) Dynamic stability of a radially rotating beam subjected to base excitation. 
Computer Methods in Applied Mechanics and Engineering 146(3-4): 265-279. 

 
 
 
 
 
 
 
 
 
 
 
 

Appendix A: Elementary matrices and vectors for the  disk, the shaft and the mass 
unbalance 
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The symbol ∑  stands for the assembly operator after following an appropriate globalization way. The elementary 

matrices and vectors for the disk are defined by 
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The elementary matrices and vectors for the shaft are given by 
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The elementary vectors for the mass unbalance are expressed by 
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