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Abstract

The McKendrick/Von Foerster equation is a transport equation with a
non-local boundary condition that appears frequently in structured pop-
ulation models. A variant of this equation with a size structure has been
proposed as a metastatic growth model by Iwata et al.
Here we will show how a family of metastatic models with 1D or 2D struc-
turing variables, based on the Iwata model, can be reformulated into an
integral equation counterpart, a Volterra equation of convolution type, for
which a rich numerical and analytical theory exists. Furthermore, we will
point out the potential of this reformulation by addressing questions com-
ing up in the modelling of metastatic tumour growth. We will show how
this approach permits to reduce the computational cost of the numerical
resolution and to prove structural identifiability.

1 Introduction

The organism-scale nature of cancer is a major challenge for clinical oncology.
As long as the disease is spatially confined, it can often be cured by a local in-
tervention, but once a cancer metastasises, the prognostic deteriorates rapidly.
Another major difficulty is that small metastases are often invisible on medical
images, such that the metastatic state of a patient is only known with certainty
once the metastatic growth has already advanced. A better knowledge of a pa-
tient’s metastatic state therefore has a major clinical importance, permitting,
for example, a more targeted drug administration.

Approaches combining biomedical studies with mathematical modelling have
recently been more and more recognised as powerful tools driving preclinical
and clinical cancer research. For the description of metastatic growth, mathe-
matical models have a potential to estimate the metastatic state in situations



where it cannot be seen on medical images. Ultimately, based on biomarker
information, a set of model parameters could be determined for each patient
to predict the metastatic state and evolution in an individual manner. Being
recognised as a key step in the evolution of cancer, metastatic emission and
growth has been modelled by different techniques, covering phenomenological
and mechanistic, deterministic and stochastic models. For a recent overview on
modelling of the metastatic process, we refer to the review by Scott et al. [24].
For the biology of metastasis, the reviews by Gupta and Massagué [11] and by
Chaffer and Weinberg [9] are excellent reading.

As a preliminary validation step of a mathematical model, the model dynamics
has to be able to reproduce the metastatic growth in preclinical experiments.
Typically, the statistical parameter estimation needed for this validation step
requires a large number of model simulations. Therefore, efficient model simula-
tion is fundamental, which makes structurally simple phenomenological models
particularly suitable for this type of model validation.

The so-called McKendrick/Von Foerster equation, introduced independently by
McKendrick [21] and 30 years later by Von Foerster [27], is a partial differential
equation (PDE) for the description of the evolution of an age-structured pop-
ulation with a non-local boundary condition. Since then, the McKendrick/Von
Foerster equation has been taken up, analysed and extended in numerous publi-
cations. We refer to a monograph by Perthame [22] containing a mathematical
analysis of structured population models including the McKendrick/Von Foer-
ster equation and extensions thereof.

A particular variant of the McKendrick/Von Foerster equation has been intro-
duced by Iwata et al. [19] to model metastatic growth. The ITwata model has
been shown to describe the metastatic growth dynamics visible on CT scans of
a patient attained by a metastatic hepatocellular carcinoma very accurately. It
has further been shown that the model can be calibrated to reproduce the risk
of a metastatic disease given a certain primary tumour size [3].

In a work by Barbolosi et al. [2], the model has been extended to include the
effect of a chemotherapy and an efficient numeric resolution scheme has been
proposed. Another important model extension is due to Benzekry [4, 6], who
established the theory for a model version featuring a two-dimensional struc-
turing variable in order to take a combined chemotherapy/antiangiogenic ther-
apy into account. Finally, a model formulation distinguishing between different
metastatic generations was discussed by Devys et al. [10].

The numerical resolution of these models is not without difficulties: several
authors have described problems arising when using typical PDE schemes due
to large scale differences in model dynamics for biologically relevant parame-
ters [2, 10, 6]. Furthermore, it comes at a considerable computational cost,
particularly in the 2D case. Using methods reported in the literature, the com-
putational cost quickly becomes limiting in statistical parameter estimation,
where a large number of model simulations is needed. This obstacle has been
emphasised at several occasions [17, 25].

In this article, we will present a model reformulation into Volterra integral
equations, which have been thoroughly studied since the beginning of the 20th



century [20]. This reformulation will permit a considerable acceleration and
improved accuracy of the numerical model resolution because there exists an
ample variety of techniques for the efficient resolution of the Volterra integral
equations of convolution type (see, for example, the review by Baker [1]). The
basic technique used for this reformulation has already been described by Ianelli
[18], although only in the 1D age-structured case for the number of metastases.
In the case of size-structured models or in 2D, a change of variables used by
Benzekry [6] could be described as the first step of the reformulation into a
Volterra equation. To the best of the author’s knowledge, a general framework
covering 2D structuring variables and for arbitrary observables has not been
proposed yet. Also, the advantage of the reformulation in terms of a more ef-
ficient numerical resolution of the PDE model has not been described so far.
Indeed, whenever the numerical resolution of the Iwata model is discussed in
the literature, the proposed methods are based on the PDE formulation of the
model [2, 10, 6].

Outline. The article is structured as follows. In Chapter 2, the 1D and 2D
metastatic models are presented, as well as the biological observables, which
are not the metastatic density function itself but rather weighted integrals of
this density. Furthermore, the characteristic or semi-Lagrangian scheme is in-
troduced, which is used by Barbolosi et al. ([2] and [26]) for the numerical
resolution of these models. In Chapter 3, the 1D and 2D models are refor-
mulated into Volterra integral equations and the numerical resolution of the
reformulated model is sketched. In a particular case of the 1D model, a result
on structural identifiability is obtained. In Chapter 4, the numerical resolution
methods based on the PDE and on the Volterra integral equation are compared
in terms of efficiency. First, in a theoretical part, we show heuristically how
the numerical resolution is improved in case of the integral equation. Then,
numerical results are presented for the 1D and 2D models comparing the model
performances. In Chapter 5, extensions (non-zero initial data, Dirac-type ob-
servable) and limitations (non-autonomous growth rates) of the reformulation
are discussed.

Note that this article is not meant as an in-depth discussion of the advantages
and drawbacks of the modelling approach. In a recent work [16], the techniques
described in this article are used for model building based on preclinical data
and the adequacy of the modelling approach is discussed in detail.

2 The metastatic models formulated as PDE

2.1 The 1D metastatic model
2.1.1 Model description

Iwata et al. [19] introduced a model for metastatic growth, describing the evo-
lution of metastases at the organism-scale by means of a structured population
equation: Primary tumour growth is described by an ODE model x; = g(zp)
(Eq. 1), which is typically a function g(x) = zh(x) with decreasing h, such as



the Gompertz function g(x) = azlog(b/x). Metastatic growth is described by a
transport equation: a density function “is transported in size” at rate g (Eq. 2).
Metastatic emission is modelled by a non-linear boundary condition (Eq. 3):
both primary tumour and metastases emit metastases at a rate $ depending on
their size. It is supposed that newborn metastases are monocellular. It is further
assumed that no metastases are present at time ¢ = 0 (Eq. 4). For a schematic
overview of the mechanisms represented in the model, see also Figure 1, and for
model derivation, see [19].

zp(t) = g(xp(t)), 2p(0) = o, t € [0,400), (1)
Op(x,t) + Ox[g(x)p(x, t)] = 0, (z,t) € (1,0) x (0,+00),  (2)
b
g(Mp(1,t) = Blxp(t —|—/B oz, t)d te (0,00), (3)
p(x,0) =0, xe[lb]. (4)
T=0 T=1 T=2
Primary tumour | o - . — - ‘
] Tl - \::\::: °
S )
Metastases % e .
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Figure 1: Schematic representation of the main phenomena in model (1-4).
Solid lines represent growth at rate g(x) and dashed lines represent emission
at rate B(x). At time T = 0, only the primary tumour is present and consists
of one cell. At time T = 1, the primary tumour has grown and has emitted a
metastasis which is born with initial size o = 1. At time T = 2, the primary
tumour has grown further and now emits metastases at a rate faster than at
T = 1 (the rate 5(x) is increasing in x). Also, the metastasis that has been
created before T'= 2 has grown and emits metastases itself.

Iwata et al. used clinical data from a patient afflicted with a hepatocellular
carcinoma to estimate the parameters in the following parametrised model:

B(x) = mz®. The emission rate is supposed to be proportional to a power of
the number of cells.

g(z) = axlog(b/x). Primary and secondary tumour growth is modelled by the
same Gompertz function.

zp(0) = 1. The primary tumour is initiated from a single cell.



The hypothesis that primary and secondary tumours follow the same growth
dynamics can be attributed to the fact that both primary tumour and metas-
tases are localised in the same organ in the clinical case used by Iwata et al. ,
but it might be unreasonable in other scenarios. For an animal model with
xenografted tumour cells, the assumption z,(0) = 1 should also be revised.
These assumptions can easily be dropped, however (see Remark 1 for the gen-
eral framework of the analysis).

It has further been shown by Barbolosi et al. [3] that the model can be cali-
brated to reproduce the results of a clinical study on breast cancer relating the
risk of a metastatic disease to the primary tumour size.

The Iwata model has been taken up and analysed or extended in a consider-
able number of publications. Notably, a thorough mathematical analysis of the
model, including a numeric resolution scheme and an extension that permits
to model the action of a chemotherapy, has been performed by Barbolosi et
al. [2]. The main difference in the model extension for therapeutic action is
a non-autonomous growth function g(x,t). We will discuss the reformulation
technique in this case in Chapter 5.

Both the analysis and the numerical resolution of the model make extensive use
of the notion of characteristic curves, which are the solutions Y (¢;tg, o) of

dy

E(t;to,xo) = g(Y(t;to,0)), Y(to;to, o) = xo. (5)

We will come back to this issue when discussing the numerical resolution of
Egs. (1-4). Among the characteristic curves, the curve

X(t):=Y(t0,1) (6)

has a particular role because it separates the characteristics coming from the
boundary (x = 1) from those coming from the initial condition (¢ = 0).

Remark 1 (General setting). The reformulation proposed in this article can be
performed for the more general model

Duplt) + Dulg(x)pla )] = 0,
b
g(p(1,6) = S(t) + / B(x)p(z, t)dr, (7)

p(x,0) = ®(z),

assuming S € C*([0,T]), ® € C*([1,b]) with ®(b) = 0, g € C*([1,b]) positive
with g(b) = 0. This setting notably covers the case of different growth and
emission rates of primary and second tumours with S(t) = B,(xp), where the
primary tumour emission function B, can be different from 8 and the primary
tumour growth can be modelled by a law other than (1).

In Chapters 2 through 4, the particular case (1-4) is discussed for an easier
presentation. In Chapter 5 we will discuss how the reformulation can be done
in the general case (7).



Remark 2 (Biological observables in the 1D model). In many cases, the quan-
tity of interest is not the metastatic density p, but rather a biological observable.
This is particularly the case when the model is used to confront predictions
to preclinical or clinical data. These observables can generally be written as
weighted integrals of the metastatic density:

b
Fyt) = [ fapte.0)de (8)

Let us give some examples of observables written in this way:
Total number of metastases. f(z) =1

Cumulative number of metastases. f(z) = xz>c(z). In Iwata et al. [19],
parameters are estimated from what they called the cumulative number of
metastases, that is, the number of metastases greater than a certain size

¢ (Fy(t) = [, p(a,t)da).

Metastatic mass. f(z) = x. The metastatic mass is the total biomass of all
the metastases put together. Along with the number of metastases, it is
the main observable available in quantitative imaging.

Rate of metastatic birth. “f(z) = §1(x)”. Although only formally written
in the form (8), the rate of metastatic birth can also be formulated as
the solution of a Volterra integral equation (see Chapter 5 for a rigorous
discussion of this observable). The rate of metastatic birth is not a real
biological observable, but it can be used to compute the whole metastatic
density function, which could be of interest in theoretical studies.

Remark 3 (Regularity of solutions). In general, Egs. (7) only have a weak
solution p € C([0,T], L*(1,b)). It solves Egs. (7) in a classical sense only if the
following compatibility condition between the initial condition and the boundary
condition is satisfied (see Barbolosi et al. [2]):

b
g(1)®(1) = 5(0) + / B(x)®(z)dz. (9)

The reformulations in the following section are to be understood as follows.
The calculations are performed in a regular setting of strong solutions, for ap-
prozimated source terms Sy, satisfying the compatibility condition, to obtain the
integral equation for an approximate observable F}. Then, passing to the limit
Sn — S, the integral equation is obtained for the observable Fy that we are
interested in. Because of the structure of Fy as an integral of p weighted with a
L*>®-function, the weak L'-convergence p, — p that has been shown by Barbolosi
et al. [2] is sufficient.



2.1.2 Numerical resolution of the 1D model

Typical numerical schemes for hyperbolic PDEs, such as the upwind-scheme,
perform badly in solving Eqgs. (1-4). This is mainly due to the large scale differ-
ences coming up in the dynamics of the model when taking biologically relevant
parameters. With the model parameters that Iwata et al. [19] have estimated
from clinical data, the sizes of newly emitted metastases and that of early metas-
tases differ in up to 10 orders of magnitude, making an uniform discretisation
of the metastatic size irrealistic. One could resort to high-order schemes with a
logarithmic size discretisation, but they are still time-consuming in model res-
olution.

The characteristic scheme, which has been proposed by Barbolosi et al. [2]
for the resolution of Eqs. (1-4), overcomes these difficulties and permits a faster
resolution. The starting point of this scheme is the fundamental property of the
transport equation, a conservation relation along the characteristic curves (5):

d

o (9(Y (0, 20))p(Y (¢ t0, 70), 1)) = 0. (10)

While the time interval [0, T is uniformly discretised (¢, = %), the size variable
is now discretised according to the characteristic curve (6): x, = X(t,). Note
that since (5) is autonomous,

Y(tn;ti,xj) = X(tn—ivj)-

This discretisation allows to exploit the conservation relation (10) for the cal-
culation of an approximation p;  of p(z;,tx) because

g(ﬁﬂi)ﬂi,k = 9($i—1)ﬂi—1,k_1
holds. The full scheme is given by

Pik = %pi—l,k—l for k > i >0,
9(D)por = Blap(tr)) + QUB(x:)pik)it,) for k>0, (11)
pik =0 for k < i.

The second line comes from the fact that we assumed a zero initial condition.
The integral quadrature could be a rectangle or a trapezoidal rule. The observ-
able is then calculated as

Fr(te) = Q((f () pik)ivy)-

The characteristic scheme only involves an approximation in the integral quadra-
ture — along the characteristic curves, it is exact.

2.2 Metastatic generations in the 1D model

In model (1-4), a generational structure is implicitly contained: the metastatic

o0
density function p can be decomposed into a sum > p*, where p° denotes the
k=0



metastases emitted directly by the primary tumour, p! the metastases emitted
from the metastases emitted from the primary tumour, et cetera. In mathemat-
ical terms, the metastatic generation p° is solution of

o 0w, 0) + - lo() . 1)] =0,

g(D)p(L,1) = Blay(1)), (12)
p°(-,0) = 0.

and for k > 0, p* is solution of
& M) + A lg) )] = 0,
b

9010 = [ B)t (ot (13)
p"(-,0) =0

Analytical and numerical aspects of metastatic generations in the PDE model
have been discussed by Devys et al. [10]. An important point to note is that
different generations arise at different times. Whereas p ~ p" for small times,
the other metastatic generations appear one after another for bigger times, and
the asymptotic behaviour t_l)i+moo p(+,t) is determined by all generations together.

For small and medium observation times, however, a very close approximation of
the full model is obtained when taking only the first few metastatic generations
into account.

2.3 The 2D metastatic model

The two-dimensional metastatic model (14) was introduced by Benzekry [4]
as an extension of the Iwata model in order to take into account a combined
chemotherapy/antiangiogenic therapy. The particular case studied in that work
was a structure in size and vascular capacity, modelled by an ODE model by
Hahnfeldt et al. [13]. The analysis was performed in a general setting, however.
Other structures, such as two cellular subpopulations (e.g. dividing and non-
dividing cells, based on a model by Gyllenberg and Webb [12]), could also be
modelled in the 2D framework (the case of dividing and nondividing cells will
be considered in [15]).

X, () = G(X,(1), X,(0) =X, with Xy € Q C R?,
Aup(X. 1) 4 AW[G(X)p(X. 1)] = 0 ¥(t, X) € (0,T) x 0,
G(o)p(o,t) = b(X,(t),0) + [b(X,0)p(X,t)dX Vte (0,T), Vo € 0N
p(X,0) =0 ? VX € Q.

(14)



Conditions on G are needed to ensure the existence of solutions (which are
fulfilled for the Hahnfeldt and Gyllenberg-Webb models). To remain as simple
as possible, we will not include the details and refer to Benzekry [5] for that
discussion.
A crucial hypothesis for the analysis of model (14) performed by Benzekry is
that the trait of newly born metastases be independent of that of the tumour
which emitted them:

b(X,0) = N(0)B(X). (15)

Similar to (10), a conservation property along characteristic curves also holds
in the 2D case. In the following, this is stated in an abbreviated way (see
Benzekry [6] for a more detailed version). The characteristic curves are given
by

Y'(t;tg,0) = G(Y (t;t0,0)),
Y(to;th U) =0, (16)

and we will make particular use of X (¢;0) := Y(¢;0,0). The conservation
property is now formulated using the Jacobi determinant Jg of the map & :
(t,0) = X(¢;0). The Jacobi determinant Jg can be characterised as the solution
of

Oy (t,0) = div(G(X (t;0)))Js(t, o),
Jo(to,0) = G - v(0),
and the conservation property is then given by
4
dt

Remark 4 (Biological observables in the 2D model). In the 2D model, the
observables are given by

(p(X(t;0),1)Ja(t, o)) = 0. (17)

Fr(t) = /Q [, y)p(x,y, t)dady.

As in the 1D case, the total number of metastases is given by f(x,y) = 1.
However, in contrast to the 1D model, where the structuring variable is always
the size, the interpretation of other observables Fy(t) in the 2D model will de-
pend on the nature of the structuring variables (z,y). For example, if x is the
size and y is an additional trait of the metastases, the metastatic mass will be
given by f(x,y) = x. On the other hand, if x and y are two complementary
cellular subpopulations (such as dividing and non-dividing cells), the metastatic
mass will be given by f(z,y) = x +y. In the latter case, the total volume of
the subpopulations (f(x,y) = x and f(x,y) =y, respectively) could also be of
interest.

For a detailed presentation of the numerical resolution by the characteristic
scheme in the 2D case, we refer to Benzekry [6].



3 Model reformulations into integral equations

3.1 1D model

3.1.1 Reformulation

In this section, we will present the reformulation of the model (1-4) into a
Volterra integral equation of convolutlon type The reformulation will be done
for the model observables Fy(t fl p(x,t)dz. As previously said, biolog-
ically observable quantities can generally be ertten in this way. Note that in
view of Remark 3, we can obtain the integral equation working with the strong
solutions of the metastatic model.

Theorem 1. Let p be the solution of (1-4), x, the primary tumour size and X
the characteristic curve that solves Eq. 6. Then, the observable Fy(t) defined in
(8) solves the Volterra equation of the second kind of convolution type

Fy(t) = [f(X) * B(xp)](t) + [B(X) * FF] (D). (18)

Remark 5 (Explanation of the convolution structure). If we neglect the metastatic
emission by the metastases themselves (in other words, considering only the first
metastatic generation), only the first term in (18) remains, that is,

Fy(t) = [f(X) % Blap)](D).

Looking at this expression, it can easily be understood why the convolution struc-
ture appears. The metastases are emitted at rate B(xp) and grow at o rate X.
Thus, at time t, a metastasis emitted at time s < t will grow during the time
interval t — s, and the total observable is given by integrating over all possible
emission times, yielding the convolution.

Proof. The first step in reformulating problem (1-4) consists of a change of
variables that will permit to exploit the conservation property (10) by following
back the characteristic curve until the boundary condition. Writing =z = X (s),
dx = X'(s)ds = g(X (s))ds, we have

X(¢)
Fit) = [ fwpletyis = / FX()g(X ()p(X (s), )ds
“0)/ F(X )o(1,t — 5)ds
b
& / FX [ (ap(t — 5)) + / ﬂ(x)p(x,tsm:c] ds

) * (B(wp) + Fp)(t)-

For the observable Fg, (19) yields the following equation:

Fp(t) = B(X) x (B(zp) + Fp)(t)-

(19)

10



This can now be used to obtain (18) for Fy with arbitrary f. Starting from
(19), we calculate

Ff— F(X) * (B(xp) + Fp)
= (X)) * B(zp) + f(X) * [B(X) * (B(2p) + Fp)]
= f(X) * B(zp) + B(X) x Fy.

3.1.2 Application: structural identifiability

As we will see in the following, the previous reformulation will permit an efficient
calculation of the observable quantities. In addition to that, in the particular
case that primary and secondary tumours grow at the same speed, we can also
use it to obtain a structural identifiability result.

Corollary 1 (Structural identifiability). Let x, = X with X defined as in (6).
If f € C* with f(X(0)) # 0, then 3 is identifiable from X and the observable
F¢, that is, there is a unique function B yielding the model observable F.

Proof. The reformulated problem (18) is given by

Fy(t) = [B(X) * (f(X) + Fp)l(D).

This is a Volterra integral equation of the first kind for 5(X). A classical result
(e.g. [20]) states that this equation has a unique solution under the conditions

. Ff € C! with Ff(O) =0
o Fr+ f(X) € C! with [Fy + f(X)](0) # 0.
These conditions hold under the assumptions in the statement of the corollary.
O

3.2 Reformulation for metastatic generations

Egs. (12-13) can also be reformulated into integral equations for the observables.
Let FJ’f = flb f(x)p*(x,t)dr be the observable associated to the k-th metastatic

generation. The previous proof can easily be adapted to show that F]? is given
by
FP(t) = [£(X) * B(zp)](t) (20)

and that for k£ > 1, F;f is given by

FF(t) = [B(X) * Fy (). (21)

11



3.3 Reformulation in the 2D model

Theorem 2. Let p be the solution of the 2D model (14), X,, the primary tumour
size and for given o, and X(-;0) the solution of (16). Then, the observable

Fy(t) = / F(@,y)pla,y, t)ddy

1s solution of the Volterra equation of the second kind of convolution
type

Fy(t) = [O(f) = B(xp)](t) + [¥(B) = Fr(1), (22)
where

U(h)(t) := - N(o)h(X(t;0))do (23)

Proof. We recall the conservation property (17) of the two-dimensional trans-

port equation:
d

dt
Using the change of variables X = X(s;0), dX = Jg(X(s))ds, we have

(p(X (t;0),t)Js(t;0)) = 0.

Fy(t) = / [ HX () s )X (i), )
(17 / , f(X(r;0))(G -v)(o)p(o,t — T)dodT
0 onN

(1:4)/ . f(X(r;0))N (o) ([3(Xp(t—7-))+/QB(X)p(X,t—T)dX> dodr

0
t
= [ (505 + [ B00008 = ax ) ar
0 Q
= U(f) * (B(Xp) + Fp) (1),
(24)
with U(f) defined as in (23). Eq. 24 yields (22) for Fjg and this can be used to
obtain the general result exactly as in the 1D case. O

Remark 6 (Independent traits of newborn metastases). Note that hypothe-
sis (15) is also crucial for the model reformulation into a Volterra integral equa-
tion of convolution type.

4  Comparing the efficiency of the PDE-based
and the IE-based resolution schemes

In this section, we will show that the calculation of the observables of models (1-
4), (12-13) and (14) is much more efficient when starting from the reformulation

into the corresponding integral equations (18), (20-21) and (22). Generally
speaking, the numerical gain is due to four factors:

12



1. Better constants in error estimates (generational and full models),

2. High-order quadrature by Newton-Cotes formulas is possible for the IE-
based but not for the PDE-based formulation; the discretisation steps
of the latter come from the characteristic scheme and are therefore non-
uniform (generational model),

3. Availability of additional efficient numerical integration methods for Volterra
integral equations (full model),

4. Use of the Fast Fourier Transform in the parallel computation of convo-
lutions (generational and full models).

In the following, these factors will be illustrated numerically. A more detailed,
heuristic discussion of the constants in error estimates can be found in Ap-
pendix A. It should be mentioned that points (1) and (2) can also be achieved
by transforming the size-structured model into an age-structured one. This
was done by Benzekry [6], although the numerical advantages have not been
described. This transformation can actually be seen as the first step in the
reformulation as a Volterra integral equation.

4.1 Numerical results, 1D

Setting In this section, we will compare the two 1D model formulations nu-
merically in two scenarios:

A clinical scenario Iwata et al. [19] estimated parameters in model (1-4) from
a clinical case with the parametrisation explained in Section 2:

a=286-10"2b=73-10" 20 =1,m=5.3-10"% a = 0.663.

The observation timescale typically being several years, we will take an
observation timepoint 1000 days after primary tumour inception.

A preclinical scenario In a murine model with xenografted tumour cells, the
parameters have a different order of magnitude. We take

a=008b=6-10%120=5-10",m =10"%a=2/3

(based on unpublished data which will be discussed in [15]). A typical ob-
servation timescale is of 40-80 days. We will take an observation timepoint
64 days after primary tumour xenograft.

We will compare the computation of the metastatic mass M (t) = flb zp(z,t)de.
Note that if one wants to calculate several observables at the same time, the
technique described in Section 5 permits to calculate the whole metastatic den-
sity p(-,T) efficiently, which can then be used to calculate any observable. In
view of statistical parameter estimation as an application, we have chosen a
single observation timepoint rather than the whole discrete grid because the
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number of observations per individual would be expected to be low.

To illustrate the differences between the two model formulations more clearly,
the layers of model complexity are added one at a time. Note that due to rea-
sons that will be explained in the following, some tests are not presented in
every scenario.

Primary tumour emission Let us start with the simplest model formula-
tion, that is, metastatic emission by the primary tumour only (Egs. 12 and 20).
We will compare first, second and fourth order quadrature formula for the two
model formulations. Since an exact calculation of the characteristic curves is
possible for the Gompertz growth model, the convergence order is determined by
the quadrature order. In a more general case, the order of convergence would
also depend on the order of the characteristics calculation. The fourth-order
quadrature of the IE version is done with a Newton-Cotes formula (Simpson’s
rule). The size discretisation of the PDE version depending on the non-uniform
discretisation of the characteristic scheme, a fourth-order PDE-based quadra-
ture must be done differently. With “Gaussian” weights calculated from the
discrete points x; in a way that the quadrature is exact for polynomes up to
third order, a fourth order quadrature of the metastatic mass can be achieved.
The number of points needed for fourth order quadrature is three in the IE
version and four in the PDE version.

Fourth order quadrature is not shown in the clinical scenario because the large
scale differences result in numerical instabilities of the PDE-based method when
determining the Gaussian weights, which degrades convergence and makes com-
putation times uncomparable. Relative errors are compared in Figure 2, and
computation times in Figure 3.

W T IE order 1 10
0 PDE order 1
_, | = IE order 2 Le®
107} -+ PDEOrderg .o 1
o o . 10°
4 o -
g 10 - g
E 6 E 10
g0 g0
% N g —e— |E order 1
x 10 x 0 PDE order 1
10" | —— IE order 2
109 ‘4 PDE order 2
—>— |E order 4
> PDE order 4
10_12 L L 10_20 L L
10° 10" 10° 10 10" 10° 10° 10" 10’
Time step (days) Time step (days)

Figure 2: Relative errors for calculation of the metastatic mass in the one-
generational model. Left: clinical scenario, right: preclinical scenario. For both
scenarios and any order of quadrature, error constants are considerably better
for the IE-based methods.
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Figure 3: Calculation times for the metastatic mass in the one-generational
model. Left: clinical scenario, right: preclinical scenario. For first and second
order quadrature, calculation times are slightly inferior for the IE-based models
(approz. 20 % less). Calculation times for fourth order quadrature are distinct
by several orders of magnitude because the PDE-based method involves the com-
putation of Gaussian weights, which makes it structurally much more complex
than the corresponding IE-based method.

Metastatic generations We will now compare the two approaches in a two-
generation setting (Egs. (12-13) and (20-21) with & = 1.). From this point
onwards, a considerable gain in calculation time can be obtained by a FFT-based
calculation of the IE-based metastatic mass. Although we are only interested
in calculating the observable at one timepoint, the previous generation has to
be evaluated at all timepoints prior to the observation time, hence the interest
of a fast parallel convolution calculation by FFT.

Errors are compared in Figure 4, and calculation times in Figure 5. Due to the
high computational cost of the Gaussian weights, the fourth-order PDE-based
quadrature is unfeasible in both scenarios and has been omitted. However, an
efficient fourth order IE-based calculation is possible, and even though it is not
displayed here as it lacks its PDE counterpart, it will be used in a later section
when discussing the convergence of the generational model to the full model.

Full metastatic model The full metastatic model formulations are given by
Egs. (1-4) and (18), respectively. A major advantage of the IE formulation of the
full model is that an extension of the classical Runge-Kutta theory to Volterra
integral equations can be used for resolution (see [23] and [8]). In addition to
that, efficient techniques have been developed to exploit the FFT for the resolu-
tion of Volterra integral equations of convolution type. As an example, Hairer
et al. [14] describe an algorithm computing the solution of a Volterra integral
equation of convolution type discretised by an extended Runge-Kutta method
in O(N log(N)?) complexity. In our comparison of the two model formulations,
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Figure 4: Relative errors for the computation of the metastatic mass in the two-
generational model. Left: clinical scenario, right: preclinical scenario. Again,
for both scenarios and any order of quadrature, error constants are considerably
better for the IE-based methods.
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Figure 5: Calculation times for the metastatic mass in the two-generational
model. Left: clinical scenario, right: preclinical scenario. The FFT-based calcu-
lation of the IE-based metastatic mass permits a resolution with a O(N log(N)),
opposed to a O(N?) complexity of the PDE-based resolution. Note that the PDE-
based resolution of the two-generational model is as complex as that of the full
model. The PDE-based two-generational metastatic mass is only computed for
comparison with the IE-based version.
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this algorithm has be used for the resolution of models (18) and (22). It should
be noted that this method has been chosen for illustrative purposes only, and
that we do not suggest that it is the best possible way of solving the reformu-
lated problem. An extensive discussion of the different numerical methods for
the resolution of Volterra integral equations of convolution type is beyond the
scope of this work.

Relative errors are compared in Figure 6, and computation times are the object
of Figure 7).
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Figure 6: Relative errors for calculation of the metastatic mass in the full model.
Left: clinical scenario, right: preclinical scenario. For both scenarios. error
constants are considerably better for the IE-based methods.
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Figure 7: Calculation times for the metastatic mass in the full model. Left:
clinical scenario, right: preclinical scenario. For intermediate and small dis-
cretisation steps, the IE-based resolution is more time efficient (O(N log(N)?)
complezity) than the PDE-based resolution (O(N?) complezity).
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Convergence of metastatic generations to the full model Depending
on the timescale, the generational model can even be efficient for approximation
of the full metastatic model. This is due to two factors:

e The calculation of a small number of metastatic generations is faster than
the resolution of the full model,

e The error constants appearing in the generational models are better than
those appearing in the full model. This is due to the fact that the full
model method is explicit while the generational model uses previous gen-
erations at all times.

For a given precision of the calculation to be attained, and up to a certain limit
observation time, the generational model will therefore be the most efficient way
to approximate the full model (see Table 1).

Tobs #G tgen tfull gain Tobs #G tgen tfull ga‘in
1 years 2 0.01 | 0.5 50 2 weeks 2 0.001 | 0.02 | 23
2 years 2 0.02 | 1.1 50 4 weeks 3 0.002 | 0.04 | 18
3 years 3 0.1 2.1 20 6 weeks 4 0.007 | 0.07 | 12
4 years 4 0.2 2.1 10 8 weeks 5 0.01 | 0.07 5
5 years 4 0.2 2.1 10 10 weeks 5 0.03 | 0.13 5
Table 1: Left: clinical parameters, right:  preclinical parameters.

Tops =0bservation time, #G=minimal number of generations needed for attain-
ing the relative precision 1075, t 4., =calculation time of #G-generational model

in seconds, tf,=calculation time of full model in seconds, gain = ttf—e: Fourth
order methods have been used to solve the generational and full models. Time
discretisation steps have been chosen such that the quadrature errors are near
machine error (much smaller than 1078). It is thus the difference between gen-
erational and full models that is compared to the precision 1078, and not the

approxrimation errors.

Remark 7. The high-order approximation of the full model by metastatic gen-
erations has practical limitations. Taking Simpson’s rule as an example, the
fourth-order calculation of generation k on a grid with size At requires that
generation k — 1 be evaluated on a grid with size %. Thus, in a k-generational
model, the very first generation has to be evaluated on a grid with size QkA—f‘l,
which will only be precise up to machine precision if k is large. This error prop-
agates and deteriorates the precision of the calculation of gemeration k. This

leads to an decrease of the attainable precision by generational approzimation.

4.2 Numerical results, 2D

Preclinical setting In this section, we will compare the two 2D model for-
mulations numerically in the following preclinical scenario, with parameters in
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g and f taken from Benzekry et al. [7]. Growth is modelled by the Hahnfeldt
model [13] describing the evolution of tumour size x and carrying capacity k:

o)

with the parametrisation @ = 0.154,¢ = 16.7,d = 0.0717,2,(0) = 0.1, 2,,(0) =
107%,k,(0) = 200, k,,(0) = 1. A rectangular domain Q = (0,b) x (0,b),b =
(¢/d)?/?, can be chosen. Note that size is measured in mm? and not in cell num-
bers. For example, metastases are born with size 107, roughly corresponding
to the dimension of one cell. Emission depends only on size and not on carrying
capacity, that is, 8(x, k) = mz® with m = 0.0229, « = 2/3. Note that there is
an indirect link between carrying capacity and emission through the fact that
tumour size is driven towards the carrying capacity in the Hahnfeldt Model.
Benzekry et al. supposed that the initial carrying capacity is the same for all
metastases (N (o) = 0y, (0y). However, in order to have a true 2D model as a
benchmark for the numerical methods, we will assume that metastases are born
with a random initial carrying capacity between 0.8 and 1.2 (that is, according

to N(o) = 2.5 x[0.8,1.2](7))-

Results for the full 2D model A similar numerical gain as in the 1D model
is obtained in the 2D case. We will therefore restrict ourselves to describe the
major difference only appearing in the 2D model. Let us suppose that we discre-
tise Egs. 14 and Eq. 22 with N steps in time and K steps on the boundary. In
the PDE method, a 2D integral (N - K complexity) has to be computed at each
timepoint, which yields a total complexity of O(N?- K). In contrast to this, a
2D quadrature with O(NN - K) complexity is only needed for the calculation
of the source term and the kernel of the Volterra equation. The Volterra
convolution equation is then solved in O(N log(N)?). In the IE formulation,
the two processes that were entangled in the PDE formulation are decoupled,
yielding in total a O(N - K + N log(N)?) complexity. See Figure 8 for compu-
tation times in the previously described setting. Note that the characteristic
curves of the Hahnfeldt growth model have to be approximated numerically.
Both the calculation time of the 2D quadrature and the error constants depend
on the particular method used for this computation, but the gain in structural
complexity does not depend on this choice.

5 Extensions and limitations of the reformula-
tion

In this chapter, we will explore the degree of generality of the method discussed
in the previous chapters. We will show that the same kind of reformulation can
be performed for a non-zero initial condition and for a Dirac-type observable.
However, if the action of a treatment is modelled (time-dependence of the growth
rate g), the Volterra equation obtained is not of convolution type.
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Figure 8: 2D model calculation times of the metastatic mass in the previously
described scenario. The boundary discretisation step ds has been set to ds =
C - dt, where dt is the time discretisation step and C = 0.1. The characteristic
curves have been approximated numerically by a first order method. In this
setting, the PDE-based resolution has a O(N?3) complexity, whereas the IE-based
resolution only has a O(N?) complexity.
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5.1 Reformulation for a non-zero initial condition

Lemma 1. Let p be the solution of (7). Then, the observable Fy is solution of
the Volterra integral equation of convolution type

Ff:\I/f-i-f(X)*(S—l—\I/B)—ﬁ(X)*‘I’f—l—ﬁ(X)*Ff, (25)

where Wy, (t) := flb WX (X~ Y(x) +t))®(z)da.

Proof. We split the integral into two parts:

X(t) b
Rt = [ raptein [ S

In the first term, which we will denote FJ% (t), the characteristics come from the
boundary [0, ¢]. Therefore, the same manipulation as in Theorem 1 can be done
here, yielding

Fy(t) = [f(X) = (S + Fp)](t).
The characteristics in the second term, denoted F J?(t), come from the initial
condition:

+oo
F(t) :/t F(X(5))g(X(s))p(X(s), t)ds

“+oo
= /O (X (s 41)g(X(s))p(X(s),0)ds = Wy (t).
Summing up the two terms, we obtain

Fy(t) = [f(X) * (S + Fp)l(t) + s (2).

The technique used in the proof of Theorems 1 and 2 permits to conclude. [J

5.2 Efficient calculation of the metastatic density function
p

Up to now, the focus has been on biological observables of the form Fj(t) =

flb f(x)p(z,t)dx. However, the reformulation can also be used for a more effi-
cient calculation of the whole metastatic density p(-,T") for a fixed time T
First of all, Remark 3 will not be sufficient to justify the reasoning that will
follow. We will need a stronger regularity result, which is given in the Ap-
pendix. That being said, the Volterra integral equation established for the rate
of metastatic birth Fy;.¢n(t) := g(1)p(1,t) is given by

Fyirin(t) = B(xp(t)) + (B(X) * Friren)(t)

which can be solved on [0,T] with efficient FFT-based methods as shown in
Chapter 4. The improved regularity result then permits to follow the charac-
teristics using the conservation property (10) to calculate p(-, T).
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5.3 No convolution equation in the non-autonomous case

If the growth term g depends on the time, as would be the case for modelling a
therapy (see [26] in 1D and [5] in 2D), it is still possible to formulate Fj as the
solution of a Volterra integral equation. The conservation relation changes to

d

ap(ta X(t;to, o) = p(t, X (t;to,10))02g(t, X (510, z0))

and therefore
t
plt X (tt0,20) = oo o) 50 (= [ 0966, X sian.t)).
to

We perform the reformulation as previously:

t
Ff(t)Z/O F(X(t:5,1))g(s, X (85, 1))p(s, 1)e Jo oo XTo D7 g

_ /0 k(t, 5)(S(s) + Fa(s))ds,

denoting
1
9(s.1)

For f = (3, this yields the Volterra integral equation

k(t,s) = F(X(t5,1)g(s, X (£ 5,1))e Js 22o(rX(ms,1))dr

Fs(t) :/0 k(t,s)(S(s) + Fp(s))ds.

Unfortunately, the equation is not of convolution type anymore, and for general
f, Fy cannot be written in this way.

Note that while an FFT-based calculation of Fjg is not possible if the Volterra in-
tegral equation is not of convolution type, efficient quadrature techniques (such
as extended Runge-Kutta methods, see Section 4) can be applied to Volterra
integral equations with general kernels. A comparison of the numerical perfor-
mance of the IE versus the PDE formulation in case of non-autonomous growth
rates could yield interesting insights but is beyond the scope of this article.

6 Conclusion

In this article, we have proposed a model reformulation applicable to a family
of 1D and 2D metastatic growth models, which has been shown to improve the
numerical resolution substantially.

In the literature, the metastatic models considered in this work have been de-
scribed as PDE for a metastatic density function. However, the quantities of
interest are often not the density itself but rather biologically relevant quan-
tities such as the number of metastases or the metastatic mass, which can be
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written as weighted integrals of the metastatic density. To begin with, we have
formulated these model observables as solutions of Volterra integral equations
of convolution type. Special attention had to be paid to regularity of solutions
and an improved regularity result has been proven. The reformulated model
permitted to tackle an analytical problem, structural identifiability of the 1D
model.

We have then compared the two model versions thoroughly in terms of nu-
merical resolution efficiency. Three scenarios with parameters estimated from
clinical and preclinical data have been taken as model benchmarks. Apart from
the full model, a generational formulation has been discussed. For all test cases
and models versions, the resolution of the reformulated model has been shown
to be both more precise and faster. There are four reasons for this numerical
gain, namely better error constants, better quadrature formulas, availability of
additional efficient numerical integration methods, and use of the Fast Fourier
Transform. The fact that much better error constants are obtained is far from
trivial. We have therefore discussed this result heuristically in a more general
framework, characteristic of tumour growth dynamics.

An accelerated resolution of the metastatic growth models has a direct applica-
tion in statistical parameter estimation, where large numbers of model evalua-
tions are needed. In this framework, the IE-based model resolution can make
statistical approaches feasible which would not be possible in the PDE-based
model.

The performance of generational models has been a major focus in this arti-
cle. Apart from the approximation of the full model, generational models will
in many cases be the most efficient way of estimating parameters from data.
Typically, only the first few metastatic generations (i.e., one or two) will have
an impact on the parameter estimates. Roughly speaking, this is because the
model error (full vs. generational) soon becomes negligible compared to the
measurement error.

The crucial hypothesis for obtaining a convolution structure in the Volterra
integral equation is an autonomous metastatic growth rate g. When estimat-
ing parameters in a treatment scenario, this assumption will no longer hold.
We have shown that a non-convolution type Volterra integral equation can be
obtained for the observable Fj, which can then be used to calculate arbitrary
observables. Although the numerical gain will certainly be less prominent than
in the autonomous case, the availability of efficient numerical methods for the
reformulated model, such as extended Runge-Kutta schemes, might in itself
improve the numerical resolution. Future works will clarify this question.
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A Heuristic explanation of the improvement in
error constants in the IE-based model reso-
lution

In this section, we will discuss the observation that the error constants obtained
in the IE-based model resolution are much better than those of the PDE-based
model resolution (the first of four factors evoked at the beginning of Section 4).
We will take a more general framework, characteristic of tumour growth dy-
namics, and use heuristic arguments.

We will considering the two (explicit) formulations of the metastatic mass in the
one-generation metastatic model (Egs. (12) and (20), respectively) calculated
with a rectangle rule:

Mip(t,) = AtZﬂ(scp@n_i))X(ti),

X(t:) — X (tiz1)

i=1 9(X(t:)) Blwp(tn—i)) X (t:)-

The first order error terms are given by

|(M — Mrg)(tn)| = %Ixnﬁ(%(@)) — Blap(ta))l,

(O = Mrg) ()] = 5

znfB(2p(0)) = Blap(tn)) +/Oln 9'(X(5)) X (5)B(ap(tn — 5))ds| .

These error terms can be calculated explicitly if x,(t) = X (¢) = xoe® and
B(x) = ma?/3, yielding:
M (ta) = Mppp(ta)] = 2\M(t,) — Myp(t,). (26)

Also, in the case z,(t) = X (t) = (1 4 at)? and B(x) = max?/3, the asymptotical
result

|M(tn) = Mppp(ta)| = cty/*| M (tn) — Mig(ta)| (27)

can be obtained.

As tumour growth model as the Gompertz model exhibit an exponential growth
phase at the beginning, (26) gives a good description of the errors for short time
intervals. Tumour growth subsequently decelerates, which leads to an increase
in the PDE error term that is superior to that of the IE error term, much like
in (27).

B Regularity of the solution of Eqgs. (1-4).

Lemma 2 (Regularity of p). Let T > 0, S € C*([0,7]), ® € C([1,b]) with
®(b) = 0 and g € C*([1,b]) positive and with g(b) = 0. Then, the unique weak
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solution p € C([0,T], L*(1,b)) of (7) is continuously differentiable on the two
domains separated by the solution of (6), that is, on

Ot = {(z,0) € [Lb) x [0,T) : & < X (1)},
O = () € [L) x [0,T) : x> X ()}

Proof. We will proceed along the lines of the proof of existence of strong so-
lutions by Barbolosi et al. [2]. The main difficulty arising in Lemma 2 is that
condition (9) is not assumed, leading to a discontinuity of p along X. Thus, the
solution p has to be constructed on both subdomains Q% and Q~ separately.
Let us first consider the case ® = 0 and define Q (71, 72) := QTN (1,b) x (1, 72)
and

X(71,72) = {w c CHQH (1, m)) : g(Dw(1l,7) = S(m1) + X({Tl)ﬁ(y)w(y,n)dy} ,

which, endowed with the C! norm, is a Banach space. Let X := X(0,T;) with
T1 to be determined in the following and let F be the function that maps w € X
on the solution p of

Btp(x,t) + 8x[g(x)p(a:,t)} =0,

X(t)
gMp(Lt) =St + [ plyw(z,t)dz.
As Barbolosi et al. , we will construct a fixed point solution of F by showing
that F : X — X and that for T3 sufficiently small, F is a contraction.
The compatibility condition ¢g(1)F(w)(1,0) = S(0) holds by definition of F(w).
The explicit formulation

X(t—X"Y(z))

Flw)(z,t) = ﬁ (f(t - X" !(z)) +/ By)w(y,t - X_l(x))dy> ;

1

obtained with the conservation property along the characteristics, can be used
to show that F(w) € X and that

[[F(w1) — F(w2)||x < Cr - T1 - [Jwr — wa[x.

Choosing T1 = ﬁ, the contraction property is shown. As in Barbolosi et

al. , for arbitrarily large times a bootstrap argument can be used. The solutions
obtained on the subdomains can be “glued” together into a function g € C1 ().
It can now be shown that
{ pon QT
p =

0Oon Q

is a weak solution of problem (7) by simply integrating by parts on each sub-
domain. Note that no additional term appears on the boundary separating QF
and 2~ because the flux is always parallel to the boundary.
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In the case ® # 0, we use the following argument. On Q~, the solution p can
be written explicitly as
g(X (X (2) — 1))

p(z,t) =

which is a C! function if ® is C'. The integral term appearing in the boundary
condition can now be split into two terms. The part in 27 acts as an additional
(regular) source term, and what remains can be dealt with as previously. O
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