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THE DENSITY OF SETS AVOIDING DISTANCE 1 IN EUCLIDEAN

SPACE

CHRISTINE BACHOC, ALBERTO PASSUELLO, AND ALAIN THIERY

ABSTRACT. We improve by an exponential factor the best known asymptotic

upper bound for the density of sets avoiding 1 in Euclidean space. This result

is obtained by a combination of an analytic bound that is an analogue of Lovász

theta number and of a combinatorial argument involving finite subgraphs of the

unit distance graph. In turn, we straightforwardly obtain an asymptotic improve-

ment for the measurable chromatic number of Euclidean space. We also tighten

previous results for the dimensions between 4 and 24.

1. INTRODUCTION

In the Euclidean space R
n, a subset S is said to avoid 1 if ‖x − y‖ 6= 1 for all

x, y in S. For example, one can take the union of open balls of radius 1/2 with

centers in (2Z)n. It is natural to wonder how large S can be, given that it avoids 1,

in the sense of the proportion of space that S occupies. To be more precise, if S is

a measurable set, its density δ(S) is defined in the usual way by

(1) δ(S) = lim sup
R→∞

vol(BR ∩ S)

vol(BR)
,

where BR denotes the ball of center 0 and radius R in R
n and vol(S) is the

Lebesgue measure of S. We are interested in the supreme density m1(R
n) of the

measurable sets avoiding 1.

In terms of graphs, a set S avoiding 1 is an independent set of the unit distance

graph, the graph drawn on R
n that connects by an edge every pair of points at

distance 1, and m1(R
n) is a substitute for the independence number of this graph.

Larman and Rogers introduced in [10] the number m1(R
n) in order to allow

for analytic tools in the study of the chromatic number χ(Rn) of the unit distance

graph, i.e. the minimal number of colors needed to color R
n so that points at

distance 1 receive different colors. Indeed, the inequality

(2) χm(Rn) ≥ 1

m1(Rn)
.
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holds, where χm(Rn) denotes the measurable chromatic number of Rn. In the def-

inition of χm(Rn), the measurability of the color classes is required, so χm(Rn) ≥
χ(Rn). We note that (2) is the exact analogue of the well known relation between

the chromatic number χ(G) and the independence number α(G) of a finite graph

G = (V,E):

(3) χ(G) ≥ |V |
α(G)

.

Following (2), in order to lower bound χm(Rn), it is enough to upper bound

m1(R
n). As shown in [10], finite configurations of points in R

n can be used for

this purpose. Indeed, if G = (V,E) is a finite induced subgraph of the unit distance

graph of Rn, meaning that V = {v1, . . . , vM} ⊂ R
n and E = {ij : ‖vi−vj‖ = 1},

then

(4) m1(R
n) ≤ α(G)

|V | .

Combined with the celebrated Frankl and Wilson intersection theorem [15], this

inequality has lead to the asymptotic upper bound of 1.207−n, proving the expo-

nential decrease of m1(R
n), later improved to 1.239−n in [16] following similar

ideas. However, (4) can by no means result in a lower estimate for χm(Rn) that

would be tighter than that of χ(Rn) since the inequalities χ(Rn) ≥ χ(G) ≥ |V |
α(G)

obviously hold. In [21], a more sophisticated configuration principle was intro-

duced that improved the upper estimates of m1(R
n) for dimensions 2 ≤ n ≤ 25,

but didn’t move forward to an asymptotic improvement.

A completely different approach was taken in [13], where an analogue of Lovász

theta number is defined and computed for the unit distance graph (see also [5] for

an earlier approach dealing with the unit sphere of Euclidean space). This number,

that will be denoted here ϑ(Rn), has an explicit expression in terms of Bessel

functions, and satisfies

(5) ϑ(Rn) ≈ (
√

e/2)−n ≈ (1.165)−n.

Although asymptotically not as good as Frankl and Wilson estimate, for small di-

mensions, ϑ(Rn) did improve the previously known upper bounds of m1(R
n).

Moreover, this bound was further strengthened in [13] by adding extra inequalities

arising from simplicial configurations of points.

In this paper, we step on the results in [13], by considering more general con-

figurations of points. More precisely, a linear program is associated to any finite

induced subgraph of the unit distance graph G = (V,E), whose optimal value

ϑG(R
n) satisfies

(6) m1(R
n) ≤ ϑG(R

n) ≤ ϑ(Rn).

We prove that ϑG(R
n) decreases exponentially faster than both ϑ(Rn) and the

ratio α(G)/|V |, when G is taken in the family of graphs considered by Frankl and

Wilson, or in the family of graphs defined by Raigorodskii. We obtain the improved

estimate
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Theorem 1.1.

(7) m1(R
n) / (1.268)−n.

Moreover, careful choices of graphs allow us to tighten the upper estimates of

m1(R
n) in the range of dimensions 4 ≤ n ≤ 24 (see Table 2).

This paper is organized as follows: section 2 explains the subgraph trick in the

broader context of homogeneous graphs, as this method can be of independent

interest. We start with finite graphs, and then extend our approach to graphs de-

fined on compact spaces and finally to the unit distance graph. Section 3 discusses

so-called generalized Johnson graphs, which are the graphs associated to a single

Hamming distance on binary words of fixed weight. These graphs include the fam-

ily of graphs considered by Frankl and Wilson. Using semidefinite programming,

we compute new upper bounds for their independence number in small dimen-

sions. These new estimates will help us improving the estimates of m1(R
n) for

small dimensions in section 5. Section 4 gives the proof of Theorem 1 and section

5 presents our numerical results for dimensions 4 to 24.

Notations: Let un and vn 6= 0 be two sequences. We denote un ∼ vn if un and vn
are equivalent, i.e limun/vn = 1, un ≈ vn if there exists α, β ∈ R, β > 0, such

that un/vn ∼ βnα and, for positive sequences, un / vn if there exists α, β ∈ R,

β > 0 such that un/vn ≤ βnα.

2. TIGHTENING THE THETA NUMBER WITH SUBGRAPHS

Let G = (X,E) be a finite graph. We recall that its theta number ϑ(G), intro-

duced in [11], is the optimal value of a semidefinite program, that satisfies

α(G) ≤ ϑ(G) ≤ χ(G).
Here α(G) denotes as usual the independence number of G, i.e. the maximal num-

ber of vertices that are pairwise not connected, G is the complementary graph, and

χ(G) is its chromatic number, the least number of colors needed to color all vertices

so that connected vertices receive different colors.

Among the many equivalent definitions of ϑ(G), the most adequate for us fol-

lows from the properties of a certain function naturally associated to an indepen-

dent set A ⊂ X:

(8) SA(x, y) := 1A(x)1A(y)/|A|.
Here 1A and |A| denote respectively the characteristic function of A and its cardi-

nality. Then, SA satisfies a number of linear conditions:

(9)
∑

x∈X
SA(x, x) = 1,

∑

(x,y)∈X2

SA(x, y) = |A|, SA(x, y) = 0 xy ∈ E.

Moreover, viewed as a symmetric matrix indexed by the vertex set X , SA is posi-

tive semidefinite and of rank one, so

(10)

α(G) ≤ ϑ(G) := sup
{
∑

(x,y)∈X2 S(x, y) : S ∈ R
X×X , S � 0,

∑

x∈X S(x, x) = 1,
S(x, y) = 0 (xy ∈ E)

}

.
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In the definition of ϑ(G), we leave aside the condition that SA has rank one because

it wouldn’t fit into a convex program. The notation S � 0 means that S is a

symmetric, positive semidefinite matrix.

Now we assume that G affords the transitive action of a finite group Γ, meaning

that Γ acts transitively on X while preserving the edge set E. We choose a base

point p ∈ X , and let Γp denote the stabilizer of p in Γ, so that X can be identified

with the quotient space Γ/Γp. For example, G could be a Cayley graph on Γ; in

this case, we can take for p the neutral element e of Γ and Γe = {e}.

Going back to the general case, by a standard averaging argument, in the defini-

tion of ϑ(G) the variable matrix S can be assumed to be Γ-invariant, meaning that

S(γx, γy) = S(x, y) for all γ ∈ Γ, x, y ∈ X . Introducing f(x) = |X|S(x, p)
leads to the equivalent formulation:

(11)

ϑ(G) = sup
{
∑

x∈X f(x) : f ∈ R
X , f(γx) = f(x) (γ ∈ Γp),

f � 0,
f(p) = 1,
f(x) = 0 (xp ∈ E)

}

.

Here, f � 0 means the following: for all x ∈ X , let γx ∈ Γ be chosen so

that x = γxp. We note that the value of f(γ−1
y γxp) does not depend on this

choice. Then, we ask that (x, y) → f(γ−1
y γxp) is symmetric positive semidefinite.

Equivalently, the function γ → f(γp) is a function of positive type on Γ in the

sense of [14] (see also [6]).

Now let V be a subset of X; the graph G induces a graph structure on V that

will be denoted G. In other words, G = (V,E ∩ V 2). Then we have the obvious

inequality

(12)
∑

v∈V
1A(v) ≤ α(G).

Indeed, if v1, . . . , vk ∈ A, because A avoids E, the set {v1, . . . , vk} is an indepen-

dent set of G and so k ≤ α(G). Moreover, for any γ ∈ Γ, because γA is also an

independent set of G, we have as well

(13)
∑

v∈V
1A(γv) ≤ α(G).

We note that summing up the above inequality over γ ∈ Γ, and taking into account

that
∑

γ∈Γ 1A(γv) = |Γp||A| and |X| = |Γ|/|Γp|, leads to

(14)
|A|
|X| ≤

α(G)

|V | .

The inequality (14) although elementary turns to be very useful. For example, in

coding theory it is applied to relate the sizes of codes in Hamming and Johnson

spaces respectively, following Elias and Bassalygo principle. Also, Larman and

Rogers inequality (4) can be seen as an analogue of (14) for the unit distance graph.

It turns out that (13) can be inserted directly in ϑ(G), providing this way a more

efficient use of this inequality. In order to do that, we introduce an averaged form
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of fA(x) = |X|SA(x, p):

(15) fA(x) :=
1

|Γp|
∑

γ∈Γ
1A(γx)1A(γp)/|A|.

From (13) we have
∑

v∈V fA(v) ≤ α(G), so this inequality can be added to the

program defining ϑ(G). Let us introduce:

(16)

ϑG(G) = sup
{
∑

x∈X f(x) : f ∈ R
X , f(γx) = f(x) (γ ∈ Γp),

f � 0,
f(p) = 1,
f(x) = 0 (xp ∈ E)
∑

v∈V f(v) ≤ α(G)
}

.

Obviously, fA satisfies the constraints of this program and
∑

x∈X fA(x) = |A| so

we have

(17) α(G) ≤ ϑG(G) ≤ ϑ(G).
These results can be easily extended to a graph defined on a compact set X

endowed with the homogeneous action of a compact group Γ. The Haar measure

on Γ induces a measure on X such that for any measurable function ϕ,
∫

X
ϕ(x)dx =

1

|Γp|

∫

Γ
ϕ(γp)dγ.

Volumes for these measures will be denoted | |. In this setting, the independence

number α(G) of G is by definition the maximum volume of a measurable indepen-

dent set. The theta number generalizes to:

(18)

ϑ(G) = sup
{ ∫

X f(x)dx : f ∈ C(X), f(γx) = f(x) (γ ∈ Γp),
f � 0,
f(p) = 1,
f(x) = 0 (xp ∈ E)

}

where C(C) denotes the space of real valued continuous functions on X . Now let

V ⊂ X be a subset of X together with a finite positive Borel measure λ on V .

With previous notations,

αλ(G) := sup{λ(A) : A ⊂ V,A2 ∩ E = ∅}.
Then the previous reasoning go through, replacing finite sums by integrals in (15)

and (13) and applying Fubini theorem. The inequalities (13) and (14) become

respectively

(19)

∫

V
1A(γv)dλ(v) ≤ αλ(G)

and

(20)
|A|
|X| ≤

αλ(G)

λ(V )
.
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With

(21)

ϑG(G) = sup
{ ∫

X f(x)dx : f ∈ C(X), f(γx) = f(x) (γ ∈ Γp),
f � 0,
f(p) = 1,
f(x) = 0 (xp ∈ E)
∫

V f(v)dλ(v) ≤ αλ(G)
}

we have

(22) α(G) ≤ ϑG(G) ≤ ϑ(G).
Example: Taking X = Sn−1, the unit sphere of Rn, and E = {xy : ‖x − y‖ =
d}, defines a graph homogeneous under the action of the orthogonal group that fits

into the above setting. Moreover, up to a suitable rescaling, this graph is an induced

subgraph of our main object of study, the unit distance graph. The theta number of

this graph was studied in [5].

Remark 2.1. The introduction of an arbitrary measure λ on the subgraph is of

interest even in the case of a finite graph G, for example it allows for counting

multiple points in V .

Now we come to the case of the unit distance graph. This graph can be viewed

as a Cayley graph on the group of translations (Rn,+), but because R
n is not

compact it does not fit in our previous setting. We are anyway not interested in the

largest Lebesgue measure of a set avoiding distance 1, which would be infinite, but

rather in its largest density (1). Here we follow [13] and [12] to which we refer for

details. In place of (15) we consider

(23) fA(x) = lim sup
R→+∞

1

vol(BR)

∫

BR

1A(x+ y)1A(y)/δ(A)dy.

We note that (23) resembles (15) where we would have set p = 0n and Γ would be

the group of translations by y ∈ R
n, except that summation over Γ is replaced by

averaging over larger and larger balls. Accordingly, with

(24) δ(f) := lim sup
R→+∞

1

vol(BR)

∫

BR

f(x)dx,

let

(25)

ϑ(Rn) = sup
{

δ(f) : f ∈ C(Rn),
f � 0,
f(0) = 1,
f(x) = 0 (‖x‖ = 1)

}

.

To an induced subgraph G = (V,E) of the unit distance graph, endowed with a

finite positive Borel measure λ, we associate

(26)

ϑG(R
n) = sup

{

δ(f) : f ∈ C(Rn),
f � 0,
f(0) = 1,
f(x) = 0 (‖x‖ = 1)
∫

V f(v)dλ(v) ≤ αλ(G)
}

.
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FIGURE 1. Ω4(t)

Similarly, we have m1(R
n) ≤ ϑG(R

n) ≤ ϑ(Rn).
In the next step the action of the orthogonal group O(Rn) is exploited in order

to simplify the programs (25) and (26). The continuous functions of positive type

on R
n that are O(Rn)-invariant cab be expressed as ([14]):

(27) f(x) =

∫ +∞

0
Ωn(t‖x‖)dµ(t)

where µ is a finite positive Borel measure and Ωn is the Fourier transform of the

unit sphere Sn−1:

(28) Ωn(‖u‖) =
1

ωn

∫

Sn−1

eiu·ξdω(ξ).

where ω denotes the surface measure on the unit sphere and ωn = ω(Sn−1). We

note that Ωn(0) = 1. The function Ωn expresses in terms of the Bessel function of

the first kind:

(29) Ωn(t) = Γ
(n

2

)

(

2

t

)
n

2
−1

Jn

2
−1(t).

Then, (26) becomes

ϑG(R
n) = sup

{

µ(0) : µ a positive Borel measure on [0,+∞[,
∫ +∞
0 dµ(t) = 1,
∫ +∞
0 Ωn(t)dµ(t) = 0,
∫

V

( ∫ +∞
0 Ωn(t‖v‖)dµ(t)

)

dλ(v) ≤ αλ(G)
}

and, applying weak duality,

(30)

ϑG(R
n) ≤ inf

{

z0 + z2
αλ(G)
λ(V ) : z2 ≥ 0

z0 + z1 + z2 ≥ 1
z0 + z1Ωn(t) + z2

1
λ(V )

∫

V Ωn(t‖v‖)dλ(v) ≥ 0 (t > 0)
}

.
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In the next sections we will take for G a finite subgraph on M vertices V =
{v1, . . . , vM} with equal norms ‖vi‖ = r, and the measure λ will be the count-

ing measure on V ; in this case the expression of the dual program simplifies:

(31)

ϑG(R
n) ≤ inf

{

z0 + z2
α(G)
M : z2 ≥ 0

z0 + z1 + z2 ≥ 1
z0 + z1Ωn(t) + z2Ωn(rt) ≥ 0 (t > 0)

}

.

We also recall from [13] and [12] that ϑ(Rn) has an explicit expression:

(32) ϑ(Rn) =
−Ωn(jn/2,1)

1− Ωn(jn/2,1)

where jn/2,1 is the first positive zero of Jn/2 and is the value at which the function

Ωn reaches its absolute minimum (see Figure 1 for a plot of Ω4(t)). This expres-

sion can be recovered from (30) if the variable z2 is set to 0. Unfortunately, the

programs (30) or (31) cannot be solved explicitly in a similar fashion. Instead, we

will content ourselves with the construction of explicit feasible solutions in section

4 and with numerical solutions in section 5.

Remark 2.2. In order to tighten the inequality α(G) ≤ ϑ(G), it is customary to

add the condition S ≥ 0 (meaning all coefficients of S are non-negative) to the

constraints in (10); the new optimal value is denoted ϑ′(G) and coincides with

the linear programming bound introduced earlier by P. Delsarte in the context

of association schemes (see [7] and [17]). Obviously, this condition can be also

added to ϑG(G). However, it should be noted that, for the unit distance graph,

ϑ(Rn) = ϑ′(Rn), because the optimal function for ϑ(Rn) (25), given by:

f(x) :=
(

− Ωn(jn/2,1) + Ωn(jn/2,1‖x‖)
)

/(1− Ωn(jn/2,1))

does take non-negative values and therefore is also optimal for ϑ′(Rn).

3. THE GENERALIZED JOHNSON GRAPHS

In this section, we introduce certain finite graphs that will play a major role in

the next sections.

We denote J(n,w, i) and call generalized Johnson graph the graph with vertices

the set of n-tuples of 0’s and 1’s, with w coordinates equal to 1, and with edges

connecting pairs of n-tuples having exactly i coordinates in common equal to 1.

The coordinates sum to w, and the squared Euclidean distance between two vertices

connected by an edge is equal to 2(w − i), so, after rescaling, J(n,w, i) is an

induced subgraph of the unit distance graph of dimension n−1. A straightforward

calculation shows that it lies on a sphere of radius
√

w(1− w/n)/(2(w − i)).
In view of (31), we need the value of the independence number α(J(n,w, i)) of

J(n,w, i). It turns out that computing it directly becomes intractable for n > 10.

For the graphs J(n, 3, 1), there is an explicit formula due to Erdös and Sös (see [10,

Lemma 18]), but the number of vertices in this case grows like n3 and we rather

need an exponential number of vertices, which requires that w grows linearly with

n.
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If, being less demanding, we seek only for an upper estimate of α(J(n,w, i)),
two essentially different strategies are available. One is provided by Frankl and

Wilson intersection theorem [15] and applies for certain values of the parameters

w and i:

Theorem 3.1. [15] If q is a power of a prime number,

(33) α(J(n, 2q − 1, q − 1)) ≤
(

n

q − 1

)

.

Taking q ∼ an leads to

α(J(n, 2q − 1, q − 1))

|J(n, 2q − 1, q − 1)| ≤
(

n
q−1

)

(

n
2q−1

) ≈ e−(H(2a)−H(a))n

where H(t) = −t log(t) − (1 − t) log(1 − t) denotes the entropy function. The

optimal choice of a, i.e. the value of a that maximizes H(2a) − H(a) is a =
(2 −

√
2)/4, from which one obtains the upper estimate (1.207)−n. Let us recall

that this result gave the first lower estimate of exponential growth for the chromatic

number of Rn [15].

Another possibility would be to upper bound α(J(n,w, i)) by the theta number

ϑ(J(n,w, i)) of the graph J(n,w, i). The group of permutations of the n coordi-

nates acts transitively on its vertices as well as on its edges so from [11, Theorem

9], its theta number expresses in terms of the largest and smallest eigenvalues of

the graph; taking into account that these eigenvalues, being the eigenvalues of the

Johnson scheme, are computed in [8] in terms of Hahn polynomials, we have, if

Zk(i) := Qk(w − i)/Qk(0) with the notations of [8]:

(34)
ϑ(J(n,w, i))

|J(n,w, i)| =
−mink∈[w] Zk(i)

1−mink∈[w] Zk(i)
.

We note that this expression is completely analogous to (32); indeed, both graphs

afford an automorphism group that is edge transitive. We refer to [4] for an inter-

pretation of (32) in terms of eigenvalues of operators.

The bound on α(J(n,w, i)) given by (34) unfortunately turns to be poor. Com-

puting ϑ′(J(n,w, i)) instead of ϑ(J(n,w, i)) (see Remark 2.2) represents an easy

way to tighten it. Indeed, one can see that ϑ(J(n,w, i)) = ϑ′(J(n,w, i)) only if

(35) Zk0(i) = min
j∈[w]

Zk0(j)

where k0 satisfies Zk0(i) = mink∈[w] Zk(i). It turns out that (35) is not always

fulfilled and in these cases ϑ′(J(n,w, i)) < ϑ(J(n,w, i)).
A more serious improvement is provided by semidefinite programming follow-

ing [18, (67)] where constant weight codes with given minimal distance are con-

sidered. In order to apply this framework to our setting, we only need to change

the range of avoided Hamming distances in [18, (65-iv)].

Table 1 displays the numerical values of the three bounds for certain parameters

(n,w, i), selected either because they allow for Frankl and Wilson bound, or be-

cause they give the best result in (31) (see section 5). For most of these parameters,
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(n,w, i) α(J(n,w, i)) FW bound [15] ϑ′(J(n,w, i)) SDP bound

(6, 3, 1) 4 6 4 4

(7, 3, 1) 5 7 5 5

(8, 3, 1) 8 8 8 8

(9, 3, 1) 8 9 11 8

(10, 5, 2) 27 45 30 27

(11, 5, 2) 37 55 42 37

(12, 5, 2) 57 66 72 57

(12, 6, 2) 130 112

(13, 5, 2) 78 109 72

(13, 6, 2) 191 148

(14, 7, 3) 364 290 184

(15, 7, 3) 455 429 261

(16, 7, 3) 560 762 464

(16, 8, 3) 1315 850

(17, 7, 3) 680 1215 570

(17, 8, 3) 2002 1090

(18, 9, 4) 3060 3146 1460

(19, 9, 4) 3876 4862 2127

(20, 9, 3) 13765 6708

(20, 9, 4) 4845 8840 3625

(21, 9, 4) 5985 14578 4875

(21, 10, 4) 22794 8639

(22, 9, 4) 7315 22333 6480

(22, 11, 5) 36791 11360

(23, 9, 4) 8855 32112 8465

(23, 11, 5) 58786 17055

(24, 9, 4) 10626 38561 10796

(24, 12, 5) 172159 53945

(25, 9, 4) 12650 46099 13720

(26, 13, 6) 230230 453169 101494

(27, 13, 6) 296010 742900 163216

TABLE 1. Bounds for the independence number of J(n,w, i)

the semidefinite programming bound turns to be the best one and is significantly

better than the theta number. It would be of course very interesting to understand

the asymptotic behavior of this bound when n grows to +∞, unfortunately this

problem seems to be out of reach to date.

The computations were performed using the solver SDPA [22] available on the

NEOS website (http://www.neos-server.org/neos/).

http://www.neos-server.org/neos/
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FIGURE 2. c(r)

4. THE PROOF OF THEOREM 1

In this section we will show that from (26) an asymptotic improvement of the

known upper bounds for m1(R
n) can be obtained. For this, we assume that Gn =

(Vn, En) is a sequence of induced subgraphs of the unit distance graph of dimen-

sion n, such that |Vn| = Mn and Vn lies on the sphere of radius r < 1, where r
is independent of n. We recall from Section 2 that m1(R

n) ≤ ϑGn
(Rn) and that

ϑGn
(Rn) is upper bounded by the optimal value of:

(36)

inf
{

z0 + z2
α(Gn)
Mn

: z2 ≥ 0

z0 + z1 + z2 ≥ 1
z0 + z1Ωn(t) + z2Ωn(rt) ≥ 0 (t > 0)

}

.

So, in order to upper bound m1(R
n), it is enough to construct a suitable feasible

solution of (36).

Theorem 4.1. We assume that, for some b <
√

2/e,

α(Gn)

Mn
/ bn.

Let

c(r) = (1 +
√

1− r2)e−
√
1−r2 and f(r) =

√

2c(r)/e.

Then, for every ǫ > 0,

ϑGn
(Rn) / (f(r) + ǫ)n.

Proof. A feasible solution of (36) is given in the following lemma:

Lemma 4.2. With the notations of the theorem, let γ >
√

c(r) and m > γ
√

2/e,

then there exists n0 ∈ N such that for all n ≥ n0,

(37) mn +Ωn(t) + γnΩn(rt) ≥ 0, for all t ≥ 0.
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Proof. After having established some preliminary inequalities, we will proceed

in three steps. First, we will prove that the inequality (37) holds for “small” t,
say 0 ≤ t ≤ ν := n

2 − 1, then that it holds for “large” t, say t ≥ α0ν where

α0 is an explicit constant, and, at last, we will construct a decreasing sequence

α0 ≥ α1 ≥ . . . ≥ αk . . . such that the inequality holds for t ≥ αkν, and prove that

limk→∞ αk < 1.

Let j1 be the first zero of Jν+1, then Ωn is a decreasing function on [0, j1] and

Ωn has a global minimum at j1 (see [2]). So, Ωn(t) ≥ Ωn(j1). Furthermore,

|Jν(t)| ≤ 1 for all t ∈ R (see [1] formula 9.1.60), hence

|Ωn(j1)| ≤ Γ
(n

2

)

(

2

j1

)
n

2
−1

.

It follows from [1] formula 9.5.14 that j1 ≥ ν if n is large enough. From now, we

will consider that this inequality holds. Using Stirling formula, we get

|Ωn(j1)| /
(

√

2

e

)n

.

Let x ∈]0, 1[. Using [1] formula 9.3.2, one gets easily

Jν(xν) ≈
(
√

x

c(x)

)n

.

It follows that

(38) Ωn(xν) = Γ
(n

2

)

(

2

xν

)ν

Jν(xν) ≈
(√

2

ec(x)

)n

.

First step. Suppose that 0 ≤ t ≤ ν. Since ν ≤ j1, r < 1 and Ωn is decreasing on

[0, j1], Ωn(rt) ≥ Ωn(rν). From previous results, one gets

Ωn(t) + γnΩn(rt) ≥ −|Ωn(j1)|+ γnΩn(rν) ≈
(

γ

√

2

ec(r)

)n

≥ 0

if n is large enough.

Second step. Let α0 =
1
γ2 . For t ≥ α0ν,

|Ωn(t)| ≤ Γ
(n

2

)

(

2

α0ν

)
n

2
−1

≈
(

γ

√

2

e

)n

.

Since Ωn(rt) ≥ −|Ωn(j1)| and |Ωn(j1)| /
(
√

2
e

)n

, it follows from the definition

of m that

mn +Ωn(t) + γnΩn(rt) ≥ mn − |Ωn(t)| − γn|Ωn(j1)| ∼ mn ≥ 0

if n is large enough.

Third step. Let us first study the function c. An elementary computation gives

c′(x) = xe−
√
1−x2

for x ∈ [0, 1]. It implies that 0 ≤ c′(x) ≤ 1, hence c is an
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increasing function and c(x) ≥ x with equality only for x = 1. Now, let us define

φ by

φ : [0, 1r ] −→ R

x 7→ 1
2(

c(rx)
γ2 + x)

Since c is increasing, φ is also increasing. Furthermore, φ(0) = 1
eγ2 > 0 and

φ(1r ) = 1
2(

1
γ2 + 1

r ) < 1
r since γ2 > c(r) > r. It follows that the interval [0, 1r ]

is mapped into itself. One also gets immediately φ′(x) = 1
2(

rc′(rx)
γ2 + 1). Since

c′(rx) ≤ 1 and γ2 > r, φ′(x) < 1. Hence φ has only one fixed point, denoted by

l. Moreover, φ(1) < 1, so l < 1. For any x0 ≥ l, the sequence xk+1 = φ(xk) is a

decreasing sequence with limit l (if x0 ≤ l, the sequence is increasing).

We now return to the proof of the lemma. We have set α0 = 1
γ2 and we assume

α0 > 1. Let α1 < α0 and t ∈ [α1ν, α0ν]. By construction, rα0 = r
γ2 < r

c(r) < 1,

hence rt ≤ rα0ν < ν ≤ j1. Since Ωn is decreasing on [0, j1], formula (38) gives

Ωn(rt) ≥ Ωn(rα0ν) ≈
(√

2

ec(rα0)

)n

.

Now |Ωn(t)| ≤ Γ
(

n
2

)

(

2
α1ν

)
n

2
−1

≈
(√

2
eα1

)n
. Hence, we will have Ωn(t) +

γnΩn(rt) ≥ 0, for n large enough, as soon as α1 > c(rα0)
γ2 (but we need strict

inequality). We can take α1 = φ(α0). Defining the sequence αk by αk+1 =
φ(αk), we get, using the same method, that for k fixed and all n large enough,

Ωn(t) + γnΩn(rt) ≥ 0 for t ≥ αkν. Since limαk = l < 1, there exists an integer

k such that αk < 1. This concludes the proof of the lemma. �

Now we return to the proof Theorem 4.1. Let ǫ > 0; let γ =
√

c(r) + ǫ and

m =
√

2c(r)/e + ǫ. The lemma shows that for n sufficiently large, (z0, z1, z2) =
(mn, 1, γn) is a feasible solution of (36). So, for these values of n, the optimal

value of (36) is upper bounded by mn + γnα(Gn)/Mn, leading to

ϑGn
(Rn) /

(
√

2c(r)/e + ǫ
)n

+
(

b
√

c(r) + ǫ
)n

/ (f(r) + ǫ)n.

�

We are now in the position to complete the proof of Theorem 1.1. We will

first consider a sequence of generalized Johnson graphs, and will apply Theorem

4.1 combined with Frankl and Wilson estimate of the ratio α(G)/M . We will not

achieve the strongest result claimed in Theorem 1.1 with these graphs, in return

they are quite easy to analyze. Then, we will take the graphs considered in [16].

Let Gn = J(n, 2pn − 1, pn − 1) where pn is a sequence of prime numbers such

that pn ∼ an for some constant real number a. The value of a < 1/4 will be

chosen later in order to optimize the resulting bound. We have (see section 3)

α(Gn)

Mn
/ b(a)n where b(a) = e−(H(2a)−H(a)).
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FIGURE 3. eH(a)−H(2a)

These graphs can be realized as unit distance graphs in R
n in infinitely many ways,

depending on the real values chosen for the 0 and 1 coordinates. An easy compu-

tation shows that these embeddings realize every radius r such that

r ≥ rmin(n, pn) :=

√

(n− 2pn + 1)(2pn − 1)

2npn
∼ r(a) :=

√
1− 2a.

The function f(r(a)) =
√

2c(r(a))/e is decreasing with a, so we will take the

largest possible value for a, under the constraint b(a) ≤
√

2/e. Let this value be

denoted a0; then b(a0) =
√

2/e and (see Figure 3)

0.2268 ≤ a0 ≤ 0.2269.

We fix now a = a0. For a given ǫ > 0, because the function f(r) =
√

2c(r)/e
is continuous, there is a r > r(a0) such that f(r) = f(r(a0)) + ǫ, and such that,

for n sufficiently large, r is a valid radius for all the graphs Gn. Applying Theorem

4.1 to this value of r and to ǫ, we obtain

ϑGn
(Rn) / (f(r(a0)) + ǫ)n

with

f(r(a0)) =

√

2(1 +
√
2a0)e−(1+

√
2a0) < (1.262)−1.

In [16], Raigorodski considers graphs with vertices in {−1, 0, 1}n, where the

number of −1, respectively of 1, is growing linearly with n. If the number of 1 is

equivalent to x1n and the number of −1 to x2n, with x2 ≤ x1, if z = (x1+3x2)/2,

and y1 = (−1 +
√
−3z2 + 6z + 1)/3, he shows that:

(39)
α(Gn)

Mn
/ b(x1, x2)

n where b(x1, x2) = e−(H2(x1,x2)−H2(y1,(z−y1/2))

where H2(u, v) = −u log(u)−v log(v)− (1−u−v) log(1−u−v). The proof of

(39) relies on a similar argument as in Frankl-Wilson intersection theorem. These
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graphs can be realized as subgraphs of the unit distance graph in R
n with minimal

radius

r(x1, x2) =

√

(x1 + x2)− (x1 − x2)2

(x1 + 3x2)
.

For x1 = 0.22 and x2 = 0.20, the inequality b(x1, x2) <
√

2/e holds and

f(r(x1, x2)) < 1.268−1, leading to the announced inequality (7).

Remark 4.3. The possibility to further improve the basis of exponential growth

using Theorem 4.1 is rather limited. Indeed, f(r) ≥
√

2c(1/2)/e > (1.316)−1.

So, with this method, we cannot reach a better basis that 1.316.

5. NUMERICAL RESULTS FOR DIMENSIONS UP TO 24

In this range of dimensions, we have tried many graphs in order to improve

the known upper estimates of m1(R
n) (and, in turn, the lower estimates of the

measurable chromatic number). We report here the best we could achieve. For

each dimension 4 ≤ n ≤ 24, Table 2 displays a feasible solution (z0, z1, z2) of

(31) where the notations are those of section 2: G is an induced subgraph of the

unit distance graph in dimension n, and it has M vertices at distance r from 0.

The number given in the third column is the exact value, or an upper bound, of its

independence number α(G), and replaces α(G) in (31). The last column contains

the objective value of (31), thus an upper bound for m1(R
n). Table 3 gives the

corresponding lower bounds for χm(Rn), compared to the previous best known

ones.

The computation of (z0, z1, z2) was performed in a similar way as in [13]:

a large interval e.g. [0, 50] is sampled in order to replace the condition z0 +
z1Ωn(t) + z2Ωn(rt) ≥ 0 for all t > 0 by a finite number of inequalities; the

resulting linear program is solved leading to a solution (z∗0 , z
∗
1 , z

∗
2). The function

z∗0 + z∗1Ωn(t) + z∗2Ωn(rt) is almost feasible for (31); its absolute minimum is

reached in the range [0, 50] so it is enough to slightly increase z∗0 in order to obtain

a true feasible solution. The computations were performed with the help of the

softwares SAGE [19] and lpsolve [3].

A few words about the graphs involved in the computations are in order:

The 600-cell is a regular polytope of dimension 4 with 120 vertices: the six-

teen points (±1/2,±1/2,±1/2,±1/2), the eight permutations of (±1, 0, 0, 0) and

the 96 points that are even permutations of (0,±1/(2φ),±1/2,±φ/2), where

φ = (1 +
√
5)/2. If d is the distance between two non antipodal vertices, we

have d2 ∈ {(5 ±
√
5)/2, 3, (3 ±

√
5)/2, 2, 1}. Each value of d gives raise to a

graph connecting the vertices that are at distance d apart; these graphs, after rescal-

ing so that the edges have length 1, lie on the sphere of radius r = 1/d. Their

independence numbers are respectively equal to: 39, 26, 24, 26, 20. We note that

applying the conjugation
√
5 → −

√
5 will obviously not change the independence

number. Among these graphs, the best result in dimension 4, recorded in Table 2,

was obtained with d =
√
3. It turned out that the same graph gave the best result

we could achieve in dimensions 5 and 6.
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The root system E8 is the following set of 240 points in R
8: the points ((±1)2, 06)

and all their permutations, and the points ((±1/2)8) with an even number of minus

signs. The distances between two non antipodal points take three different values:

d =
√
2, 2,

√
6. The unit distance subgraph associated to a value of d lies on a

sphere of radius r =
√
2/d and has an independence number equal respectively

to 16, 16, 36. The one with the smallest radius r =
√

1/3 gives the best bound in

dimension 8 as well as in dimensions 9, 10, and 11 (in these dimensions we have

compared with Johnson graphs).

The configuration in dimension 7 is derived from E8: given p ∈ E8, we take the

set of points in E8 closest to p. Independently of p, this construction leads to 56
points that lie on a hyperplane. The graph defined by the distance

√
6 after suitable

rescaling corresponds to r =
√
6/4 and has independence number 7.

In the other dimensions up to 23, our computations involve generalized John-

son graphs as described in section 3. In dimension 24, we obtained a better result

with the so-called orthogonality graph Ω(24). For n = 0 mod 4, Ω(n) denotes the

graph with vertices in {0, 1}n, where the edges connect the points at Hamming dis-

tance n/2. Using semidefinite programming, an upper bound of its independence

number is computed for n = 16, 20, 24 in [9].
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n G α M r z0 z1 z2 z0 + z2α/M

4 600-cell 26 120
√
3/3 0.0421343 0.690511 0.267355 0.100062

5 600-cell 26 120
√
3/3 0.023477 0.772059 0.204465 0.0677778

6 600-cell 26 120
√
3/3 0.0141514 0.830343 0.155506 0.0478444

7 E8 kissing 7 56
√
6/4 0.007948 0.834435 0.157617 0.0276502

8 E8 36 240
√
3/3 0.0053364 0.899613 0.0950508 0.0195941

9 E8 36 240
√
3/3 0.0033303 0.921154 0.0755157 0.0146577

10 E8 36 240
√
3/3 0.00209416 0.937453 0.0604529 0.0111621

11 E8 36 240
√
3/3 0.00132364 0.949973 0.0487036 0.00862918

12 J(13, 6, 2) 148 1716
√

21/52 9.002e-04 0.938681 0.0604188 0.00611112

13 J(14, 7, 3) 184 3432
√

7/16 5.933e-04 0.936921 0.0624857 0.00394335

14 J(15, 7, 3) 261 6435
√

7/15 3.9393e-04 0.935283 0.0643239 0.00300288

15 J(16, 8, 3) 850 12870
√

2/5 2.7212e-04 0.967168 0.0325604 0.00242258

16 J(17, 8, 3) 1090 24310
√

36/85 1.9080e-04 0.968014 0.0317961 0.00161646

17 J(18, 9, 4) 1460 48620
√

9/20 1.34658e-04 0.967557 0.0323093 0.00110487

18 J(19, 9, 4) 2127 92378
√

9/19 9.50746e-05 0.96714 0.032765 8.49488e-04

19 J(20, 9, 3) 6708 167960
√

33/80 5.944e-05 0.98275 0.0171908 7.46008e-04

20 J(21, 10, 4) 8639 352716
√

55/126 4.44363e-05 0.982618 0.0173381 4.69095e-04

21 J(22, 11, 5) 11360 705432
√

11/24 3.2936e-05 0.982495 0.0174727 3.1431e-04

22 J(23, 11, 5) 17055 1352078
√

11/23 2.4315e-05 0.982385 0.0175913 2.46211e-04

23 J(24, 12, 5) 53945 2704156
√

3/7 1.40898e-05 0.990052 0.00993429 2.12269e-04

24 Ω(n) 183373 224
√

1/2 1.30001e-05 0.984309 0.0156786 1.84366e-04
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n previous best new

lower bound lower bound

for χm(Rn) for χm(Rn)
4 9 [13] 10

5 14[13] 15

6 20 [13] 21

7 28 [13] 37

8 39[13] 52

9 54[13] 69

10 73 [13] 90

11 97 [13] 116

12 129 [13] 164

13 168[13] 254

14 217[13] 334

15 279[13] 413

16 355 [13] 619

17 448[13] 906

18 563[13] 1178

19 705 [13] 1341

20 879[13] 2132

21 1093[13] 3182

22 1359[13] 4062

23 1690 [13] 4712

24 2106[13] 5424

TABLE 3. Lower bounds for the measurable chromatic number
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[11] L. LOVÁSZ, On the Shannon capacity of a graph, IEEE Trans. Inf. Th. 25 (1979), 1–7.

[12] F. M. DE OLIVEIRA FILHO, New bounds for geometric packings and colorings via harmonic

analysis and optimization, Doctoral Thesis, University of Amsterdam, viii + 114pp, 2009.

[13] F. M. DE OLIVEIRA FILHO AND F. VALLENTIN, Fourier analysis, linear programming, and

densities of distance avoiding sets in R
n, Journal of the European Mathematical Society 12

(2010) 1417-1428.

[14] G. B. FOLLAND, A course in abstract harmonic analysis, 1995.

[15] P. FRANKL AND R. M. WILSON, Intersection theorems with geometric consequences, Com-

binatorica 1 (1981), 357-368.

[16] A. M. RAIGORODSKII, On the chromatic number of a space, Uspekhi Mat. Nauk 55 (2001),

147-148. English translation in Russian Math. Surveys 55 (2000), 351-352.

[17] A. SCHRIJVER, A comparison of the Delsarte and Lovász bounds, IEEE Trans. Inform. Theory,

25(4):425429, 1979.

[18] A. SCHRIJVER, New code upper bounds from the Terwilliger algebra and semidefinite pro-

gramming, IEEE Trans. Inform. Theory IT-51 (2005), 2859–2866.

[19] W. A. STEIN ET AL., Sage Mathematics Software (Version 4.7), The Sage Development Team,

2011, http://www.sagemath.org.
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