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Multiplicity of solutions to the supercritical Bahri-Coron's problem in pierced domains *

We consider the supercritical Dirichlet problem

where N ≥ 3, ε > 0 and Ω ⊂ IR N is a smooth bounded domain with a small hole of radius d. When Ω has some symmetries, we show that (P ε ) has an arbitrary number of solutions for ε and d small enough.

When Ω has no symmetries, we prove the existence, for d small enough, of solutions blowing up at two or three points close to the hole as ε goes to zero.

Introduction

We consider the problem -∆u = u q in Ω, u > 0 in Ω, u = 0 on ∂Ω,

where N ≥ 3, q > 1 and Ω is a smooth and bounded domain in IR N . In the subcritical case, i.e. q < N +2 N -2 , problem (1.1) has a solution for any domain Ω. In the critical case, i.e. q = N +2 N -2 , Pohozaev's identity (see [START_REF] Pohozaev | On the eigenfunctions of the equation ∆u+λf (u) = 0[END_REF]) shows that (1.1) has no solution when Ω is starshaped, whereas Kazdan and ∆P U λ,ξ = ∆U λ,ξ in Ω, P U λ,ξ = 0 on ∂Ω.

These functions are, as λ goes to zero, approximate solutions to (1.1) in the critical case. Denoting (P ε ) problem (1.1) with q = N +2 N -2 + ε, we set:

Definition 1.1. Let k ∈ IN * and u ε be a solution to (P ε ). We say that (u ε ) ε blows up at k points ξ 1 , . . . , ξ k of Ω, ξ i = ξ j for i = j, as ε goes to zero, if and only if there exist positive parameters λ 1ε , . . . , λ kε and points ξ 1ε , . . . , ξ kε in Ω such that

u ε - k i=1 P U λ iε ,ξ iε → 0 as ε → 0 in H 1 0 (Ω) and C 1 Ω \ k ∪ i=1
B(ξ i , a) , for any a > 0.

In the slightly subcritical case, i.e. q = N +2 N -2 -ε, it was proved that such solutions do exist [START_REF] Bahri | On a variational problem with lack of compactness: the topological effect of the critical points at infinity[END_REF]. In particular it is always true, whatever Ω may be, for k = 1. (Some examples of domains with solutions blowing up at several points are given in [START_REF] Musso | Multispike solutions for a nonlinear elliptic problem involving critical Sobolev exponent[END_REF].) When q = N +2 N -2 + ε, the situation turns out to be different. In particular, solutions blowing up at a single point never exist [START_REF] Ben Ayed | A nonexistence result of single peaked solutions to a supercritical nonlinear problem[END_REF]. However, Del Pino, Felmer and Musso [START_REF] Del Pino | Two-bubble solutions in the super-critical Bahri-Coron's problem[END_REF] proved the existence of solutions blowing up at two points, provided that Ω satisfies some topological assumption -for example, Ω has a small hole. (See also [START_REF] Khenissy | A criterion for existence of solutions to the supercritical Bahri-Coron's problem[END_REF] for a simplified assumption when N = 3.) Existence of a large number of solutions to (P ε ) was found when Ω is a symmetric annulus [START_REF] Del Pino | Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries[END_REF] or a symmetric annulus with a "channel" [START_REF] Molle | Positive solutions for slightly super-critical elliptic equations in contractible domains[END_REF] (making the domain contractible): for such domains Ω, there exists an integer k(Ω) such that for any k ≥ k(Ω), problem (P ε ) has, for ε small enough, a solution which blows up at k points as ε goes to zero. (We note that k may need to be chosen very large to obtain a k-peaked solution.) The aim of this paper is to resume the study of the problem in order to obtain existence and multiplicity results which improve the previous ones, both in the symmetric and the nonsymmetric cases.

In Section 2, we consider a symmetric domain with a small hole. Namely, writing x ∈ IR N as x = (x , x ), with x ∈ IR 2 and x ∈ IR N -2 , we assume that (i) Ω is rotationally invariant with respect to x , i.e. if (x , x ) ∈ Ω, then (Ax , x ) ∈ Ω for any central rotation A of the x -plane.

(ii) Ω is symmetric with respect to x j , 3 ≤ j ≤ N, i.e., for any j = 3, . . . , N , (x , x 3 , . . . , x j , . . . , x N ) ∈ Ω implies that (x , x 3 , . . . , -x j , . . . , x N ) ∈ Ω.

(iii) Ω contains a ball centered in zero, i.e. there exists a > 0 such that B(0, a) ⊂ Ω.

For δ ∈ (0, a), we set

Ω δ = x ∈ Ω : |x| > δ
and we consider (P ε ) with Ω = Ω δ . We prove:

Theorem 1.1. Let Ω = Ω δ . For any k ≥ 2, there exists δ k > 0 such that for any δ ∈ (0, δ k ), (P ε ) has, for ε small enough, a solution which blows up at k points in Ω δ as ε goes to zero.

Corollary 1.1. Let Ω = Ω δ . For any h ≥ 1, there exists δ h > 0 such that for any δ ∈ (0, δ h ), (P ε ) has, for ε small enough, h (rotationally) distinct solutions which blow up at two, three, . . . , h + 1 points respectively as ε goes to zero.

In the critical case, a small hole generates the existence of a solution to (1.1) -see [START_REF] Coron | Topologie et cas limite des injections de Sobolev[END_REF], [START_REF] Rey | Sur un probéme variationnel non compact: l'effet de petits trous dans le domain[END_REF]. As such a solution is topologically nontrivial, i.e. induces some difference of topology between the level sets of a functional associated to the problem, this solution continues for ε small enough. This provides us with an additional solution to (P ε ) on Ω δ , which goes to a solution to (P 0 ) as ε goes to zero.

In Section 3, we consider a domain with both a small hole and a small "channel", making it contractible. Namely, for 0 < δ < R and σ > 0 we set

Ω δ,σ = x ∈ IR N : δ < |x| < R, N -1 i=1 x 2 i 1/2 > σx N
and similarly to Theorem 1.1 we prove: Theorem 1.2. Let Ω = Ω δ,σ . For any k ≥ 2, there exist δ k > 0, σ k > 0, such that for any δ ∈ (0, δ k ) and σ ∈ (0, σ k ), (P ε ) has, for ε small enough, a solution which blows up at k points in Ω δ,σ as ε goes to zero.

Corollary 1.2. Let Ω = Ω δ,σ . For any h ≥ 1, there exist δ h > 0, σ h > 0, such that for any δ ∈ (0, δ h ) and σ ∈ (0, σ h ), (P ε ) has, for ε small enough, h (rotationally) distinct solutions which blow up at two, three, . . . , h + 1 points respectively as ε goes to zero.

In Section 4, we drop any symmetry assumption and just consider a domain with a small hole. Namely, Ω being a smooth bounded domain in IR N , we may assume, up to a translation, that Ω contains some ball B(0, r), r > 0. Then, for d ∈ (0, r), we set

Ω d = {x ∈ Ω : |x| > d}
and we first look for a solution blowing up at two points as ε goes to zero. As already stated, existence of such a solution has been proved in [START_REF] Del Pino | Two-bubble solutions in the super-critical Bahri-Coron's problem[END_REF]. We obtain additional informations: Theorem 1.3. Let Ω = Ω d . There exists d 0 > 0 such that for any d ∈ (0, d 0 ), (P ε ) has, for ε small enough, a solution which blows up at two points ξ 1 and ξ 2 in Ω d as ε goes to zero. Moreover |ξ i | ∼ r 0 d and ξ 2 = -ξ 1 + o(d) as ε goes to zero, where r 0 > 1 is the unique solution in (1, ∞) of

1 2 N -1 r N 0 = 1 (r 2 0 -1) N -1 + 1 (r 2 0 + 1) N -1 .
We also look for solutions blowing up at three points, and we obtain a result of the same kind -see Theorem 4.4. Such a result is of qualitative importance, as it shows that the two peaks solutions are not the only blowing up solutions existing. Whereas single peak solutions do not exist, solutions with three peaks or more may be exhibited, without any symmetry assumptions on the domain (the method that we use extends to the study of solutions blowing up at k points, for any k ≥ 2). Such kind of results was expected, but had never been proved because of technical obstacles.

Actually, using a rescaling, we obtain that the nonsymmetric case is asymptotically equivalent, as the hole radius goes to zero, to the symmetric one. Then, we are left with proving that peaked solutions in the symmetric case are stable through C 1 -perturbations. We study this general stability, and check that it is satisfied in the cases we are interested in.

Before turning to the proofs of the results, we introduce some notation. A domain Ω being given, we denote by G Ω the Green's function of the negative Laplacian in Ω with Dirichlet boundary conditions, i.e.

-∆G Ω (•, ξ) = a N δ ξ in Ω, G Ω (•, ξ) = 0 in ∂Ω with a N = (N -2)meas(S N -1 )
-1 , S N -1 being the (N -1)-dimensional unit sphere, and by H Ω its regular part, i.e.

H Ω (x, ξ) = 1 |x -ξ| N -2 -G Ω (x, ξ), (x, ξ) ∈ Ω × Ω.
We also define the Robin function as

R Ω (x) = H(x, x), x ∈ Ω.
We point out that, as a consequence of the maximum principle

P Ω U λ,ξ (x) = U λ,ξ (x) -α N λ N -2 2 H Ω (x, ξ) + O λ N +2 2 (dist (ξ, ∂Ω)) -N .
Such an expansion introduces us to the role that Green's function and its regular part play in that kind of problems (see e.g. [START_REF] Bahri | Critical point at infinity in some variational problems[END_REF], [START_REF] Rey | The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent[END_REF]), and in the following arguments.

2 Proof of Theorem 1.1

According to assumptions (i), (ii), (iii) in the previous section, let k ≥ 2 be fixed and R > 0 such that (x , 0 ) ∈ Ω δ if and only if δ < |x | < R.

Step 1 -Reduction of the problem to a finite dimensional one. Problem (1.1) has a variational structure. Indeed, defining the functional

J(u) = 1 2 Ω |∇u| 2 - 1 q + 1 Ω (u + ) q+1 , u ∈ H 1 0 (Ω) ∩ L q+1 (Ω)
the strong maximum principle ensures that the critical points u ≡ 0 of J are solutions of the problem. The method initially developed in [START_REF] Bahri | Critical point at infinity in some variational problems[END_REF], [START_REF] Rey | The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent[END_REF] for q = N +2 N -2 , consists in looking for solutions written as

u ε = α N k i=1 P Ω U λ i ,ξ i + v ε
where v ε is orthogonal for the H 1 0 -scalar product to the derivatives of P Ω U λ i ,ξ i with respect to the parameters λ i , ξ i , and assumed to be small in

H 1 0 -norm. (It is shown that λ = (λ 1 , . . . , λ k ), ξ = (ξ 1 , . . . , ξ k ) and v ε build a good local parametrization of H 1 0 (Ω).) Then, once v ε (λ, ξ) is found such that ∂J ∂v λ, ξ, v ε (λ, ξ) = 0
, the initial problem reduces to a finite dimensional one involving λ and ξ parameters only. Such a method was adapted in [START_REF] Del Pino | Two-bubble solutions in the super-critical Bahri-Coron's problem[END_REF], using weighted Hölder spaces, to the supercritical case q = N +2 N -2 + ε. According to [START_REF] Del Pino | Two-bubble solutions in the super-critical Bahri-Coron's problem[END_REF] the problem reduces, for ε small enough, to finding critical points of a finite dimensional functional written as

J(Λ, ξ) = 1 2 k i=1 R Ω (ξ i )Λ 2 i - k i,j=1 i =j G Ω (ξ i , ξ j )Λ i Λ j + k i=1 ln Λ i + ϕ ε (Λ, ξ) where λ = c N ε 1 N -2 Λ (c N
is a positive constant depending on N only), and

ϕ ε goes to zero in C 1 loc (IR * + ) k × (Ω k δ \ D) as ε goes to zero, with D = ξ ∈ (IR N ) k : ξ i = ξ j for some i = j . As a consequence, defining Ψ(Λ, ξ) = 1 2 k i=1 R Ω (ξ i )Λ 2 i - k i,j=1 i =j G Ω (ξ i , ξ j )Λ i Λ j + k i=1 ln Λ i
stable critical points of Ψ (i.e. critical points which are stable under small C 1 -perturbations) such that ξ i = ξ j for i = j, provide us with solutions to (P ε ) . Now, taking also into account the symmetries of the domain Ω δ , we can look, as in [START_REF] Del Pino | Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries[END_REF], [START_REF] Molle | Positive solutions for slightly super-critical elliptic equations in contractible domains[END_REF], for critical points (Λ, ξ) of Ψ such that

Λ i = Λ, ξ i (ρ) = ρ cos 2π(i -1) k , ρ sin 2π(i -1) k , 0 , 1 ≤ i ≤ k (2.2)
with ρ ∈ (δ, R). Then, we are left with the two variables function ψ δ :

IR * + ×(δ, R) → IR defined as ψ δ (Λ, ρ) = k Λ 2 2 γ δ (ρ) + ln Λ with γ δ (ρ) = R Ω δ (ξ 1 (ρ)) - k i=2 G Ω δ (ξ 1 (ρ), ξ i (ρ)).
Step 2 -For δ small enough, ψ δ has a stable critical point. This will conclude the proof of Theorem 1.1. We perform the change of variables

r = ρ δ , µ = Λ δ N -2 2
and we define the function

φ δ : IR * + ×(1, R/δ) → IR as φ δ (µ, r) = ψ δ (Λ, ρ) -k N -2 2 ln δ = k µ 2 2 Γ δ (r) + ln µ with Γ δ (r) = δ N -2 γ δ (δr) = R Ω δ /δ (ξ 1 (r)) - k i=2 G Ω δ /δ (ξ 1 (r), ξ i (r)).
Obviously, (µ, r) is a stable critical point of φ δ if and only if (δ

N -2 2 µ, δr) is a stable critical point of ψ δ . Setting E = x ∈ IR N : |x| > 1
we remark that Ω δ /δ ⊂ E and Ω δ /δ goes to E as δ goes to zero, i.e. for any compact set K ⊂ E, there exists δ K > 0 such that for any δ ∈ (0, δ K ), K ⊂ Ω δ /δ. Moreover, it is easily checked, using the maximum principle, that

R Ω δ /δ (x) = H Ω δ /δ (x, x) goes to R E (x) = H E (x, x) in C 1 loc (E) and G Ω δ /δ (x, y) goes to G E (x, y) in C 1 loc (E 2 \ ∆) as δ goes to zero, where ∆ is the diagonal of E 2 , i.e. ∆ = {(x, y) ∈ E 2 : x = y}. Therefore, φ δ goes to φ E in C 1 loc (IR * + ×(1, ∞)), where φ E : IR * + ×(1, ∞) → IR is defined as φ E (µ, r) = k µ 2 2 Γ E (r) + ln µ with Γ E (r) = R E (ξ 1 (r)) - k i=2 G E (ξ 1 (r), ξ i (r)).
Then, the only thing that remains to be proved is that φ E has a stable critical point. We have

R E (ξ) = 1 (|ξ| 2 -1) N -2 , G E (ξ, ζ) = 1 |ξ -ζ| N -2 - 1 |ζ|ξ -ζ |ζ| N -2 . (2.3) Consequently Γ E (r) = 1 (r 2 -1) N -2 - k-1 i=1 1 2 N -2 2 r N -2 1 -cos 2πi k N -2 2 + k-1 i=1 1 r 4 + 1 -2r 2 cos 2πi k N -2 2 
.

(2.4)

Clearly, lim

r→1 + Γ E (r) = +∞ and lim r→+∞ r N -2 Γ E (r) = l < 0. Moreover, the cancellation of Γ E (r) implies that Γ E (r) < 0. Indeed Γ E (r) = -(N -2)   2r (r 2 -1) N -1 - k-1 i=1 1 2 N -2 2 r N -1 1 -cos 2πi k N -2 2 + k-1 i=1 2r r 2 -cos 2π k i r 4 + 1 -2r 2 cos 2πi k N 2   (2.5) whence, in view of (2.4), if Γ E (r) = 0 Γ E (r) = -(N -2)   r 2 + 1 r(r 2 -1) N -1 + k-1 i=1 r 4 -1 r r 4 + 1 -2r 2 cos 2πi k N 2   < 0.
Then, there exists a unique r * ∈ (1, ∞) such that Γ E (r * ) = 0. Γ E (r) < 0 for r > r * , and there is some r 0 > r * which is a global minimum of φ E in (1, ∞) and a isolated critical point because of analyticity. On the other hand, for any r > r * , there exists a unique µ = µ(r) = (-Γ E (r)) -1/2 such that ∂φ E ∂µ (µ(r), r) = 0. Moreover, ∂ 2 φ E ∂µ∂r (µ(r), r) = 0 and ∂ 2 φ E ∂µ 2 (µ(r), r) = 2kΓ E (r) < 0. Therefore, a standard linking argument shows that (µ(r 0 ), r 0 ) is a critical point of φ E which is stable under C 1 -perturbations. This concludes the proof of Theorem 1.1.

3 Proof of Theorem 1.2 Let k ≥ 2 be fixed and R > 0 such that (x , 0 ) ∈ Ω δ,σ if and only if δ < |x | < R.
Step 1 -Reduction of the problem to a finite dimensional one.

We argue exactly as in the previous section. The only change is that the symmetry with respect to x N being lost, we have to set, instead of (2.2)

ξ(ρ, τ ) = ρ cos 2π(i -1) k , ρ sin 2π(i -1) k , 0, . . . , 0, τ , 1 ≤ i ≤ k (3.6) with (ρ, τ ) ∈ S δ,σ = (ρ, τ ) ∈ IR * + × IR : δ 2 < ρ 2 + τ 2 < R, ρ > στ .
Then we have to consider, instead of ψ δ , a three variables function ψ δ,σ : IR * + ×S δ,σ → IR defined as

ψ δ,σ (Λ, ρ, τ ) = k Λ 2 2 γ δ,σ (ρ, τ ) + ln Λ and γ δ,σ (ρ, τ ) = R Ω δ,σ (ξ 1 (ρ, τ )) - k i=2 G Ω δ,σ (ξ 1 (ρ, τ ), ξ i (ρ, τ )).
Step 2 -For δ and σ small enough, ψ δ,σ has a stable critical point. We perform, as previously, a change of variables

r = ρ δ , t = τ δ , µ = Λ δ N -2 2 
and we define the function φ δ,σ : Σ δ,σ → IR as

φ δ,σ (µ, r, t) = ψ δ,σ (Λ, ρ, τ ) -k N -2 2 ln δ = k µ 2 2 Γ δ,σ (r, t) + ln µ with Γ δ,σ (r, t) = δ N -2 γ δ,σ (δr, δt), i.e. Γ δ,σ (r, t) = R Ω δ,σ /δ (ξ 1 (r, t)) - k i=2 G Ω δ,σ /δ (ξ 1 (r, t), ξ i (r, t))
and

Σ δ,σ = (r, t) ∈ IR * + × IR : 1 < r 2 + t 2 < R δ 2 , r > σt .
Of course (µ, r, t) is a stable critical point of φ δ,σ if and only if δ

N -2 2 µ, δr, δt is a stable critical point of ψ δ,σ . Setting E * = E \ {(0, . . . , 0, x N ) : x N > 1} , E = x ∈ IR N : |x| > 1
we remark that Ω δ,σ /δ ⊂ E * and Ω δ,σ /δ goes to E * as δ and σ go to zero, i.e. for any compact set K ⊂ E * , there exist δ K > 0, σ K > 0 such that for any δ ∈ (0, δ K ) and σ ∈ (0, σ K ), K ⊂ Ω δ,σ /δ. Moreover, it is easily checked, using the maximum principle, that H Ω δ,σ /δ (x, x) goes to H E (x, x) in C 1 loc (E * ) and G Ω δ,σ /δ (x, y) goes to G E (x, y) in C 1 loc ((E * ) 2 \ ∆) as δ and σ go to zero, where ∆ is the diagonal of (E * ) 2 . Consequently, φ δ,σ goes to

φ E * in C 1 loc (IR * + ×Σ 0 ), where φ E * : IR * + ×Σ 0 → IR is defined as φ E * (µ, r, t) = k µ 2 2 Γ E * (r, t) + ln µ with Γ E * (r, t) = R E (ξ 1 (r, t)) - k i=2 G E (ξ 1 (r, t), ξ i (r, t)) (3.7) and Σ 0 = (r, t) ∈ IR * + × IR : 1 < r 2 + t 2 \ {(0, t) : t > 1}.
In view of the previous arguments, Theorem 1.2 will follow from the existence of a stable critical point of φ E * . From (2.3), (3.6) and (3.7), we deduce that

Γ E * (r, t) = 1 (r 2 + t 2 -1) N -2 - k-1 i=1 1 2 N -2 2 r N -2 1 -cos 2πi k N -2 2 + k-1 i=1 1 (r 2 + t 2 ) 2 + 1 -2r 2 cos 2πi k -2t 2 N -2 2 
.

We remark that for any r > 1, there exists a unique t(r) such that ∂Γ E * ∂t (r, t(r)) = 0, i.e. t(r) = 0. Moreover, Γ E * (r, 0) = max t∈IR Γ E * (r, t), and straightforward computations yield ∂ 2 Γ E * ∂t 2 (r, 0) < 0, ∂ 2 Γ E * ∂t∂r (r, 0) = 0. We note that Γ E * (r, 0) coincides with Γ E (r) in the previous section. Then, let r 0 be a global minimum of Γ E * (r, 0) for r ∈ (1, ∞), and µ(r 0 ) = (-Γ E * (r 0 )) -1/2 . (µ(r 0 ), r 0 , 0) is a critical point of φ E * , and

φ E * (µ(r 0 ), r 0 , 0) = k    2Γ E (r 0 ) 0 0 0 (µ(r 0 )) 2 2 Γ E (r 0 ) 0 0 0 (µ(r 0 )) 2 2 ∂ 2 Γ E * ∂t 2 (r 0 , 0)    .
We know that Γ E (r 0 ) < 0, ∂ 2 Γ E * ∂t 2 (r 0 , 0) < 0, and Γ E (r 0 ) ≥ 0. Even if Γ E (r 0 ) = 0, the fact that r 0 is a minimum and an isolated critical point of Γ E (r) (and of r → φ E * (µ(r 0 ), r, 0) as well) would still ensure, through a standard linking argument, that (µ(r 0 ), r 0 , 0), as a critical point of φ E * , is stable under C 1 -perturbations. This concludes the proof of Theorem 1.2.

The nonsymmetric case

The general argument.

In this last section, we drop the symmetry assumptions on the domain. Ω being any smooth bounded domain in IR N , that we may assume, up to a translation, contains a ball B(0, R) for some R > 0, we set, for 0 < d < R

Ω d = {x ∈ Ω : |x| > d} i.e. Ω d = Ω \ B(0, d).
We consider (P ε ) in Ω d and, as previously, we look for a solution blowing up at k points as ε goes to zero, k ≥ 2. According to Section 1, we know that the problem may be reduced to finding, for ε small enough, a critical point of

J(Λ, ξ) = 1 2 k i=1 R Ω d (ξ i 2 i - k i,j=1 i =j G Ω d (ξ i , ξ j )Λ i Λ j + k i=1 ln Λ i + ϕ Ω d ,ε (Λ, ξ) in Σ = (IR * + ) k × (Ω k d \ D), with D = {ξ ∈ (IR N ) k : ξ i = ξ j for some i = j}, ϕ Ω d ,ε (Λ, ξ) going to zero in C 1 loc (Σ).
We consider, as previously, the main part in J(Λ, ξ), that is, we set

ψ(Λ, ξ) = 1 2 k i=1 R Ω d (ξ i )Λ 2 i - k i,j=1 i =j G Ω d (ξ i , ξ j )Λ i Λ j + k i=1 ln Λ i
for (Λ, ξ) ∈ Σ. Through the rescaling

x i = ξ i d , µ i = Λ i d N -2 2 we have ψ(Λ, ξ) = φ(µ, x) + k N -2 2 ln d with φ(µ, x) = 1 2 k i=1 R Ω d /d (x i )µ 2 i - k i,j=1 i =j G Ω d /d (x i , x j )µ i µ j + k i=1 ln µ i as (µ, x) ∈ (IR * + ) k × ((Ω d /d) k \ D). We know that Ω d /d goes to E = {x ∈ IR N : |x| > 1}, H Ω d /d goes to H E in C 1 loc (E) and G Ω d /d goes to G E in C 1
loc (E 2 \ ∆) as d goes to zero (we recall that ∆ is the diagonal of E 2 ). Let us consider the limit function

φ E (µ, x) = 1 2 k i=1 R E (x i )µ 2 i - k i,j=1 i =j G E (x i , x j )µ i µ j + k i=1 ln µ i . (4.8)
As we saw, this function has a critical point (µ * , x * ) which may be written as

µ * i = (-Γ E (r 0 )) -1/2 x * i = r 0 cos 2π(i -1) k , r 0 sin 2π(i -1) k , 0, . . . , 0 , 1 ≤ i ≤ k (4.9)
where r 0 is a global minimizer of Γ E (r) in (1, ∞). Of course, this critical point is degenerate, since φ E is invariant under central rotations of E k . Let M be the manifold of critical points generated by these rotations, i.e.

M = {(µ * , Rx * ) : R is a central rotation of E k }.
Let us assume that φ E (µ * , x * ) is nondegenerate in the orthogonal subspace to T (µ * ,x * ) M (the same is true at any (µ, x) ∈ M). Then, a standard linking argument shows that a C 1 -perturbation of φ E has a critical point in a neighborhood of M. Whence, coming back to J, the existence of d 0 > 0 such that for any 0 < d < d 0 , there exists some ε d > 0 such that, for any 0

< ε < ε d , J has a critical point (Λ, ξ) = d N -2
2 µ, dx , with the distance of (µ, x) to M going to zero as d and ε go to zero.

We remark that dim M = N -1 as k = 2 (x * = (x * 1 , -x * 1 ) and x * 1 runs on a (N -1)-sphere). As k ≥ 3, the position of Rx * is correctly defined by the orientation of the plane in which the x * i 's are, and by a central rotation in that plane. Therefore, for k ≥ 3, dim M = 2(N -2) + 1 = 2N -3 (2(N -2) is the dimension of the 2-Grassmanian in IR N ). Finally, we can state the following general result:

Proposition 4.1. Let k ∈ IN, k ≥ 2, φ E and (µ * , x * ) defined by (4.8) and (4.9). If dim Ker φ E (µ * , x * ) = N -1 as k = 2 dim Ker φ E (µ * , x * ) = 2N -3 as k ≥ 3,
there exists d 0 > 0 such that for any d ∈ (0, d 0 ), (P ε ) has, for ε small enough, a solution which blows up at k points ξ 1 , . . . , ξ k in Ω d as ε goes to zero. Moreover, up to a central rotation, ξ/d goes to x * as d and ε go to zero.

The case k = 2. In view of Proposition 4.1, we just have to check, for proving Theorem 1.3, that dim Ker φ E (µ * , x * ) = N -1. For the sake of simplicity, we write

x = x * 1 = -x * 2 , r = r 0 where r 0 > 1 solves Γ E (r 0 ) = 0, i.e. 1 2 N -1 r N 0 = 1 (r 2 0 -1) N -1 + 1 (r 2 0 + 1) N -1 . (4.10) 
Such an r 0 is unique. Indeed, derivating (2.5) while Γ E (r) = 0, we obtain

Γ E (r) = 2(N -2) (N -2)r 2 + N (r 2 -1) N + (N -2)r 2 + N (r 2 + 1) N > 0
whence the unicity of the critical point in (1, ∞). We also write µ

= * = E (r 0 )) -1/2 , i.e. µ = 1 2 N r N -2 0 - 1 (r 2 0 -1) N -2 - 1 (r 2 0 + 1) N -2 -1/2 . (4.11) 
Let (e 1 , e 2 , f 1 , . . . , f N , g 1 , . . . , g N ) be the dual basis of the 2N + 2 variables µ 1 , µ 2 , (x 1 ) 1 , . . . , (x 1 ) N , (x 2 ) 1 , . . . , (x 2 ) N . According to the definition of φ E we compute

φ E (µ * , x * ) =                   A B C • • • • • C • • • • • B A -C • • • • • -C • • • • • C -C D • • • • • E • • • • • • • • F • • • • • F • • • • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • • • • • • • F • • • • • F C -C E • • • • • D • • • • • • • • F • • • • • F • • • • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • • • • • • • F • • • • • F                   (4.12) 
where horizontal or vertical dots mean zeros, diagonal dots mean F , and, taking account of (4.10) and (4.11)

A = R(x) - 1 µ 2 = - 1 2 N -2 r N -2 + 2 (r 2 -1) N -2 + 1 (r 2 + 1) N -2 B = -G(x, -x) = - 1 2 N -2 r N -2 + 1 (r 2 + 1) N -2 C = µ R f 1 (x) -G f 1 (x, -x) = -µG g 1 (x, -x) = µG f 1 (x, -x) = -µ R g 1 (-x) -G g 1 (x, -x) = -(N -2)µ r (r 2 -1) N -1 D = µ 2 2 R f 1 f 1 (x) -2G f 1 f 1 (x, -x) = µ 2 2 R g 1 g 1 (-x) -2G g 1 g 1 (x, -x) = N -2 2 µ 2 (3N -5)r 2 + (N + 1) (r 2 -1) N + (N -1)r 2 -(N -1) (r 2 + 1) N E = -µ 2 G f 1 g 1 (x, -x) = -µ 2 G f 1 g 1 (x, -x) = N -2 2 µ 2 N -1 (r 2 -1) N -1 + (-N + 3)r 2 + (N + 1) (r 2 + 1) N F = µ 2 2 R f i f i (x) -2G f i f i (x, -x) = -µ 2 G f i g i (x, -x) = -µ 2 G f i g i (x, -x) = µ 2 2 R g i g i (-x) -2G g i g i (x, -x) = - N -2 2 µ 2 1 (r 2 -1) N -1 + r 2 -1 (r 2 + 1) N , 2 ≤ i ≤ N.
In view of (2.3), we used

∂R E ∂ξ i (ξ) = -2(N -2) ξ i (|ξ| 2 -1) N -1 ∂G E ∂ξ i (ξ, ζ) = -(N -2)    ξ i -ζ i |ξ -ζ| N -1 - |ζ| 2 ξ i -ζ i |ζ|ξ -ζ |ζ| N    (4.13) ∂R 2 E ∂ξ i ∂ξ j = -2(N -2) δ ij (|ξ| 2 -1) N -1 -2(N -1) ξ i ξ j (|ξ| 2 -1) N ∂ 2 G E ∂ξ i ∂ξ j (ξ, ζ) = -(N -2) δ ij |ξ -ζ| N -N (ξ i -ζ i )(ξ j -ζ j ) |ξ -ζ| N +2 - |ζ| 2 δ ij |ζ|ξ -ζ |ζ| N + N (|ζ| 2 ξ i -ζ i )(|ζ| 2 ξ j -ζ j ) |ζ|ξ -ζ |ζ| N +2    (4.14)
and

∂ 2 G E ∂ξ i ∂ζ j (ξ, ζ) =(N -2) δ ij |ξ -ζ| N -N (ξ i -ζ i )(ξ j -ζ j ) |ξ -ζ| N +2 + 2ξ i ζ j -δ ij |ζ|ξ -ζ |ζ| N -N (|ζ| 2 ξ i -ζ i )(|ζ| 2 ξ j -ζ j ) |ζ|ξ -ζ |ζ| N +2    (4.15)
Considering (4.12), we find the 2N following eigenvectors for φ E (µ * , x * ): The case k ≥ 3.

1 √ 2 (f i -g i ), 2 ≤ i ≤ N, with eigenvalue 0 1 √ 2 (f i + g i ), 2 ≤ i ≤ N,
For the sake of simplicity, we limit to the case k = 3. The other cases may be treated in the same way, with additional computations. In view of Proposition 4.1, we have to compute the dimension of the kernel of φ E (µ * , x * ), where (µ * , x * ) is given by (4.9), where r 0 > 1 solves Γ E (r 0 ) = 0, i.e. 1

3

N -2 2 r N 0 = 1 (r 2 0 -1) N -1 + 2r 2 0 + 1 (r 4 0 + r 2 0 + 1) N 2 . (4.16)
As previously, such an r 0 is unique. Indeed, derivating (2.5) we find, as

Γ E (r) = 0 Γ E (r) = 2(N -2) (N -2)r 2 + N (r 2 -1) N + N (2r 2 + 1)(r 4 -1) (r 4 + r 2 + 1) N +2 2 > 0
whence again the unicity of the critical point in (1, ∞). We note also that, according to (2.5)

Γ E (2) < -(N -2) 1 3 N -1 - 1 3 N -2 2 2 N < 0 implying that r 0 > 2. Furthermore µ * = (-Γ E (r 0 )) -1/2 , i.e. µ * = 2 3 N -2 2 r N -2 0 - 1 (r 2 0 -1) N -2 - 2 (r 4 0 + r 2 0 + 1) N -2 2 -1/2 . (4.17)
For the sake of simplicity, we write x * = (x 1 , x 2 , x 3 ), r = r 0 and r = (r 4 0 +r 2 0 + 1) 1 4 . Let (e 1 , e 2 , e 3 , f 1 , . . . , f N , g 1 , . . . , g N , h 1 , . . . , h N ) be the dual basis of the 3N +3 variables µ 1 , µ 2 , µ 3 , (x 1 ) 1 , . . . , (x 1 ) N , (x 2 ) 1 , . . . , (x 2 ) N , (x 3 ) 1 , . . . , (x 3 ) N .

The subspaces E i = Span(f i , g i , h i ), 3 ≤ i ≤ N, are stable for φ E (µ * , x * ), and with multiplicity 1, and 0 with multiplicity 2 -whence 2(N -2) vectors in the kernel of φ E (µ * , x * ). Because of the symmetries of φ E , we know three additional eigenvectors:

φ E (µ * , x * ) E i = α   1 1 1 1 1 1 1 1 1   with α = µ * 2 2 R f i f i (x 1 ) -2G f i f i (x 1 , x 2 ) -2G f i f i (x 1 , x 3 ) = -µ * 2 G f i g i (x 1 , x 2 ) = -µ * 2 G f i h i (x 1 , x 3 ) = (N -2)µ * 2 2 3 N 2 r N - 1 (r 2 -1) N -1 -
u = 1 √ 3 (e 1 + e 2 + e 3 ), with eigenvalue Γ E (r) < 0; v = 1 √ 3 f 1 + - 1 2 g 1 + √ 3 2 g 2 + - 1 2 h 1 - √ 3 2 h 2 , with eigenvalue µ 2 2 Γ E (r) > 0; w = 1 √ 3 f 2 + - √ 3 2 g 1 - 1 2 g 2 + √ 3 2 h 1 - 1 2 h 2 ,
with eigenvalue 0.

Therefore, Proposition 4.1 will provide us with a solution to (P ε ) blowing up at three points as ε goes to zero, if the restriction of φ E (µ * , x * ) to the stable 6-dimensional orthogonal subspace E to the E i 's, 3 ≤ i ≤ N, and to u, v, w, is nondegenerate. As a basis of E, we can take

k 1 = √ 2 √ 3 e 1 - 1 2 e 2 - 1 2 e 3 k 2 = 1 √ 2 (e 2 -e 3 ) k 3 = 1 √ 3 (f 1 + g 1 + h 1 ) k 4 = 1 √ 3 (f 2 + g 2 + h 2 ) k 5 = 1 √ 3 f 1 + - 1 2 g 1 - √ 3 2 g 2 + - 1 2 h 1 + √ 3 2 h 2 k 6 = 1 √ 3 f 2 + √ 3 2 g 1 - 1 2 g 2 + - √ 3 2 h 1 - 1 2 h 2 .
In this basis we have

φ E (µ * , x * ) E =         A 0 B 0 C 0 0 A 0 B 0 -C B 0 D 0 E 0 0 B 0 D 0 -E C 0 E 0 F 0 0 -C 0 -E 0 F         (4.18) with A = 2 (r 2 -N -2 - 1 3 N -2 2 r N -2 + 1 r 2(N -2) B = - N -2 √ 2 µ * r 2 (r 2 -1) N -1 + r 2 -1 r 2N C = N -2 √ 2 µ * r 1 (r 2 -1) N -1 - r 2 -1 r 2N D = (N -2)µ * 2 (N -2)r 2 + 1 (r 2 -1) N - r 2 -2 r 2N + N r 2 (r 2 -1) 2 2r 2(N +2) E = (N -2)µ * 2 (N -1)r 2 (r 2 -1) N + r 2 r 2N + N r 2 (r 4 + r 2 -2) 2r 2(N +2) F = N -2 2 µ * 2 (N -2)r 2 + N (r 2 -1) N - 2(N -1)r 2 + N 2r 2N + N r 2 (r 2 + 2) 2 2r 2(N +2) . ( 4 

.19)

For example

A = k t 1 .φ E (µ * , x * ).k 1 = 2 3 ∂ 2 φ E ∂µ 2 1 - 1 2 ∂ 2 φ E ∂µ 1 ∂µ 2 - 1 2 
∂ 2 φ E ∂µ 1 ∂µ 3 - 1 2 ∂ 2 φ E ∂µ 1 ∂µ 2 - 1 2 
∂ 2 φ E ∂µ 2 2 - 1 2 
∂ 2 φ E ∂µ 2 ∂µ 3 - 1 2 ∂ 2 φ E ∂µ 1 ∂µ 3 - 1 2 ∂ 2 φ E ∂µ 2 ∂µ 3 - 1 2 ∂ 2 φ E ∂µ 2 3 .
We have

∂ 2 φ E ∂µ 2 1 = ∂ 2 φ E ∂µ 2 2 = ∂ 2 φ E ∂µ 2 3 = R(x 1 ) - 1 µ * 2 ∂ 2 φ E ∂µ 1 ∂µ 2 = ∂ 2 φ E ∂µ 1 ∂µ 3 = ∂ 2 φ E ∂µ 2 ∂µ 3 = -G(x 1 , x 2 )
whence the announced result, observing (2.3) and (4.9). The other quantities are obtained in the same way, using also (4.13), (4.14), (4.15) and (4.16).

All these quantities are strictly positive, except B which is strictly negative. Actually, B < 0 and E > 0 are trivial. C > 0, D > 0 and F > 0 follow directly from the fact that, according to the definition of r, r 2 -1 < r 2 . Lastly, we deduce from (4.16)

A = r 2 -2 (r 2 -1) N -1 - r 4 -1 r 2N .
Therefore, A > 0 is equivalent to (r 2 -2N > (r 2 + 1)(r 2 -1) N or r 4 + r 2 + 1 r 4 -2r 2 + 1

N 2 > r 2 + 1 r 2 -2 = 1 + 3 r 2 -2 . ( 4 

.20)

As (1 + X) α > 1 + αX for X > 0 and α > 1

r 4 + r 2 + 1 r 4 -2r 2 + 1 N 2 > 1 + N 2 3r 2 r 4 -2r 2 + 1
and, in view of (4.20), A > 0 follows from the fact that (as r > 2)

N 2 1 r 2 -2 + 1 r 2 > 1 r 2 -2 or (N -2)(r 2 -2) > 2 r 2 .
We note now that through suitable exchanges between lines and columns, we deduce from (4. As C, D, E, F are strictly positive and B is strictly negative, the right hand side is strictly positive. As we have also A > 0, the inequality DF -E 2 < 0 is sufficient to conclude. Considering that D, F are strictly positive, the result will follow from the two inequalities D < E and F < E. In view of (4.19), D < E is obvious and F < E is equivalent to

N (r 2 -1) N -1 + 2N r 2 + N 2r 2N + N r 2 (r 4 -2r 2 -8) 2r 2(N +2) > 0
As r 2 -1 < r 2 , this inequality will be satisfied if (4r 2 -1)r 4 + r 2 (r 4 -2r 2 -8) = 5r 6 + r 4 -5r 2 -1 > 0 which is true since r > 1.

Collecting the previous informations, we know that the dimension of the kernel of φ E (µ * , x * ) is exactly 2N -3. Then, in view of Proposition 4.1 we can state: 

1 - 1 √ 2 (e 1 -e 2 ), 1 √ 2 (f 1 + 1 and

 112121211 g 1 ), with eigenvalue D -E and in the remaining orthonormal basis g 1 ), φ E (µ * , x * ) writes as A -B 2C 2C D + E . It is easily checked that F < 0, A + B < 0 (because of (4.10)), D -E > 0 and (A -B)(D + E) -4C 2 > 0. Consequently dim Ker φ E (µ * , x * ) = N -Theorem 1.2 follows from Proposition 4.1.

2r 2 r

 2 2N < 0 using (4.14), (4.15) and (4.16). The eigenvalues φ E (µ * , x * ) E i are 3α

  [START_REF] Passaseo | Multiplicity of positive solutions of nonlinear elliptic equations with critical Sobolev exponent in some contractible domains[END_REF] detφ E (µ * , x * ) (µ * , x * ) E = A(DF -E 2 ) -(F B 2 + DC 2 -2EBC) 2where A, B, C, D, E, F are defined by (4.16) and(4.19). Then, the nondegeneracy of φ E (µ * , x * ) restricted to E is equivalent toA(DF -E 2 ) = F B 2 + DC 2 -2EBC.

Theorem 4 . 4 .

 44 There exists d 0 > 0 such that for any d ∈ (0, d 0 ), (P ε ) has, for ε small enough, a solution which blows up at three points ξ 1 , ξ 2 , ξ 3 of Ω d as ε goes to zero. Moreover,|ξ i | ∼ r 0 d and there is a rotation R in (IR N ) 3 , R 3 = id, such that ξ 2 = Rξ 1 + o(d) and ξ 3 = R 2 ξ 1 + o(d).
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