
HAL Id: hal-00935418
https://hal.science/hal-00935418v1

Submitted on 23 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Blowing up solutions for an elliptic Neumann problem
with sub- and supercritical nonlinearity. Part I: N=3

Olivier Rey, Juncheng Wei

To cite this version:
Olivier Rey, Juncheng Wei. Blowing up solutions for an elliptic Neumann problem with sub- and
supercritical nonlinearity. Part I: N=3. Journal of Functional Analysis, 2004, 212, pp.472-499. �hal-
00935418�

https://hal.science/hal-00935418v1
https://hal.archives-ouvertes.fr


Blowing up Solutions for an Elliptic Neumann
Problem with Sub- or Supercritical Nonlinearity

Part I: N = 3

Olivier REY∗ and Juncheng WEI†

October 6, 2005

Abstract

We consider the sub- or supercritical Neumann elliptic problem −∆u + µu = u5+ε,
u > 0 in Ω; ∂u

∂n
= 0 on ∂Ω, Ω being a smooth bounded domain in R3, µ > 0 and ε 6= 0

a small number. Hµ denoting the regular part of the Green’s function of the operator

−∆ + µ in Ω with Neumann boundary conditions, and ϕµ(x) = µ
1
2 + Hµ(x, x), we show

that a nontrivial relative homology between the level sets ϕc
µ and ϕb

µ, b < c < 0, induces
the existence, for ε > 0 small enough, of a solution to the problem, which blows up as
ε goes to zero at a point a ∈ Ω such that b ≤ ϕµ(a) ≤ c. The same result holds, for
ε < 0, assuming that 0 < b < c. It is shown that, Mµ = supx∈Ω ϕµ(x) < 0 (resp. > 0)
for µ small (resp. large) enough, providing us with cases where the above assumptions
are satisfied.

1 Introduction

In this paper we consider the nonlinear Neumann elliptic problem

(Pq,µ)
{
−∆u+ µu = uq u > 0 in Ω

∂u
∂n = 0 on ∂Ω

where 1 < q < +∞, µ > 0 and Ω is a smooth and bounded domain in R3.

Equation (Pq,µ) arises in many branches of the applied sciences. For example, it can be
viewed as a steady-state equation for the shadow system of the Gierer-Meinhardt system in
biological pattern formation ([14], [26]) or of parabolic equations in chemotaxis, e.g. Keller-
Segel model ([24]).

When q is subcritical, i.e. q < 5, Lin, Ni and Takagi proved that the only solution, for small
µ, is the constant one, whereas nonconstant solutions appear for large µ [24] which blow up, as
µ goes to infinity, at one or several points. The least energy solution blows up at a boundary
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point which maximizes the mean curvature of the frontier [28][29]. Higher energy solutions
exist which blow up at one or several points, located on the boundary [8][13][22][33][19], in
the interior of the domain [5][7][11][12][16][21][38][40], or some of them on the boundary and
others in the interior [18]. (A good review can be found in [26].) In the critical case, i.e. q = 5,
Zhu [41] proved that, for convex domains, the only solution is the constant one for small µ
(see also [39]). For large µ, nonconstant solutions exist [1][34]. As in the subcritical case the
least energy solution blows up, as µ goes to infinity, at a unique point which maximizes the
mean curvature of the boundary [3][27]. Higher energy solutions have also been exhibited,
blowing up at one [2][35][31][15] or several boundary points [25][36][37][17]. The question of
interior blow-up is still open. However, in contrast with the subcritical situation, at least one
blow-up point has to lie on the boundary [32]. Very few is known about the supercritical
case, save the uniqueness of the radial solution on a ball for small µ [23].

Our aim, in this paper, is to study the problem for fixed µ, when the exponent q close
to the critical one, i.e. q = 5 + ε and ε is a small nonzero number. Whereas the previous
results, concerned with peaked solutions, always assume that µ goes to infinity, we are going
to prove that a single peak solution may exist for finite µ, provided that q is close enough to
the critical exponent. Such a solution blows up, as q goes to 5, at one point which may be
characterized.

In order to state a precise result, some notations have to be introduced. Let Gµ(x, y)
denote the Green’s function of the operator −∆+µ in Ω with Neumann boundary conditions.
Namely, for any y ∈ Ω, x 7→ Gµ(x, y) is the unique solution of

−∆Gµ + µGµ = 4πδy x ∈ Ω ;
∂Gµ

∂n
= 0 x ∈ ∂Ω. (1.1)

Gµ writes as

Gµ(x, y) =
e−µ1/2|x−y|

|x− y|
−Hµ(x, y)

where Hµ(x, y), regular part of the Green’s function, satisfies

−∆Hµ + µHµ = O x ∈ Ω ;
∂Hµ

∂n
=

1
∂n

(
e−µ1/2|x−y|

|x− y|

)
x ∈ ∂Ω. (1.2)

We set
ϕµ(x) = µ

1
2 +Hµ(x, x).

It is to be noticed that
Hµ(x, x) → −∞ as d(x, ∂Ω) → 0 (1.3)

implying that
Mµ = sup

x∈Ω
ϕµ(x)

is achieved in Ω. (See (5.10) in Proposition 5.2 for the proof of (1.3).) Denoting

fα = {x ∈ Ω, f(x) ≤ α}

the level sets of a function f defined in Ω, we have :
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Theorem 1.1 Assume that there exist b and c, b < c < 0, such that c is not a critical
value of ϕµ and the relative homology H∗(ϕc

µ, ϕ
b
µ) 6= 0. (P5+ε,µ) has a nontrivial solution,

for ε > 0 close enough to zero, which blows up as ε goes to zero at a point a ∈ Ω, such that
b < ϕµ(a) < c.
The same result holds, for ε < 0, assuming that 0 < b < c.

We notice that, Mµ < 0 (resp. > 0) when µ is small (resp. large) enough (see (5.12) and
(5.13) of Proposition 5.2). Consequently, we deduce from the previous result :

Theorem 1.2 There exist µ0 and µ1, 0 < µ0 ≤ µ1, such that :
1) If 0 < µ < µ0, (P5+ε,µ) has a nontrivial solution, for ε > 0 close enough to zero, which
blows up as ε goes to zero at a maximum point a of Hµ(a, a).
2) If µ > µ1, (P5+ε,µ) has a nontrivial solution, for ε < 0 close enough to zero, which blows
up as ε goes to zero at a maximum point a of Hµ(a, a).

Remarks. 1) In the critical case, i.e. ε = 0, further computations suggest that a nontrivial
solution should exist for µ > µ0 close enough to µ0, such that Mµ > 0 and Mµ0 = 0. This
solution would blow up, as previously, at a maximum point of Hµ0(a, a) as µ goes to µ0.
(This contrasts to previous results for P5,0 on the nonexistence of solutions for µ small ([39],
[41]) and nonexistence of interior bubble solutions for µ large ([10],[31]).)

2) In a forthcoming paper, we shall treat the case N ≥ 4, which appears to be qualitatively
different.

The scheme of the proof is the following. In the next section, we define a two-parameters
set of approximate solutions to the problem, and we look for a true solution in a neighborhood
of this set. Considering in Section 3 the linearized problem at an approximate solution, and
inverting it in suitable functional spaces, the problem reduces to a finite dimensional one,
which is solved in Section 4. Some useful facts and computations are collected in Appendix.

2 Approximate solutions and rescaling

For sake of simplicity, we consider in the following the supercritical case, i.e. we assume that
ε > 0. The subcritical case may be treated exactly in the same way.

For normalization reasons, we consider throughout the paper the equation

−∆u+ µu = 3u5+ε, u > 0 (2.1)

instead of the original one. The solutions are identical, up to the multiplicative constant
3−

1
4+ε . We recall that, according to [6], the functions

Uλ,a(x) =
λ

1
2

(1 + λ2|x− a|2) 1
2

λ > 0 , a ∈ R3 (2.2)

are the only solutions to the problem

−∆u = 3u5, u > 0 in R3.

As a ∈ Ω and λ goes to infinity, these functions provide us with approximate solutions to the
problem that we are interested in. However, in view of the additional linear term µu which
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occurs in (P5+ε,µ), the approximation needs to be improved. Actually, we define in Ω the
following functions :

Ũλ,a,µ(x) = Uλ,a(x)− 1
λ

1
2

(1− e−µ
1
2 |x−a|

|x− a|
+Hµ(a, x)

)
which satisfy

−∆Ũλ,a,µ + µŨλ,a,µ = 3U5
λ,a + µ

(
Uλ,a −

1
λ

1
2 |x− a|

)
. (2.3)

We are going to seek for solutions in a neighborhood of such functions, with the a priori
assumption that a remains far from the boundary of the domain, that is there exists some
number δ > 0 such that

d(a, ∂Ω) > δ. (2.4)

Moreover, integral estimates (see Appendix) suggest to make the additional a priori assump-
tion that λ behaves as 1/ε as ε goes to zero. Namely, we set

λ =
1
Λε

1
δ′
< Λ < δ′ (2.5)

with δ′ some strictly positive number.
In fact, in order to avoid the singularity which appears in the right hand side of (2.3), and

to cancel the normal derivative on the boundary, we modify slightly the definition of Ũλ,a,µ,
setting

VΛ,a,µ,ε(x) = Ũ 1
Λε ,a,µ(x)− µ

2
(Λε)

1
2 |x− a|(1− e

− ε2

|x−a|2 ) + θΛ,a,µ,ε(x) (2.6)

θΛ,a,µ,ε = θ being the unique solution to the problem −∆θ + µθ = 0 in Ω
∂θ
∂n = ∂

∂n

(
−U 1

Λε ,a(x) + (Λε)
1
2

|x−a| + µ
2 (Λε)

1
2 |x− a|(1− e

− ε2

|x−a|2 )
)

on ∂Ω.

From the above assumption (2.4) we know that

Hµ(a, x) = O(1) θλ,a,µ,ε = O(ε
5
2 ) (2.7)

in C2(Ω). We note that VΛ,a,µ,ε = V satisfies
−∆V + µV = 3U5

1
Λε ,a

+ µ
(
U 1

Λε ,a −
(Λε)

1
2

|x−a| e
− ε2

|x−a|2
)

−µΛ
1
2 ε

5
2

|x−a|3

(
1 + 2ε2

|x−a|2

)
e
− ε2

|x−a|2

−µ2ε2

2 (Λε)
1
2 |x− a|(1− e

− ε2

|x−a|2 ) in Ω
∂V
∂n = 0 on ∂Ω.

(2.8)
The VΛ,a,µ,ε’s are the suitable approximate solutions in the neigbourhood of which we shall
find a true solution to the problem. In order to make further computations easier, we proceed
to a rescaling. We set

Ωε =
Ω
ε
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and we define in Ωε the functions

WΛ,ξ,µ,ε(x) = ε
1
2VΛ,a,µ,ε(εx) ξ =

a

ε
(2.9)

which write as

WΛ,ξ,µ,ε(x) = U 1
Λ ,ξ(x)− Λ

1
2

(1− e−µ
1
2 ε|x−ξ|

|x− ξ|
+Hµ,ε(ξ, x)

)
− µε2

2
Λ

1
2 |x− ξ|(1− e

− 1
|x−ξ|2 ) + θ̃Λ,ξ,µ,ε(x)

(2.10)

Hµ,ε denoting the regular part of the Green’s function of the operator −∆+µε2 with Neumann
boundary conditions in Ωε, and θ̃Λ,ξ,µ,ε(x) = ε

1
2 θΛ,a,µ,ε(εx). We notice that, taking account

of (2.7)
Hµ,ε(ξ, x) = O(ε) θ̃Λ,ξ,µ,ε(x) = O(ε3) (2.11)

in C2(Ωε). We notice also that assumption (2.4) is equivalent to

d(ξ, ∂Ωε) >
δ

ε
(2.12)

and that WΛ,ξ,µ,ε = W satisfies the uniform estimate |WΛ,ξ,µ,ε| ≤ CU 1
Λ ,ξ in Ωε. Moreover,

we have
−∆W + µε2W = 3U5

1
Λ ,ξ

+ µε2
(
U 1

Λ ,a − Λ
1
2

|x−ξ|e
− 1
|x−ξ|2

)
−µΛ

1
2 ε2

|x−ξ|3

(
1 + 2

|x−ξ|2

)
e
− 1
|x−ξ|2

−µ2ε4

2 (Λε)
1
2 |x− ξ|(1− e

− 1
|x−ξ|2 ) in Ωε

∂W
∂n = 0 on ∂Ωε.

(2.13)
Finding a solution to (P5+ε,µ) in a neighbourhood of the functions VΛ,a,µ,ε is equivalent,
through the rescaling, to solving the problem

(P ′
5+ε,µ)

{
−∆u+ µε2u = 3u5+ε u > 0 in Ωε

∂u
∂n = 0 on ∂Ωε

(2.14)

in a neigbourhood of the functions WΛ,ξ,µ,ε. For that purpose, we have to use some local
inversion procedure. Namely, we are going to look for a solution to (P ′

ε,µ) writing as

w = WΛ,ξ,µ,ε + ω

with ω small and orthogonal at WΛ,ξ,µ,ε, in a suitable sense, to the manifold

M =
{
WΛ,ξ,µ,ε, (Λ, ξ) satisfying (2.5) (2.12)

}
. (2.15)

The general strategy consists in finding first, using an inversion procedure, a smooth map
(Λ, ξ) 7→ ω(Λ, ξ) such that WΛ,ξ,µ,ε + ω(Λ, ξ, µ, ε) solves the problem in an orthogonal space
to M . Then, we are left with a finite dimensional problem, for which a solution may be found
using the topological assumption of the theorem. In the subcritical or critical case, the first
step may be performed in H1 (see e.g. [4][30][31]). However, this approach is not valid any
more in the supercritical case, for H1 does not inject into Lq as q > 6. Following [9], we use
instead weighted Hölder spaces to reduce the problem to a finite dimensional one.
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3 The finite dimensional reduction

3.1 Inversion of the linearized problem

We first consider the linearized problem at a function WΛ,ξ,µ,ε, and we invert it in an orthog-
onal space to M . From now on, we omit for sake of simplicity the indices in the writing of
WΛ,ξ,µ,ε. Equipping H1(Ωε) with the scalar product

(u, v)ε =
∫

Ωε

(∇u · ∇v + µε2uv)

orthogonality to the functions

Y0 =
∂W

∂Λ
Yi =

∂W

∂ξi
1 ≤ i ≤ 3 (3.1)

in that space is equivalent, setting

Z0 = −∆
∂W

∂Λ
+ µε2

∂W

∂Λ
Zi = −∆

∂W

∂ξi
+ µε2

∂W

∂ξi
1 ≤ i ≤ 3 (3.2)

to the orthogonality in L2(Ωε), equipped with the usual scalar product 〈·, ·〉, to the functions
Zi, 0 ≤ i ≤ 3. Then, we consider the following problem : h ∈ L∞(Ωε) being given, find a
function φ which satisfies

−∆φ+ µε2φ− 3(5 + ε)W 4+ε
+ φ = h+

∑
i ciZi in Ωε

∂φ
∂n = 0 on ∂Ωε

< Zi, φ > = 0 0 ≤ i ≤ 3
(3.3)

for some numbers ci.
Existence and uniqueness of φ will follow from an inversion procedure in suitable functional

spaces. Namely, for f a function in Ωε, we define the following weighted L∞-norms

‖f‖∗ = sup
x∈Ωε

∣∣∣(1 + |x− ξ|2) 1
2 f(x)

∣∣∣
and

‖f‖∗∗ = sup
x∈Ωε

∣∣∣(1 + |x− ξ|2)2f(x)
∣∣∣.

Writing U instead of U 1
Λ ,ξ, the first norm is equivalent to ‖U−1f‖∞ and the second one to

‖U−4f‖∞, uniformly with respect to ξ and Λ.
We have the following result :

Proposition 3.1 There exists ε0 > 0 and a constant C > 0, independent of ε and ξ, Λ
satisfying (2.12) (2.5), such that for all 0 < ε < ε0 and all h ∈ L∞(Ωε), problem (3.3) has a
unique solution φ ≡ Lε(h). Besides,

‖Lε(h)‖∗ ≤ C‖h‖∗∗ |ci| ≤ C‖h‖∗∗. (3.4)

Moreover, the map Lε(h) is C2 with respect to Λ, ξ and the L∞∗ -norm, and

‖D(Λ,ξ) Lε(h)‖∗ ≤ C‖h‖∗∗ ‖D2
(Λ,ξ) Lε(h)‖∗ ≤ C‖h‖∗∗. (3.5)
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Proof. The argument follows closely the ideas in [9]. We repeat it for convenience of the
reader. The proof relies on the following result :

Lemma 3.1 Assume that φε solves (3.3) for h = hε. If ‖hε‖∗∗ goes to zero as ε goes to zero,
so does ‖φε‖∗.

Proof of the lemma. For 0 < ρ < 1, we define

‖f‖ρ = sup
x∈Ωε

|(1 + |x− ξ|2) 1
2 (1−ρ)f(x)|

and we first prove that ‖φε‖ρ goes to zero. Arguing by contradiction, we may assume that
‖φε‖ρ = 1. Multiplying the first equation in (3.3) by Yj and integrating in Ωε we find∑

i

ci〈Zi, Yj〉 = 〈−∆Yj + µε2Yj − 3(5 + ε)W 4+ε
+ Yj , φε〉 − 〈hε, Yj〉.

On one hand we check, in view of the definition of Zi, Yj

〈Z0, Y0〉 = ‖Y0‖2
ε = γ0 + o(1) 〈Zi, Yi〉 = ‖Yi‖2

ε = γ1 + o(1) 1 ≤ i ≤ 3 (3.6)

where γ0, γ1 are strictly positive constants, and

〈Zi, Yj〉 = o(1) i 6= j. (3.7)

On the other hand, in view of the definition of Yj and W , straightforward computations yield

〈−∆Yj + µε2Yj − 3(5 + ε)W 4+ε
+ Yj , φε〉 = o(‖φε‖ρ)

and
〈hε, Yj〉 = O(‖hε‖∗∗).

Consequently, inverting the quasi diagonal linear system solved by the ci’s, we find

ci = O(‖hε‖∗∗) + o(‖φε‖ρ). (3.8)

In particular, ci = o(1) as ε goes to zero. The first equation in (3.3) may be written as

φε(x) = 3(5 + ε)
∫

Ωε

Gε(x, y)
(
W 4+ε

+ φε + hε +
∑

i

ciZi

)
dy (3.9)

for all x ∈ Ωε, Gε denoting the Green’s function of the operator (−∆ + µε2) in Ωε with
Neumann boundary conditions.

We notice that by scaling and (5.11) of Proposition 5.2,

Gε(x, y) = εGµ(
x

ε
,
y

ε
) ≤ C

|x− y|
(3.10)
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and hence we obtain∣∣∣∣∫
Ωε

Gε(x, y)W 4+ε
+ φεdy

∣∣∣∣ ≤ C‖φε‖ρ

∫
Ωε

1
|x− y|

1
(1 + |x− ξ|2) 1

2 (3+ε+ρ)
dy

≤ C‖φε‖ρ(1 + |x− ξ|2)− 1
2∣∣∣∣∫

Ωε

Gε(x, y)hεdy

∣∣∣∣ ≤ C‖hε‖∗∗
∫

Ωε

1
|x− y|

1
(1 + |x− ξ|2)2

dy

≤ C‖hε‖∗∗(1 + |x− ξ|2)− 1
2∣∣∣∣∫

Ωε

Gε(x, y)Zidy

∣∣∣∣ ≤ C

∫
Ωε

1
|x− y|

1
(1 + |x− ξ|2) 5

2
dy

≤ C(1 + |x− ξ|2)− 1
2

(3.11)

from which we deduce

(1 + |x− ξ|2) 1
2 (1−ρ)|φε(x)| ≤ C(1 + |x− ξ|2)−

ρ
2 .

‖φε‖ρ = 1 implies the existence of R > 0, γ > 0 independent of ε such that ‖φε‖L∞(BR(ξ)) >

γ. Then, elliptic theory shows that along some subsequence, φ̃ε(x) = φε(x − ξ) converges
uniformly in any compact subset of R3 to a nontrivial solution of

−∆φ̃ = 15U4
Λ̃,0
φ̃

for some Λ̃ > 0. Moreover, |φ̃(x)| ≤ C/|x|. As a consequence, φ̃ writes as

φ̃ = α0

∂UΛ̃,0

∂Λ̃
+

3∑
i=1

αi

∂UΛ̃,0

∂ai

(see e.g. [30]). On the other hand, equalities < Zi, φε >= 0 provide us with the equalities∫
R3
−∆

∂UΛ̃,0

∂Λ̃
φ̃ =

∫
R3
U4

Λ̃,0

∂UΛ̃,0

∂Λ̃
φ̃ = 0∫

R3
−∆

∂UΛ̃,0

∂ai
φ̃ =

∫
R3
U4

Λ̃,0

∂UΛ̃,0

∂ai
φ̃ = 0 1 ≤ i ≤ 3.

As we have also∫
R3
|∇
∂UΛ̃,0

∂Λ̃
|2 = γ0 > 0

∫
R3
|∇
∂UΛ̃,0

∂ai
|2 = γ1 > 0 1 ≤ i ≤ 3

and ∫
R3
∇
∂UΛ̃,0

∂Λ̃
.∇
∂UΛ̃,0

∂ai
=
∫

R3
∇
∂UΛ̃,0

∂aj
.∇
∂UΛ̃,0

∂ai
= 0 i 6= j

the αj ’s solve a homogeneous quasi diagonal linear system, yielding αj = 0, 0 ≤ αj ≤ 3, and
φ̃ = 0, hence a contradiction. This proves that ‖φε‖ρ = o(1) as ε goes to zero. Furthermore,
(3.9), (3.11) and (3.8) show that

‖φε‖∗ ≤ C(‖hε‖∗∗ + ‖φε‖ρ)
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whence also ‖φε‖∗ = o(1) as ε goes to zero.

Proof of Proposition 3.1 completed. We set

H =
{
φ ∈ H1(Ωε), < Zi, φ >= 0 0 ≤ i ≤ 3

}
equipped with the scalar product (·, ·)ε. Problem (3.3) is equivalent to finding φ ∈ H such
that

(φ, θ)ε = 〈3(5 + ε)W 4+ε
+ φ+ h , θ〉 ∀θ ∈ H

that is
φ = Tε(φ) + h̃ (3.12)

h̃ depending linearly on h, and Tε being a compact operator in H. Fredholm’s alternative
ensures the existence of a unique solution, provided that the kernel of Id−Tε is reduced to 0.
We notice that φε ∈ Ker(Id−Tε) solves (3.3) with h = 0. Thus, we deduce from Lemma 3.1
that ‖φε‖∗ = o(1) as ε goes to zero. As Ker(Id− Tε) is a vector space, Ker(Id− Tε) = {0}.
The inequalities (3.4) follow from Lemma 3.1 and (3.8). This completes the proof of the first
part of Proposition 3.1.

The smoothness of Lε with respect to Λ and ξ is a consequence of the smoothness of Tε and
h̃, which occur in the implicit definition (3.12) of φ ≡ Lε(h), with respect to these variables.
Inequalities (3.5) are obtained differentiating (3.3), writing the derivatives of φ with respect
Λ and ξ as a linear combination of the Zi’ and an orthogonal part, and estimating each term
using the first part of the proposition - see [9] [20] for detailed computations. �

3.2 The reduction

In view of (2.13), a first correction between the approximate solution W and a true solution
to (P ′

ε,µ) writes as
ψε = Lε(Rε) (3.13)

with

Rε =3W 5+ε
+ − (−∆W + µε2W )

=3W 5+ε
+ − 3U5

1
Λ ,ξ − µε2

(
U 1

Λ ,a −
Λ

1
2

|x− ξ|
e
− 1
|x−ξ|2

)
+

µΛ
1
2 ε2

|x− ξ|3
(
1 +

1
|x− ξ|2

)
e
− 1
|x−ξ|2

+
µ2ε4

2
(Λε)

1
2 |x− ξ|(1− e

− 1
|x−ξ|2 ).

(3.14)
We have :

Lemma 3.2 There exists C, independent of ξ, Λ satisfying (2.12) (2.5), such that

‖Rε‖∗∗ ≤ Cε ‖D(Λ,ξ)R
ε‖∗∗ ≤ Cε ‖D2

(Λ,ξ)R
ε‖∗∗ ≤ Cε.

Proof. According to (2.10), W = U + O(ε) uniformly in Ωε. Consequently, noticing that
U ≥ Cε in Ωε, C independent of ε

U5 −W 5+ε
+ = O(εU5| lnU |+ εU4)

9



uniformly in Ωε, whence

‖U5 −W 5+ε
+ ‖∗∗ ≤ C‖U−4(U5 −W 5+ε

+ )‖∞ = O(ε).

On the other hand

(1 + |x− ξ|2)2
[
µε2
(
U 1

Λ ,a −
Λ

1
2

|x− ξ|
e
− 1
|x−ξ|2

)
− µΛ

1
2 ε2

|x− ξ|3
(
1 +

1
|x− ξ|2

)
e
− 1
|x−ξ|2

− µ2ε4

2
(Λε)

1
2 |x− ξ|(1− e

− 1
|x−ξ|2 )

]
= O(ε)

uniformly for x ∈ Ωε, since

U 1
Λ ,a −

Λ
1
2

|x− ξ|
e
− 1
|x−ξ|2 = O(|x− ξ|−3)

as |x−ξ| goes to infinity, and |x− ξ| = O(1/ε) in Ωε. The first estimate of the lemma follows.
The others are obtained in the same way, differentiating (3.14) and estimating each term as
previously. �

Lemma 3.2 and Proposition 3.1 yield :

Lemma 3.3 There exists C, independent of ξ, Λ satisfying (2.12) (2.5), such that

‖ψε‖∗ ≤ Cε ‖D(Λ,ξ)ψ
ε‖∗ ≤ Cε ‖D2

(Λ,ξ)ψ
ε‖∗ ≤ Cε.

We consider now the following nonlinear problem : finding φ such that, for some numbers
ci 

−∆(W + ψ + φ) + µε2(W + ψ + φ)− 3(W + ψ + φ)5+ε
+ =

∑
i ciZi in Ωε

∂φ
∂n = 0 on ∂Ωε

< Zi, φ > = 0 0 ≤ i ≤ 3.
(3.15)

Setting
Nε(η) = (W + η)5+ε

+ −W 5+ε
+ − (5 + ε)W 4+ε

+ η (3.16)

the first equation in (3.15) writes as

−∆φ+ µε2φ− 3(5 + ε)W 4+ε
+ φ = 3Nε(ψ + φ) +

∑
i

ciZi (3.17)

for some numbers ci. Assuming that ‖η‖∗ is bounded, say ‖η‖∗ ≤ M for some constant M ,
we have

‖Nε(η)‖∗∗ ≤ C‖η‖2
∗

whence, assuming that ‖φ‖∗ ≤ 1 and using Lemma 3.3

‖Nε(ψ + φ)‖∗∗ ≤ C(‖φ‖2
∗ + ε2). (3.18)

We state the following result :
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Proposition 3.2 There exists C, independent of ε and ξ, Λ satisfying (2.12) (2.5), such that
for small ε problem (3.15) has a unique solution φ = φ(Λ, ξ, µ, ε) with

‖φ‖∗ ≤ Cε2. (3.19)

Moreover, (Λ, ξ) 7→ φ(Λ, ξ, µ, ε) is C2 with respect to the L∞∗ -norm, and

‖D(Λ,ξ)φ‖∗ ≤ Cε2 ‖D2
(Λ,ξ)φ‖∗ ≤ Cε2. (3.20)

Proof. Following [9], we consider the map Aε from F = {φ ∈ H1 ∩ L∞(Ωε) : ‖φ‖∗ ≤ ε} to
H1 ∩ L∞(Ωε) defined as

Aε(φ) = Lε(3Nε(φ+ ψ))

and we remark that finding a solution φ to problem (3.15) is equivalent to finding a fixed
point of Aε. One the one hand we have, for φ ∈ F

‖Aε(φ)‖∗ ≤ ‖Lε(Nε(φ+ ψ))‖∗ ≤ ‖Nε(φ+ ψ)‖∗∗ ≤ Cε2 ≤ ε

for ε small enough, implying that Aε sends F into itself. On the other hand Aε is a contraction.
Indeed, for φ1 and φ2 in F , we write

‖Aε(φ1)−Aε(φ2)‖∗ ≤ ‖Nε(ψ + φ1)−Nε(ψ + φ2)‖∗∗
≤ ‖U−4

(
Nε(ψ + φ1)−Nε(ψ + φ2)

)
‖∞.

In view of (3.16) we have

∂ηNε(η) = (5 + ε)
(
(W + η)4+ε

+ −W 4+ε
+ )

)
(3.21)

whence
|Nε(ψ + φ1)−Nε(ψ + φ2)| ≤ CU3|ψ + tφ1 + (1− t)φ2||φ1 − φ2|

for some t ∈ (0, 1). Then

‖U−4
(
Nε(ψ + φ1)−Nε(ψ + φ2)

)
‖∞ ≤ C‖U−1(ψ + tφ1 + (1− t)φ2)(φ1 − φ2)‖∞

≤ C(‖ψ‖∗ + ‖φ1‖∗ + ‖φ2‖∗)‖φ1 − φ2‖∗
≤ ε‖φ1 − φ2‖∗.

This implies that Aε has a unique fixed point in F , that is problem (3.15) has a unique
solution φ such that ‖φ‖∗ ≤ ε. Furthermore, the definition of φ as a fixed point of Aε yields

‖φ‖∗ = ‖Lε(Nε(φ+ ψ))‖∗ ≤ C‖Nε(φ+ ψ)‖∗∗ ≤ Cε2

using (3.18), whence (3.19).
In order to prove that (Λ, ξ) 7→ φ(Λ, ξ) is C2, we remark that setting for η ∈ F

B(Λ, ξ, η) ≡ η − Lε(3Nε(η + ψ))

φ is defined as
B(Λ, ξ, φ) = 0. (3.22)

We have
∂ηB(Λ, ξ, η)[θ] = θ − 3Lε

(
θ (∂ηNε)(η + ψ)

)
11



and, using (3.21)

‖Lε

(
θ (∂ηNε)(η + ψ)

)
‖∗ ≤ C‖θ (∂ηNε)(η + ψ)‖∗∗
≤ C‖U−3(∂ηNε)(η + ψ)‖∞‖θ‖∗
≤ C‖η + ψ‖∗‖θ‖∗
≤ Cε‖θ‖∗.

Consequently, ∂ηB(Λ, ξ, φ) is invertible in L∞∗ with uniformly bounded inverse. Then, the
fact that (Λ, ξ) 7→ φ(Λ, ξ) is C2 follows from the fact that (Λ, ξ, η) 7→ Lε(Nε(η + ψ)) is C2

and the implicit functions theorem.
Finally, let us show how estimates (3.20) may be obtained. Derivating (3.22) with respect

to Λ, we have

∂Λφ = 3(∂ηB(Λ, ξ, φ))−1

(
(∂ΛLε)(Nε(φ+ψ))+Lε((∂ΛNε)(φ+ψ))+Lε((∂ηNε)(φ+ψ)∂Λψ)

)
whence, according to Proposition 3.1

‖∂Λφ‖∗ ≤ C

(
‖Nε(φ+ ψ)‖∗∗ + ‖(∂ΛNε)(φ+ ψ)‖∗∗ + ‖(∂ηNε)(φ+ ψ)∂Λψ‖∗∗

)
.

From (3.18) and (3.19) we know that

‖Nε(φ+ ψ)‖∗∗ ≤ Cε2.

Concerning the next term, we notice that according to the definition (3.16) of Nε

|(∂ΛNε)(φ+ ψ)| = (5 + ε)
∣∣∣∣(W + φ+ ψ)4+ε

+ −W 4+ε
+ − (4 + ε)W 3+ε

+ (φ+ ψ)
∣∣∣∣|∂ΛW |

≤ CU5‖φ+ ψ‖2
∗

≤ CU5ε2

using again (3.18) and (3.19), whence

‖(∂ΛNε)(φ+ ψ)‖∗∗ ≤ Cε2.

Lastly, from (3.21) we deduce

|(∂ηNε)(φ+ ψ)∂Λψ| ≤ U5‖φ+ ψ‖∗‖∂Λψ‖∗

yielding
‖(∂ηNε)(φ+ ψ)∂Λψ‖∗∗ ≤ Cε2.

Finally we obtain
‖∂Λφ‖∗ ≤ Cε2.

The other first and second derivatives of φ with respect to Λ and ξ may be estimated in
the same way (see [20] for detailed computations concerning the second derivatives). This
concludes the proof of Proposition 3.2. �
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3.3 Coming back to the original problem

We introduce the following functional defined in H1(Ω) ∩ L6+ε(Ω)

Jε(u) =
1
2

∫
Ω

(|∇u|2 + µu2)− 3
6 + ε

∫
Ω

u6+ε
+ (3.23)

whose nontrivial critical points are solutions to (P5+ε,µ) (up to the multiplicative constant
3

1
4+ε ). We consider also the rescaled functions defined in Ω

Ŵ (Λ, a)(x) = ε−ζWΛ,ξ(ε−1x) = ε
1
2−ζVΛ,a(x) (3.24)

with
ζ =

1
2 + 1

2ε
a = εξ.

We define also

ψ̂(Λ, a)(x) = ε−ζψ(Λ, ξ)(ε−1x) φ̂(Λ, a)(x) = ε−ζφ(Λ, ξ)(ε−1x) (3.25)

and we set
Iε(Λ, a) ≡ Jε

(
(Ŵ + ψ̂ + φ̂)(Λ, a)

)
. (3.26)

We have :

Proposition 3.3 The function u = 3
1

4+ε (Ŵ + ψ̂+ φ̂) is a solution to problem (P5+ε,µ) if and
only if (Λ, a) is a critical point of Iε.

Proof. For v in H1(Ωε) ∩ L6+ε(Ωε), we set

Kε(v) =
1
2

∫
Ωε

(|∇v|2 + µε2v2)− 3
6 + ε

∫
Ωε

v6+ε
+ (3.27)

whose nontrivial critical points are solutions to (P ′
5+ε,µ). According to the definition Iε we

have
Iε(Λ, a) = ε1−2ζKε

(
(W + ψ + φ)(Λ, ξ)

)
. (3.28)

We notice that u = 3
1

4+ε (Û+ψ̂+φ̂) being a solution to (P5+ε,µ) is equivalent toW+ψ+φ being
a solution to (P ′

5+ε,µ), that is a critical point of Kε. It is also equivalent to the cancellation
of the ci’s in (3.15) or, in view of (3.6) (3.7)

K ′
ε(W + ψ + φ)[Yi] = 0 0 ≤ i ≤ 3. (3.29)

On the other hand, we deduce from (3.28) that I ′ε(Λ, a) = 0 is equivalent to the cancellation
of K ′

ε(W +ψ+ p) applied to the derivatives of W +ψ+ p with respect to Λ and ξ. According
to the definition (3.1) of the Yi’s, Lemma 3.3 and Proposition 3.2 we have

∂(W + ψ + φ)
∂Λ

= Y0 + y0
∂(W + ψ + φ)

∂ξj
= Yj + yj 1 ≤ j ≤ 3

with ‖yi‖L∞∗ = o(1), 0 ≤ i ≤ 3. Writing

yi = y′i +
3∑

j=0

aijYj 〈y′i, Zj〉 = (y′i, Yj)ε = 0 0 ≤ i, j ≤ 3

13



and
K ′

ε(W + ψ + p)[Yi] = αi

it turns out that I ′ε(Λ, a) = 0 is equivalent, since K ′
ε(W +ψ+p)[θ] = 0 for 〈θ, Zj〉 = (θ, Yj)ε =

0, 0 ≤ j ≤ 3, to
(Id+ [aij ])[αi] = 0.

As aij = O(‖yi‖∗) = o(1), we see that I ′ε(Λ, a) = 0 means exactly that (3.29) is satisfied. �

4 Proof of Theorem 1.1

In view of Proposition 3.3 we have, for proving the theorem, to find critical points of Iε. We
establish first a C2-expansion of Iε.

4.1 Expansion of Iε

Proposition 4.1 There exist A, B, C, strictly positive constants such that

Iε(Λ, a) = A+
A

4
ε ln(εΛ) +

1
2
(C +

A

6
)ε+

3BΛ
2
(
µ1/2 +Hµ(a, a)

)
ε+ εσε(Λ, a)

with σε, D(Λ,a)σε and D2
(Λ,a)σε going to zero as ε goes to zero, uniformly with respect to a,

Λ satisfying (2.4) and (2.5).

Proof. In view of the definition (3.26) of Iε, we first estimate Jε(Ŵ ). We have

ε2ζ−1Jε(Ŵ ) = ε2ζ−1Jε(ε
1
2−ζV )

= Jε(V ) + 3
1− ε

ε
2

6 + ε

∫
Ω

V 6+ε
+

= Jε(V ) +
1
2

(
−ε

2
ln ε+ o(ε)

)∫
Ω

V 6+ε
+

from which we deduce, using the integral estimates (5.8), (5.9) and Proposition 5.1 in Ap-
pendix,that

Jε(Ŵ ) = A+
A

4
ε ln(εΛ) +

1
2
(C +

A

6
)ε+

3BΛ
2

(µ1/2 +Hµ(a, a))ε+ o(ε). (4.1)

Then, we prove that
Iε(Λ, a)− Jε(Ŵ + ψ̂) = o(ε). (4.2)

Indeed, from a Taylor expansion and the fact that J ′ε(Ŵ + ψ̂ + φ̂)[φ] = 0, we have

I(Λ, a)− Jε(Ŵ + ψ̂) = Jε(Ŵ + ψ̂ + φ̂)− Jε(Ŵ + ψ̂)

=
∫ 1

0

J
′′

ε (Ŵ + ψ̂ + tφ̂)[φ̂, φ̂]tdt

= ε1−2ζ

∫ 1

0

K
′′

ε (W + ψ + φ)[φ, φ]tdt

= ε1−2ζ

∫ 1

0

(∫
Ωε

(
|φ|2 + µε2φ2 − 3(5 + ε)(W + ψ + φ)4+ε

+ φ2
))
tdt

= ε1−2ζ

∫ 1

0

(∫
Ωε

(
Nε(φ+ ψ)φ+ 3(5 + ε)

[
W 4+ε

+ − (W + ψ + tφ)4+ε
+

]
φ2
))
tdt.
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The desired result follows from (3.18), Lemma 3.3 and (3.19). Similar computations show
that estimate (4.2) is also valid for the first and second derivatives of Iε(Λ, a)−Jε(Ŵ+ψ̂) with
respect to Λ and a. Then, the proposition will follow from an estimate of Jε(Ŵ + ψ̂)−Jε(Ŵ ).
We have

Jε(Ŵ + ψ̂)− Jε(Ŵ ) =ε1−2ζ
(
Kε(W + ψ)−Kε(W )

)
=ε1−2ζ

(
K

′

ε(W )[ψ] +
∫ 1

0

(1− t)K
′′

ε (W + tψ)[ψ,ψ]
)
.

By definition of ψ and Rε

K
′

ε(W )[ψ] = −
∫

Ωε

Rεψ

and we have

K
′′

ε (W + tψ)[ψ,ψ] =
∫

Ωε

(|∇ψ|2 + µε2ψ2)− 3(5 + ε)
∫

Ωε

(W + tψ)4+ε
+ ψ2.

Then, integration by parts and ψ = Lε(Rε) yield

K
′′

ε (W + tψ)[ψ,ψ] =
∫

Ωε

Rεψ − 3(5 + ε)
∫

Ωε

(
(W + tψ)4+ε

+ −W 4+ε
+

)
ψ2.

Consequently

Jε(Ŵ + ψ̂)− Jε(Ŵ )

= ε1−2ζ

(
−1

2

∫
Ωε

Rεψ − 3(5 + ε)
∫ 1

0

(1− t)(
∫

Ωε

[
(W + tψ)4+ε

+ −W 4+ε
+

]
ψ2)dt

)
and Lemmas 3.2 and 3.3 yield

Jε(Ŵ + ψ̂)− Jε(Ŵ ) = o(ε).

The same estimate holds for the first and second derivatives with respect to Λ and a, obtained
similarly with more delicate computations - see Proposition 3.4 in [20]. This concludes the
proof of Proposition 4.1. �

4.2 Proof of Theorem 1.1 completed

According to the statement of Theorem 1.1, we assume the existence of b and c, b < c < 0,
such that c is not a critical value of ϕµ(x) = µ

1
2 + Hµ(x, x) and the relative homology

H∗(ϕc
µ, ϕ

b
µ) 6= 0. In view of Proposition 3.3, we have to prove the existence of a critical point

of Iε(Λ, a). According to Proposition 4.1, we have

∂Iε
∂Λ

(Λ, a) =
Aε

4Λ
+

3B
2
ϕµ(a)ε+ o(ε)

and
∂2Iε
∂Λ2

(Λ, a) = − Aε

4Λ2
+ o(ε)
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uniformly with respect to a and Λ satisfying (2.4) (2.5). For δ > 0, η > 0, we define

Ωδ,γ =
{
a ∈ Ω s.t. d(a, ∂Ω) > δ, ϕµ(a) < −γ

}
.

The implicit functions theorem provides us, for ε small enough, with a C1-map a ∈ Ωδ,γ 7→
Λ(a) such that

∂Iε
∂Λ

(Λ(a), a) = 0 Λ(a) = − A

6B
(ϕµ(a))−1 + o(1).

Then, finding a critical point of (Λ, a) 7→ Iε(Λ, a) reduces to finding a critical point of a 7→
Ĩε(a), with

Ĩε(a) = Iε(Λ(a), a).

We deduce from Proposition 4.1 yields the C1-expansion

Ĩε(a) = A+
A

4
ε ln ε+

1
2

(
C − A

3
+
A

2
ln

A

6B

)
ε− A

4
ε ln |ϕµ(a)|+ o(ε).

Therefore, up to an additive and to a multiplicative constant, we have to look for critical
points in Ωδ,γ of

Iε(a) = − ln |ϕµ(a)|+ τε(a) (4.3)

with τε(a) = o(1), ∇τε(a) = o(1) as ε goes to zero, uniformly with respect to a ∈ Ωδ,γ .
Arguing by contradiction, we assume

(H) Iε has no critical point a ∈ Ωδ,γ such that b < ϕµ(a) < c.

We are going to use the gradient of Iε to build a continuous deformation of ϕc
µ onto ϕb

µ, a
contradiction with the assumption H∗(ϕc

µ, ϕ
b
µ) 6= 0.

We first remark that ϕµ has isolated critical values, since ϕµ is analytic in Ω and ϕµ = −∞
on the boundary of Ω. Therefore, the assumption that c is not a critical value of ϕµ implies the
existence of η > 0 such that ϕµ has no critical value in (b, b+η]∪(c−η, c]. Moreover, ϕc

µ retracts
by deformation onto ϕc−η

µ , ϕb+η
µ retracts by deformation onto ϕb

µ, and H∗(ϕc−η
µ , ϕb+η

µ ) 6= 0.
Secondly, we choose δ > 0 such that ϕµ(x) < b for d(x, ∂Ω) ≤ δ. We choose also γ > 0

such that −γ > c. Then, a point x in the complementary of Ωδ,γ in Ω is either in ϕb
µ, or not

in ϕc
µ. Consequently, deforming ϕc−η

µ onto ϕb+η
µ is equivalent to deforming ϕc−η

µ ∩ Ωδ,γ onto
ϕb+η

µ . To this end we set, for a0 ∈ (ϕc−η
µ ∩ Ωδ,γ)

d

dt
a(t) = −∇Iε(a(t)) a(0) = a0.

a(t) is defined as long as the boundary of Ωδ,γ is not achieved. Iε(a(t)) being decreasing, (4.3)
shows that for ε small enough, a(t) remains in ϕc

µ. Then, the boundary of Ωδ,γ may only be
achieved by a(t) in ϕb

µ. This means that a(t) is well defined as long as b < ϕµ(a(t)) < c, and
according to assumption (H), Iε(a(t)) is strictly decreasing in that region. Therefore (4.3)
proves, for ε small enough, the existence of t > 0 such that ϕµ(a(t)) = b + η. Composing
the flow with a retraction of ϕc

µ onto ϕc−η
µ , we obtain a continuous deformation of ϕc−η

µ onto
ϕb+η

µ , a contradiction with H∗(ϕc−η
µ , ϕb+η

µ ) 6= 0.
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The previous arguments prove the existence, for ε small enough, of a nontrivial solution
uε to the problem

−∆u+ µu = u5+ε
+ in Ω ;

∂u

∂n
= 0 on ∂Ω.

Then, the strong maximum principle shows that uε > 0 in Ω. The fact that uε blows up, as ε
goes to zero, at a point a such that b < ϕµ(a) < c, ∇ϕµ(a) = 0, follows from the construction
of uε. In particular, ∇ϕµ(a) = 0 is a straightforward consequence of (4.3) as ε goes to zero.
This concludes the proof of the theorem.

5 Appendix

5.1 Integral estimates

In this subsection, we collect the integral estimates which are needed in the previous section.
We recall that according to the definitions of Section 2, we have

VΛ,a,µ,ε(x) = U 1
Λε ,a(x)− (Λε)

1
2

(1− e−µ
1
2 |x−a|

|x− a|
+Hµ(a, x)

)
+ ρΛ,a,µ,ε(x) (5.1)

with
ρΛ,a,µ,ε = O(|ε| 32 ) (5.2)

uniformly in Ω and with respect to a and Λ satisfying (2.4) (2.5), and the same estimate holds
for the derivatives of ρΛ,a,µ,ε with respect to a and Λ. We recall also that VΛ,a,µ,ε satisfies −∆VΛ,a,µ,ε + µVΛ,a,µ,ε = 3U5

1
Λε ,a

+ µ

(
U 1

Λε ,a −
(Λε)

1
2

|x−a|

)
+ ρ′Λ,a,µ,ε in Ω

∂VΛ,a,µ,ε

∂n = 0 on ∂Ω
(5.3)

with

ρ′Λ,a,µ,ε = µ
(Λε)

1
2

|x− a|
(1− e

− ε2

|x−a|2 )− µ(Λε)
1
2

(
ε2

|x− a|3
+

2ε4

|x− a|5

)
e
− ε2

|x−a|2 +O(|ε| 72 ) (5.4)

and such an expansion holds for the derivatives of ρ′Λ,a,µ,ε with respect to a and Λ.
Omitting, for sake of simplicity, the indices Λ, a, µ, ε, we state :

Proposition 5.1 Assuming that a and Λ satisfy (2.4) (2.5), we have the uniform expansions
as ε goes to zero
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Jε(V ) = A+
A

4
ε ln(|ε|Λ) +

1
2
(C +

A

6
)ε+

3BΛ
2
(
µ1/2 +Hµ(a, a)

)
|ε|+O(ε2(ln |ε|)2)

∂Jε

∂Λ
=
Aε

4Λ
+

3B
2
(
µ1/2 +Hµ(a, a)

)
|ε|+O(ε2(ln |ε|)2)

∂Jε

∂a
=

3BΛ
2

∂

∂a

(
Hµ(a, a)

)
|ε|+O(ε2(ln |ε|)2)

∂2Jε

∂Λ2
= − Aε

4Λ2
+O(ε2(ln |ε|)2)

∂2Jε

∂Λ∂a
=

3B
2

∂

∂a

(
Hµ(a, a)

)
|ε|+O(ε2(ln |ε|)2).

with

A =
∫

R3
U6

1,0 =
π2

4
B =

∫
R3
U5

1,0 =
4π
3

C = −1
2

∫
R3
U6

1,0 lnU1,0 > 0.

Proof. For sake of simplicity, we assume that ε > 0 (the computations are equivalent as
ε < 0), and we set r = |x− a|. In view of (5.3), we write∫

Ω

(|∇V |2 + µV 2) =
∫

Ω

(−∆V + µV )V =
∫

Ω

(
3U5 + µ(U − (Λε)

1
2

r
) + ρ′

)
V. (5.5)

From (5.1)(5.2) we deduce∫
Ω

U5V =
∫

Ω

U6 − (Λε)
1
2

∫
Ω

U5
(1− e−µ

1
2 r

r
+Hµ(a, x)

)
+O(ε2)

noticing that ∫
Ω

U5 = O(ε
1
2 ). (5.6)

One one hand∫
Ω

U6 = A+O(ε3) with A =
∫

R3
U6 = 4π

∫ ∞

0

r2dr

(1 + r2)3
=
π2

4
.

On the other hand, since d(a, ∂Ω) ≥ δ > 0∫
Ω

U5
(1− e−µ

1
2 r

r
+Hµ(a, x)

)
=

1
(Λε)

1
2

∫
(Ω−a)/(Λε)

U5 1− e−µ
1
2 Λεr

r
dx+

∫
B(a,R)

U5Hµ(a, x) +O(ε
5
2 )

=
4π

(Λε)
1
2

∫ R/(Λε)

0

1− e−µ
1
2 Λεr

(1 + r2)
5
2
rdr +Hµ(a, a)

∫
B(a,R)

U5 +O

(∫
B(a,R)

U5r2 + ε
5
2

)
= 4πB(Λε)

1
2
(
µ

1
2 +Hµ(a, a)

)
+O(ε

3
2 )
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with

B =
∫

R3
U5

1,0 = 4π
∫ ∞

0

r2dr

(1 + r2)
5
2

=
4π
3
.

Concerning the second term in the right hand side of (5.5), denoting by R′ the diameter
of Ω and using (2.6), we have∫

Ω

µ
(
U − (Λε)

1
2

r

)
V = O

(∫
Ω

∣∣∣∣∣U − (λε)
1
2

r

∣∣∣∣∣
)
U

= O

(
ε2
∫ R′/(Λε)

0

(
1
r
− 1

(1 + r2)
1
2

)
r2dr

(1 + r2)
1
2

)
= O(ε2).

Lastly, noticing that V = O(U) uniformly in Ω and with respect to the parameters a, Λ
satisfying (2.4) and (2.5), we have, using (5.4)∫

Ω

ρ′V = O

(∫
Ω

(ε 1
2

r
(1− e−

ε2

r2 ) + ε
1
2

(
ε2

r3
+
ε4

r5

)
e−

ε2

r2

)
U + ε4

)

= O

(
ε2
∫ R′

ε

0

(
r(1− e−

1
r2 ) + (

1
r

+
1
r2

)
)

dr

(1 + r2)
1
2

+ ε4

)
= O(ε2)

whence finally ∫
Ω

(|∇V |2 + µV 2) = 3A− 3BΛ
(
µ1/2 +Hµ(a, a)

)
ε+O(ε2). (5.7)

In the same way we have∫
Ω

V 6
+ = A− 6BΛ

(
µ1/2 +Hµ(a, a)

)
ε+O(ε2). (5.8)

Namely, from (5.1)(5.2) and V = O(U) we derive∫
Ω

V 6
+ =

∫
Ω

U6 − 6(Λε)
1
2

∫
Ω

U5
(1− e−µ

1
2 r

r
+Hµ(a, x)

)
+O

(
ε

3
2

∫
Ω

U5 + ε

∫
Ω

U4

)
and the conclusion follows from the previous computations, noticing that∫

Ω

U4 = O(ε).

Then, we write ∫
Ω

V 6+ε
+ =

∫
Ω

V 6
+ +

∫
Ω

V 6
+(V ε

+ − 1).

Noticing that 0 ≤ V+ ≤ 2ε−
1
2

V ε
+ − 1 = ε lnV+ +O(ε2(ln ε)2)
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and using the fact that V+ = U +O(ε
1
2 ) we have

V 6
+ = U6 +O(ε

1
2U5) lnV+ = lnU +O(

ε
1
2

U
)

(note that U ≥ ε
1
2

R′ in Ω) whence

V 6
+ lnV+ = U6 lnU +O

(
ε

1
2U5 + ε

1
2U5| lnU |

)
.

We find easily ∫
Ω

U6 lnU = −A
2

ln(Λε)− C +O(ε3| ln ε|)

and noticing that
∫
Ω
U5| lnU | = O(ε

1
2 | ln ε|), we obtain∫

Ω

V 6+ε
+ =

∫
Ω

V 6
+ − A

2
ε ln(|ε|Λ)− Cε+O(ε2( ln|ε|)2). (5.9)

The first expansion of Proposition 5.1 follows from (5.7), (5.8), (5.9) and the definition (3.23)
of Jε.

The expansions for the derivatives of Jε are obtained exactly in the same way. �

5.2 Green’s function

We study the properties of Green’s function Gµ(x, y) and its regular part Hµ(x, y). We
summarize their properties in the following proposition

Proposition 5.2 Let Gµ(x, y) and Hµ(x, y) be defined in (1.1) and (1.2), respectively. Then
we have

Hµ(x, x) → −∞ as d(x, ∂Ω) → 0 (5.10)

|Gµ(x, y)| ≤ C

|x− y|
(5.11)

µ
1
2 + max

x∈Ω
Hµ(x, x) → −∞ as µ→ 0 (5.12)

µ
1
2 + max

x∈Ω
Hµ(x, x) → +∞ as µ→ +∞. (5.13)

Proof. (5.10) follows from standard argument. Let x ∈ Ω be such that d = d(x, ∂Ω) is
small. So there exists a unique point x̄ ∈ ∂Ω such that d = |x− x̄|. Without loss of generality,
we may assume x̄ = 0 and the outer normal at x̄ is pointing toward xN -direction. Let x∗ be
the reflection point x∗ = (0, ..., 0,−d) and consider the following auxiliary function

H∗(y, x) =
e−µ

1
2 |y−x∗|

|y − x∗|

Then H∗ satisfies ∆yH
∗ − µH∗ = 0 in Ω and on ∂Ω

∂

∂n
(H∗(y, x)) = − ∂

∂n
(
e−µ

1
2 |y−x|

|y − x|
) +O(1)
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Hence we derive that
H(y, x) = −H∗(y, x) +O(1) (5.14)

which implies that

H(x, x) = − 1
d(x, ∂Ω)

+O(1) (5.15)

hence (5.10).
From (5.14), we see that as d(x, ∂Ω) → 0, we have

Gµ(y, x) =
e−µ

1
2 |y−x|

|y − x|
+H∗(y, x) +O(1) ≤ C

|x− y|
(5.16)

On the other hand, if d(x, ∂Ω) > d0 > 0, then |Hµ(y, x)| ≤ C and (5.11) also holds.
We now prove (5.12). For µ small, we can decompose Hµ as follows:

Hµ(x, y) = c+H0(x, y) + Ĥ(x, y) (5.17)

where

c =
1
|Ω|

∫
Ω

Hµ(x, y) =
1

µ|Ω|

∫
∂Ω

∂

∂n
(
e−µ

1
2 |y−x|

|y − x|
) = − 4π

µ|Ω|
+O(1) (5.18)

and H0 satisfies

−∆H0 =
4π
|Ω|

,

∫
Ω

H0 = 0,
∂

∂n
H0 =

∂

∂n
(

1
|y − x|

) on ∂Ω

and Ĥ is the remainder term. By simple computations, Ĥ satisfies

∆Ĥ − µĤ +O(µH0(x, y)) +O(1) = 0 in Ω,
∫

Ω

Ĥ = 0,
∂

∂n
Ĥ = O(1) on ∂Ω

which shows that Ĥ = O(1). Thus

µ
1
2 + max

x∈Ω
Hµ(x, x) ≤ − 4π

µ|Ω|
+O(1) → −∞

as µ→ 0. (5.12) is thus proved.
To prove (5.13), we choose a point x0 ∈ Ω such that d(x0, ∂Ω) = maxx∈Ω d(x, ∂Ω). Then,

since ∂
∂n ( e−µ

1
2 |x0−x|

|x0−x| ) = O(e−
µ

1
2
2 d(x0,∂Ω)) on ∂Ω, for µ large enough we see that

µ
1
2 + max

x∈Ω
Hµ(x, x) ≥ µ

1
2 +H(x0, x0) ≥ µ

1
2 +O(e−

µ
1
2
2 d(x0,∂Ω)) → +∞

as µ→ +∞, which proves (5.13). �
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