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Blowing up Solutions for an Elliptic
Neumann Problem with Sub- or

Supercritical Nonlinearity.
Part II: N ≥ 4

Olivier REY∗ and Juncheng WEI†

October 6, 2005

Abstract

We consider the sub- or supercritical Neumann elliptic problem−∆u+
µu = u

N+2
N−2

+ε, u > 0 in Ω; ∂u
∂n = 0 on ∂Ω, Ω being a smooth bounded

domain in RN , N ≥ 4, µ > 0 and ε 6= 0 a small number. We show that for
ε > 0, there always exists a solution to the slightly supercritical problem,
which blows up at the most curved part of the boundary as ε goes to
zero. On the other hand, for ε < 0, assuming that the domain is not
convex, there also exists a solution to the slightly subcritical problem,
which blows up at the least curved part of the domain.

1 Introduction

In this paper we consider the nonlinear Neumann elliptic problem

(Pq,µ)

{
−∆u + µu = uq u > 0 in Ω

∂u
∂n

= 0 on ∂Ω
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where 1 < q < +∞, µ > 0 and Ω is a smooth and bounded domain in RN , N ≥
4.

Equation (Pq,µ) arises in many branches of the applied sciences. For example,
it can be viewed as a steady-state equation for the shadow system of the Gierer-
Meinhardt system in biological pattern formation ([13], [27]), or for parabolic
equations in chemotaxis, e.g. Keller-Segel model ([24]).

When q is subcritical, i.e. q < N+2
N−2

, Lin, Ni and Takagi proved that the only
solution, for small µ, is the constant one, whereas nonconstant solutions appear
for large µ [24] which blow up, as µ goes to infinity, at one or several points. The
least energy solution blows up at a boundary point which maximizes the mean
curvature of the frontier [29][30]. Higher energy solutions exist which blow up at
one or several points, located on the boundary [8][12][22][42][18], in the interior
of the domain [5][7][10][11][15][20][40][43], or some of them on the boundary and
others in the interior [17]. (A good review can be found in [27].) In the critical
case, i.e. q = 5, Zhu [44] proved that, for convex domains, the only solution is
the constant one for small µ (see also [41]). For large µ, nonconstant solutions
exist [1][35]. As in the subcritical case the least energy solution blows up, as µ
goes to infinity, at a unique point which maximizes the mean curvature of the
boundary [3][28]. Higher energy solutions have also been exhibited, blowing up
at one [2][36][32][14] or several boundary points [26][37][38][16]. The question of
interior blow-up is still open. However, in contrast with the subcritical situation,
at least one blow-up point has to lie on the boundary [33].

Very few is known about the supercritical case, save the uniqueness of the
radial solution on a ball for small µ [23]. In [27], Ni raised the following conjec-
ture.

Conjecture: For any exponent q > 1, and µ large, there always exists a
nonconstant solution to (Pq,µ).

Our aim, in this paper, is to continue our study ([34]) on the problem for
fixed µ, when the exponent q is close to the critical one, i.e. q = N+2

N−2
+ε and ε is

a small nonzero number. Whereas the previous results, concerned with peaked
solutions, always assume that µ goes to infinity, we are going to prove that a
single interior or boundary peak solution may exist for fixed µ, provided that
q is close enough to the critical exponent. In [34], we showed that for N = 3,
a single interior bubble solution exists for finite µ, as ε → 0. In this paper, we
establish the existence of a single boundary bubble for any finite µ and for any
smooth bounded domain Ω ⊂ RN , N ≥ 4, provided that ε > 0 is sufficiently
small.
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Let H(a) denote the boundary mean curvature function at a ∈ ∂Ω. The
following result partially answers Ni’s conjecture:

Theorem 1.1 Suppose that N ≥ 4. Then (PN+2
N−2

+ε,µ) has a nontrivial solution,

for ε > 0 close enough to zero, which blows up as ε goes to zero at a point
a ∈ ∂Ω, such that H(a) = maxP∈∂Ω H(P ).

In the case of ε < 0, i.e. slightly subcritical case, we then have the following
theorem.

Theorem 1.2 Assume that N ≥ 4 and Ω is not convex. Then (PN+2
N−2

+ε,µ) has

a nontrivial solution, for ε < 0 close enough to zero, which blows up as ε goes
to zero at a point a ∈ ∂Ω, such that H(a) = minP∈∂Ω H(P ).

Remark. Theorem 1.2 agrees with the following result of Gui and Lin: in
[14], it is proved that if there exists a sequence of single boundary blowing
up solutions uεi

to PN+2
N−2

+εi,µ
with εi ≤ 0, then necessarily, uεi

blows up at a

boundary point a ∈ ∂Ω such that H(a) ≤ 0 and a is a critical point of H. Here
we have established a partial converse to [14].

A similar slightly supercritical Dirichlet problem

(Qε)

{
−∆u = u

N+2
N−2

+ε2

u > 0 in Ω
u = 0 on ∂Ω

has been studied in [9], where the existence of solutions with two bubbles in do-
mains with a small hole is established, provided that ε is small. It is interesting
to note that, here, and also in [34], we have no condition on the domain, in the
slightly supercritical Neumann case.

The scheme of the proof is similar to [34] (see also [9]). However, we use a
different framework - i.e. weighted Sobolev spaces - to treat the case N ≥ 4.
In the next section, we define a two-parameters set of approximate solutions
to the problem, and we look for a true solution in a neighborhood of this set.
Considering in Section 3 the linearized problem at an approximate solution, and
inverting it in suitable functional spaces, the problem reduces to a finite dimen-
sional one, which is solved in Section 4. Some useful facts and computations
are collected in Appendix.
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2 Some Preliminaries

2.1 Approximate solutions and rescaling

For sake of simplicity, we consider in the following the supercritical case, i.e.
we assume that ε > 0. The subcritical case may be treated exactly in the same
way. For normalization reasons, we consider throughout the paper the equation

−∆u + µu = αNu
N+2
N−2

+ε, u > 0 (2.1)

instead of the original one, where αN = N(N − 2). The solutions are identical,

up to the multiplicative constant (αN)−
N−2

4+(N−2)ε . We recall that, according to
[6], the functions

Uλ,a(x) =
λ

N−2
2

(1 + λ2|x− a|2)N−2
2

λ > 0 , a ∈ RN (2.2)

are the only solutions to the problem

−∆u = αNu
N+2
N−2 , u > 0 in RN .

As a ∈ ∂Ω and λ goes to infinity, these functions provide us with approx-
imate solutions to the problem that we are interested in. However, in view of
the additional linear term µu which occurs in (PN+2

N−2
+ε,µ), the approximation

needs to be improved.
Integral estimates (see Appendix) suggest to make the additional a priori

assumption that λ behaves as 1/ε as ε goes to zero. Namely, we set

λ =
1

Λε

1

δ′
< Λ < δ′ (2.3)

with δ′ some strictly positive number. Now, fix a ∈ ∂Ω. We define VΛ,a,µ,ε = V
satisfying {

−∆V + µV = αNU
N+2
N−2
1
Λε

,a
in Ω

∂V
∂n

= 0 on ∂Ω.
(2.4)

The VΛ,a,µ,ε’s are the suitable approximate solutions in the neighborhood of
which we shall find a true solution to the problem. In order to make further
computations easier, we proceed to a rescaling. We set

Ωε =
Ω

ε
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and define in Ωε the functions

WΛ,ξ,µ,ε(x) = ε
N−2

2 VΛ,a,µ,ε(εx) ξ =
a

ε
. (2.5)

WΛ,ξ,µ,ε = W satisfies{
−∆W + µε2W = αNU

N+2
N−2
1
Λ

,ξ
in Ωε

∂W
∂n

= 0 on ∂Ωε

(2.6)

and, since U 1
Λ

,ξ ≥ CεN−2 and ∆W ≥ 0 at a minimum point of W in the closure
of Ω

W ≥ CεN in Ω̄. (2.7)

Another fact that we shall use later is the following: observe that ∂ΛW
satisfies {

−∆(∂ΛW ) + µε2∂ΛW = αN∂Λ(U
N+2
N−2
1
Λ

,ξ
) in Ωε

∂(∂ΛW )
∂n

= 0 on ∂Ωε.

Since |∂Λ(U
N+2
N−2
1
Λ

,ξ
)| ≤ CU

N+2
N−2
1
Λ

,ξ
, by comparison principle we obtain

|∂ΛW | ≤ CW. (2.8)

The same holds for ∂ξW instead of ∂ΛW .
Finding a solution to (PN+2

N−2
+ε,µ) in a neighbourhood of the functions VΛ,a,µ,ε

is equivalent, through the following rescaling

u(x) → ε−
2(N−2)

4+(N−2)ε u(
x

ε
)

to solving the problem

(P ′
N+2
N−2

+ε,µ
)

{
−∆u + µε2u = αNu

N+2
N−2

+ε u > 0 in Ωε
∂u
∂n

= 0 on ∂Ωε

(2.9)

in a neighbourhood of the functions WΛ,ξ,µ,ε. (From now on, we shall work with
(P

′
N+2
N−2

+ε,µ
).) For that purpose, we have to use some local inversion procedure.

Namely, we are going to look for a solution to (P ′
ε,µ) writing as

w = WΛ,ξ,µ,ε + ω
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with ω small and orthogonal at WΛ,ξ,µ,ε, in a suitable sense, to the manifold

M =
{

WΛ,ξ,µ,ε, Λ satisfying (2.3) , ξ ∈ ∂Ωε

}
.

The general strategy consists in finding first, using an inversion procedure, a
smooth map (Λ, ξ) 7→ ω(Λ, ξ) such that WΛ,ξ,µ,ε+ω(Λ, ξ, µ, ε) solves the problem
in an orthogonal space to M . Then, we are left with a finite dimensional prob-
lem, for which a solution may be found using the assumptions of the theorems.
In the subcritical or critical case, the first step may be performed in H1 (see e.g.
[4][31][32]). However, this approach is not valid any more in the supercritical
case, for H1 does not inject into Lq as q > 2N

N−2
. In [9], a weighted Hölder spaces

approach was used. In the present paper, we use weighted Sobolev spaces to
reduce the problem to a finite dimensional one.

2.2 Boundary Deformations

Fix a ∈ ∂Ω. We introduce a boundary deformation which strengthens the
boundary near a. Without loss of generality, we may assume that a = 0 and
after rotation and translation of the coordinate system we may assume that
the inward normal to ∂Ω at a is the direction of the positive xN -axis. Denote
x′ = (x1, . . . , xN−1), B′(δ) = {x′ ∈ RN−1 : |x′| < δ}, and Ω1 = Ω ∩ B(a, δ),
where B(a, δ) =

{
x ∈ RN : |x− a| < δ

}
.

Then, since ∂Ω is smooth, we can find a constant δ > 0 such that ∂Ω∩B(a, δ)
can be represented by the graph of a smooth function ρa : B′(δ) → R, where
ρa(0) = 0, ∇ρa(0) = 0, and

Ω ∩B(a, δ) = {(x′, xN) ∈ B(a, δ) : xN > ρa(x
′)}. (2.10)

Moreover, we may write

ρa(x
′) =

1

2

N−1∑
i=1

kix
2
i + O(|x|3) (2.11)

Here ki, i = 1, ..., N − 1, are the principal curvatures at a. Furthermore, the
average of the principal curvatures of ∂Ω at a is the mean curvature H(a) =

1
N−1

∑N−1
i=1 ki. To avoid clumsy notations, we drop the index a in ρ.

On ∂Ω ∩B(a, δ), the normal derivative n(x) writes as

n(x) =
1√

1 + |∇′ρ|2
(∇′

ρ,−1) (2.12)
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and the tangential derivatives are given by

∂

∂τi,x

=
1√

1 + | ∂ρ
∂xi
|2

(0, ..., 1, ....,
∂ρ

∂xi

) i = 1, ..., N − 1. (2.13)

When there is no confusion, we also drop the dependence of ∂
∂τi,x

on x.

2.3 Expansion of V and W

In appendix (Lemma 5.1), we derive the following asymptotic expansion of V :
For N ≥ 4, we have the expansion

V = U 1
Λε

,a − (Λε)
4−N

2 ϕ0(
x− a

Λε
) + O(ε

6−N
2 | ln ε|m) (2.14)

where ϕ0 solves some linear problem and m = 1 for N = 4 and m = 0 for
N ≥ 5. This then implies that

W = U 1
Λ

,ξ(x)− ϕ̂(x) (2.15)

where

ϕ̂(x) = εΛ
4−N

2 ϕ0(
x− ξ

Λ
) + O(ε2| ln ε|m). (2.16)

Furthermore, we have the following upper bound

|ϕ̂(x)| ≤ Cε| ln ε|n

(1 + |x− ξ|)N−3
, x ∈ Ωε (2.17)

where n = 1 for N = 4, 5 and n = 0 for N ≥ 6, whence

|W (x)| ≤ C(U 1
Λ

,ξ)
1−τ in Ωε (2.18)

where τ is a positive number which can be chosen to be zero as N ≥ 6, and as
small as desired as N = 4, 5.

3 The finite dimensional reduction

3.1 Inversion of the linearized problem

We first consider the linearized problem at a function WΛ,ξ,µ,ε, and we invert it
in an orthogonal space to M . From now on, we omit for sake of simplicity the
indices in the writing of WΛ,ξ,µ,ε. Equipping H1(Ωε) with the scalar product

(u, v)ε =

∫
Ωε

(∇u.∇v + µε2uv)
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orthogonality to the functions

Y0 =
∂W

∂Λ
Yi =

∂W

∂τi

1 ≤ i ≤ N − 1 (3.1)

in that space is equivalent, setting

Z0 = −∆
∂W

∂Λ
+ µε2∂W

∂Λ
Zi = −∆

∂W

∂τi

+ µε2∂W

∂τi

1 ≤ i ≤ N − 1

(3.2)
to the orthogonality in L2(Ωε), equipped with the usual scalar product 〈·, ·〉, to
the functions Zi, 0 ≤ i ≤ N − 1. Then, we consider the following problem : h
being given, find a function φ which satisfies −∆φ + µε2φ− αN(N+2

N−2
+ ε)W

4
N−2

+εφ = h +
∑

i ciZi in Ωε
∂φ
∂n

= 0 on ∂Ωε

0 ≤ i ≤ N − 1 〈Zi, φ〉 = 0

(3.3)

for some numbers ci.
Existence and uniqueness of φ will follow from an inversion procedure in

suitable functional spaces. For N = 3, the weighted Hölder spaces in [9] or [34]
work well. For N ≥ 4, we use a weighted Sobolev approach which seems more
suitable in treating the large dimensions case. (Special attention is needed for
the case N = 4.) Similar approach has been used in [39] in dealing with a
slightly supercritical exponent problem.

Let U be an open set in RN and ξ ∈ U . For 1 < t < +∞, a nonnegative
integer l, and a real number β, we define a weighted Sobolev norm

‖φ‖W l,t
β (U) =

l∑
|α|=0

‖〈x− ξ〉β+|α|∂αφ‖Lt(U)

where 〈x− ξ〉 = (1 + |x− ξ|2) 1
2 . When l = 0, we denote W 0,t

β (U) as Lt
β(U).

Let f be a function in Ωε. We define the following two weighted Sobolev
norms

‖f‖∗ = ‖f‖W 2,t
β (Ωε)

and
‖f‖∗∗ = ‖f‖Lt

β+2(Ωε).

We choose t and β such that

N < t < +∞ N − 2

2
+

N(N − 2)

4t
< β <

N

t′
− 2 (3.4)
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where t
′
is the conjugate exponent of t, i.e., 1

t
+ 1

t′
= 1. (It is easily checked that

such a choice of t and β is always possible.) Since t > N , by Sobolev embedding
theorem, we have

|∇φ(x)|+ |φ(x)| ≤ C〈x− ξ〉−β‖φ‖∗, ∀x ∈ Ωε. (3.5)

We recall the following result :

Lemma 3.1 (Corollary 1 of [25].) The integral operator

Tu(x) =

∫
RN

u(y)

|x− y|N−2
dy

is a bounded operator from Lt
β+2(RN) to Lt

β(RN), provided that −N
t

< β < N
t′
−2.

We are also in need of the following lemma, whose proof is given in the
appendix :

Lemma 3.2 Let f ∈ Lt
β+2(Ωε) and u satisfy

−∆u + µε2u = f in Ωε,
∂u

∂n
= 0 on ∂Ωε.

Then we have

|u(x)| ≤ C

∫
Ωε

|f(y)|
|x− y|N−2

dy (3.6)

and
‖u‖∗ ≤ C‖f‖∗∗. (3.7)

The main result of this subsection is:

Proposition 3.1 There exists ε0 > 0 and a constant C > 0, independent of ε
and ξ, Λ satisfying (2.3), such that for all 0 < ε < ε0 and all h ∈ Lt

β+2(Ωε),
problem (3.3) has a unique solution φ ≡ Lε(h). Besides,

‖Lε(h)‖∗ ≤ C‖h‖∗∗ |ci| ≤ C‖h‖∗∗. (3.8)

Moreover, the map Lε(h) is C1 with respect to Λ, ξ and the W 2,t
β (Ωε)-norm, and

‖D(Λ,ξ) Lε(h)‖∗ ≤ C‖h‖∗∗. (3.9)

Proof. The argument follows closely the ideas in [9] and [34]. We repeat it
since we use a different norm. The proof relies on the following result:
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Lemma 3.3 Assume that φε solves (3.3) for h = hε. If ‖hε‖∗∗ goes to zero as
ε goes to zero, so does ‖φε‖∗.

Proof of Lemma 3.3. Arguing by contradiction, we may assume that ‖φε‖∗ =
1. Multiplying the first equation in (3.3) by Yj and integrating in Ωε we find∑

i

ci〈Zi, Yj〉 =
〈
−∆Yj + µε2Yj − αN(

N + 2

N − 2
+ ε)W

4
N−2

+εYj, φε

〉
− 〈hε, Yj〉.

On one hand we check, in view of the definition of Zi, Yj

〈Z0, Y0〉 = ‖Y0‖2
ε = c0 + o(1) 〈Zi, Yi〉 = ‖Yi‖2

ε = c1 + o(1) 1 ≤ i ≤ N − 1
(3.10)

where c0, c1 are strictly positive constants, and

〈Zi, Yj〉 = o(1) i 6= j. (3.11)

On the other hand, in view of the definition of Yj and W , straightforward
computations yield〈

−∆Yj + µε2Yj − αN(
N + 2

N − 2
+ ε)W

4
N−2

+εYj, φε

〉
= o(‖φε‖∗)

and
〈hε, Yj〉 = O(‖hε‖∗∗).

Consequently, inverting the quasi diagonal linear system solved by the ci’s, we
find

ci = O(‖hε‖∗∗) + o(‖φε‖∗). (3.12)

In particular, ci = o(1) as ε goes to zero.
Since ‖φε‖∗ = 1, elliptic theory shows that along some subsequence, φ̃ε(x) =

φε(x − ξ) converges uniformly in any compact subset of RN
+ to a nontrivial

solution of

−∆φ̃ = αN
N + 2

N − 2
U

4
N−2

Λ̃,0
φ̃

for some Λ̃ > 0. Moreover, φ̃ ∈ Lt
β(RN). A bootstrap argument (see e.g.

Proposition 2.2 of [39]) implies |φ̃(x)| ≤ C/|x|N−2. As a consequence, φ̃ writes
as

φ̃ = α0

∂UΛ̃,0

∂Λ̃
+

N−1∑
i=1

αi

∂UΛ̃,0

∂ai

10



(see [31]). On the other hand, equalities 〈Zi, φε〉 = 0 provide us with the
equalities ∫

RN
+

−∆
∂UΛ̃,0

∂Λ̃
φ̃ =

∫
RN

+

U
4

N−2

Λ̃,0

∂UΛ̃,0

∂Λ̃
φ̃ = 0∫

RN
+

−∆
∂UΛ̃,0

∂ai

φ̃ =

∫
RN

+

U
4

N−2

Λ̃,0

∂UΛ̃,0

∂ai

φ̃ = 0 1 ≤ i ≤ N − 1.

As we have also∫
RN

+

|∇
∂UΛ̃,0

∂Λ̃
|2 = c0 > 0

∫
RN

+

|∇
∂UΛ̃,0

∂ai

|2 = c1 > 0 1 ≤ i ≤ N − 1

and ∫
RN

+

∇
∂UΛ̃,0

∂Λ̃
.∇

∂UΛ̃,0

∂ai

=

∫
RN

+

∇
∂UΛ̃,0

∂aj

.∇
∂UΛ̃,0

∂ai

= 0 i 6= j

the αj’s solve a homogeneous quasi diagonal linear system, yielding αj = 0,
0 ≤ αj ≤ N − 1, and φ̃ = 0. So φε(x− ξ) → 0 in C1

loc(Ωε). Now, since

|〈x− ξ〉β+2W
4

N−2
+εφε|t ≤ C‖φε‖t

∗〈x− ξ〉
(
2−(4+(N−2)ε)(1−τ)

)
t ∈ L1(RN),

(using (2.18)), by the Dominated Convergence Theorem we obtain∫
Ωε

|〈x− ξ〉β+2W
4

N−2
+εφε|t = o(1) i.e. ‖W

4
N−2

+εφε‖∗∗ = o(1).

On the other hand, from (2.6), (3.2) and the definition of U , we know that

〈x− ξ〉β+2|Zi| ≤ C〈x− ξ〉β−N ∈ Lt(RN).

Applying Lemma 3.2 we obtain

‖φε‖∗ ≤ C‖W
4

N−2
+εφε‖∗∗ + C‖hε‖∗∗ + C

∑
i

|ci|‖Zi‖∗∗ = o(1)

that is, a contradiction.

Proof of Proposition 3.1 completed. We set

H =
{

φ ∈ H1(Ωε), 〈Zi, φ〉 = 0 0 ≤ i ≤ N − 1
}

11



equipped with the scalar product (·, ·)ε. Problem (3.3) is equivalent to finding
φ ∈ H such that

(φ, θ)ε =
〈
αN(

N + 2

N − 2
+ ε)W

4
N−2

+εφ + h , θ
〉

∀θ ∈ H

that is
φ = Tε(φ) + h̃ (3.13)

h̃ depending linearly on h, and Tε being a compact operator in H. Fredholm’s
alternative ensures the existence of a unique solution, provided that the kernel
of Id − Tε is reduced to 0. We notice that any φε ∈ Ker(Id − Tε) solves (3.3)
with h = 0. Thus, we deduce from Lemma 3.3 that ‖φε‖∗ = o(1) as ε goes to
zero. As Ker(Id− Tε) is a vector space, Ker(Id− Tε) = {0}. The inequalities
(3.8) follow from Lemma 3.3 and (3.12). This completes the proof of the first
part of Proposition 3.1.

The smoothness of Lε with respect to Λ and ξ is a consequence of the smooth-
ness of Tε and h̃, which occur in the implicit definition (3.13) of φ ≡ Lε(h), with
respect to these variables. Inequalities (3.9) are obtained differentiating (3.3),
writing the derivatives of φ with respect to Λ and ξ as a linear combination of
the Zi’ and an orthogonal part, and estimating each term using the first part
of the proposition - see [9] [19] for detailed computations. �

3.2 The reduction

Let

Sε(u) = −∆u + µε2u− αNu
N+2
N−2

+ε

+

where u+ = max(0, u). Then (2.9) is equivalent to

Sε(u) = 0 in ∂Ωε, u+ 6≡ 0,
∂u

∂n
= 0 on ∂Ωε (3.14)

for if u satisfies (3.14), the Maximum Principle ensures that u > 0 in Ωε and
(2.9) is satisfied. Observe that

Sε(W + φ) = −∆(W + φ) + µε2(W + φ)− αN(W + φ)
N+2
N−2

+ε

+

may be written as

Sε(W + φ) = −∆φ + µε2φ− (
N + 2

N − 2
+ ε)αNW

4
N−2

+εφ−Rε − αNNε(φ) (3.15)

12



with

Nε(φ) = (W + φ)
N+2
N−2

+ε

+ −W
N+2
N−2

+ε − (
N + 2

N − 2
+ ε)W

4
N−2

+εφ (3.16)

Rε = ∆W − µε2W + αNW
N+2
N−2

+ε = αN

(
W

N+2
N−2

+ε − U
N+2
N−2
1
Λ

,ξ

)
. (3.17)

We first have :

Lemma 3.4 There exists C, independent of ξ, Λ satisfying (2.3), such that

‖Rε‖∗∗ ≤ Cε ‖D(Λ,ξ)R
ε‖∗∗ ≤ Cε.

Proof. According to (2.15) and (2.18), W = U + O(εU
N−3
N−2

(1−τ)) uniformly in
Ωε (where τ is a positive number which is either zero, or may be chosen as small
as desired). Consequently, noticing that U ≥ CεN−2 in Ωε, C independent of ε,
easy computations yield

Rε = O
(
εU

N+2
N−2

(1−τ ′)| ln U |+ εU
N+1
N−2

(1−τ”)
)

(3.18)

uniformly in Ωε whence, using (3.4)

‖Rε‖∗∗ = ‖〈x− ξ〉β+2(U
N+2
N−2 −W

N+2
N−2

+ε)‖Lt(Ωε)

≤ Cε‖〈x− ξ〉β+2(U
N+2
N−2

(1−τ ′)| ln U |+ U
N+1
N−2

(1−τ”))‖Lt(Ωε) ≤ Cε.

The first estimate of the lemma follows. The other ones are obtained in the
same way, differentiating (3.17) and estimating each term as previously. �

We consider now the following nonlinear problem : finding φ such that, for
some numbers ci

−∆(W + φ) + µε2(W + φ)− αN(W + φ)
N+2
N−2

+ε

+ =
∑

i ciZi in Ωε
∂φ
∂n

= 0 on ∂Ωε

0 ≤ i ≤ N − 1 〈Zi, φ〉 = 0.
(3.19)

The first equation in (3.19) writes as

−∆φ + µε2φ− (
N + 2

N − 2
+ ε)αNW

4
N−2

+εφ = αNNε(φ) + Rε +
∑

i

ciZi (3.20)

for some numbers ci. We now obtain some estimates concerning Nε.

13



Lemma 3.5 Assume that N ≥ 4 and (3.4) holds. There exist ε1 > 0, inde-
pendent of Λ, ξ, and C, independent of ε, Λ, ξ, such that for |ε| ≤ ε1, and
‖φ‖∗ ≤ 1

‖Nε(φ)‖∗∗ ≤ C‖φ‖min(2, N+2
N−2

+ε)
∗ (3.21)

and, for ‖φi‖∗ ≤ 1

‖Nε(φ1)−Nε(φ2)‖∗∗ ≤ C
(
max(‖φ1‖∗, ‖φ2‖∗)

)min(1, 4
N−2

+ε)‖φ1 − φ2‖∗. (3.22)

Proof. The argument is similar to Lemma 3.1 and Proposition 3.5 of [39]. For
the convenience of the reader, we include a proof here. We deduce from (3.16)
that {

|Nε(φ)| ≤ C(W
6−N
N−2

+ε|φ|2 + |φ|
N+2
N−2

+ε) if N ≤ 6

|Nε(φ)| ≤ C|φ|
N+2
N−2

+ε if N ≥ 7.
(3.23)

Using (3.4) and (3.5) we have

‖|φ|
N+2
N−2

+ε‖∗∗ =
(∫

Ωε

(〈x− ξ〉β+2|φ|
N+2
N−2

+ε)t
) 1

t

≤ C‖φ‖
N+2
N−2

+ε
∗

(∫
Ωε

〈x− ξ〉
t(β+2−( N+2

N−2
+ε)β)

) 1
t

≤ C‖φ‖
N+2
N−2

+ε
∗ .

For N = 4, 5, 6, using also (2.18), and noticing that W ε is bounded since W is
bounded and satisfies (2.7)), we have

‖W
6−N
N−2

+ε|φ|2‖∗∗ =
(∫

Ωε

(〈x− ξ〉β+2W
6−N
N−2

+ε|φ|2)t
) 1

t

≤ C‖φ‖2
∗

(∫
Ωε

〈x− ξ〉
(
2−β+(N−6)(1−τ)

)
t
) 1

t

≤ C‖φ‖2
∗

whence (3.21). Concerning (3.22), we write

Nε(φ1)−Nε(φ2) = ∂ηNε(η)(φ1 − φ2)

for some η = xφ1 + (1− x)φ2, x ∈ [0, 1]. From

∂ηNε(η) =
(N + 2

N − 2
+ ε
)(

(W + η)
4

N−2
+ε

+ −W
4

N−2
+ε
)
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we deduce {
|∂ηNε(η)| ≤ C(W

6−N
N−2

+ε|η|+ |η|
4

N−2
+ε) if N ≤ 6

|∂ηNε(η)| ≤ C|η|
4

N−2
+ε if N ≥ 7

(3.24)

whence (3.22), using as previously (3.4) and (3.5). �

We state now the following result:

Proposition 3.2 There exists C, independent of ε and ξ, Λ satisfying (2.3),
such that for small ε problem (3.19) has a unique solution φ = φ(Λ, ξ, µ, ε) with

‖φ‖∗ ≤ Cε. (3.25)

Moreover, (Λ, ξ) 7→ φ(Λ, ξ, µ, ε) is C1 with respect to the W 2,t
β (Ωε)-norm, and

‖D(Λ,ξ)φ‖∗ ≤ Cε. (3.26)

Proof. Following [9], we consider the map Aε from F = {φ ∈ H1∩W 2,t
β (Ωε) :

‖φ‖∗ ≤ C0ε} to H1 ∩W 2,t
β (Ωε) defined as

Aε(φ) = Lε(αNNε(φ) + Rε).

Here C1 is a large number, to be determined later, and Lε is give by Proposition
3.1. We remark that finding a solution φ to problem (3.19) is equivalent to
finding a fixed point of Aε. One the one hand we have, for φ ∈ F and ε small
enough

‖Aε(φ)‖∗ ≤ ‖Lε(Nε(φ))‖∗ + ‖Lε(R
ε)‖∗ ≤ ‖Nε(φ)‖∗∗ + Cε ≤ 2Cε

with C independent of C0, implying that Aε sends F into itself, if we choose
C0 = 2C. On the other hand Aε is a contraction. Indeed, for φ1 and φ2 in F ,
we write

‖Aε(φ1)− Aε(φ2)‖∗ ≤ C‖Nε(φ1)−Nε(φ2)‖∗∗
≤ Cεmin(1, 4

N−2
)‖φ1 − φ2‖∗

≤ 1

2
‖φ1 − φ2‖∗

by Lemma (3.5). Contraction Mapping Theorem implies that Aε has a unique
fixed point in F , that is problem (3.19) has a unique solution φ such that
‖φ‖∗ ≤ C0ε.
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In order to prove that (Λ, ξ) 7→ φ(Λ, ξ) is C1, we remark that setting for
η ∈ F

B(Λ, ξ, η) ≡ η − Lε(αNNε(η) + Rε)

φ is defined as
B(Λ, ξ, φ) = 0. (3.27)

We have
∂ηB(Λ, ξ, η)[θ] = θ − αNLε

(
θ (∂ηNε)(η)

)
.

Using Proposition 3.1, (3.5), (3.24) and (3.4) we obtain for N ≥ 7

‖Lε

(
θ (∂ηNε)(η)

)
‖∗ ≤ C‖θ (∂ηNε)(η)‖∗∗
≤ C‖〈x− ξ〉−β(∂ηNε)(η)‖∗∗‖θ‖∗
≤ C‖〈x− ξ〉2|η|

4
N−2

+ε‖Lt(Ωε)‖θ‖∗

≤ C‖η‖
4

N−2
+ε

∗ ‖θ‖∗
≤ Cε

4
N−2‖θ‖∗

and, proceeding in the same way, using also (2.18), we find as N = 4, 5, 6

‖Lε

(
θ (∂ηNε)(η)

)
‖∗ ≤ Cε‖θ‖∗.

Therefore we can write, for any N ≥ 4

‖Lε

(
θ (∂ηNε)(η)

)
‖∗ ≤ Cεmin(1, 4

N−2
)‖θ‖∗.

Consequently, ∂ηB(Λ, ξ, φ) is invertible in W 2,t
β (Ωε) with uniformly bounded

inverse. Then, the fact that (Λ, ξ) 7→ φ(Λ, ξ) is C1 follows from the fact that
(Λ, ξ, η) 7→ Lε(Nε(η)) is C1 and the implicit functions theorem.

Finally, let us show how estimates (3.26) may be obtained. Derivating (3.27)
with respect to Λ, we have

∂Λφ = (∂ηB(Λ, ξ, φ))−1

(
αN(∂ΛLε)(Nε(φ)) + αNLε((∂ΛNε)(φ)) + ∂Λ(Lε(R

ε))

)
whence, according to Proposition 3.1

‖∂Λφ‖∗ ≤ C

(
‖(∂ΛLε)(Nε(φ))‖∗ + ‖(Lε(∂ΛNε)(φ))‖∗ + ‖(∂Λ(Lε(R

ε))‖∗
)

≤ C

(
‖Nε(φ)‖∗∗ + ‖(∂ΛNε)(φ)‖∗∗ + ‖(∂Λ(Lε(R

ε))‖∗
)

.
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From (3.21) and (3.25) we know that

‖Nε(φ)‖∗∗ ≤ Cεmin(2, N+2
N−2

).

Concerning the next term, we notice that according to the definition (3.16) of
Nε and the boundedness of W ε

|(∂ΛNε)(φ)|

= (
N + 2

N − 2
+ ε)

∣∣∣∣(W + φ)
4

N−2
+ε

+ −W
4

N−2
+ε − (

4

N − 2
+ ε)W

6−N
N−2

+εφ

∣∣∣∣|∂ΛW |

≤ C
[
W

4
N−2 |φ| if N ≥ 7 ; W

4
N−2 |φ|+ W |φ|

4
N−2

+ε if N ≤ 6
]

≤ C
[
〈x− ξ〉−4(1−τ)−β‖φ‖∗ if N ≥ 7 ;

〈x− ξ〉−4(1−τ)−β‖φ‖∗ + 〈x− ξ〉−(N−2)(1−τ)− 4
N−2

β‖φ‖
4

N−2
+ε

∗ if N ≤ 6
]

where we used successively the fact that W > 0 (see (2.7)) and |∂ΛW | ≤ CW
(see (2.8)), inequality (3.5) and W ≤ CU1−τ ≤ C〈x− ξ〉−(N−2)(1−τ).

As (3.4) ensures that 〈x−ξ〉−4(1−τ)−β, and 〈x−ξ〉−(N−2)(1−τ)− 4
N−2

β for N ≤ 6,
are in Lt

β+2(RN) (provided that τ is chosen small enough), (3.25) yields

‖(∂ΛNε)(φ)‖∗∗ ≤ Cε.

From Proposition 3.1 we deduce the estimate for the last term

‖∂Λ(Lε(R
ε))‖∗ ≤ C‖Rε‖∗∗ ≤ Cε

and finally
‖∂Λφ‖∗ ≤ Cε.

This concludes the proof of Proposition 3.2. (The first derivatives of φ with
respect to ξ may be estimated in the same way, but this is not needed here.) �

3.3 Coming back to the original problem

We introduce the following functional defined in H1(Ωε) ∩W 2,t
β (Ωε)

Jε(u) =
1

2

∫
Ωε

(|∇u|2 + µε2u2)− αN

2N
N−2

+ ε

∫
Ωε

u
2N

N−2
+ε

+ (3.28)

whose nontrivial critical points are solutions to (P
′
N+2
N−2

+ε,µ
). Setting

Iε(Λ, a) ≡ Jε

(
WΛ,a + φε,Λ,a

)
(3.29)

we have:

17



Proposition 3.3 The function u = W + φ is a solution to problem (P
′
N+2
N−2

+ε,µ
)

if and only if (Λ, a) is a critical point of Iε.

Proof. We notice that u = W + φ being a solution to (P ′
N+2
N−2

+ε,µ
) is equivalent

to being a critical point of Jε. It is also equivalent to the cancellation of the ci’s
in (3.19) or, in view of (3.10) (3.11)

J ′
ε(W + φ)[Yi] = 0 0 ≤ i ≤ N − 1. (3.30)

On the other hand, we deduce from (3.29) that I ′ε(Λ, a) = 0 is equivalent to
the cancellation of J ′

ε(W + φ) applied to the derivatives of W + φ with respect
to Λ and ξ. According to the definition (3.1) of the Yi’s, Lemma 3.4 and
Proposition 3.2 we have

∂(W + φ)

∂Λ
= Y0 + y0

∂(W + φ)

∂ξj

= Yj + yj 1 ≤ j ≤ N − 1

with ‖yi‖∗ = o(1), 0 ≤ i ≤ N − 1. Writing

yi = y′i +
N−1∑
j=0

aijYj 〈y′i, Zj〉 = (y′i, Yj)ε = 0 0 ≤ i, j ≤ N − 1

and
J ′

ε(W + φ)[Yi] = αi

it turns out that I ′ε(Λ, a) = 0 is equivalent, since J ′
ε(W + φ)[θ] = 0 for 〈θ, Zj〉 =

(θ, Yj)ε = 0, 0 ≤ j ≤ N − 1, to

(Id + [aij])[αi] = 0.

As aij = O(‖yi‖∗) = o(1), we see that I ′ε(Λ, a) = 0 means exactly that (3.30) is
satisfied. �

4 Proofs of Theorems 1.1 and 1.2

In view of Proposition 3.3 we have, for proving the theorem, to find critical
points of Iε. We establish first a C1-expansion of Iε.
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4.1 Expansion of Iε

Proposition 4.1 There exist A, B, C, strictly positive constants such that

Iε(Λ, a) = A−BΛεH(a) +
(N − 2)2

4
Aε ln Λ + ε

(
C +

(N − 2)2

4N
A
)

+ εσε(Λ, a)

with σε and ∂Λσε going to zero as ε goes to zero, uniformly with respect to Λ
satisfying (2.3).

Proof. In Appendix, we shall prove

Jε(W ) = A−BΛεH(a) +
(N − 2)2

4
Aε ln Λ + ε

(
C +

(N − 2)2

4N
A
)

+ o(ε). (4.1)

Then it remains to show that

Iε(Λ, a)− Jε(W + φ) = o(ε). (4.2)

Actually, in view of (3.29), a Taylor expansion and the fact that J ′
ε(W+φ)[φ] = 0

yield

I(Λ, a)− Jε(W ) = Jε(W + φ)− Jε(W )

= −
∫ 1

0

J
′′

ε (W + tφ)[φ, φ]tdt

= −
∫ 1

0

(∫
Ωε

(
|∇φ|2 + µε2φ2 − αN(

N + 2

N − 2
+ ε)(W + tφ)

4
N−2

+ε

+ φ2 + Rεφ
))

tdt

= −
∫ 1

0

(
αN

∫
Ωε

(
Nε(φ)φ + (

N + 2

N − 2
+ ε)

[
W

4
N−2

+ε − (W + tφ)
4

N−2
+ε

+

]
φ2
))

tdt

− 1

2

∫
Ωε

Rεφ.

The first term can be estimated as follows. Using (3.23), (3.5), (3.4) and
Proposition 3.2, we have, for N ≥ 7∣∣∣∫

Ωε

Nε(φ)φ
∣∣∣ ≤ C‖φ‖

2N
N−2

+ε
∗

∫
Ωε

〈x− ξ〉−β( 2N
N−2

+ε) ≤ Cε
2N

N−2 .

In the same way we obtain for N = 4, 5, 6, in view of (3.23) and (2.18)∣∣∣∫
Ωε

Nε(φ)φ
∣∣∣ ≤ Cε

2N
N−2 + C‖φ‖3

∗

∫
Ωε

〈x− ξ〉−3β−(6−N)(1−τ) ≤ Cε3
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whence finally, for any N ≥ 4

|
∫

Ωε

Nε(φ)φ| ≤ Cεmin(3, 2N
N−2

). (4.3)

For the second term, the same arguments as previously yield∫
Ωε

∣∣∣W 4
N−2

+ε − (W + tφ)
4

N−2
+ε

+

∣∣∣φ2 ≤ C

∫
Ωε

(
W

4
N−2

+ε|φ|2 + |φ|2+
4

N−2
+ε
)

≤ C
(
‖φ‖2

∗

∫
Ωε

〈x− ξ〉−2β−4(1−τ) + ‖φ‖2+ 4
N−2

+ε
∗

∫
Ωε

〈x− ξ〉−β(2+ 4
N−2

+ε)
)

whence, using again (3.4)∫
Ωε

∣∣W 4
N−2

+ε − (W + tφ)
4

N−2
+ε

+

∣∣φ2 ≤ Cε2. (4.4)

Concerning the last term, we remark that according to (3.18)

Rε ≤ Cε〈x− ξ〉−(N+1)(1−τ)

uniformly in Ωε. Therefore∫
Ωε

|Rεφ| ≤ Cε‖φ‖∗
∫

Ωε

〈x− ξ〉−(N+1)−β

yielding, through Proposition 3.2∫
Ωε

|Rεφ| ≤ Cε2. (4.5)

The desired result follows from (4.3), (4.4) and (4.5). The same estimate
holds for the first derivative with respect to Λ, obtained similarly with more
delicate computations - see Proposition 3.4 of [19]. �

4.2 Proofs of Theorem 1.1 and Theorem 1.2 completed

We first prove Theorem 1.1 through a max-min argument. Since Ω is smooth
and bounded, maxP∈∂Ω H(P ) = γ > 0. For δ < γ, we define

(∂Ω)δ =
{

a ∈ ∂Ω s.t. H(a) > δ
}

,
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and

Îε(Λ, a) =
A− Iε(Λ, a)

Bε
+

1

B

(
C +

(N − 2)2

4N
A
)
. (4.6)

By Proposition 4.1, we have the following asymptotic expansion for Îε(Λ, a):

Îε(Λ, a) = ΛH(a)− α ln Λ− σ̃ε(Λ, a). (4.7)

with

α =
(N − 2)2

4B
A > 0 and σ̃ε(Λ, a) = o(1) , ∂Λσ̃ε(Λ, a) = o(1) as ε → 0.

We set

Σ0 =

{
(Λ, a)|c1

2
< Λ <

2

c1

, a ∈ (∂Ω)γ0

}
(4.8)

where c1 is a small number, to be chosen later, and 0 < γ0 < γ. We define also

B =

{
(Λ, a)|c1 ≤ Λ ≤ 1

c1

, a ∈ (∂Ω)γ1

}
B0 = {c1} × (∂Ω)γ1 ∪ {

1

c1

} × (∂Ω)γ1

where γ0 < γ1 < γ. (Here we choose, for γ1 close enough to γ, a contractible
component of (∂Ω)γ1 so that B is contractible.)

It is trivial to see that B0 ⊂ B ⊂ Σ0, B0, B are closed and B is connected.
Let Γ be the class of continuous functions ϕ : B → Σ0 with the property that
ϕ(y) = y for all y ∈ B0. Define the max-min value c as

c = max
ϕ∈Γ

min
y∈B

Îε(ϕ(y)). (4.9)

We now show that c defines a critical value. To this end, we just have to
verify the following two conditions

(H1) miny∈B0 Îε(ϕ(y)) > c,∀ϕ ∈ Γ,

(H2) For all y ∈ ∂Σ0 such that Îε(y) = c, there exists τy a tangent vector to
∂Σ0 at y such that

∂τy Îε(y) 6= 0.

Suppose (H1) and (H2) hold. Then standard deformation argument ensures
that the max-min value c is a (topologically nontrivial ) critical value for Îε(Λ, a)
in Σ0.

To check (H1) and (H2), we write ϕ(y) = (ϕ1(y), ϕ2(y)) where ϕ1(y) ∈
[ c1

2
, 2

c1
] and ϕ2(y) ∈ (∂Ω)γ0 .
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Since ϕ|B0 = id, B is contractible and ϕ is continuous, necessarily there is
some y in B such that H(ϕ2(y)) = γ. Then, in view of (4.7)

c ≥ d0 : = min
{

Îε(Λ, a), H(a) = γ, Λ > 0
}

= α− α ln α + α ln γ + o(1).

Now, let (Λ0, a0) ∈ B be such that H(a0) = γ, Λ0 = α
γ

(c1 being chosen small

enough so that Λ0 ∈ [c1,
1
c1

]). We note that Îε(Λ0, a0) = d0+o(1). For any ϕ ∈ Γ,

ϕ1 is a continuous function from B to [ c1
2
, 2

c1
] such that [c1,

1
c1

] ⊂ ϕ1(B). Thus,
there exists y0 ∈ B such that ϕ1(y0) = Λ0, whence

min
y∈B

Îε(ϕ(y)) ≤ Îε(Λ0, ϕ2(y0))

≤ α

γ
H(ϕ2(y0))− α ln α + α ln γ + o(1)

≤ d0 = o(1).

As a consequence

c = d0 + o(1) = α− α ln α + α ln γ + o(1). (4.10)

For y ∈ B0, we have ϕ1(y) = c1 or ϕ1(y) = 1
c1

. In the first case, we have

Îε(y) = c1H(ϕ2(y)) − α ln c1 + o(1) > α ln 1
c1

+ o(1) > 2d0 > c, provided c1 is

small enough. In the latter case, we have Îε(y) = 1
c1

H(ϕ2(y)) + α ln c1 + o(1) >
γ1

c1
+ α ln c1 + o(1) > 2d0 > c, provided again c1 is small enough. So (H1) is

verified.

To check (H2), we observe that ∂(Σ0) = ({ c1
2
}× (∂Ω)γ0)∪ ({ 2

c1
}× (∂Ω)γ0)∪

([c1,
1
c1

]× (∂(∂Ω)γ0)). Let y = (y1, y2) ∈ ∂Σ0 be such that Îε(y) = c.

On ({ c1
2
}×(∂Ω)γ0)∪({ 2

c1
}×(∂Ω)γ0), previous arguments show that Îε(y) > c

as c1 is chosen sufficiently small. On ([c1,
1
c1

]× (∂((∂Ω)γ0)), taking τy = ∂
∂Λ

, we
obtain

∂τy Îε(y) = H(y2)−
α

Λ
+ o(1) 6= 0

since ∂τy Îε(y) = 0 would yield ΛH(y2) = α + o(1), and

Îε(y) = α− α ln α + α ln H(ϕ2(y)) + o(1) = α− α ln α + α ln γ0 + o(1).

Then, (4.10) shows that Îε(y) < c, a contradiction to the assumption. So (H2)
is also verified.
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In conclusion, we proved that for ε small enough, c is a critical value, i.e. a
critical point (Λε, aε) ∈ Σ0 of Îε exists. Let uε = WΛε,ξε,µ,ε + φΛε,ξε,µ,ε. uε is a
nontrivial solution to the problem

−∆u + µε2u = u
N+2
N−2

+ε

+ in Ωε ;
∂u

∂n
= 0 on ∂Ωε.

Then, the strong maximum principle shows that uε > 0 in Ωε. The fact that
uε blows up, as ε goes to zero, at a point a such that H(a) = maxP∈∂Ω H(P ),
follows from the construction of uε. This concludes the proof of Theorem 1.1.

In the case of ε < 0, we have

Îε(Λ, a) = ΛH(a) + α ln(Λ)− σ̃ε(Λ, a).

We assume that Ω is nonconvex. Similarly as before, we define

(∂Ω)δ = {a ∈ ∂Ω|H(a) < −δ}

where 0 < δ < γ = −mina∈∂Ω H(a) > 0, and

Σ0 =

{
(Λ, a)|c1

2
≤ Λ ≤ 2

c1

, a ∈ (∂Ω)γ0

}

B =

{
(Λ, a)|c1 ≤ Λ ≤ 1

c1

, a ∈ (∂Ω)γ1

}
B0 = {c1} × (∂Ω)γ ∪ {

1

c1

} × (∂Ω)γ1

with γ0 < γ1 < γ.
Let Γ be the class of continuous functions ϕ : B → Σ0 with the property

that ϕ(y) = y for all y ∈ B0. We define the min-max value c as

c = min
ϕ∈Γ

max
y∈B

Îε(ϕ(y)).

Arguing as previously, we find that c is a critical point of Îε. This proves
Theorem 1.2.

5 Appendix

5.1 Error estimates

We recall that, according to the definition of VΛ,a,µ,ε in Section 2

VΛ,a,µ,ε(x) = U 1
Λε

,a(x)− ϕΛ,a,µ,ε (5.1)
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with ϕΛ,a,µ,ε satisfying{
−∆ϕΛ,a,µ,ε + µϕΛ,a,µ,ε = µU 1

Λε
,a in Ω

∂ϕΛ,a,µ,ε

∂n
=

∂U 1
Λε

,a

∂n
on ∂Ω.

(5.2)

This subsection is devoted to an expansion of ϕΛ,a,µ,ε.
We recall that, through space translation and rotation, we assume that a = 0

and Ω is given, in a neighbourhood of a, by (2.10) and (2.11). We introduce an
auxiliary function ϕ0: let ϕ0 be such that

∆ϕ0 = 0 in RN
+ = {(x′, xN), xN > 0}

∂ϕ0

∂xN
= N−2

2

PN−1
i=1 kix

2
i

(1+|x|2)
N
2

on ∂RN
+ ,

ϕ0(x) → 0 as |x| → +∞.

(5.3)

Using Green’s reprensentation, ϕ0 writes as

ϕ0(x) =
1

ωN−1

N−1∑
i=1

ki

∫
RN−1

y2
i

(1 + |y′|2)N
2

1

|x− y′|N−2
dy′ (5.4)

where ωN−1 denotes the measure of the unit sphere in RN . From (5.4) we deduce
that

|ϕ0(x)| ≤ C

(1 + |x|)N−3
(5.5)

and

|∇ϕ0(x)| ≤ C

(1 + |x|)N−2
|D2ϕ0(x)| ≤ C

(1 + |x|)N−1
. (5.6)

Definition : From now on, we consider ϕ0 as a smooth continuation in RN of
the previous function defined in RN

+ , such that (5.5) (5.6) hold in whole RN .

We state :

Lemma 5.1 For N ≥ 4, we have the expansion

ϕΛ,a,µ,ε(x) = (Λε)
4−N

2 ϕ0(
x− a

Λε
) + O(ε

6−N
2 | ln ε|m) (5.7)

with m = 1 for N = 4 and m = 0 for N ≥ 5. Moreover,

|ϕΛ,a,µ,ε(x)| ≤ C
ε

4−N
2 | ln ε|n

(1 + |x−a
Λε
|)N−3

and |ϕΛ,a,µ,ε(x)| ≤ C(U 1
Λε

,a(x))1−τ (5.8)

with n = 1 and τ > 0 is any small fixed number for N = 4, 5, n = 0 and τ = 0
for N ≥ 6.
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Proof. We first remark that the second inequality in (5.8) is a straightforward
consequence of the first one. Next, we decompose

ϕ = ϕ1 + ϕ2

where ϕ1 satisfies{
−∆ϕ1

Λ,a,µ,ε + µϕ1
Λ,a,µ,ε = 0 in Ω

∂ϕ1
Λ,a,µ,ε

∂n
=

∂U 1
Λε

,a

∂n
on ∂Ω

and ϕ2 satisfies{
−∆ϕ2

Λ,a,µ,ε + µϕ2
Λ,a,µ,ε = µU 1

Λε
,a in Ω

∂ϕ2
Λ,a,µ,ε

∂n
= 0 on ∂Ω.

Let us estimate ϕ2 first. Let

ϕ̂j(x) = ε
N−2

2 ϕj(εx).

Then ϕ̂2 satisfies{
−∆ϕ̂2

Λ,a,µ,ε + µε2ϕ̂2
Λ,a,µ,ε = µε2U 1

Λ
,ξ in Ωε

∂ϕ̂2
Λ,a,µ,ε

∂n
= 0 on ∂Ωε.

Inequality (3.6) of Lemma 3.2 provides us with

|ϕ̂2(x)| ≤ Cε2

∫
Ωε

U 1
Λ

,ξ

|x− y|N−2
dy ≤ Cε2

∫
Ωε

dy

(1 + |y − ξ|)N−2|x− y|N−2

whence

|ϕ̂2(x)| ≤ C
ε2| ln ε|m

(1 + |x− ξ|)N−4

with m = 1 for N = 4 and m = 0 for N ≥ 5. (For N ≥ 5, see Lemma 2.3 of
[21].) Consequently

ϕ2(x) = O(ε
6−N

2 | ln ε|m) and |ϕ2(x)| ≤ C
ε

4−N
2 | ln ε|m

(1 + |x−a
Λε
|)N−3

.

This finishes the estimate for ϕ2. Next we estimate ϕ1. To this end, we write

ϕ1
Λ,a,µ,ε = (Λε)

4−N
2 ϕ0(

x− a

Λε
) + ϕ3

Λ,a,µ,ε(x) + ϕ4
Λ,a,µ,ε(x)
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where ϕ3
Λ,a,µ,ε satisfies{

−∆ϕ3
Λ,a,µ,ε + µϕ3

Λ,a,µ,ε = 0 in Ω
∂ϕ3

Λ,a,µ,ε

∂n
=

∂U 1
Λε

,a

∂n
− ∂

∂n

(
(Λε)

4−N
2 ϕ0(

x−a
Λε

)
)

on ∂Ω

and ϕ4
Λ,a,µ,ε satisfies −∆ϕ4

Λ,a,µ,ε + µϕ4
Λ,a,µ,ε = (∆− µ)

(
(Λε)

4−N
2 ϕ0(

x−a
Λε

)
)

in Ω
∂ϕ4

Λ,a,µ,ε

∂n
= 0 on ∂Ω.

The estimate for ϕ4 is similar to that of ϕ2. Namely, in view of (5.3) and (5.4),
inequality (3.6) of Lemma 3.2 gives

|ϕ̂4(x)| ≤ Cε3
( 1

ε2

∫
Ωε\RN

+

dy

(1 + |y − ξ|)N−1|x− y|N−2

+

∫
Ωε

dy

(1 + |y − ξ|)N−3|x− y|N−2
dy
)

≤ Cε3

(
1

ε(1 + |x− ξ|)N−3
+

| ln ε|p

(1 + |x− ξ|)N−5

)
with p = 1 for N = 5 and p = 0 for N 6= 5, whence

ϕ4(x) = O(ε
6−N

2 ) and |ϕ4(x)| ≤ C
ε

4−N
2 | ln ε|p

(1 + |x−a
Λε
|)N−3

.

It only remains to estimate ϕ3. For x ∈ ∂Ω∩B(a, δ), we consider the following
change of variable (still assuming a = 0)

Λεy′ = x′ ΛεyN = xN − ρ(x′).

According to the definition of U and (2.12), we have

∂U 1
Λε

,a

∂n
(x) = −(N − 2)(Λε)

N−2
2

〈x− a, n〉
((Λε)2 + |x− a|2)N

2

= −N − 2

2

(Λε)
N−2

2

((Λε)2 + |x− a|2)N
2

(N−1∑
i=1

kix
2
i + O(|x′|3)

)
= −N − 2

2

(Λε)
2−N

2

(1 + |y′|2)N
2

(N−1∑
i=1

kiy
2
i + O(ε|y′|3)

)
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and, using (5.3) and (5.6)

∂

∂n

(
(Λε)

4−N
2 ϕ0(

x− a

Λε
)
)

= (Λε)
2−N

2

(
∇′ϕ0(

x− a

Λε
).∇′ρ(x)− ∂ϕ0

∂xN

(
x− a

Λε
)
)

= −N − 2

2

(Λε)
2−N

2

(1 + |y′|2)N
2

N−1∑
i=1

kiy
2
i + O

( ε
4−N

2 |y′|
(1 + |y′|)N−2

)
.

Therefore

∂ϕ̂3

∂nx

(x) = ε
N
2

∂ϕ3

∂nεx

(εx) = O
( ε2|x′|

(1 + |x′|)N−2

)
for x ∈ ∂Ωε ∩B(a,

δ

ε
). (5.9)

On the other hand we have clearly, from (5.6) and the definition of U

∂ϕ̂3

∂n
(x) = O(εN−1) for x ∈ ∂Ωε ∩Bc(a,

δ

ε
). (5.10)

Then, standard elliptic theory shows that ϕ̂3 = O(ε2) uniformly in Ωε, whence

ϕ3(x) = O(ε
6−N

2 ) uniformly in Ω. Moreover, (5.9) and (5.10) lead, through
Green’s reprensentation, to the estimate

|ϕ̂3(x)| ≤ C
ε2

(1 + |x− ξ|)N−4

whence

|ϕ3(x)| ≤ C
ε

4−N
2

(1 + |x−a
Λε
|)N−3

.

This concludes the proof of Lemma 5.1. �

5.2 Integral estimates

Omitting, for sake of simplicity, the indices Λ, a, µ, ε, we state :

Proposition 5.1 N ≥ 4. Assuming that Λ satisfies (2.3), we have the uniform
expansions as ε goes to zero

Jε(W ) = A−BΛ|ε|H(a) +
(N − 2)2A

4
ε ln Λ +

(
C +

(N − 2)2A

4N

)
ε + O(ε2−τ )

∂Jε

∂Λ
(W ) =

(N − 2)2Aε

4Λ
−BH(a)|ε|+ O(ε2−τ )
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with

A = (N − 2)

∫
RN

+

U
2N

N−2

1,0 C = −(N − 2)2

2

∫
RN

+

U
2N

N−2

1,0 ln U1,0 > 0 (5.11)

and

B =
(N − 2)2

N − 3

∫
∂RN

+

U
2N

N−2

1,0 |y|2. (5.12)

Proof. For sake of simplicity, we assume that ε > 0 (the computations are
equivalent as ε < 0). In view of (5.2) and (2.15), we write∫

Ωε

(|∇W |2 + µε2W 2) =

∫
Ωε

(−∆W + µε2W )W =

∫
Ωε

αNU
N+2
N−2 W

= αN

∫
Ωε

U
2N

N−2 − αN

∫
Ωε

U
N+2
N−2 ϕ̂.

with U = U 1
Λ

,ξ. On the other hand∫
Ωε

W
2N

N−2
+ε =

∫
Ωε

W
2N

N−2 +

∫
Ωε

W
2N

N−2 (W ε − 1)

=

∫
Ωε

(U − ϕ̂)
2N

N−2 + ε

∫
Ωε

(U − ϕ̂)
2N

N−2 ln(U − ϕ̂) + O(ε2| ln ε|)

=

∫
Ωε

U
2N

N−2 − 2N

N − 2

∫
Ωε

U
N+2
N−2 ϕ̂ + ε

∫
Ωε

(U − ϕ̂)
2N

N−2 ln(U − ϕ̂) + O(ε2| ln ε|).

The validity of this expansion can be verified by Lebesgue’s Dominated Con-

vergence Theorem and the fact that |W − U | ≤ Cε| ln ε|nU
N−3
N−2
1
Λ

,a
(see the first

inequality in (5.8) and similar arguments in Section 5 of [34]). Note also that∫
Ωε

(U−ϕ̂)
2N

N−2 ln(U−ϕ̂) = −N − 2

2
ln Λ

∫
RN

+

U
2N

N−2

1,0 +

∫
RN

+

U
2N

N−2

1,0 ln U1,0+O(ε1−τ ).

Then, according to the definition (3.28) of Jε and αN = N(N − 2)

Jε(W ) =
(
(N − 2) +

(N − 2)3

4N
ε
) ∫

Ωε

U
2N

N−2 +
N(N − 2)

2

∫
Ωε

U
N+2
N−2 ϕ̂

+
(N − 2)3

4
ε ln Λ

∫
RN

+

U
2N

N−2

1,0 − ε
(N − 2)2

2

∫
RN

+

U
2N

N−2

1,0 ln U1,0 + O(ε2−τ )

(5.13)
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noticing (see estimates below), that
∫

Ωε
U

2N
N−2 = O(1) and

∫
Ωε

U
N+2
N−2 ϕ̂ = O(ε1−τ ).

We observe that∫
Ωε

U
2N

N−2 =

∫
RN

+

U
2N

N−2
1
Λ

,0
(y

′
, yN +

ρ(εy
′
)

ε
) + O(ε2−τ )

=

∫
RN

+

U
2N

N−2
1
Λ

,0
(y

′
, yN) +

∫
RN

+

∂U
2N

N−2
1
Λ

,0

∂yN

(y′, yN)

(
ρ(εy

′
)

ε

)
+ O(ε2−τ )

whence∫
Ωε

U
2N

N−2 =

∫
RN

+

U
2N

N−2

1,0 − 1

2
ΛεH(a)

∫
∂RN

+

U
2N

N−2

1,0 |y|2dy + O(ε2−τ ). (5.14)

On the other hand, in view of the expansion of ϕΛ,a,µ,ε in Lemma 5.1, we also
have

αN

∫
Ωε

U
N+2
N−2 ϕ̂Λ,a,µ,ε = ΛεαN

∫
Ωε

U
N+2
N−2

1,0 ϕ0 + O(ε2−τ )

= ΛεαN

∫
RN

+

U
N+2
N−2

1,0 ϕ0 + O(ε2−τ )

= Λε

∫
RN

+

(−∆U1,0ϕ0 + U1,0∆ϕ0) + O(ε2−τ )

= Λε

∫
∂RN

+

(− ∂ϕ0

∂yN

U1,0) + O(ε2−τ )

= −Λε
N − 2

2

N−1∑
j=1

kj

∫
∂RN

+

U1,0

y2
j

(1 + |y|2)N
2

+ O(ε2−τ ).

Therefore

αN

∫
Ωε

U
N+2
N−2 ϕ̂Λ,a,µ,ε = −Λε

N − 2

2
H(a)

∫
∂RN

+

|y|2

(1 + |y|2)N−1
+ O(ε2−τ ). (5.15)

Substituting (5.14) and (5.15) into (5.13), we obtain

Jε(W ) = A−B∗ΛεH(a) +
(N − 2)2

4
Aε ln Λ + ε

(
(N − 2)2

4N
A + C

)
+ O(ε2−τ )

where A, C are given in (5.11) and

B∗ =
N − 2

2

∫
∂RN

+

U
2N

N−2

1,0 |y|2 +
N − 2

4

∫
∂RN

+

|y|2

(1 + |y|2)N−1
.
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To make the proof of Proposition 5.1 complete, it only remains to show that
B∗ = B defined by (5.12). In fact, it is easily seen that∫

∂RN
+

U
2N

N−2

1,0 |y|2 = ωN−2

∫ ∞

0

rN

(1 + r2)N
dr =

N − 3

2(N − 1)
ωN−2

∫ ∞

0

rN

(1 + r2)N−1
dr

where ωN−2 is the area of the unit sphere in RN−1. The last equality follows
from simple integration by parts. Then, we can rewrite B∗ as

B∗ = B =
(N − 2)2

N − 3

∫
∂RN

+

U
2N

N−2

1,0 |y|2.

The expansions for the derivatives of Jε are obtained exactly in the same
way. �

5.3 Proof of Lemma 3.2

We prove (3.6) first. Through scaling, we may assume that ε = 1. Let G(x, y)
be the Green’s function satisfying

−∆G(x, y) + µG(x, y) = δy in Ω,
∂G(x, y)

∂n
= 0 on ∂Ω.

Then we have for x ∈ Ω,

u(x) =

∫
Ω

G(x, y)f(y)dy.

So it is enough to show that there exists a constant C, independent of x and y,
such that

|G(x, y)| ≤ C

|x− y|N−2
.

To this end, we decompose G in two parts:

G(x, y) = K(|x− y|) + H(x, y)

where K(|x− y|) is the singular part of G and H(x, y) is the regular part of G.
Certainly we have |K(|x− y|)| ≤ C

|x−y|N−2 . It remains to show that

|H(x, y)| ≤ C

|x− y|N−2
. (5.16)
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Note that, if d(x, ∂Ω) > d0 > 0 or d(y, ∂Ω) > d0 > 0, then |H(x, y)| ≤ C and
hence (5.16) also holds. So we just need to estimate H(x, y) for d(x, ∂Ω) and
d(y, ∂Ω) small. Let y ∈ Ω be such that d = d(y, ∂Ω) is small. So there exists a
unique point ȳ ∈ ∂Ω such that d = |y − ȳ|. Without loss of generality, we may
assume ȳ = 0 and the outer normal at ȳ is pointing toward xN -direction. Let
y∗ be the reflection point y∗ = (0, ..., 0,−d) and consider the following auxiliary
function

H∗(x, y) = K(|x− y∗|)

Then H∗ satisfies ∆H∗ − µH∗ = 0 in Ω and on ∂Ω

∂

∂n
(H∗(x, y)) = − ∂

∂n
(K(|x− y|)) + O(

1

dN−3
).

Hence we derive that

H(x, y) = −H∗(x, y) + O(
1

dN−3
)

which proves (5.16) for x, y ∈ Ω. This implies that for x ∈ Ω

|u(x)| ≤ C

∫
Ω

1

|x− y|N−2
|f(y)|dy. (5.17)

If x ∈ ∂Ω, we consider a sequence of points xi ∈ Ω, xi → x ∈ ∂Ω and take the
limit in (5.17). Lebesgue’s Dominated Convergence Theorem applies and (3.6)
is proved.

We turn now to the proof of (3.7). By Lemma 3.1, we have

‖u‖Lt
β(Ωε) ≤ C‖f‖Lt

β+2(Ωε)

hence
‖ε2u‖Lt

β+2(Ωε) ≤ C‖u‖Lt
β(Ωε) ≤ C‖f‖Lt

β+2(Ωε).

By a usual transformation and extension (as done in Step 2 of Proof of Theorem
2.1 in [30]) and interpolation, one can show that

‖u‖W 2,t
β (B δ

ε
(ξ)) ≤ C‖ε2u‖Lt

β+2(Ωε) + C‖f‖Lt
β+2(Ωε) ≤ C‖f‖Lt

β+2(Ωε). (5.18)

where δ is a small fixed constant. Next we take a cut-off function χ(x) such
that χ(x) = 1 for |x| ≤ δ

2
and χ(x) = 0 for |x| > δ, and we consider the function

u1(x) = u(y)(1− χ(εy − ξ))
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which satisfies

−∆xu
1 + µε2u1 = 2ε∇yu.∇xχ + ε2u∆xχ + f(1− χ)

in Ω̃ = Ω\{|x− a| < δ}. Applying the elliptic regularity theory, we obtain

‖u1‖W 2,t(Ω̃) ≤ C‖2ε∇yu∇xχ + ε2u∆xχ + f(1− χ)‖Lt(Ω̃)

whence, taking account of (5.18)

‖u1‖W 2,t
β (Ωε\B δ

ε
(ξ)) ≤ C‖f‖Lt(Ω̃) + Cεβ+2‖f‖Lt

β+2(Ωε). (5.19)

Combining (5.18) and (5.19), we obtain (3.7). �
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