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Abstract

This paper describes a novel hybrid method, combining a spectral and a par-
ticle method, to simulate the turbulent transport of a passive scalar. The
method is studied from the point of view of accuracy and numerical cost. It
leads to a significative speed up over more conventional grid-based methods
and allows to address challenging Schmidt numbers. In particular, theoret-
ical predictions of universal scaling in forced homogeneous turbulence are
recovered for a wide range of Schmidt numbers for large, intermediate and
small scales of the scalar.
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1. Introduction

The prediction of the dynamics of a scalar advected by a turbulent flow
is an important challenge in many applications. The scalar field can be used
to represent various quantities transported by the flow. In combustion, the
mixture fraction is a conserved scalar used to describe mixing between fuel
and oxidizer [1]. The prediction of scalar in environmental flows is also of
great importance [2]. The temperature field is another type of advected scalar
which is critical in many applications, e.g. to simulate the cooling systems
used for nuclear reactors [3]. Passive scalars can finally be used to capture
interfaces in multiphase flows [4] or determine the dynamical properties of
turbulent flows [5].

A passive scalar, θ, is governed by an advection-diffusion equation,

∂θ

∂t
+ ~u · ~∇θ = ~∇ ·

(
κ~∇θ

)
(1)
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where κ is the molecular scalar diffusivity and ~u the flow velocity field. The
phenomenology of passive scalar convection-diffusion depends on the molec-
ular Schmidt number, the viscosity-to-diffusivity ratio, Sc = ν/κ. For tur-
bulent flow, the Kolmogorov scale, ηK , is defined as the smallest length scale
of the turbulent motion. Similarly, for Schmidt number higher than one, the
Batchelor scale, ηB, is defined as the smallest length scale of the scalar fluctu-
ations. The Batchelor and Komolgorov scales are related by ηB = ηK/

√
Sc.

The Batchelor scale is thus smaller than the Kolmogorov scale. This
means that, for Schmidt number larger than one, scalar dynamics can oc-
cur at scales smaller than the smallest velocity eddy, and therefore requires
important computational resources. Donzis et al. [6] performed DNS of
turbulent transport by means of pseudo-spectral methods using up to 4096
modes in each direction to study universal scaling laws of a passive scalar.

In the above reference the same grid resolutions and numerical method
are used for the momentum and the scalar equations. The two-scale nature
of turbulent scalar transport, however, makes it natural to use different grids
and different numerical methods for the scalar and the momentum. In a
recent work, Gotoh et al. [7] describe a hybrid method combining a spectral
method for the Navier-Stokes equation and compact finite-difference schemes
for the scalar advection. This hybrid method is validated and applied for sim-
ulations of decaying turbulence at Schmidt numbers of 1 and 50. Significant
gains were obtained in comparison with methods using spectral discretiza-
tions for both the momentum and the scalar.

For large Schmidt numbers, the scalar dynamics is essentially governed
by advection, a regime for which Lagrangian or semi-Lagrangian methods are
ideally suited. An important feature of these methods, which makes them
particularly appealing in the case of high Schmidt numbers, is that they are
stable under conditions that are related to the flow strain and not to the grid-
size. In practice this means that the time-step used for the scalar equation
will depend on the grid resolution used for the momentum equation even if
a much finer grid is used for the scalar. Inspired by this observation, we
proposed in [8] to couple semi-Lagrangian particle methods at different grid-
resolutions for both the scalar transport and the Navier-Stokes equations.
This reference provides a proof of concept that scalar spectra and structures
are resolved with the same accuracy and much less computational effort in a
hybrid method using a coarse resolution for the momentum than in a fully
resolved high resolution method. This work was pursued in [9], to investigate
the universal laws for large, intermediate and small scales of the scalar for
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Reynolds numbers (based on the Taylor micro-scale) between 80 and 160 and
Schmidt numbers between 0.7 and 16. In this reference, a particle method
for the scalar equation was coupled with a pseudo-spectral method for the
Navier-Stokes equations.

The purpose of the present paper is to describe and validate the hybrid
spectral-particle numerical approach used in [9], and to discuss its efficiency,
in particular in comparison with fully resolved methods using spectral dis-
cretizations for both the scalar and momentum equations, and with the hy-
brid method proposed in [7].

An outline of this paper is as follows. In section 2, we describe the semi-
Lagrangian particle method used for the scalar equation, the pseudo-spectral
method used for the momentum equation and the coupling strategy. We also
indicate the approach to run the hybrid method on massively parallel ma-
chines. In section 3, we test our method in decaying turbulence experiments
similar to those in [7] and discuss its accuracy, cost and overall efficiency.
In section 4, we apply our method to investigate the physics of turbulent
transport in forced homogeneous turbulence over a wide range of Schmidt
numbers. Section 5 is devoted to concluding remarks and future directions
that we are currently exploring.

2. Hybrid spectral-particle method

In this section we first describe the particle method used to solve the
scalar equation, then the pseudo-spectral method used for the Navier-Stokes
equation and the coupling strategy. We also explain our strategy to optimize
the parallel performance of the hybrid method.

2.1. Semi-Lagrangian particle methods

The principle of particle methods for the advection of a given quantity is
to concentrate this quantity on a set of particles and to follow these particles
with the advection field. These methods are conservative by nature and free
of CFL stability conditions. Continuous fields or grid values are recovered
from the particles by mollification or interpolation [10]. The numerical anal-
ysis of these methods shows that a strong strain in the advection field can
create distortions in the particle distribution and deteriorate the accuracy of
the method. To overcome this difficulty, it is common practice to remesh par-
ticles on a regular grid through interpolation [11, 10]. In the context of the
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advection of a vorticity field to solve the incompressible Navier-Stokes equa-
tion in vorticity form, these methods have been validated against spectral
or finite-difference methods and applied in bluff body flows [11, 12, 13, 14],
in homogeneous decaying turbulence [15] and in vortex dynamics [16, 17].
In the context of scalar advection they have been used for Lagrangian dis-
cretizations of level set methods [18, 19, 20] and for the determination of
Lyapounov exponents of flow maps [5].

When particles are remeshed at every time-step, which is often the case in
practice, one obtains a class of conservative semi-Lagrangian methods that
can be analyzed as CFL-free finite-difference methods [20]. Remeshing is
performed through interpolation. In one dimension it can be expressed by
the following formula:

θi =
∑
p

θp Λ(
xi − xp

∆xθ
),

where Λ is the interpolation kernel, xi denote the grid points and xp the
particle locations after advection. The summation concerns particles which
belong to the support of the kernel around a given grid point. In the present
paper, particles are advected by a second order Runge-Kutta scheme and we
use the following kernel, derived in [19],

Λ(x) =


1
12

(1− |x|)
(
25|x|4 − 38|x|3 − 3|x|2 + 12|x|+ 12

)
if 0 ≤ |x| < 1

1
24

(|x| − 1) (|x| − 2)
(
25|x|3 − 114|x|2 + 153|x| − 48

)
if 1 ≤ |x| < 2

1
24

(3− |x|)3 (5|x| − 8) (|x| − 2) if 2 ≤ |x| < 3

0 if 3 ≤ |x|.
(2)

This kernel has a support of size 6. It is shown in [21] that this remeshing
kernel provides a scheme that is fourth order accurate in space for constant
velocity field, and second order in the general case, provided the time-step
is bounded by (max |∇u|)−1. Throughout this paper we used the following
value for the scalar time-step:

∆tθ = (max |∇~u|)−1. (3)

Note that (max |∇~u|)−1 is the relevant time scale for the advection of a quan-
tity with a velocity ~u. For scalar advection in three dimensions, following [20]
we use a Strang splitting method, where particles are moved and remeshed
alternatively in the 3 directions. More precisely, a complete advection-step
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with time-step ∆tθ of the scalar is performed by successively solving the ad-
vection equation along the x-axis, y-axis, z-axis, y-axis, x-axis, for ∆tθ/2,
∆tθ/2, ∆tθ, ∆tθ/2 and ∆tθ/2, respectively.

After advection and remeshing of particles on the cartesian grid, scalar
values are diffused on the grid. In the present study, we use an implicit
spectral diffusion solver. In practice, with Schmidt numbers larger than
one, we have observed that the diffusive time-scales were of the same order
or bigger than the value given by (3). This time-step value is therefore
consistent with the time-scales that need to be resolved to ensure accurate
results for the advection-diffusion equations that we had to deal with.

2.2. Hybrid spectral-particle method

One of the advantages of semi-Lagrangian particle methods is that they
are readily applicable to coupling approaches. In our case, we couple the
advection-diffusion of a scalar by the semi-Lagrangian particle method just
described with a pseudo-spectral method used to solve the Navier-Stokes
equations. Both particle and spectral solvers are used in parallel, and employ
different grid resolutions to take into account the separation between the Kol-
mogorov and Batchelor scales. The velocity field is computed by a pseudo-
spectral solver with a second-order explicit Runge-Kutta time-advancement
scheme, and a CFL number equal to 0.5. If ∆xu and ∆tu are the grid size
and time-steps for Navier-Stokes solver, the CFL condition yields

∆tu =
∆xu

2 max |u|
. (4)

The classical 3/2 rule is used for de-aliasing the non-linear inertial term of
the Navier-Stokes equation and the viscous terms are treated exactly by inte-
grating analytically the spectral form of the diffusion equation. The velocity
obtained from the Navier-Stokes solver is interpolated in spectral space to
obtain particle velocities. Although less expensive interpolations could have
been used, spectral interpolation has been chosen because it minimizes in-
terpolation errors. Since the velocity resolution is taken in a DNS range, the
spectral interpolation beyond the Kolmogorov scale is indeed nearly exact.
Moreover our numerical experiments showed that the computational over-
head resulting from this interpolation method remained small in comparison
with the computational cost associated with the scalar and momentum equa-
tions.
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In practice, due to (3) and (4), the time-step used for the scalar equation
is always larger than the time-step used for the Navier-Stokes equation. ∆tθ

can be chosen to be an integer multiple of ∆tu and several sub-steps of the
Navier-Stokes solver are performed for one iteration of the scalar equation.

2.3. Parallel efficient implementation

Our goal is to perform direct numerical simulations (DNS) of turbulent
transport at high Schmidt numbers. A very fine spatial resolution is therefore
required, which makes the development of algorithms optimized for massively
parallel computers mandatory.

2.3.1. Parallel algorithm for the pseudo-spectral solver

The pseudo-spectral solver uses a classical parallel design based on two-
dimensional subdivisons. The 3D fast Fourier transform is split in three
one-dimensional fast Fourier transforms. The parallelization is done by sub-
dividing the 3D geometry along only 2 directions: along Y and Z in the
real space and along X and Y on the spectral space (see [9] for more de-
tails). In order to achieve the coupling between the two solvers, the domain
subdivision used for the particle method implementation is the same as the
one used inside the pseudo-spectral library in the real space. This avoids
data-reorganization.

2.3.2. Parallel design of the particle method

Our strategy to limit communications in the particle method is to define
work items as a group of particles, defined on the basis of their location and a
geometric subdivision, that are followed during a time-step (see algorithm1).
The directional splitting further dictates the choice of a (large) group of par-
ticle lines for these work items, which allows to gather communications (lines
8, 9 and 14 of algorithm 1). Each time step requires only four communica-
tions (one at lines 8 and 9 and 2 at line 14 of algorithm 1) per line group for
each MPI-process.

2.3.3. Overall scalability

The parallel scalability has been tested on different architectures. Table 1
presents results on a Blue-Gene/Q cluster and on an Intel-based cluster using
quad-cores with Intel Westmere-EP processors. Due to memory limitations,
the grid sizes are not the same on the two clusters. For the purpose of these
scalability measures, the Navier-Stokes and scalar equations are solved with
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Algorithm 1 Advection of a particle line.

1: for each (1D-) line do
2: Create a particle on each mesh point and initialize its position: pin =

i ·∆xθ.
3: Compute the intermediate RK2 positions for each particle: pin+1/2 =

pin +
(
∆tθ/2

)
· vin.

4: Compute the integer truncation I in of
(
pin+1/2

)
/∆x.

5: for m = 0 to 1 do
6: Compute the rank Rm(i, n) of the process which stored the velocity

on node I in +m.
7: if my MPI-rank is different from Rm(i, n) then
8: Send a MPI message to process Rm to ask for the velocity on node

I in +m.
9: Receive the velocity on node I in +m from process Rm(i, n).

10: end if
11: end for
12: Interpolate the velocity on position pin+1/2 from velocity on node I in

and (I in + 1) {as pin+1/2 ∈ [I in; I in + 1]}.
13: Compute the final particle positions: pin+1 = pin +

(
∆tθ/2

)
· vn(pin+1/2).

14: Remesh particles.
15: end for
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the same time-step. Grid resolutions for the velocity and scalar used in this
study are typical of those used for high Schmidt number simulations.

Cores Time/iteration Scalability
1024 102.02s -
2048 52.39s 97%
4096 26.80s 95%
8192 14.32s 89%

(a) Strong scalability on IBM Blue Gene
Q for Nθ = 20483 and Nu = 2563.

Cores Time/iteration Scalability
128 55s -
256 27.5s 100%
512 14.4s 95%

(b) Strong scalability on Intel cluster for
Nθ = 10243 and Nu = 1283.

Table 1: Strong scalability of the hybrid method on different architectures.
To compute the scalability, the run on the minimal cores number is used as
a reference. Nu and N θ denote the number of mesh points for velocity and
scalar, respectively.

3. Validation and performances of the hybrid method

3.1. Simulation setup

To validate and to compare the hybrid spectral-particle method with, on
the one hand, a pure spectral method and, on the other hand, the hybrid
method proposed by Gotoh et al. [7], we have implemented the same test-
cases as in [7]. In all cases, we solved the Navier-Stokes equations with a
classical pseudo-spectral method using a second order Runge-Kutta time-
stepping and the CFL condition (4).

In these test-cases, both scalar and velocity freely decay from random
initial fields. The random fields are multivariate Gaussians with a given
spectrum. Following [7] these initial spectra, for the velocity and scalar, are
chosen as follows

E(k, t = 0) = 16

√
2

π
k−50 k4 exp (−2(k/kν)

2), (5)

Eθ(k, t = 0) = 32

√
2

π
k−50 k4 exp (−2(k/kθ)

2), (6)

with kν = kθ = 6 and k0 = 5. In this section we report simulations corre-
sponding to two different Schmidt numbers, 1 and 50. As in [7], the value of
the viscosity ν was adjusted to keep the same scalar resolutions in both cases.
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Table 2 presents the physical parameters and the grid resolutions used in our
different simulations, and table 3 provides the statistics that determine the
initial conditions. Here the Reynolds and Péclet number are defined from
the Taylor micro scales,

Rλ =
u′λ

ν
λ =

√
〈u21〉

〈(∂u1/∂x1)2〉
, (7)

Pλ =
u′λθ
κ

λθ =

√
〈θ2〉

〈(∂θ/∂x1)2〉
. (8)

For completeness, we recall the definition of the mean kinetic energy and
scalar variance dissipation rates,

ε̄ =
ν

2

〈∑
i,j

(
∂uj
∂xi

+
∂ui
∂xj

)2
〉
, (9)

χ̄ = 2κ

〈∑
i

(
∂θ

∂xi

)2
〉
. (10)

We will also consider the mixed skewness Suθ of the velocity and scalar
gradients, which measures the transfer of the scalar excitation toward small
scale

Suθ =

〈
∂u1/∂x1 (∂θ/∂x1)

2〉〈
(∂u1/∂x1)

2〉1/2 〈(∂θ/∂x1)2〉 , (11)

and the flatness of the scalar gradient

F∂θ/∂x =

〈
(∂θ/∂x1)

4〉〈
(∂θ/∂x1)

2〉2 . (12)

3.2. Accuracy of the hybrid method

In all the following comparisons, the time is normalized by the eddy
turnover time. As it is customary, the spatial resolution of our DNS is cho-
sen such that Ku

maxηK and Kθ
maxηB larger than 1.5 [22], where Ku

max and
Kθ

max are the maximal wave number for the discrete velocity and the scalar,
respectively.
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Run Scheme ν Sc Nu N θ

1 Reference (spectral) 4.0× 10−4 1 15363 15363

2 Spectral 4.0× 10−4 1 10243 10243

3 Hybrid 4.0× 10−4 1 10243 10243

4 Hybrid 4.0× 10−4 1 10243 12803

5 Hybrid 4.0× 10−4 1 10243 15363

6 Spectral 1.2× 10−2 50 10243 10243

7 Spectral 1.2× 10−2 50 2563 10243

8 Hybrid 1.2× 10−2 50 2563 10243

9 Hybrid 1.2× 10−2 50 2563 12803

Table 2: Numerical parameters for the different runs.

Sc ε̄ χ̄ Rλ Pλ
Run 1-5 1 0.06498 0.2596 881 690
Run 6-9 50 1.950 0.1557 29 1150

Table 3: Statistics at initial time.

0 1 2 3 4 5 6

1

2

3

4

u0k0t

K
u m

ax
η

K

Reference
Spectral

Figure 1: Time evolution of Ku
maxηK for Sc = 1.
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10−2

10−1

100

k

E
(k
,t

)

Reference - Nu = Nθ = 15363

Spectral - Nu = Nθ = 10243

Figure 2: Kinetic energy spectra E(k, t) at time u0k0t = 0, 1.5, 3 and 6.

3.2.1. Test case I: Sc = 1

For Sc = 1, since ηK ≈ ηB, the same resolution is needed for velocity
and scalar fields. A reference spectral simulation has been run with 15363

points. Figure 1 shows that a spectral simulation with 10243 points already
provides a well resolved DNS, at least until time t = 4. This is confirmed by
figure 2, which shows the kinetic energy spectrum at several times for both
resolutions.

To study the accuracy of the hybrid scheme, the spectral simulations
are now compared with simulation using the hybrid spectral-particle method
on the same mesh (N θ = 10243 points) and with finer resolutions using
N θ = 12803 = (1.25 × 1024)3 or N θ = 15363 = (1.5 × 1024)3 points for the
scalar (see Table 2).

Figure 3 shows first the scalar variance spectrum for the different simu-
lations, at various time. All the spectra well agree except for run 3 (hybrid
method with N θ = 10243) at the smallest scales. This means that the particle
discretization of the scalar equation leads to a slight numerical dissipation at
the smallest scales. Note that this has also been observed in [7] with a fourth
order finite difference scheme. Figure 3 also shows that when Kθ

maxηB = 2.25,
which corresponds to 1.5 times the classical resolution criterion, the hybrid
method recovers most of the spectrum.

Additional comparisons can be performed based on the probability den-
sity functions (PDF). Figures 4, 5 and 6 show PDFs of the scalar, of the

11



100 101 102 103
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

k

E
θ
(k
,t

)

Reference
Spectral

Hybrid - Nu = 10243, Nθ = 10243

Hybrid - Nu = 10243, Nθ = 12803

Hybrid - Nu = 10243, Nθ = 15363

300 400 500 600
10−7

10−6

10−5

10−4

k

E
θ
(k
,t

)

Figure 3: Spectra of the scalar variance Eθ(k, t) at times u0k0t = 1.5 and 6.

12



−10 −8 −6 −4 −2 0 2 4 6 8

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

θ/σ

σ
P

(θ
)

Figure 4: PDF of the scalar value at time u0k0t = 3 and u0k0t = 6 for Sc = 1.
σ denotes the mean square root of the scalar (computed in run 1). See figure
3 for legend.
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x 1
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Figure 5: PDF of the scalar gradient at time u0k0t = 6 for Sc = 1. σ is the
mean square root of the scalar gradient (computed in run 1). See figure 3 for
legend.
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Figure 6: PDF of the scalar dissipation at time u0k0t = 6 for Sc = 1. See
figure 3 for legend.

gradient scalar and of the scalar dissipation rate, respectively. The proba-
bility distribution functions of the scalar produced in runs 2 and 3 are in
excellent agreement. The PDFs of the scalar gradient and of the scalar dis-
sipation are more discriminant, and some discrepancies with the reference
solution are observed near the tails of the distributions even for the spectral
simulation using 10243 grid points. For the hybrid simulations, the highest
resolution (N θ = 15363) well reproduces the reference results, whereas the
smaller resolutions (N θ = 10243 and 12803) lead to a slight under-prediction
of the tails, comparable to what is observed on the 10243 spectral simula-
tion. The PDF of the mean dissipation follows a exp(−c(χ/χ̄)α) law [23].
The exponent α is expected to slowly decay in time, but it is interesting to
evaluate its value and compare it with previous studies. From our results,
we obtain α = 0.354, 0.370, 0.372, 0.365 and 0.357 at u0k0t = 6 for run 1 to
5, respectively. These values are close to the theoretical prediction α = 1/3
of the Kraichnan model [23].

Some complementary statistics, similar to those presented in [7], are fi-
nally presented. The time evolution of the scalar mean dissipation (10) and
of the flatness (12) of the scalar gradient (fig. 7 and 8 respectively) exhibit
some discrepancies between the spectral method and the hybrid method us-
ing the same scalar resolution. For N θ ≥ 12803 (run 4 and 5), the hybrid
method provides a very good agreement with the spectral method. The last
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Figure 7: Time evolution of the mean scalar dissipation rate for Sc = 1. See
figure 3 for legend.
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Figure 8: Time evolution of the flatness of the scalar gradient for Sc = 1.
See figure 3 for legend.
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Figure 9: Time evolution of the mixed skewness −Suθ(t) for Sc = 1. See
figure 3 for legend.

statistic is the mixed skewness of velocity and scalar gradient Suθ (11). Its
time evolution is shown by figure 9. As explained in [7], the reference run
slightly over predicts this diagnostics: in all cases, the finite resolution limits
the energy transfer near the cut-off. This resolution effect makes it harder to
compare the different results, but it appears that the hybrid method delivers
very accurate results for N θ ≥ 12803.

From all these data, on can conclude that, for Sc = 1, the hybrid spectral-
particle method with N θ = 15363 (run 5), although slightly over-dissipative
near the cut-off wave number, exhibits for all diagnostics an accuracy sim-
ilar to the pseudo-spectral method and to the high order compact finite-
difference methods proposed in [7] . In other words, the modified DNS cri-
terion, Kθ

maxηB ≥ 2.25 = 1.52 ensures that the hybrid method can be run
in a DNS regime. For 1.5 < Kθ

maxηB < 2.25, run 4 shows that the statistic
quantities are rather well recovered. We will see below (section 3.3) that,
even for this small value of the Schmidt number and with higher resolution,
the hybrid method leads to a computational speed-up over both the purely
spectral method and the hybrid method of [7].

3.2.2. Test-case II: Sc = 50

To address this case, following [7] the fluid viscosity is decreased to 1.2×
10−2. This allows to respect the DNS criterion with a resolution of 10243
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Figure 10: Time evolution of Ku
maxηK and Kθ

maxηB for Sc = 50.

points for the scalar and 2563 points for the velocity (see Fig. 10). For
the hybrid method, a simulation with 12803 points for the scalar (run 7) is
performed, based on the modified DNS criterion Kθ

maxηB = 2.25. Another
simulation (run 6) is also performed with 10243 points to compare spectral
and hybrid methods on the same resolution (see table 2).

First, figure 11 shows the scalar variance spectra at time u0k0t = 1.6 and 3.
The hybrid method using Nθ = 12803 particles is in excellent agreement with
the spectral method except near the cut-off, whereas, as expected, the run
6 shows some numerical discrepancy at high wave numbers. The PDFs of
the scalar gradient and the scalar dissipation are shown on Figures 12 and
13. All the runs provide the same scalar gradient distribution. The hybrid
method accurately reproduces the tails of the PDF of the scalar dissipation
rate only for N θ ≥ 12803. The fit with the theoretical form exp

(
c(χ/χ̄)α

)
gives α = 0.351, 0.374 and 0.350 at time k0u0t = 3 for the spectral method
and the hybrid method with N θ = 10243 and 12803, respectively. Finally,
figures 14 and 15 show the mixed skewness and the flatness of the scalar gra-
dient. The results obtained with the spectral method and the hybrid method
with Nθ = 1280 (i.e. Kθ

maxηB ≥ 2.25) are in excellent agreement.
These experiments confirm that the condition Kθ

maxηB ≥ 2.25 on the
scalar resolution (coupled with the condition Ku

maxηK ≥ 1.5 to ensure that
the Navier-Stokes equations are solved in a DNS regime) ensures accurate
DNS with the hybrid method. For 1.5 < Kθ

maxηB < 2.25, the global statis-
tic quantities are correct but the smallest scales are slightly underestimated.
Nevertheless we will see in the next section that this error remains small and
does not prevent to study qualitatively the spectrum decay and discriminate
between universal scaling laws. We now explain how this hybrid strategy pro-
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Figure 11: Spectra of the scalar variance Eθ(k, t) at time u0k0t = 1.6 and 3.0
for Sc = 50.
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vides important computational savings even when a finer spatial resolution
is used for the scalar.

3.3. Numerical efficiency

Table 4 presents the computational cost of the different methods. In
this table, the total CPU time to reach a given simulation time u0k0t = 6
is reported. We recall that, in practice, several sub-steps of the Navier-
Stokes solver are performed for one iteration of the scalar equation, since the
particle method can be used with large time-steps. To properly evaluate the
computational cost of the particle method and the computational efficiency
resulting from the ability to use large time-steps, additional runs (3bis, 4bis,
...) have been performed with the hybrid method using the same (small)
time-steps as the Navier-Stokes equations. For these runs, the CPU time per
time-step is also reported.

All the simulations reported in Table 4 have been performed on 2048 cores
of a IBM Blue Gene Q. Note that this computer exhibits a rather low CPU
frequency (1,6 GHz for each core).

Run Scheme Sc Nu Nθ ∆tu ∆tθ CPU total CPU
(×10−4) (×10−4) time/step time

2 Spectral 1 10243 10243 2.5 2.5 12.12s 43 590s
3 Hybrid 1 10243 10243 2.5 [20.76; 40] - 33 868s
3bis Hybrid 1 10243 10243 2.5 2.5 11.09s 39 929s
4 Hybrid 1 10243 12803 2.5 [20.76; 40] - 34 923s
4bis Hybrid 1 10243 12803 2.5 2.5 13.46s 48 463s
5 Hybrid 1 10243 15363 2.5 [20.76; 40] - 36 213s
5bis Hybrid 1 10243 15363 2.5 2.5 16.42s 59 122s
6 Spectral 50 10243 10243 2.5 2.5 12.12s 43 590s
7 Spectral 50 2563 10243 2.5 2.5 4.63s 16 671s
8 Hybrid 50 2563 10243 10 100 - 1 139s
8bis Hybrid 50 2563 10243 10 10 3.14s 2 827s
9 Hybrid 50 2563 12803 10 100 - 1 328s
9bis Hybrid 50 2563 12803 10 10 4.96s 4 461s

Table 4: Numerical efficiency of the different methods - Runs are performed
on 2048 cores of a Blue Gene Q. Nu, N θ denotes the spatial resolution for
velocity and scalar and ∆tu,∆tθ are the numerical time steps for momentum
and scalar equations.

A first conclusion is that the particle method for the scalar equation runs
about 10% faster than the spectral method using the same grid resolution and
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time-sep (runs 2 and 3bis). On Intel-based clusters, which are more common,
similar comparisons have been performed, and the acceleration factor reaches
the value of 2. However the most important speed-up factor comes from
the large time step allowed by the hybrid method. As expected, the scalar
time step does not depend on the scalar spatial resolution. For test-cases at
Sc = 1, the same time-step is used for N θ = 10243, 12803 and 15363 whereas
a spectral method, or any grid-based method, would require to divide it
by 1.25 for N θ = 12803 and 1.5 for N θ = 15363. Note that in runs 3, 4
and 5, the scalar time step is not constant as the maximum value of the
velocity gradient varies during the simulation: at the beginning, the velocity
gradient increases until the kinetic energy spectrum reaches the smallest
scales (near the Kolmogorov scale) and then it starts to decrease due to the
energy dissipation. The range of the variations of ∆tθ is presented in table
4. ∆tθ always remains much larger than ∆tu. Comparisons of the total CPU
times for runs 2, 3, 4 and 5 show that, even when the spectral method is used
under the condition Kθ

maxηB ≈ 1.5, and the spectral-particle scheme under
the more severe condition Kθ

maxηB ≥ 2.25, the hybrid method is about 20%
faster.

The efficiency of the hybrid method is even more pronounced for larger
values of the Schmidt number. For Sc = 50, in hybrid methods based on
Eulerian schemes [7] the time-step for the scalar equations will be determined
by the scalar resolution. This is not the case for the spectral-particle hybrid
method. A comparison of the total CPU time of runs 6 and 9, shows that,
even with a higher resolution, the hybrid spectral-particle method leads to a
speed up factor of 32 over the purely spectral method. These results can be
compared to those obtained by the hybrid spectral-finite-difference method
of [7]. This reference reports a speed up factor about 4 for hybrid spectral-
finite-difference methods in comparison with a purely spectral method. Al-
though this comparison must be taken with care, due to the difference in the
machines and of the spectral codes, it demonstrates the value of the hybrid
spectral particle method for high values of the Schmidt number.

4. Application to the advection of passive scalar at high Schmidt
numbers

The hybrid spectral-particle method is now used to study the turbulent
mixing on a wide range of Schmidt numbers, with numerical parameters that
have been validated in the previous section. Theoretical studies explain the
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Figure 16: Left picture: Energy spectra for both Reynolds numbers, Rλ ≈
130 and Rλ ≈ 210. The spectra are compensated by the Kolmogorov scal-
ing. The arrow shows the direction of increasing Reynolds numbers. Right
picture: Scalar variance spectra for Rλ ≈ 130. The spectra are compensated
by the scaling proposed by Corrsin-Obukov. The arrow shows the direction
of increasing Schmidt numbers.

influence of the Schmidt number on the behavior of the scalar variance spec-
trum [24]. For a Schmidt number larger than one, Batchelor [25] reports that
the classical Corrsin-Obukhov cascade associated with a k−5/3 law (where k
is the wave number) for the scalar variance spectrum [26, 27] is followed by
a viscous-convective range with a k−1 power law. This viscous-convective
range is followed by the dissipation range, where various theoretical scalings
have been proposed for the spectrum [25, 28]. The goal of this section is to
compare DNS results based on the hybrid-spectral method with these the-
oretical predictions for small, intermediate and large scales and for various
Schmidt numbers.

4.1. Flow configuration

Several simulations have been performed in the context of forced homoge-
nous isotropic turbulence, in a 3D periodic box with a length 2π. The forcing
scheme used to obtain a statistical steady flow follows the one proposed by
Alvelius [29]. To achieve a steady state for the scalar, a forcing scheme is also
applied to low wave number modes in Fourier space, similarly to the velocity
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Rλ Nu Ku
maxηK ∆tu Sc N θ Kθ

maxηB ∆tθ ∆tθspec

130 2563 1.73 1.2e−2

0.7 5123 -

8.6e−2

6e−3

4 10243 3.39 3e−3

8 10243 2.45 3e−3

16 15363 2.61 2e−3

32 15363 1.85 2e−3

64 20483 1.76 1.5e−3

128 30643 1.79 1e−3

210 5123 1.79 3e−3
0.7 7703 -

2e−2
2e−3

4 10243 1.76 1.5e−3

Table 5: Setup of simulations performed. ∆tu is the time step used to solve
the Navier-Stokes equation with a pseudo-spectral solver. ∆tθ is the time
step used to solve the scalar transport equation with the particle method.
∆tθspec is the time step which would be needed if a pseudo-spectral method
was used for the same number of scalar grid points.

forcing [30]. Two Taylor-scale Reynolds numbers, Rλ, are considered, 130 and
210, using a resolution of Nu = 2563 and 5123 grid points, respectively. Fig-
ure 16 (left) shows the compensated spectrum for the kinetic energy, where ε̄
is the mean energy dissipation rate. For the scalar field, the mesh resolution
is increased with the Schmidt number [6] from 5123 to 30643 grid points.
Simulation details are given in Table 5. The time-steps used in these sim-
ulations are independent of the scalar resolutions, which allowed important
cost reduction for the high Schmidt number cases. On the basis of the com-
parisons reported in the previous section, given the values of the time-steps
shown in Table 5, for Sc = 128 the speed-up provided by the spectral-particle
method over a purely spectral method can be estimated at about 100. Figure
17 illustrates the scales separation between the Kolmogorov and Batchelor
scales for the highest Schmidt number case, Sc = 128.

4.2. Scalar spectrum analysis

The behaviors of the scalar variance spectrum are next studied at large,
intermediate and small scales from this DNS database and compared with
theoretical predictions. First, at the scales beyond the forcing peak, the
classical Corrsin-Obukhov cascade is expected to characterize the inertial-
convective range. Similarly to the inertial range of the kinetic energy spec-
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Figure 17: x−y plan colored by the vorticity magnitude (left, blue regions are
for the lowest vorticity values and red regions are for the highest vorticity
values) and by the passive scalar (middle, blue regions are for the lowest
scalar values and red regions are for the highest scalar values) for Rλ ≈ 130
and Sc = 128. The zooms (right) correspond to the white box with a length
of 8ηK for the vorticity magnitude (top) and the scalar (bottom).

trum, it is expected that this cascade follows a k−5/3 law [27, 26]. Figure 16
(right) shows the scalar spectra for various Schmidt numbers, compensated
by the Corrsin-Obukhov scaling, where χ̄ is the mean scalar dissipation rate.
As expected, the results show an inertial-convective range independent of
the Schmidt number. The k−5/3 range of the scalar spectrum is found more
clearly than the k−5/3 range of the energy spectrum. Indeed, the scalar
spectrum exponent is known to tend to the −5/3 value more rapidly than
the energy spectrum exponent [31, 32]. Note that the end of the inertial-
convective range appears around kηK ≈ 0.1 (which is roughly the Taylor
scale) independently of the Schmidt number.

Beyond this range, for Schmidt numbers larger than one, Batchelor [25]
described the development of the viscous-convective range with a k−1 law.
This scaling is due to the velocity small scales strain effect on the scalar
field. Figure 18 shows the scalar spectra for various Schmidt numbers, com-
pensated by the Batchelor’s scaling. For clarity, the results are shown with
wavenumbers multiplied by the Kolmogorov scale (Figure 18, left picture)
or by the Batchelor scale (Figure 18, right picture). From our numerical
results, we observe that the k−1 power law starts from kηK ≈ 0.1, after the
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Figure 18: Scalar variance spectra for Rλ ≈ 130. The spectra are compen-
sated by the scaling proposed by Batchelor for Schmidt number higher than
one. The arrow shows the direction of increasing Schmidt numbers. For a
sake of clarity, the results are shown with wavenumbers multiplied by the
Kolmogorov scale (left) and by the Batchelor scale (right). For the dissipa-
tive region, the circles show the law proposed by Kraichnan and the squares
show the law proposed by Batchelor (right).

inertial-convective range, and this viscous-convective range grows with the
Schmidt number (Figure 18, left picture).

The form of the scalar variance spectrum in the dissipation range (follow-
ing the viscous-convective range) is also studied (Figure 18, right picture).
Two distinct theoretical behaviors have been proposed by Batchelor [25] and
Kraichnan [28]. For scales beyond the Kolmogorov scale, Batchelor [25] as-
sumes that the scalar at high Schmidt number is strained by the smallest
scales of the velocity. Considering spatial fluctuations of the local strain
rates, but neglecting temporal fluctuations, Batchelor predicts the following
form of the scalar variance spectrum

Eθ(kηB)

χ̄
√
ν/εηB

=
q

kηB
exp
(
−q(kηB)2

)
, (13)

where q is a constant. Alternatively, Kraichnan [28] assumes that strain rates
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rapidly fluctuate in time and obtains

Eθ(kηB)

χ̄
√
ν/εηB

=
q

kηB

(
1 + (6q)1/2kηB

)
exp
(
−(6q)1/2kηB

)
. (14)

Note that the distinction between these behaviors has some practical implica-
tions on our understanding of energy transfer between ocean and atmosphere
[33], for example. Although the different curves do not perfectly coincide,
our DNS results clearly show a good agreement with the Kraichnan form,
even for the runs where 1.75 < Kθ

maxηB < 2.25. This result confirms previ-
ous studies performed in [33, 34, 35]. Note that, Donzis et al. [34] observed
that, even for Schmidt number smaller than 1, the scalar spectra collapse in
the dissipative range when they are normalized by Batchelor variables. The
same trend is found with our numerical results for Sc = 0.7 (Fig. 18 right).
However, for Sc = 0.7 (the smallest Schmidt number value shown on figures),
the spectrum does not exhibit a k−1 range (Fig. 18, left). This range is only
found for Sc > 1, as predicted by theory.

4.3. Effect of forcing schemes

Our numerical results find the same behavior for the smallest scales as
previous studies and observations [35, 36]. However, our numerical results
also clearly show a −5/3 inertial-convective range for moderate Reynolds
numbers, in contrast with the results reported in [34], where an imposed
mean scalar gradient was used [36]. To better understand the influence of the
forcing scheme at large and intermediate scales, additional simulations have
been performed with an imposed mean scalar gradient to maintain the scalar
variance. Figure 19 compares the scalar variance spectra for two Reynolds
numbers, 130 and 210 and two Schmidt numbers, 0.7 and 4. The spectra
are compensated by using the scaling of the inertial-convective range. As
expected the small scales behavior is not influenced by the forcing schemes.
But, for moderate Reynolds number, the influence of the forcing schemes
clearly appears. The simulations using a mean scalar gradient forcing have
no clear k−5/3 range, and they have a large k−1 range beginning at large
scales. In particular, for Sc = 0.7, the scalar spectrum exhibits a viscous-
convective range for the mean scalar gradient forcing, in contrast with the
results obtained with a low wave numbers forcing and with the theoreti-
cal prediction. When the Reynolds number increases, an inertial-convective
range begins to appear for simulations with mean scalar gradient forcing, as
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Figure 19: Scalar variance spectra for two Schmidt number, Sc = 0.7 and
Sc = 4 for Rλ ≈ 130 (left) and Rλ ≈ 210 (right). The spectra are com-
pensated by the scaling proposed by Corrsin-Obukov. The arrow shows the
direction of increasing Schmidt numbers. The dashed and solid lines show
the spectra for the low wave numbers forcing and constant gradient forcing,
respectively. The dashed-dotted line corresponds to the k−1 scaling under
the chosen normalization.

shown by the spectra for Rλ = 210. Note that Watanabe and Gotoh [37] have
already observed an influence of the forcing scheme on the scaling exponents
of the structure function.

5. Conclusion

In this paper we have presented a hybrid scheme for the turbulent trans-
port of a passive scalar, combining a spectral method for the Navier-Stokes
equations and a semi-Lagrangian particle method for the scalar transport.
The method takes advantage of the Lagrangian nature of particle methods
to enable high resolution of the scalar at affordable numerical cost.

A validation study in decaying homogeneous turbulence against a purely
spectral method allowed to clarify the particle resolution necessary to resolve
the smallest scales. This study showed the gain of the present method over
hybrid methods combining spectral and finite-difference methods in the case
of high Schmidt numbers. The efficiency of the method was further demon-
strated in a study of universal scalar laws in forced homogeneous turbulence
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for Schmidt numbers up to 128. Using scalar resolution up to 30643 particles
on massively parallel clusters, the method allowed to recover the theoretical
predictions at large, intermediate and small scales.

Further works are currently undertaken to extend the capabilities of the
method in several directions. The local nature of particle methods allows us
to envision hybrid method where the scalar is solved on GPU along the line of
[21]. Moreover, thanks to the dimensional splitting, using high order particle
remeshing schemes derived in [21] should further improve the accuracy of
the hybrid method for a marginal additional cost. Finally, the present study
opens the way to a multi-scale approach to vorticity transport as an LES
tool for the Navier-Stokes equations.
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