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Blowing up solutions for an elliptic Neumann problem with sub-and supercritical nonlinearity. Part I: N=3

Introduction

In this paper we consider the nonlinear Neumann elliptic problem (P q,µ )

-∆u + µu = u q u > 0 in Ω ∂u ∂n = 0 on ∂Ω where 1 < q < +∞, µ > 0 and Ω is a smooth and bounded domain in R 3 .

Equation (P q,µ ) arises in many branches of the applied sciences. For example, it can be viewed as a steady-state equation for the shadow system of the Gierer-Meinhardt system in biological pattern formation ( [START_REF] Gierer | A theory of biological pattern formation[END_REF], [START_REF] Ni | Diffusion, cross-diffusion, and their spike-layer steady states[END_REF]) or of parabolic equations in chemotaxis, e.g. Keller-Segel model ( [START_REF] Lin | Large amplitude stationary solutions to a chemotaxis system[END_REF]). When q is subcritical, i.e. q < 5, Lin, Ni and Takagi proved that the only solution, for small µ, is the constant one, whereas nonconstant solutions appear for large µ [START_REF] Lin | Large amplitude stationary solutions to a chemotaxis system[END_REF] which blow up, as µ goes to infinity, at one or several points. The least energy solution blows up at a boundary point which maximizes the mean curvature of the frontier [START_REF] Ni | On the shape of least-energy solutions to a semi-linear problem Neumann problem[END_REF] [START_REF] Ni | Locating the peaks of least-energy solutions to a semi-linear Neumann problem[END_REF]. Higher energy solutions exist which blow up at one or several points, located on the boundary [START_REF] Dancer | Multipeak solutions for a singularly perturbed Neumann problem[END_REF] [START_REF] Gui | Multi-peak solutions for a semilinear Neumann problem[END_REF] [START_REF] Li | On a singularly perturbed equation with Neumann boundary condition[END_REF][33] [START_REF] Gui | Multiple boundary peak solutions for some singularly perturbed Neumann problems[END_REF], in the interior of the domain [START_REF] Bates | Equilibria with many nuclei for the Cahn-Hilliard equation[END_REF][7] [START_REF] Grossi | On the effect of critical points of distance function in superlinear elliptic problems[END_REF] [START_REF] Grossi | Existence of multipeak solutions for a semilinear elliptic problem via nonsmooth critical point theory[END_REF] [START_REF] Gui | Multiple interior peak solutions for some singularly perturbed Neumann problems[END_REF][21] [START_REF] Wei | On the interior spike layer solutions of singularly perturbed semilinear Neumann problems[END_REF] [START_REF] Yan | On the number of interior multipeak solutions for singularly perturbed Neumann problems[END_REF], or some of them on the boundary and others in the interior [START_REF] Gui | On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems[END_REF]. (A good review can be found in [START_REF] Ni | Diffusion, cross-diffusion, and their spike-layer steady states[END_REF].) In the critical case, i.e. q = 5, Zhu [START_REF] Zhu | Uniqueness results through a priori estimates, I. A three dimensional Neumann problem[END_REF] proved that, for convex domains, the only solution is the constant one for small µ (see also [START_REF] Wei | Uniqueness and a priori estimates for some nonlinear elliptic Neumann equations in R 3[END_REF]). For large µ, nonconstant solutions exist [START_REF] Adimurthi | The Neumann problem for elliptic equations with critical nonlinearity, "A tribute in honour of G. Prodi[END_REF] [START_REF] Wang | Neumann problem of semilinear elliptic equations involving critical Sobolev exponents[END_REF]. As in the subcritical case the least energy solution blows up, as µ goes to infinity, at a unique point which maximizes the mean curvature of the boundary [START_REF] Adimurthi | Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity[END_REF] [START_REF] Ni | Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents[END_REF]. Higher energy solutions have also been exhibited, blowing up at one [START_REF] Adimurthi | Geometry and topology of the boundary in the critical Neumann problem[END_REF] [START_REF] Wang | The effect of domain geometry on the number of positive solutions of Neumann problems with critical exponents[END_REF] [START_REF] Rey | An elliptic Neumann problem with critical nonlinearity in three dimensional domains[END_REF] [START_REF] Gui | Estimates for boundary-bubbling solutions to an elliptic Neumann problem[END_REF] or several boundary points [START_REF] Maier-Paape | On Neumann problems for semilinear elliptic equations with critical nonlinearity : existence and symmetry of multi-peaked solutions[END_REF][36] [START_REF] Wang | Construction of multi-peaked solution for a nonlinear Neumann problem with critical exponent[END_REF] [START_REF] Gui | On the existence of arbitrary number of bubbles for some semilinear elliptic equations with critical Sobolev exponent[END_REF]. The question of interior blow-up is still open. However, in contrast with the subcritical situation, at least one blow-up point has to lie on the boundary [START_REF] Rey | The question of interior blow-up points for an elliptic Neumann problem : the critical case[END_REF]. Very few is known about the supercritical case, save the uniqueness of the radial solution on a ball for small µ [START_REF] Lin | On the Diffusion Coefficient of a Semilinear Neumann Problem[END_REF].

Our aim, in this paper, is to study the problem for fixed µ, when the exponent q close to the critical one, i.e. q = 5 + ε and ε is a small nonzero number. Whereas the previous results, concerned with peaked solutions, always assume that µ goes to infinity, we are going to prove that a single peak solution may exist for finite µ, provided that q is close enough to the critical exponent. Such a solution blows up, as q goes to 5, at one point which may be characterized.

In order to state a precise result, some notations have to be introduced. Let G µ (x, y) denote the Green's function of the operator -∆ + µ in Ω with Neumann boundary conditions. Namely, for any y ∈ Ω, x → G µ (x, y) is the unique solution of

-∆G µ + µG µ = 4πδ y x ∈ Ω ; ∂G µ ∂n = 0 x ∈ ∂Ω. (1.1) 
G µ writes as

G µ (x, y) = e -µ 1/2 |x-y| |x -y| -H µ (x, y)
where H µ (x, y), regular part of the Green's function, satisfies

-∆H µ + µH µ = O x ∈ Ω ; ∂H µ ∂n = 1 ∂n e -µ 1/2 |x-y| |x -y| x ∈ ∂Ω. (1.2)
We set

ϕ µ (x) = µ 1 2 + H µ (x, x).
It is to be noticed that

H µ (x, x) → -∞ as d(x, ∂Ω) → 0 (1.3) implying that M µ = sup x∈Ω ϕ µ (x)
is achieved in Ω. (See (5.10) in Proposition 5.2 for the proof of (1.3).) Denoting

f α = {x ∈ Ω, f (x) ≤ α}
the level sets of a function f defined in Ω, we have :

Theorem 1.1 Assume that there exist b and c, b < c < 0, such that c is not a critical value of ϕ µ and the relative homology H * (ϕ c µ , ϕ b µ ) = 0. (P 5+ε,µ ) has a nontrivial solution, for ε > 0 close enough to zero, which blows up as ε goes to zero at a point a ∈ Ω, such that b < ϕ µ (a) < c. The same result holds, for ε < 0, assuming that 0 < b < c.

We notice that, M µ < 0 (resp. > 0) when µ is small (resp. large) enough (see (5.12) and (5.13) of Proposition 5.2). Consequently, we deduce from the previous result : Theorem 1.2 There exist µ 0 and µ 1 , 0 < µ 0 ≤ µ 1 , such that : 1) If 0 < µ < µ 0 , (P 5+ε,µ ) has a nontrivial solution, for ε > 0 close enough to zero, which blows up as ε goes to zero at a maximum point a of H µ (a, a).

2) If µ > µ 1 , (P 5+ε,µ ) has a nontrivial solution, for ε < 0 close enough to zero, which blows up as ε goes to zero at a maximum point a of H µ (a, a).

Remarks. 1) In the critical case, i.e. ε = 0, further computations suggest that a nontrivial solution should exist for µ > µ 0 close enough to µ 0 , such that M µ > 0 and M µ0 = 0. This solution would blow up, as previously, at a maximum point of H µ0 (a, a) as µ goes to µ 0 . (This contrasts to previous results for P 5,0 on the nonexistence of solutions for µ small ( [START_REF] Wei | Uniqueness and a priori estimates for some nonlinear elliptic Neumann equations in R 3[END_REF], [START_REF] Zhu | Uniqueness results through a priori estimates, I. A three dimensional Neumann problem[END_REF]) and nonexistence of interior bubble solutions for µ large ( [START_REF] Ghoussoub | On a singularly perturbed Neumann problem with the critical exponent[END_REF], [START_REF] Rey | An elliptic Neumann problem with critical nonlinearity in three dimensional domains[END_REF]).)

2) In a forthcoming paper, we shall treat the case N ≥ 4, which appears to be qualitatively different.

The scheme of the proof is the following. In the next section, we define a two-parameters set of approximate solutions to the problem, and we look for a true solution in a neighborhood of this set. Considering in Section 3 the linearized problem at an approximate solution, and inverting it in suitable functional spaces, the problem reduces to a finite dimensional one, which is solved in Section 4. Some useful facts and computations are collected in Appendix.

Approximate solutions and rescaling

For sake of simplicity, we consider in the following the supercritical case, i.e. we assume that ε > 0. The subcritical case may be treated exactly in the same way.

For normalization reasons, we consider throughout the paper the equation

-∆u + µu = 3u 5+ε , u > 0 (2.1)
instead of the original one. The solutions are identical, up to the multiplicative constant 3 -1 4+ε . We recall that, according to [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF], the functions

U λ,a (x) = λ 1 2 (1 + λ 2 |x -a| 2 ) 1 2 λ > 0 , a ∈ R 3 (2.2)
are the only solutions to the problem

-∆u = 3u 5 , u > 0 in R 3 .
As a ∈ Ω and λ goes to infinity, these functions provide us with approximate solutions to the problem that we are interested in. However, in view of the additional linear term µu which occurs in (P 5+ε,µ ), the approximation needs to be improved. Actually, we define in Ω the following functions :

Ũλ,a,µ (x) = U λ,a (x) - 1 λ 1 2
1 -e -µ We are going to seek for solutions in a neighborhood of such functions, with the a priori assumption that a remains far from the boundary of the domain, that is there exists some number δ > 0 such that d(a, ∂Ω) > δ.

(2.4)

Moreover, integral estimates (see Appendix) suggest to make the additional a priori assumption that λ behaves as 1/ε as ε goes to zero. Namely, we set

λ = 1 Λε 1 δ < Λ < δ (2.5)
with δ some strictly positive number.

In fact, in order to avoid the singularity which appears in the right hand side of (2.3), and to cancel the normal derivative on the boundary, we modify slightly the definition of Ũλ,a,µ , setting

V Λ,a,µ,ε (x) = Ũ 1 Λε ,a,µ (x) - µ 2 (Λε) 1 2 |x -a|(1 -e -ε 2 |x-a| 2 ) + θ Λ,a,µ,ε (x) (2.6) 
θ Λ,a,µ,ε = θ being the unique solution to the problem

   -∆θ + µθ = 0 in Ω ∂θ ∂n = ∂ ∂n -U 1 Λε ,a (x) + (Λε) 1 2
|x-a| + µ 2 (Λε)

1 2 |x -a|(1 -e -ε 2
|x-a| 2 ) on ∂Ω.

From the above assumption (2.4) we know that

H µ (a, x) = O(1) θ λ,a,µ,ε = O(ε 5 2 ) (2.7) in C 2 (Ω). We note that V Λ,a,µ,ε = V satisfies        -∆V + µV = 3U 5 1 Λε ,a + µ U 1 Λε ,a -(Λε) 1 2 |x-a| e -ε 2 |x-a| 2 -µΛ 1 2 ε 5 2 |x-a| 3 1 + 2ε 2 |x-a| 2 e -ε 2 |x-a| 2 -µ 2 ε 2 2 (Λε) 1 2 |x -a|(1 -e -ε 2 |x-a| 2 ) in Ω ∂V ∂n = 0 on ∂Ω.
(2.8) The V Λ,a,µ,ε 's are the suitable approximate solutions in the neigbourhood of which we shall find a true solution to the problem. In order to make further computations easier, we proceed to a rescaling. We set

Ω ε = Ω ε
and we define in Ω ε the functions

W Λ,ξ,µ,ε (x) = ε 1 2 V Λ,a,µ,ε (εx) ξ = a ε (2.9)
which write as

W Λ,ξ,µ,ε (x) = U 1 Λ ,ξ (x) -Λ 1 2 1 -e -µ 1 2 ε|x-ξ| |x -ξ| + H µ,ε (ξ, x) - µε 2 2 Λ 1 2 |x -ξ|(1 -e -1 |x-ξ| 2 ) + θΛ,ξ,µ,ε (x) (2.10)
H µ,ε denoting the regular part of the Green's function of the operator -∆+µε 2 with Neumann boundary conditions in Ω ε , and θΛ,ξ,µ,ε (x) = ε 1 2 θ Λ,a,µ,ε (εx). We notice that, taking account of (2.7)

H µ,ε (ξ, x) = O(ε) θΛ,ξ,µ,ε (x) = O(ε 3 ) (2.11) in C 2 (Ω ε ).
We notice also that assumption (2.4) is equivalent to

d(ξ, ∂Ω ε ) > δ ε (2.12) and that W Λ,ξ,µ,ε = W satisfies the uniform estimate |W Λ,ξ,µ,ε | ≤ CU 1 Λ ,ξ in Ω ε . Moreover, we have        -∆W + µε 2 W = 3U 5 1 Λ ,ξ + µε 2 U 1 Λ ,a -Λ 1 2 |x-ξ| e -1 |x-ξ| 2 -µΛ 1 2 ε 2 |x-ξ| 3 1 + 2 |x-ξ| 2 e -1 |x-ξ| 2 -µ 2 ε 4 2 (Λε) 1 2 |x -ξ|(1 -e -1 |x-ξ| 2 ) in Ω ε ∂W ∂n = 0 on ∂Ω ε .
(2.13) Finding a solution to (P 5+ε,µ ) in a neighbourhood of the functions V Λ,a,µ,ε is equivalent, through the rescaling, to solving the problem

(P 5+ε,µ ) -∆u + µε 2 u = 3u 5+ε u > 0 in Ω ε ∂u ∂n = 0 on ∂Ω ε (2.14)
in a neigbourhood of the functions W Λ,ξ,µ,ε . For that purpose, we have to use some local inversion procedure. Namely, we are going to look for a solution to (P ε,µ ) writing as

w = W Λ,ξ,µ,ε + ω
with ω small and orthogonal at W Λ,ξ,µ,ε , in a suitable sense, to the manifold

M = W Λ,ξ,µ,ε , (Λ, ξ) satisfying (2.5) (2.12) . (2.15) 
The general strategy consists in finding first, using an inversion procedure, a smooth map (Λ, ξ) → ω(Λ, ξ) such that W Λ,ξ,µ,ε + ω(Λ, ξ, µ, ε) solves the problem in an orthogonal space to M . Then, we are left with a finite dimensional problem, for which a solution may be found using the topological assumption of the theorem. In the subcritical or critical case, the first step may be performed in H 1 (see e.g. [START_REF] Bahri | Critical points at infinity in some variational problems[END_REF][30] [START_REF] Rey | An elliptic Neumann problem with critical nonlinearity in three dimensional domains[END_REF]). However, this approach is not valid any more in the supercritical case, for H 1 does not inject into L q as q > 6. Following [START_REF] Del Pino | Two-bubble solutions in the super-critical Bahri-Coron's problem[END_REF], we use instead weighted Hölder spaces to reduce the problem to a finite dimensional one.

3 The finite dimensional reduction

Inversion of the linearized problem

We first consider the linearized problem at a function W Λ,ξ,µ,ε , and we invert it in an orthogonal space to M . From now on, we omit for sake of simplicity the indices in the writing of

W Λ,ξ,µ,ε . Equipping H 1 (Ω ε ) with the scalar product (u, v) ε = Ωε (∇u • ∇v + µε 2 uv)
orthogonality to the functions

Y 0 = ∂W ∂Λ Y i = ∂W ∂ξ i 1 ≤ i ≤ 3 (3.1)
in that space is equivalent, setting

Z 0 = -∆ ∂W ∂Λ + µε 2 ∂W ∂Λ Z i = -∆ ∂W ∂ξ i + µε 2 ∂W ∂ξ i 1 ≤ i ≤ 3 (3.2)
to the orthogonality in L 2 (Ω ε ), equipped with the usual scalar product •, • , to the functions Z i , 0 ≤ i ≤ 3. Then, we consider the following problem : h ∈ L ∞ (Ω ε ) being given, find a function φ which satisfies

   -∆φ + µε 2 φ -3(5 + ε)W 4+ε + φ = h + i c i Z i in Ω ε ∂φ ∂n = 0 on ∂Ω ε < Z i , φ > = 0 0 ≤ i ≤ 3 (3.3)
for some numbers c i .

Existence and uniqueness of φ will follow from an inversion procedure in suitable functional spaces. Namely, for f a function in Ω ε , we define the following weighted L ∞ -norms

f * = sup x∈Ωε (1 + |x -ξ| 2 ) 1 2 f (x) and f * * = sup x∈Ωε (1 + |x -ξ| 2 ) 2 f (x) .
Writing U instead of U 1 Λ ,ξ , the first norm is equivalent to U -1 f ∞ and the second one to U -4 f ∞ , uniformly with respect to ξ and Λ.

We have the following result :

Proposition 3.1 There exists ε 0 > 0 and a constant C > 0, independent of ε and ξ, Λ satisfying (2.12) (2.5), such that for all 0 < ε < ε 0 and all

h ∈ L ∞ (Ω ε ), problem (3.3) has a unique solution φ ≡ L ε (h). Besides, L ε (h) * ≤ C h * * |c i | ≤ C h * * . (3.4)
Moreover, the map L ε (h) is C 2 with respect to Λ, ξ and the L ∞ * -norm, and

D (Λ,ξ) L ε (h) * ≤ C h * * D 2 (Λ,ξ) L ε (h) * ≤ C h * * . (3.5)
Proof. The argument follows closely the ideas in [START_REF] Del Pino | Two-bubble solutions in the super-critical Bahri-Coron's problem[END_REF]. We repeat it for convenience of the reader. The proof relies on the following result :

Lemma 3.1 Assume that φ ε solves (3.3) for h = h ε . If h ε * * goes to zero as ε goes to zero, so does φ ε * .

Proof of the lemma. For 0 < ρ < 1, we define

f ρ = sup x∈Ωε |(1 + |x -ξ| 2 ) 1 2 (1-ρ) f (x)|
and we first prove that φ ε ρ goes to zero. Arguing by contradiction, we may assume that φ ε ρ = 1. Multiplying the first equation in (3.3) by Y j and integrating in Ω ε we find

i c i Z i , Y j = -∆Y j + µε 2 Y j -3(5 + ε)W 4+ε + Y j , φ ε -h ε , Y j .
On one hand we check, in view of the definition of

Z i , Y j Z 0 , Y 0 = Y 0 2 ε = γ 0 + o(1) Z i , Y i = Y i 2 ε = γ 1 + o(1) 1 ≤ i ≤ 3 (3.6)
where γ 0 , γ 1 are strictly positive constants, and

Z i , Y j = o(1) i = j. (3.7)
On the other hand, in view of the definition of Y j and W , straightforward computations yield

-∆Y j + µε 2 Y j -3(5 + ε)W 4+ε + Y j , φ ε = o( φ ε ρ ) and h ε , Y j = O( h ε * * ).
Consequently, inverting the quasi diagonal linear system solved by the c i 's, we find

c i = O( h ε * * ) + o( φ ε ρ ). (3.8)
In particular, c i = o(1) as ε goes to zero. The first equation in (3.3) may be written as

φ ε (x) = 3(5 + ε) Ωε G ε (x, y) W 4+ε + φ ε + h ε + i c i Z i dy (3.9) 
for all x ∈ Ω ε , G ε denoting the Green's function of the operator (-∆ + µε 2 ) in Ω ε with Neumann boundary conditions. We notice that by scaling and (5.11) of Proposition 5.2,

G ε (x, y) = εG µ ( x ε , y ε ) ≤ C |x -y| (3.10)
and hence we obtain

Ωε G ε (x, y)W 4+ε + φ ε dy ≤ C φ ε ρ Ωε 1 |x -y| 1 (1 + |x -ξ| 2 ) 1 2 (3+ε+ρ) dy ≤ C φ ε ρ (1 + |x -ξ| 2 ) -1 2 Ωε G ε (x, y)h ε dy ≤ C h ε * * Ωε 1 |x -y| 1 (1 + |x -ξ| 2 ) 2 dy ≤ C h ε * * (1 + |x -ξ| 2 ) -1 2 Ωε G ε (x, y)Z i dy ≤ C Ωε 1 |x -y| 1 (1 + |x -ξ| 2 ) 5 2 dy ≤ C(1 + |x -ξ| 2 ) -1 2 (3.11)
from which we deduce

(1 + |x -ξ| 2 ) 1 2 (1-ρ) |φ ε (x)| ≤ C(1 + |x -ξ| 2 ) -ρ 2 . φ ε ρ = 1 implies the existence of R > 0, γ > 0 independent of ε such that φ ε L ∞ (B R (ξ)) > γ.
Then, elliptic theory shows that along some subsequence, φε (x) = φ ε (x -ξ) converges uniformly in any compact subset of R 3 to a nontrivial solution of

-∆ φ = 15U 4 Λ,0 φ for some Λ > 0. Moreover, | φ(x)| ≤ C/|x|. As a consequence, φ writes as φ = α 0 ∂U Λ,0 ∂ Λ + 3 i=1 α i ∂U Λ,0 ∂a i
(see e.g. [START_REF] Rey | The role of the Green's function in a nonlinear elliptic problem involving the critical Sobolev exponent[END_REF]). On the other hand, equalities < Z i , φ ε >= 0 provide us with the equalities

R 3 -∆ ∂U Λ,0 ∂ Λ φ = R 3 U 4 Λ,0 ∂U Λ,0 ∂ Λ φ = 0 R 3 -∆ ∂U Λ,0 ∂a i φ = R 3 U 4 Λ,0 ∂U Λ,0 ∂a i φ = 0 1 ≤ i ≤ 3.
As we have also

R 3 |∇ ∂U Λ,0 ∂ Λ | 2 = γ 0 > 0 R 3 |∇ ∂U Λ,0 ∂a i | 2 = γ 1 > 0 1 ≤ i ≤ 3 and R 3 ∇ ∂U Λ,0 ∂ Λ .∇ ∂U Λ,0 ∂a i = R 3 ∇ ∂U Λ,0 ∂a j .∇ ∂U Λ,0 ∂a i = 0 i = j
the α j 's solve a homogeneous quasi diagonal linear system, yielding α j = 0, 0 ≤ α j ≤ 3, and φ = 0, hence a contradiction. This proves that φ ε ρ = o(1) as ε goes to zero. Furthermore, (3.9), (3.11) and (3.8) show that

φ ε * ≤ C( h ε * * + φ ε ρ )
whence also φ ε * = o(1) as ε goes to zero.

Proof of Proposition 3.1 completed. We set

H = φ ∈ H 1 (Ω ε ), < Z i , φ >= 0 0 ≤ i ≤ 3 equipped with the scalar product (•, •) ε . Problem (3.3) is equivalent to finding φ ∈ H such that (φ, θ) ε = 3(5 + ε)W 4+ε + φ + h , θ ∀θ ∈ H that is φ = T ε (φ) + h (3.12)
h depending linearly on h, and T ε being a compact operator in H. Fredholm's alternative ensures the existence of a unique solution, provided that the kernel of Id -T ε is reduced to 0. We notice that φ ε ∈ Ker(Id -T ε ) solves (3.3) with h = 0. Thus, we deduce from Lemma 3.1 that φ ε * = o(1) as ε goes to zero. As Ker(Id -T ε ) is a vector space, Ker(Id -T ε ) = {0}. The inequalities (3.4) follow from Lemma 3.1 and (3.8). This completes the proof of the first part of Proposition 3.1.

The smoothness of L ε with respect to Λ and ξ is a consequence of the smoothness of T ε and h, which occur in the implicit definition (3.12) of φ ≡ L ε (h), with respect to these variables. Inequalities (3.5) are obtained differentiating (3.3), writing the derivatives of φ with respect Λ and ξ as a linear combination of the Z i ' and an orthogonal part, and estimating each term using the first part of the proposition -see [START_REF] Del Pino | Two-bubble solutions in the super-critical Bahri-Coron's problem[END_REF] [20] for detailed computations.

The reduction

In view of (2.13), a first correction between the approximate solution W and a true solution to (P ε,µ ) writes as

ψ ε = L ε (R ε ) (3.13) with R ε =3W 5+ε + -(-∆W + µε 2 W ) =3W 5+ε + -3U 5 1 Λ ,ξ -µε 2 U 1 Λ ,a - Λ 1 2 |x -ξ| e -1 |x-ξ| 2 + µΛ 1 2 ε 2 |x -ξ| 3 1 + 1 |x -ξ| 2 e -1 |x-ξ| 2 + µ 2 ε 4 2 (Λε) 1 2 |x -ξ|(1 -e -1
|x-ξ| 2 ).

(3.14) We have : Lemma 3.2 There exists C, independent of ξ, Λ satisfying (2.12) (2.5), such that

R ε * * ≤ Cε D (Λ,ξ) R ε * * ≤ Cε D 2 (Λ,ξ) R ε * * ≤ Cε. Proof. According to (2.10), W = U + O(ε) uniformly in Ω ε . Consequently, noticing that U ≥ Cε in Ω ε , C independent of ε U 5 -W 5+ε + = O(εU 5 | ln U | + εU 4 )
uniformly in Ω ε , whence

U 5 -W 5+ε + * * ≤ C U -4 (U 5 -W 5+ε + ) ∞ = O(ε).
On the other hand

(1 + |x -ξ| 2 ) 2 µε 2 U 1 Λ ,a - Λ 1 2 |x -ξ| e -1 |x-ξ| 2 - µΛ 1 2 ε 2 |x -ξ| 3 1 + 1 |x -ξ| 2 e -1 |x-ξ| 2 - µ 2 ε 4 2 (Λε) 1 2 |x -ξ|(1 -e -1 |x-ξ| 2 ) = O(ε) uniformly for x ∈ Ω ε , since U 1 Λ ,a - Λ 1 2
|x -ξ| e Lemma 3.3 There exists C, independent of ξ, Λ satisfying (2.12) (2.5), such that

ψ ε * ≤ Cε D (Λ,ξ) ψ ε * ≤ Cε D 2 (Λ,ξ) ψ ε * ≤ Cε.
We consider now the following nonlinear problem : finding φ such that, for some numbers

c i    -∆(W + ψ + φ) + µε 2 (W + ψ + φ) -3(W + ψ + φ) 5+ε + = i c i Z i in Ω ε ∂φ ∂n = 0 on ∂Ω ε < Z i , φ > = 0 0 ≤ i ≤ 3. (3.15) Setting N ε (η) = (W + η) 5+ε + -W 5+ε + -(5 + ε)W 4+ε + η (3.16)
the first equation in (3.15) writes as

-∆φ + µε 2 φ -3(5 + ε)W 4+ε + φ = 3N ε (ψ + φ) + i c i Z i (3.17)
for some numbers c i . Assuming that η * is bounded, say η * ≤ M for some constant M , we have

N ε (η) * * ≤ C η 2 *
whence, assuming that φ * ≤ 1 and using Lemma 3.3

N ε (ψ + φ) * * ≤ C( φ 2 * + ε 2 ). (3.18)
We state the following result : Proposition 3.2 There exists C, independent of ε and ξ, Λ satisfying (2.12) (2.5), such that for small ε problem (3.15) has a unique solution φ = φ(Λ, ξ, µ, ε) with

φ * ≤ Cε 2 . (3.19)
Moreover, (Λ, ξ) → φ(Λ, ξ, µ, ε) is C 2 with respect to the L ∞ * -norm, and

D (Λ,ξ) φ * ≤ Cε 2 D 2 (Λ,ξ) φ * ≤ Cε 2 . (3.20)
Proof. Following [START_REF] Del Pino | Two-bubble solutions in the super-critical Bahri-Coron's problem[END_REF], we consider the map

A ε from F = {φ ∈ H 1 ∩ L ∞ (Ω ε ) : φ * ≤ ε} to H 1 ∩ L ∞ (Ω ε ) defined as A ε (φ) = L ε (3N ε (φ + ψ))
and we remark that finding a solution φ to problem (3.15) is equivalent to finding a fixed point of A ε . One the one hand we have, for φ ∈ F

A ε (φ) * ≤ L ε (N ε (φ + ψ)) * ≤ N ε (φ + ψ) * * ≤ Cε 2 ≤ ε
for ε small enough, implying that A ε sends F into itself. On the other hand A ε is a contraction. Indeed, for φ 1 and φ 2 in F, we write

A ε (φ 1 ) -A ε (φ 2 ) * ≤ N ε (ψ + φ 1 ) -N ε (ψ + φ 2 ) * * ≤ U -4 N ε (ψ + φ 1 ) -N ε (ψ + φ 2 ) ∞ .
In view of (3.16) we have

∂ η N ε (η) = (5 + ε) (W + η) 4+ε + -W 4+ε + ) (3.21) whence |N ε (ψ + φ 1 ) -N ε (ψ + φ 2 )| ≤ CU 3 |ψ + tφ 1 + (1 -t)φ 2 ||φ 1 -φ 2 |
for some t ∈ (0, 1). Then

U -4 N ε (ψ + φ 1 ) -N ε (ψ + φ 2 ) ∞ ≤ C U -1 (ψ + tφ 1 + (1 -t)φ 2 )(φ 1 -φ 2 ) ∞ ≤ C( ψ * + φ 1 * + φ 2 * ) φ 1 -φ 2 * ≤ ε φ 1 -φ 2 * .
This implies that A ε has a unique fixed point in F, that is problem (3.15) has a unique solution φ such that φ * ≤ ε. Furthermore, the definition of φ as a fixed point of A ε yields

φ * = L ε (N ε (φ + ψ)) * ≤ C N ε (φ + ψ) * * ≤ Cε 2
using (3.18), whence (3.19).

In order to prove that (Λ, ξ) → φ(Λ, ξ) is C 2 , we remark that setting for η ∈ F

B(Λ, ξ, η) ≡ η -L ε (3N ε (η + ψ)) φ is defined as B(Λ, ξ, φ) = 0. (3.22)
We have

∂ η B(Λ, ξ, η)[θ] = θ -3L ε θ (∂ η N ε )(η + ψ)
and, using (3.21)

L ε θ (∂ η N ε )(η + ψ) * ≤ C θ (∂ η N ε )(η + ψ) * * ≤ C U -3 (∂ η N ε )(η + ψ) ∞ θ * ≤ C η + ψ * θ * ≤ Cε θ * .
Consequently, ∂ η B(Λ, ξ, φ) is invertible in L ∞ * with uniformly bounded inverse. Then, the fact that (Λ, ξ) → φ(Λ, ξ) is C 2 follows from the fact that (Λ, ξ, η) → L ε (N ε (η + ψ)) is C 2 and the implicit functions theorem.

Finally, let us show how estimates (3.20) may be obtained. Derivating (3.22) with respect to Λ, we have

∂ Λ φ = 3(∂ η B(Λ, ξ, φ)) -1 (∂ Λ L ε )(N ε (φ + ψ)) + L ε ((∂ Λ N ε )(φ + ψ)) + L ε ((∂ η N ε )(φ + ψ)∂ Λ ψ)
whence, according to Proposition 3.1

∂ Λ φ * ≤ C N ε (φ + ψ) * * + (∂ Λ N ε )(φ + ψ) * * + (∂ η N ε )(φ + ψ)∂ Λ ψ * * .
From (3.18) and (3.19) we know that

N ε (φ + ψ) * * ≤ Cε 2 .
Concerning the next term, we notice that according to the definition (3.16) 

of N ε |(∂ Λ N ε )(φ + ψ)| = (5 + ε) (W + φ + ψ) 4+ε + -W 4+ε + -(4 + ε)W 3+ε + (φ + ψ) |∂ Λ W | ≤ CU 5 φ + ψ 2 * ≤ CU 5 ε 2
using again (3.18) and (3.19), whence

(∂ Λ N ε )(φ + ψ) * * ≤ Cε 2 .
Lastly, from (3.21) we deduce

|(∂ η N ε )(φ + ψ)∂ Λ ψ| ≤ U 5 φ + ψ * ∂ Λ ψ * yielding (∂ η N ε )(φ + ψ)∂ Λ ψ * * ≤ Cε 2 .
Finally we obtain

∂ Λ φ * ≤ Cε 2 .
The other first and second derivatives of φ with respect to Λ and ξ may be estimated in the same way (see [START_REF] Khenissy | A criterion for existence of solutions to the supercritical Bahri-Coron's problem[END_REF] for detailed computations concerning the second derivatives). This concludes the proof of Proposition 3.2.

Coming back to the original problem

We introduce the following functional defined in H 1 (Ω) ∩ L 6+ε (Ω)

J ε (u) = 1 2 Ω (|∇u| 2 + µu 2 ) - 3 6 + ε Ω u 6+ε + (3.23)
whose nontrivial critical points are solutions to (P 5+ε,µ ) (up to the multiplicative constant 3

1 4+ε
). We consider also the rescaled functions defined in Ω

Ŵ (Λ, a)(x) = ε -ζ W Λ,ξ (ε -1 x) = ε 1 2 -ζ V Λ,a (x) (3.24) 
with ζ = 1 2 + 1 2 ε a = εξ.
We define also

ψ(Λ, a)(x) = ε -ζ ψ(Λ, ξ)(ε -1 x) φ(Λ, a)(x) = ε -ζ φ(Λ, ξ)(ε -1 x) (3.25) 
and we set

I ε (Λ, a) ≡ J ε ( Ŵ + ψ + φ)(Λ, a) . (3.26) 
We have :

Proposition 3.3 The function u = 3 1 4+ε ( Ŵ + ψ + φ) is a solution to problem (P 5+ε,µ ) if and only if (Λ, a) is a critical point of I ε . Proof. For v in H 1 (Ω ε ) ∩ L 6+ε (Ω ε ), we set K ε (v) = 1 2 Ωε (|∇v| 2 + µε 2 v 2 ) - 3 6 + ε Ωε v 6+ε + (3.27) 
whose nontrivial critical points are solutions to (P 5+ε,µ ). According to the definition I ε we have

I ε (Λ, a) = ε 1-2ζ K ε (W + ψ + φ)(Λ, ξ) . (3.28) 
We notice that u = 3 1 4+ε ( Û + ψ+ φ) being a solution to (P 5+ε,µ ) is equivalent to W +ψ+φ being a solution to (P 5+ε,µ ), that is a critical point of K ε . It is also equivalent to the cancellation of the c i 's in (3.15) or, in view of (3.6) (3.7)

K ε (W + ψ + φ)[Y i ] = 0 0 ≤ i ≤ 3. (3.29) 
On the other hand, we deduce from (3.28) that I ε (Λ, a) = 0 is equivalent to the cancellation of K ε (W + ψ + p) applied to the derivatives of W + ψ + p with respect to Λ and ξ. According to the definition (3.1) of the Y i 's, Lemma 3.3 and Proposition 3.2 we have

∂(W + ψ + φ) ∂Λ = Y 0 + y 0 ∂(W + ψ + φ) ∂ξ j = Y j + y j 1 ≤ j ≤ 3 with y i L ∞ * = o(1), 0 ≤ i ≤ 3.
Writing

y i = y i + 3 j=0 a ij Y j y i , Z j = (y i , Y j ) ε = 0 0 ≤ i, j ≤ 3 and K ε (W + ψ + p)[Y i ] = α i it turns out that I ε (Λ, a) = 0 is equivalent, since K ε (W + ψ + p)[θ] = 0 for θ, Z j = (θ, Y j ) ε = 0, 0 ≤ j ≤ 3, to (Id + [a ij ])[α i ] = 0.
As a ij = O( y i * ) = o(1), we see that I ε (Λ, a) = 0 means exactly that (3.29) is satisfied.

4 Proof of Theorem 1.1

In view of Proposition 3.3 we have, for proving the theorem, to find critical points of I ε . We establish first a C 2 -expansion of I ε .

Expansion of I ε

Proposition 4.1 There exist A, B, C, strictly positive constants such that

I ε (Λ, a) = A + A 4 ε ln(εΛ) + 1 2 (C + A 6 )ε + 3BΛ 2 µ 1/2 + H µ (a, a) ε + εσ ε (Λ, a)
with σ ε , D (Λ,a) σ ε and D 2 (Λ,a) σ ε going to zero as ε goes to zero, uniformly with respect to a, Λ satisfying (2.4) and (2.5).

Proof. In view of the definition (3.26) of I ε , we first estimate J ε ( Ŵ ). We have

ε 2ζ-1 J ε ( Ŵ ) = ε 2ζ-1 J ε (ε 1 2 -ζ V ) = J ε (V ) + 3 1 -ε ε 2 6 + ε Ω V 6+ε + = J ε (V ) + 1 2 - ε 2 ln ε + o(ε) Ω V 6+ε
+ from which we deduce, using the integral estimates (5.8), (5.9) and Proposition 5.1 in Appendix,that

J ε ( Ŵ ) = A + A 4 ε ln(εΛ) + 1 2 (C + A 6 )ε + 3BΛ 2 (µ 1/2 + H µ (a, a))ε + o(ε). (4.1)
Then, we prove that

I ε (Λ, a) -J ε ( Ŵ + ψ) = o(ε). (4.2) 
Indeed, from a Taylor expansion and the fact that J ε ( Ŵ + ψ + φ)[φ] = 0, we have

I(Λ, a) -J ε ( Ŵ + ψ) = J ε ( Ŵ + ψ + φ) -J ε ( Ŵ + ψ) = 1 0 J ε ( Ŵ + ψ + t φ)[ φ, φ]tdt = ε 1-2ζ 1 0 K ε (W + ψ + φ)[φ, φ]tdt = ε 1-2ζ 1 0 Ωε |φ| 2 + µε 2 φ 2 -3(5 + ε)(W + ψ + φ) 4+ε + φ 2 tdt = ε 1-2ζ 1 0 Ωε N ε (φ + ψ)φ + 3(5 + ε) W 4+ε + -(W + ψ + tφ) 4+ε + φ 2 tdt.
The desired result follows from (3.18), Lemma 3.3 and (3.19). Similar computations show that estimate (4.2) is also valid for the first and second derivatives of I ε (Λ, a)-J ε ( Ŵ + ψ) with respect to Λ and a. Then, the proposition will follow from an estimate of J ε ( Ŵ + ψ) -J ε ( Ŵ ). We have

J ε ( Ŵ + ψ) -J ε ( Ŵ ) =ε 1-2ζ K ε (W + ψ) -K ε (W ) =ε 1-2ζ K ε (W )[ψ] + 1 0 (1 -t)K ε (W + tψ)[ψ, ψ] .
By definition of ψ and R ε

K ε (W )[ψ] = - Ωε R ε ψ
and we have

K ε (W + tψ)[ψ, ψ] = Ωε (|∇ψ| 2 + µε 2 ψ 2 ) -3(5 + ε) Ωε (W + tψ) 4+ε + ψ 2 .
Then, integration by parts and ψ = L ε (R ε ) yield

K ε (W + tψ)[ψ, ψ] = Ωε R ε ψ -3(5 + ε) Ωε (W + tψ) 4+ε + -W 4+ε + ψ 2 . Consequently J ε ( Ŵ + ψ) -J ε ( Ŵ ) = ε 1-2ζ - 1 2 Ωε R ε ψ -3(5 + ε) 1 0 (1 -t)( Ωε (W + tψ) 4+ε + -W 4+ε + ψ 2 )dt
and Lemmas 3.2 and 3.3 yield

J ε ( Ŵ + ψ) -J ε ( Ŵ ) = o(ε).
The same estimate holds for the first and second derivatives with respect to Λ and a, obtained similarly with more delicate computations -see Proposition 3.4 in [START_REF] Khenissy | A criterion for existence of solutions to the supercritical Bahri-Coron's problem[END_REF]. This concludes the proof of Proposition 4.1.

Proof of Theorem 1.1 completed

According to the statement of Theorem 1.1, we assume the existence of b and c, b < c < 0, such that c is not a critical value of ϕ µ (x) = µ 

∂I ε ∂Λ (Λ, a) = Aε 4Λ + 3B 2 ϕ µ (a)ε + o(ε) and ∂ 2 I ε ∂Λ 2 (Λ, a) = - Aε 4Λ 2 + o(ε)
The previous arguments prove the existence, for ε small enough, of a nontrivial solution u ε to the problem

-∆u + µu = u 5+ε + in Ω ; ∂u ∂n = 0 on ∂Ω.
Then, the strong maximum principle shows that u ε > 0 in Ω. The fact that u ε blows up, as ε goes to zero, at a point a such that b < ϕ µ (a) < c, ∇ϕ µ (a) = 0, follows from the construction of u ε . In particular, ∇ϕ µ (a) = 0 is a straightforward consequence of (4.3) as ε goes to zero. This concludes the proof of the theorem.

Appendix

Integral estimates

In this subsection, we collect the integral estimates which are needed in the previous section. We recall that according to the definitions of Section 2, we have

V Λ,a,µ,ε (x) = U 1 Λε ,a (x) -(Λε) 1 2 1 -e -µ 1 2 |x-a| |x -a| + H µ (a, x) + ρ Λ,a,µ,ε (x) (5.1) with ρ Λ,a,µ,ε = O(|ε| 3 
2 ) (5.2)
uniformly in Ω and with respect to a and Λ satisfying (2.4) (2.5), and the same estimate holds for the derivatives of ρ Λ,a,µ,ε with respect to a and Λ. We recall also that V Λ,a,µ,ε satisfies

   -∆V Λ,a,µ,ε + µV Λ,a,µ,ε = 3U 5 1 Λε ,a + µ U 1 Λε ,a -(Λε) 1 2 |x-a| + ρ Λ,a,µ,ε in Ω ∂VΛ,a,µ,ε ∂n = 0 on ∂Ω (5.3) with ρ Λ,a,µ,ε = µ (Λε) 1 2 |x -a| (1 -e -ε 2 |x-a| 2 ) -µ(Λε) 1 2 ε 2 |x -a| 3 + 2ε 4 |x -a| 5 e -ε 2 |x-a| 2 + O(|ε| 7 
2 ) (5.4) and such an expansion holds for the derivatives of ρ Λ,a,µ,ε with respect to a and Λ.

Omitting, for sake of simplicity, the indices Λ, a, µ, ε, we state : Proposition 5.1 Assuming that a and Λ satisfy (2.4) (2.5), we have the uniform expansions as ε goes to zero with

J ε (V ) = A + A 4 ε ln(|ε|Λ) + 1 2 (C + A 6 )ε + 3BΛ 2 µ 1/2 +
A = R 3 U 6 1,0 = π 2 4 B = R 3 U 5 1,0 = 4π 3 C = - 1 2 R 3 U 6 
1,0 ln U 1,0 > 0.

Proof. For sake of simplicity, we assume that ε > 0 (the computations are equivalent as ε < 0), and we set r = |x -a|. In view of (5.3), we write (Ω-a)/(Λε)

Ω (|∇V | 2 + µV 2 ) = Ω (-∆V + µV )V = Ω 3U 5 + µ(U - (Λε) 
U 5 1 -e -µ Concerning the second term in the right hand side of (5.5), denoting by R the diameter of Ω and using (2.6), we have = O(ε 2 ).

Lastly, noticing that V = O(U ) uniformly in Ω and with respect to the parameters a, Λ satisfying (2.4) and (2.5), we have, using (5.4)

Ω ρ V = O Ω ε 1 2
r

(1 -e -ε 2 r 2 ) + ε and the conclusion follows from the previous computations, noticing that

Ω U 4 = O(ε).
Then, we write

Ω V 6+ε + = Ω V 6 + + Ω V 6 + (V ε + -1). Noticing that 0 ≤ V + ≤ 2ε -1 2 V ε + -1 = ε ln V + + O(ε 2 (ln ε) 2 )

- 1 |x-ξ| 2 =

 12 O(|x -ξ| -3 ) as |x -ξ| goes to infinity, and |x -ξ| = O(1/ε) in Ω ε . The first estimate of the lemma follows. The others are obtained in the same way, differentiating (3.14) and estimating each term as previously. Lemma 3.2 and Proposition 3.1 yield :

1 2 +

 2 H µ (x, x) and the relative homology H * (ϕ c µ , ϕ b µ ) = 0. In view of Proposition 3.3, we have to prove the existence of a critical point of I ε (Λ, a). According to Proposition 4.1, we have

U 6 = 3 U 6 4 .ΩU 5 1 -

 63641 A + O(ε 3 ) with A = R On the other hand, since d(a, ∂Ω) ≥ δ > 0

r 5 e -ε 2 r 2 U + ε 4 = O ε 2 | 2 + 6 +

 524226 µV 2 ) = 3A -3BΛ µ 1/2 + H µ (a, a) ε + O(ε 2 ). (5.7)In the same way we haveΩ V = A -6BΛ µ 1/2 + H µ (a, a) ε + O(ε 2 ).(5.8)Namely, from (5.1)(5.2) and V = O(U ) we derive Ω

  H µ (a, a) |ε| + O(ε 2 (ln |ε|) 2 ) + H µ (a, a) |ε| + O(ε 2 (ln |ε|) 2 ) (a, a) |ε| + O(ε 2 (ln |ε|) 2 ) ∂ 2 J ε ∂Λ 2 = -Aε 4Λ 2 + O(ε 2 (ln |ε|) 2 )

	∂J ε ∂Λ µ 1/2 ∂J ε = Aε 4Λ + 3B 2 ∂a = 3BΛ 2 ∂ ∂a H µ ∂ 2 J ε ∂Λ∂a = 3B 2 ∂ ∂a H

µ (a, a) |ε| + O(ε 2 (ln |ε|) 2 ).
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uniformly with respect to a and Λ satisfying (2.4) (2.5). For δ > 0, η > 0, we define Ω δ,γ = a ∈ Ω s.t. d(a, ∂Ω) > δ, ϕ µ (a) < -γ .

The implicit functions theorem provides us, for ε small enough, with a C 1 -map a ∈ Ω δ,γ → Λ(a) such that ∂I ε ∂Λ (Λ(a), a) = 0 Λ(a) = -A 6B (ϕ µ (a)) -1 + o(1).

Then, finding a critical point of (Λ, a) → I ε (Λ, a) reduces to finding a critical point of a → Ĩε (a), with Ĩε (a) = I ε (Λ(a), a).

We deduce from Proposition 4.1 yields the C 1 -expansion

Therefore, up to an additive and to a multiplicative constant, we have to look for critical points in Ω δ,γ of

as ε goes to zero, uniformly with respect to a ∈ Ω δ,γ .

Arguing by contradiction, we assume

We are going to use the gradient of I ε to build a continuous deformation of ϕ c µ onto ϕ b µ , a contradiction with the assumption H * (ϕ c µ , ϕ b µ ) = 0. We first remark that ϕ µ has isolated critical values, since ϕ µ is analytic in Ω and ϕ µ = -∞ on the boundary of Ω. Therefore, the assumption that c is not a critical value of ϕ µ implies the existence of η > 0 such that ϕ µ has no critical value in (b, b+η]∪(c-η, c]. Moreover, ϕ c µ retracts by deformation onto ϕ c-η µ , ϕ b+η µ retracts by deformation onto ϕ b µ , and H * (ϕ c-η µ , ϕ b+η µ ) = 0. Secondly, we choose δ > 0 such that ϕ µ (x) < b for d(x, ∂Ω) ≤ δ. We choose also γ > 0 such that -γ > c. Then, a point x in the complementary of Ω δ,γ in Ω is either in

a(t) is defined as long as the boundary of Ω δ,γ is not achieved. I ε (a(t)) being decreasing, (4.3) shows that for ε small enough, a(t) remains in ϕ c µ . Then, the boundary of Ω δ,γ may only be achieved by a(t) in ϕ b µ . This means that a(t) is well defined as long as b < ϕ µ (a(t)) < c, and according to assumption (H), I ε (a(t)) is strictly decreasing in that region. Therefore (4.3) proves, for ε small enough, the existence of t > 0 such that ϕ µ (a(t)) = b + η. Composing the flow with a retraction of ϕ c µ onto ϕ c-η µ , we obtain a continuous deformation of ϕ c-η µ onto ϕ b+η µ , a contradiction with H * (ϕ c-η µ , ϕ b+η µ ) = 0. and using the fact that

2 ) we have

R in Ω) whence

We find easily

and noticing that

(5.9)

The first expansion of Proposition 5.1 follows from (5.7), (5.8), (5.9) and the definition (3.23) of J ε .

The expansions for the derivatives of J ε are obtained exactly in the same way.

Green's function

We study the properties of Green's function G µ (x, y) and its regular part H µ (x, y). We summarize their properties in the following proposition Proposition 5.2 Let G µ (x, y) and H µ (x, y) be defined in (1.1) and (1.2), respectively. Then we have H µ (x, x) → -∞ as d(x, ∂Ω) → 0 (5.10)

(5.13)

Proof. (5.10) follows from standard argument. Let x ∈ Ω be such that d = d(x, ∂Ω) is small. So there exists a unique point x ∈ ∂Ω such that d = |x -x|. Without loss of generality, we may assume x = 0 and the outer normal at x is pointing toward x N -direction. Let x * be the reflection point x * = (0, ..., 0, -d) and consider the following auxiliary function We now prove (5.12). For µ small, we can decompose H µ as follows:

where

and H 0 satisfies