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Component substitution has numerous practical applications and constitutes an active research topic.

This paper proposes to enrich an existing component-based framework—a model with dynamic re-

configurations making the system evolve—with a new reconfiguration operation which "substitutes"

components by other components, and to study its impact on sequences of dynamic reconfigurations.

Firstly, we define substitutability constraints which ensure the component encapsulation while per-

forming reconfigurations by component substitutions. Then, we integrate them into a substitutability-

based simulation to take these substituting reconfigurations into account on sequences of dynamic

reconfigurations. Thirdly, as this new relation being in general undecidable for infinite-state systems,

we propose a semi-algorithm to check it on the fly. Finally, we report on experimentations using the

B tools to show the feasibility of the developed approach, and to illustrate the paper’s proposals on

an example of the HTTP server.

1 Introduction

Dynamic reconfigurations [2, 3, 21] increase the availability and the reliability of component-based sys-

tems by allowing their architecture to evolve at runtime. In this paper, in addition to dynamic evolu-

tion reconfigurations, possibly guided by temporal patterns [12, 20, 11], we consider reconfigurations

bringing into play by component substitutions. These reconfigurations by substitution may change the

model’s behaviour. The questions we are interested in are: How are such model transformations rep-

resented? What aspects of the model’s behaviour can be changed? Can new behaviour be added, can

existing behaviours be replaced or combined with new behaviours?
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Figure 1: Different kinds of reconfigurations

More precisely, in our previous works [12, 20,

11], a component-based framework has been de-

veloped: an component architecture with dynamic

reconfigurations has been defined and shown con-

sistent, a linear temporal pattern logic allowing

expressing properties over sequences of dynamic

reconfigurations has been defined. Component

substitution reconfigurations being motivated by

numerous practical applications, this paper pro-

poses to enrich the existing component-based framework with a notion of component substitutability.

Since the model is formulated as a theory in FOL, this is achieved by introducing a new relation over

components, and a set of logical constraints. Then, the paper presents a notion of simulation between dy-

namic reconfigurable systems wrt. a given component substitution relation, and addresses the checking

of this relation, which is known to be, in general, undecidable.

Figure 1 displays two kinds of considered reconfigurations: Horizontal reconfigurations represent

the dynamic architecture’s evolution whereas vertical substitutions lead to different implementations. As

http://creativecommons.org
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2 Component Substitution through Dynamic Reconfigurations

the model and its implementations must remain consistent through evolution, we study the impact of

reconfigurations by substitution on sequences of dynamic reconfigurations.

The main purpose of the present paper consists in studying the impact of reconfigurations by substi-

tution on sequences of dynamic reconfigurations. To this end, we propose to extend the previous work

in [20] on the verification of the architectural consistency using the B tools by, first, evaluating compo-

nent substitutability and, second, by evaluating sequences of reconfigurations—and, consequently, the

substitutability-based simulation. For this we propose to use the B4 = {⊥,⊥p,⊤p,⊤} truth domain

which is suitable to evaluate the substitution relation on the fly. Using B4 is in line with the work in [11]

on the runtime verification of linear temporal logic properties.

Layout of the paper. In Sect. 2 we recall the main features of the architectural reconfiguration

model introduced in [12, 20] and illustrate them on an example of the HTTP server. In Sect. 3, a

new reconfiguration operation by component substitution is introduced and substitutability constraints

are defined to ensure component encapsulation. In Sect. 4 component substitutability is integrated into a

substitutability-based simulation relation. This relation being undecidable in general, a semi-algorithm

is proposed to evaluate on the fly dynamic reconfiguration sequences and, consequently, the component

substitutability-based simulation. Section 5 explains how to use the B tools for dealing with compo-

nent substitutability through dynamic reconfigurations, and describes experiments on the HTTP server

example. Finally, we conclude in Sect. 6.

2 Background: Architectural Reconfiguration Model

The reconfigurations we consider here make the component-based architecture evolve dynamically. They

are combinations of primitive reconfiguration operations such as instantiation/destruction of components;

addition/removal of components; binding/unbinding of component interfaces; starting/stopping compo-

nents; setting parameter values of components.
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Figure 2: Configurations = architectural elements

and relations

In general, system configuration is the specific

definition of the elements that define or prescribe

what a system is composed of. We define a config-

uration to be a set of architectural elements (com-

ponents, required or provided interfaces and pa-

rameters) together with relations to structure and

to link them, as depicted in Fig. 2 1.

Given a set of configurations C = {c,c1,c2, . . .},
we introduce a set CP of configuration properties

on the architectural elements and the relations be-

tween them. These properties are specified using

first-order logic formulas. The interpretation of functions, relations, and predicates is done according to

basic definitions in [17] and in [11]1. We now define a configuration interpretation function l : C →CP

which gives the largest conjunction of cp ∈CP evaluated to true on c ∈ C 2.

Among all the configuration properties, we consider the architectural consistency constraints CC

which express requirements on component assembly common to all the component architectures. They

allow defining consistent configurations which notably respect the following rules. Their intuition is as

1See Definition 5 in Appendix A
2By definition in [17], this conjunction is in CP.
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follows, together with a formal description for several constraints3:

• a component supplies one provided interface, at least;

• the composite components have no parameter;

• a sub-component must not be a composite including its own parent component;

• two bound interfaces must have the same interface type; they are not supplied by the same com-
ponent, but their containers are sub-components of the same composite;

∀ip ∈ ProvInter f aces,
∀ir ∈ ReqInter f aces

.









Binding(ip) = ir⇒

Inter f aceType(ip) = Inter f aceType(ir)
∧Container(ip) 6=Container(ir)

∧ ∃ c ∈Components.

(

(Container(ip),c) ∈ Parent

∧(Container(ir),c) ∈ Parent

)









• when binding two interfaces, there is a need to ensure that they have not been involved in a delega-

tion yet; similarly, when establishing a delegation link between two interfaces, the specifier must

ensure that they have not been involved in a binding yet;

• a provided (resp. required) interface of a sub-component is delegated to at most one provided

(resp. required) interface of its parent component; the interfaces involved in the delegation must

have the same interface type;

• a component is started only if its mandatory required interfaces are bound or delegated.

Definition 1 (Consistent configuration) Let c = 〈Elem,Rel〉 be a configuration and CC the architec-

tural consistency constraints. The configuration c is consistent, written consistent(c), if l(c)⇒CC.

Let R be a finite set of reconfiguration operations. The possible evolutions of the component archi-

tecture via the reconfiguration operations are defined as a transition system over R.

Definition 2 (Reconfiguration model) The operational semantics of component systems with reconfig-

urations is defined by the labelled transition system S = 〈C,C 0,R,→〉 where C = {c,c1,c2, . . .} is a set

of consistent configurations, C 0⊆C is a set of initial configurations, R is a finite set of reconfigurations,

→⊆ C ×R×C is the reconfiguration relation.

Let us write c
ope
→ c′ when a target configuration c′ is reached from a configuration c by a reconfigu-

ration operation ope ∈R. Given the model S = 〈C,C 0,R,→〉, an evolution path σ (or a path for short)

in S is a (possibly infinite) sequence of configurations c0,c1,c2, . . . such that ∀i≥ 0 . (∃ opei ∈R.(ci
opei
→

ci+1 ∈→)). We write σ(i) to denote the i-th configuration of a path σ . Let Σ denote the set of paths, and

Σ
f (⊆ Σ) the set of finite paths.
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To illustrate our model, let us con-

sider an example of the HTTP server 4.

The architecture of this server is de-

picted in Fig. 3. The RequestReceiver
component reads HTTP requests from

the network and transmits them to the

RequestHandler component. In order

to keep the response time as short as

3The whole definition is available in Appendix B.
4http://fractal.ow2.org/tutorial
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possible, RequestHandler can either use a cache (with the component CacheHandler) or directly

transmit the request to the RequestDispatcher component. The number of requests (load) and the

percentage of similar requests (deviation) are two parameters defined for the RequestHandler compo-

nent. The CacheHandler component is used only if the number of similar HTTP requests is high. The

memorySize for the CacheHandler component depends on the overall load of the server.
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Figure 4: Part of a path of the HTTP server architecture

The validityDuration of

data in the cache also de-

pends on the overall load

of the server. The num-

ber of used file servers (like

the FileServer1 and File-
Server2 components) used

by RequestDispatcher de-

pends on the overall load of

the server. On this example, the considered reconfiguration operations are:

• AddCacheHandler and RemoveCacheHandler which are used to add and remove CacheHandler;

• AddFileServer and removeFileServer which are used to add and remove FileServer2;

• MemorySizeUp and MemorySizeDown which are used to increase and to decrease the MemorySize

value;

• DurationValidityUp and DurationValidityDown which are used to increase and to decrease the

ValidityDuration value.

A possible evolution path of the HTTP server architecture is given in Fig. 4.

3 New Reconfigurations by Component Substitution
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and after(black) reconfiguration by substitution

In this section we enrich our component-

based framework with a new kind of

reconfigurations allowing a structural

substitution of the components with re-

spect the component encapsulation. In

fact, we want the substituted compo-

nent to supply the same interfaces of

the same types as before. This way

the other components do not see the

difference between the component and

its new “substituted” version, and thus

there is no need to adapt them. As the

substitution of a component should not

cause any changes outside of this com-

ponent, only the two following kinds of

component substitutions are allowed:

• either a component can be replaced by a new version of itself, or

• a component can be replaced by a composite component which encapsulates new sub-components

providing at least the same functionalities as before substitution.
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For the allowed substitution cases, Figure 5 displays how the architectural elements and relations

are defined at two pre- and post-substitution levels. Let cA and cR be two architectural configurations

at respectively a pre-substitution and a post-substitution levels. The substitute reconfiguration is then

expressed by a partial function Subst : ComponentsA→ComponentsR that gives how the components

are substituted in cA to obtain cR.

cA
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Figure 6: Applying a reconfiguration by substitution on the

HttpServer example

Let us illustrate our proposal on the

example of the HTTP server. For the

configuration in Fig. 6, we apply the

following substitute reconfiguration:

• CacheHandler is replaced by

a new version of itself, named

CacheHandler_R;

• RequestHandler becomes a com-

posite component, called Re-
questHandler_R, which en-

capsulates two new components:

RequestAnalyzer and Logger.
RequestAnalyzer handles re-

quests to determine the values of the deviation and load parameters. Logger allows Request-
Analyzer to memorise requests to chose either RequestDispatcher or CacheHandler, if it is

available, to answer requests.

We have

(

Subst(CacheHandler) = CacheHandler_R
Subst(RequestHandler) = RequestHandler_R

)

as substitute reconfiguration function.

In order to ensure that proposed substitutions respect the requirements on components and their

assembly, we now introduce architectural constraints on both replaced (or old) and substituted (or new)

components. These architectural constraints, named SCSubst , describe which changes are allowed or

prescribed by a substitute reconfiguration. Their intuition is as follows, together with a formal description

for several constraints5:

• In the system parts not concerned by the component substitution, all the core entities and all the

relations between them remain unchanged through the substitution process:

– the old parameters and the associated types remain unchanged in the substitutes;

– the old components remain unchanged;

∀c ∈ComponentsA∩ComponentsR,
∀x ∈ Inter f acesA⊎ParametersA

.(ContainerA(x) = c⇒ContainerR(x) = c)

– the old interfaces and their types are not changed;

– the old connections between component’s interfaces are kept as well.

• For the old components impacted by the components substitution, the constraints are as follows:

– an old component completely disappears only if it is substituted by a new version for itself;

∀cA.

(

cA ∈ComponentsA

\ComponentsR
⇒

(

∃cR ∈ComponentsR

\ComponentsA
.(Subst(cA) = cR)

))

5The whole definition is available in Appendix C.
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– the substituted components are in the same state as the old ones, and either they have the same

parent component as before substitution, or the old parent component has been substituted as

well;

– the interfaces of the replaced components are supplied by the substituted components;

– the parameters of the replaced components are defined either on the substituted components,

or on their subcomponents.

• The new elements introduced during the substitution process cannot impact the old conserved

architecture:

– the newly introduced components must be subcomponents of some substituted components;

∀cR ∈ComponentsR \ComponentsA,
∀cA ∈ComponentsA \ComponentsR

.

(

Subst(cA) 6= cR⇒
∃c′R ∈ComponentsR \ComponentsA.

((cR,c
′
R) ∈ ParentR)

)

– the newly introduced interfaces must be associated with the new components;

∀i.

(

i ∈
ProvInter f acesR

\ProvInter f acesA
⇒ContainerR(i) ∈

ComponentsR

\ComponentsA

)

– the newly introduced parameters are associated with the new components;

– the new connections are used to connect the new components.

Definition 3 (Structural substitutability) Let cA and cR be two consistent configurations, Subst the

substitution function, and SCSubst the architectural substitutability constraints. The configuration cR is

substitutable to cA, written subst(cR, cA), if l(cR)∧SCSubst ⇒ l(cA).

4 Component Substitution through Dynamic Evolution

The new reconfigurations by component substitution defined in Sect. 3 must be taken into account in

evolutions of component-based architectures. Indeed, as the substituted or the newly introduced compo-

nents may introduce new dynamic reconfigurations, the architectures with substituted components may

evolve by the old reconfigurations as well as by new reconfigurations. We want these reconfigurations to

be consistent with the reconfigurations by substitution.

To this end, we integrate the architectural substitutability constraints from Sect. 3 into a simulation

relation linking dynamic reconfigurations of a system after component’s substitutions with their old

counterparts that where possible before the component substitution. We then define a substitution relation

ρ in the style by Milner-Park [25] as a simulation having the following properties, which are common to

other formalisms like action systems [9] or LTL refinement [19]:

1. Adding the new dynamic reconfiguration actions should not introduce deadlocks6.

2. Moreover, the new dynamic reconfiguration actions should not take control forever: the livelocks

formed by these actions are forbidden.

Definition 4 (Substitutability-based simulation) Let SA = 〈CA,C
0
A ,RA,→A〉 and SR = 〈CR,C

0
R ,RR,→R

〉 be two reconfiguration models. Let σR be a path of SR. A relation⊑subst⊆CR×CA is the substitutability-

based simulation iff whenever cR ⊑subst cA then it implies: structural substitutability (i), strict simula-

tion (ii), stuttering simulation (iii), non introduction of divergence (iv), and non introduction of dead-

locks (v), defined as follows:

6We write cR 6→ to mean that ∀ope,c′. c
ope
→ c′ 6∈→.
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subst(cR,cA) (i)

∀c′R ∈ CR,ope ∈RR∩RA.(cR
ope
→ c′R ⇒ ∃c

′
A ∈ CA.(cA

ope
→ c′A∧ c′R ⊑subst c′A)) (ii)

∀c′R ∈ CR,ope′ ∈RR \RA.(cR
ope′

→ c′R ⇒ c′R ⊑subst cA) (iii)

∀c′R ∈ CR,ope′ ∈RR \RA,k.(k ≥ 0∧ cR = σR(k)∧ cR
ope′

→ c′R⇒
∃k′,ope ∈RR∩RA.

(k′ > k∧σR(k
′)

ope
→ σR(k

′+1)))
(iv)

∀cA ∈ CA,∀cR ∈ CR.(cR ⊑subst cA∧ cR 6→ ⇒ cA 6→) (v)

We call the substitutability-based simulation (or the substitutability for short) the greatest binary relation

over the configurations of SR and SA satisfying the above definition. We say that SR is simulated by SA wrt.

the component substitutability, written SR ⊑subst SA, if ∀cR.(cR ∈ C 0
R ⇒∃cA.(cA ∈ C 0

A ∧ cR ⊑subst cA)).

1 Data: c0
R ∈ C 0

R , c0
A ∈ C 0

A , RR and RA

2 Result: res ∈ {⊥,⊤}, if terminates

3 cR ← c0
R ;

4 cA ← c0
A ;

5 while ⊤ do

6 if subst(cR, cA) then

7 ER ← enabled(cR, RR) ;

8 EA ← enabled(cA, RA) ;

9 if ER = /0 then

10 if EA = /0 then res←⊤ ; break ;

11 else res←⊥ ; break ;

12 end if

13 else

14 ope← pick-up(ER) ;

15 cR ← apply(ope, cR) ;

16 if ope ∈RR \RA then print(⊥p) ;

17 else

18 if ope ∈RR ∩RA and ope ∈ EA then

19 cA ← apply(ope, cA) ;

20 print(⊤p) ;

21 else res←⊥ ; break ;

22 end if

23 end

24 end

25 else res←⊥ ; break;

26 end if

27 end

Figure 7: Semi-algorithm on the substitutability

The substitutability-based simulation de-

fined above can be viewed as a divergence

sensitive stability respecting completed sim-

ulation in van Glabbeek’s spectrum [15].

Since the models are infinite state, the prob-

lem to know whether the substitutability-

based simulation holds or not is undecidable

in general. Consequently, we provide a semi-

algorithm to check the substitutability-based

simulation on the fly.

The substitutability-based simulation can-

not be evaluated to true or false during the

system’s execution: actually, as the clauses

of the substitutability relation⊑subst depend

not only on the current configurations but

also on the target configurations, and even

more on sequences of future configurations

as in (iv), in general they cannot be evaluated

to true or false on the current pair of config-

urations. But, on the other hand, if one of

the clauses of Def. 4 is evaluated to false on

finite parts of the reconfiguration sequences,

then obviously the whole relation does not

hold. So, instead of considering the whole

transition systems, let us consider a sequence

of reconfigurations before substitutions and

its counterpart obtained by applying reconfigurations by substitution.

We propose a semi-algorithm displayed in Fig. 7 to evaluate the substitutability-based simulation

starting from the initial configurations c0
R ∈ C 0

R , c0
A ∈ C 0

A . This semi-algorithm uses the following auxil-

iary functions:

• consistent(c ∈ C ) ∈ {⊥,⊤} – to determine whether the configuration c is consistent (cf. Def. 1);

• subst(cR ∈ CR,cA ∈ CA) ∈ {⊥,⊤} – to determine whether the configuration cR is substitutable to

cA (cf. Def 3) ;



8 Component Substitution through Dynamic Reconfigurations

• enabled(c ∈ C , R ⊆ R) ⊆ R – to determine the subset of reconfigurations in R which can be

enabled from c;

• pick-up(E ⊆R) ∈R – to choose an operation among reconfigurations in E ;

• apply(c ∈ C ,ope ∈R) ∈ C – to compute the target configuration when applying ope to c.

Let us have a close look at the semi-algorithm. When it terminates and returns⊤ (line 9), finite paths

have been considered, no more reconfiguration can be fired at both pre- and post-substitution levels, and

all clauses of Def. 4 are satisfied on these finite paths. The semi-algorithm returns ⊥ in the following

three cases.

• Either Line 25 indicates that clause (i) of Def. 4 concerning the structural substitutability from

Def. 3 is broken.

• Or Line 10 indicates that there is a deadlock at the level after substitutions but not at the level

before components substitutions. In this case clause (v)—the non-introduction of deadlocks—of

Def. 4 is broken.

• Or Line 21 indicates that clause (ii)—the strict simulation—of Def. 4 is broken.

Otherwise, we cannot conclude because the semi-algorithm can choose reconfigurations to be ap-

plied, and the substitution verification goes on, possibly over infinite paths. Nevertheless, even in this

inconclusive case, the semi-algorithm can provide some indications on the current status of the substi-

tutability. Let us consider the set B4 = {⊥,⊥
p,⊤p,⊤} where ⊥,⊤ stand resp. for false and true values

where as ⊥p,⊤p stand resp. for potential false and potential true values. Like for evaluating temporal

properties at runtime as in [11], potential true and potential false values are chosen whenever an observed

behaviour has not yet lead to a violation of the substitutability-based simulation. With this in mind, when

a new reconfiguration is applied, ⊥p in Line 15 indicates

• either a potential trouble with the stuttering simulation: clause (iii) of Def. 4 may be broken if, on

the next iteration of the semi-algorithm, the structural substitutability—clause (i)—does not hold

between the configuration reached on the path with substitutions and the old configuration on the

path before component substitutions;

• or a potential divergence: clause (iv) of Def. 4 may be broken if no old reconfiguration occurs in

the future.

Finally, when the semi-algorithm indicates ⊤p, at Line 18, it means that the clauses of Def. 4 have

not yet been violated, and the verification of the substitutability-based simulation must continue.

Proposition 1 Given SA and SR, if the substitutability semi-algorithm terminates by providing the ⊥
value then one has SR 6⊑subst SA.

The idea behind Proposition 1 is as follows: if there are two sequences of dynamic reconfigurations

on which one of the substitutability relation clauses is violated then it does imply the substitutability-

based simulation violation.

Let us illustrate the evaluation of the substitutability relation on the example displayed in Fig. 8. As

new dynamic reconfigurations introduced by the component substitution, we consider AddLogger and

RemoveLogger which consist respectively in adding or removing the newly introduced Logger compo-

nent (see Fig. 6). When a new reconfiguration is executed (leading for example to 14 linked to 02), the

evaluation gives⊥p, although the structural substitutability holds. It is due to the fact that the new recon-

figurations may take control forever, depending of course on future reconfigurations. In contrast, when an
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Figure 8: Substitutability evaluation at runtime

old reconfiguration is executed (leading for example to 15 which is linked to 03), the evaluation becomes

⊤p: the structural substitutability holds and the potential livelock has been avoided. Consequently, when

considering finite parts of paths in Fig. 8 until the current pair (cR,cA), the reconfigurations of the HTTP

server combine well with reconfigurations due to component substitutions.

5 Experiments

This section provides a proof of concept by reporting on experiments using the B tools to express and

to check the consistency and substitutability constraints, and to implement the substitutability semi-

algorithm.

MACHINE
 Archi
VARIABLES
Components, Interfaces
…
OPERATIONS
 bind(ip, ir) = …
  ...
END

MACHINE
 AA_Reconfig
INCLUDES 
  Archi
OPERATIONS
 INIT = ...
  AddCacheHandler = ...
  ...
END

MACHINE
 RR_Reconfig
INCLUDES 
  Archi
OPERATIONS
 INIT = ...
  AddCacheHandler = ...
  AddLogger = …
  ...
END

MACHINE
 Substitutability
INCLUDES 
  AA_Reconfig
  RR_Reconfig
VARIABLES
  Subst
OPERATIONS
  AddCacheHandler = ...
  AddLogger = …
  ...
END

HttpServer

Request

Receiver

Request

Handler

Request

Dispatcher

Cache

Handler

File

Server1

Fractal         
<definition name="HttpServer">
  <interface name="httpRequest"/>
    <component name="r">
    <interface name="request" r/>
   </component>

FScript
AddCacheHandler = …
...

Component-based model

HttpServer

Request

Dispatcher
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    Handler_R

File

Server1
Request

Receiver

Logger

Request

Handler

RequestHandler_R

Fractal         
<definition name="HttpServer_R">
  <interface name="httpRequest"/>
    <component name="r">
    <interface name="request" r/>
   </component> FScript

AddCacheHandler = …
AddLogger = …
...Substituted              

Component-based model Partial 
Consistency
(animation)

Partial 
Substitutability
(animation)

Proof
Consistency

(1)

(2)

(3)

(3)

(4)

(5)
(6)

Figure 9: Principle of the validation framework
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5.1 A Formal Toolset: the B Method

B is a formal software development method used to model systems and to reason about their develop-

ment [1]. When building a B machine, the principle is to express system properties—invariants—which

are always true after each evolution step of the machine, the evolution being specified by the B op-

erations. The verification of a machine correctness is thus akin to verifying the preservation of these

properties, no matter which step of evolution the system takes.

The B method is based on set theory, relations and first-order logic. Constraints are specified in the

INVARIANT clause of the machine, and its evolution is specified by operations in the OPERATIONS clause.

Let us assume here that the initialisation is a special kind of operation. In this setting, the consistency

checking of a B machine consists in verifying that each operation satisfies the INVARIANT assuming its

precondition and the invariant hold.

Tool supports, such as B4free or AtelierB7, automatically generate proof obligations (POs) to ensure

the consistency in sense of B [1]. Some of them are obvious POs whereas the other POs have to be proved

interactively if it was not done fully automatically by the different provers embedded into AtelierB.

Another tool, called ProB8, allows the user to animate B machines for their debugging and testing. On

the verification side, ProB contains a constraint-based checker and a LTL bounded model-checker with

particular features; Both can be used to validate B machines [22, 23].

5.2 Consistency Checking by Proof and Model Animation

This section summarises the work in [20] on specifications in B of the proposed component-based model

with reconfigurations, and on verification process using the B tools, by combining proof and model-

checking techniques. Let us consider the B machines which, for readability reasons, are simplified

versions of the "real" B machines.

MACHINE

Archi
VARIABLES

Components, Interfaces , ProvInterfaces , ReqInterfaces , Supplier , Parent, Binding, ...
INVARIANT

ProvInterfaces ⊆ Interfaces ∧ ReqInterfaces ⊆ Interfaces
∧ ProvInterfaces ∪ ReqInterfaces = Interfaces ∧ ProvInterfaces ∩ ReqInterfaces = ∅

∧ Supplier ∈ Interfaces → Components
∧ Parent ∈ Components ↔ Components
∧ Binding ∈ ProvInterfaces 7→ ReqInterfaces
∧ closure1 (Parent) ∩ id(Components) = ∅ /∗ CC.3 ∗/
∧ ∀ ( ip , ir ).( ip 7→ ir ∈ Binding ⇒ Provider( ip) 6= Requirer( ir ) ∧ Parent(Supplier ( iprov )) = Parent(Supplier( ireq )) ) /∗ CC.4 + CC.5 ∗/
∧ ...

OPERATIONS

bind( ip , ir ) =
PRE

ip ∈ ProvInterfaces ∧ ir ∈ ReqInterfaces ∧ ip 7→ir /∈ Binding ∧ ip /∈ dom(Binding) ∧ ip /∈ dom(Delegate) ∧ ir /∈ dom(Delegate)
THEN

Binding(ip) := ir
END ;

...
END

The configuration model given in Def. 5 can be easily translated into a B machine Archi ((1) in Fig. 9).

In this machine, the sets as Components or Interfaces , and relations as Parent or Binding are defined into the

VARIABLES clause; the architectural consistency constraints CC are defined into the INVARIANT clause;

the basic reconfigurations operations as bind(ip, ir) or start(compo) are also defined here as B opera-

tions. Then, we use the AtelierB tool to interactively demonstrate the consistency of the architectural

constraints ((2) in Fig. 9) through the basic reconfiguration operations.

7http://www.b4free.com / http://www.atelierb.eu
8http://www.stups.uni-duesseldorf.de/ProB

http://www.b4free.com
http://www.atelierb.eu
http://www.stups.uni-duesseldorf.de/ProB
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MACHINE

Reconfig
INCLUDES

Archi
OPERATIONS

INIT =
BEGIN

Components := { HttpServer, RequestReceiver, RequestHandler, CacheHandler, RequestDispatcher, FileServer1 , FileServer2 }
‖ ProvInterfaces := { httpRequest, request , handler , cache, dispatcher , server1 , server2 }
‖ ReqInterfaces := { getHandler, getDispatcher , getCache, getServer }
‖ Parent := { RequestReceiver 7→HttpServer, RequestHandler 7→HttpServer, CacheHandler 7→HttpServer, RequestDispatcher 7→HttpServer }
‖ Binding := { handler 7→getHandler, cache 7→getCache, dispatcher 7→getDispatcher, server1 7→getServer }
...

END ;
AddCacheHandler =
BEGIN

instantiate (CacheHandler) ;
add(CacheHandler, HttpServer) ;
bind(cache, getCache) ;
start (CacheHandler)

END ;
...
END

Then, the generic B machine Archi is instantiated as Reconfig to represent an architecture under consid-

eration, particularly by giving values to all the sets and relations to represent the considered component

architecture configuration and by implementing the non-primitive reconfiguration operations using the

basic ones ((3) in Fig. 9). At this point, we can perform a (partial) validation of the instantiated B machine

Reconfig through animations, thanks to the ProB model-checker features ((4) in Fig. 9).

5.3 Substitutability Checking by Model Animation

We exploit the work in [20] by considering two instantiated B models AA_Reconfig and RR_Reconfig which

define two component architectures, wrt. the pre-/post-substitution levels. All the elements and relations

are defined twice: AA.Components, RR.Components, AA. Interfaces , RR. Interfaces , AA.Parent or RR.Parent . . . A

new machine Substitutability includes these two models ((5) in Fig. 9). It defines the substitute reconfig-

uration function Subst to link together the AA.Components to the substituted RR.Components.

MACHINE

Substitutability
INCLUDES

AA_Reconfig
RR_Reconfig

VARIABLES

Subst
INVARIANT

Subst ∈ AA.Components 7→ RR.Components
∧ ∀(c, i ).( cc ∈ AA.Components ∩ RR.Components ∧ i ∈ AA.Interfaces ∧ AA.Supplier(i) = cc ⇒ RR.Supplier( i ) = c) /∗ SC.5 ∗/
∧ ∀(ca ).(AA.Components − RR.Components ⇒ ∃(cr).(RR.Components − AA.Components ∧ Subst(ca) = cr)) /∗ SC.7 ∗/
∧ AA. Interfaces ⊆ RR.Interfaces ∧ AA.ProvInterfaces ⊆ RR.ProvInterfaces ∧ AA.ReqInterfaces ⊆ RR.ReqInterfaces /∗ SC.13 ∗/
∧ ∀( i ).( i ∈ RR.ProvInterfaces − AA.ProvInterfaces ⇒ RR.Supplier( i ) ∈ RR.Components − AA.Components) /∗ SC.17 ∗/
...

INITIALISATION

Subst := {CacheHandler 7→CacheHandlerR, RequestHandler 7→RequestHandlerR}
OPERATIONS

AddCacheHandler =
BEGIN

AA_AddCacheHandler ‖ RR_AddCacheHandler
END;
AddLogger =
BEGIN

RR_AddLogger
END ;
...

END

The architectural substitutability constraints SCSubst are defined into the INVARIANT clause of this

machine; they are constraints between the elements and relations of AA_Reconfig, and the elements and

relations of RR_Reconfig. For example, the reader can see some clauses expressed above as a part of the

INVARIANT.
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Afterwards, we use the ProB model-checker to animate the Substitutability machine and to explore—

simultaneously— the two instantiated B models, i.e. the pre-/post-substitution component architectures

((6) in Fig. 9). This animation allows us to perform the evaluations needed for the semi-algorithm

from Section 4: we choose the next dynamic reconfiguration to be applied on the “Enabled operations”

windows of ProB (see Fig. 10); if it is an old reconfiguration operation, it is simultaneously executed into

AA_Reconfig and RR_Reconfig, otherwise it is only run into RR_Reconfig; then, the INVARIANT checking

corresponds to the validation of all the SCSubst constraints.

Figure 10: The ProB tool: invariant broken illustrating substitutability constraints broken

Let us suppose that after the reconfiguration by component substitution the AddCacheHandler dy-

namic reconfiguration contains an implementation error: it does not add the CacheHandler_R com-

ponent. When using ProB, we have easily found the error. Indeed, when AddCacheHandler is executed

simultaneously by AA_Reconfig and RR_Reconfig, the invariant is broken as depicted on Fig. 10. More

precisely, the clause (SC.7) of SCSubst is broken, as the CacheHandler component has no substituted

component w.r.t. the Subst function.

6 Discussion and Conclusion

Related work. For distributed components like Fractal, GCM and ProActive components, the role of

automata-based analysis providing a formal basis for automatic tool support is emphasised in [6]. In the

context of dynamic reconfigurations, ArchJava [4] gives means to reconfigure Java architectures, and to

guarantee communication integrity at run-time. In [5] a temporal logic based framework to deal with

systems evolution is proposed.

To compare processes or components, the bisimulation equivalence by Milner [24] and Park [26] is

widely used: It preserves branching behaviours and, consequently, most of the dynamic properties; there

is a link between the strong bisimulation and modal logics [18]; this is a congruence for a number of

composition operators. There are numerous works dealing with component substitutability or interop-
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erability [27, 10, 8]. Our work is close to that in [10], where a component substitutability is defined

using equivalences between component-interaction automata wrt. a given set of observable labels. In the

present work, in addition to a set of labels, divergency, livelocks are taken into account when comparing

execution paths. As KLAPER [16], Palladio [7] and RoboCop [14] component models do not define any

refinement/substitution notion, they are clearly distinguishable form our work.

Let us remark that the substitutability-based simulation in this paper is close to the refinement relation

in [13]. However, as [13] focuses on a linear temporal logic property preservation, no method is given

in [13] to verify the structural refinement.

Conclusion. This paper extends the previous work on the consistency verification of the component-

based architectures by introducing a new reconfiguration operation based on components substitutions,

and by integrating it into a simulation relation handling dynamic reconfigurations. A semi-algorithm

is proposed to evaluate on the fly the substitutability relation and its partial correctness is established.

As a proof of concept, the B tools are used for dealing with the substitutability constraints through

dynamic reconfigurations. As the ProB tool can deal with a dialect of linear temporal logic, we intend

to accompany the present work on component substitutability with a runtime (bounded) model-checking

of linear temporal logic patterns. Further, we plan to combine our results with adaptation policies:

the partial evaluations ⊥p and ⊤p could be informations taken into account into the adaption policies

framework to choose the most appropriate reconfiguration that will be applied.
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A Architectural Configuration Definition [11]

Definition 5 (Configuration) A configuration c is a tuple 〈Elem,Rel〉 where

• Elem = Components ⊎ Inter f aces ⊎ Parameters ⊎ Types is a set of architectural elements,

such that

– Components is a non-empty set of the core entities, i.e components;

– Inter f aces = ReqInter f aces⊎ProvInter f aces is a finite set of the (required and provided)

interfaces;

– Parameters is a finite set of component parameters;

– Types = ITypes⊎ PTypes is a finite set of the interface types and the parameter data types;

• Rel =

{

Container ⊎ ContainerType ⊎ Parent

⊎ Binding ⊎ Delegate ⊎ State ⊎ Value

is a set of architectural relations which link architectural elements, such that

– Container : Inter f aces ⊎ Parameters→Components is a total function giving the compo-

nent which supplies the considered interface or the component of a considered parameter;

– ContainerType : Inter f aces ⊎ Parameters→ Types is a total function that associates a type

with each required/provided interface, or with a parameter;

– Parent ⊆ Components×Components is a relation linking a sub-component to the corre-

sponding composite component9;

– Binding : ProvInter f aces→ ReqInter f aces is a partial function which binds together a pro-

vided interface and a required one;

– Delegate : Inter f aces→ Inter f aces is a partial function which expresses delegation links;

– State : Components→{started,stopped} is a total function giving the status of instantiated

components;

– Contingency : ReqInter f aces→ {mandatory,optional} is a total function to characterise

the required interfaces;

– Value : Parameters→
⋃

ptype∈PType ptype is a total function which gives the current value of

each parameter.

9For any (p,q) ∈ Parent, we say that q has a sub-component p, i.e. p is a child of q.
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B Architectural Consistency Constraints CC

∀c.(c ∈Components⇒ (∃ip.(ip ∈ ProvInter f aces∧Container(ip) = c))) (CC.1)

∀c,c′ ∈Components.(c 6= c′∧ (c,c′) ∈ Parent⇒∀ p.(p ∈ Parameters⇒Container(p) 6= c′)) (CC.2)

∀c,c′ ∈Components.((c,c′) ∈ Parent+⇒ c 6= c′) (CC.3)

∀ip ∈ ProvInter f aces,
∀ir ∈ ReqInter f aces

.

(

Binding(ip) = ir⇒
Inter f aceType(ip) = Inter f aceType(ir)
∧Container(ip) 6=Container(ir)

)

(CC.4)

∀ip ∈ ProvInter f aces,
∀ir ∈ ReqInter f aces

.

(

Binding(ip) = ir⇒∃c ∈Components.

(

(Container(ip),c) ∈ Parent

∧(Container(ir),c) ∈ Parent

))

(CC.5)

∀ip ∈ ProvInter f aces,
∀ir ∈ ReqInter f aces,∀id ∈ Inter f aces

.

(

Binding(ip) = ir⇒
Delegate(ip) 6= id

∧Delegate(ir) 6= id

)

(CC.6)

∀i, i′ ∈ Inter f aces.

(

Delegate(i) = i′⇒
∀ip.(ip ∈ ProvInter f aces⇒ Binding(ip) 6= i)
∧∀ir.(ir ∈ ReqInter f aces⇒ Binding(i) 6= ir)

)

(CC.7)

∀i, i′ ∈ Inter f aces.(Delegate(i) = i′∧ i ∈ ProvInter f aces⇒ i′ ∈ ProvInter f aces) (CC.8)

∀i, i′ ∈ Inter f aces.(Delegate(i) = i′∧ i ∈ ReqInter f aces⇒ i′ ∈ ReqInter f aces) (CC.9)

∀i, i′ ∈ Inter f aces.

(

Delegate(i) = i′⇒
Inter f aceType(i) = Inter f aceType(i′)
∧ (Container(i),Container(i′)) ∈ Parent

)

(CC.10)

∀i, i′, i” ∈ Inter f aces.

(

(Delegate(i) = i′∧Delegate(i) = i”⇒ i′ = i”)
∧(Delegate(i) = i”∧Delegate(i′) = i”⇒ i = i′)

)

(CC.11)

∀ir ∈ ReqInter f aces.





State(Supplier(ir)) = started

∧Contingency(ir) = mandatory
⇒∃i ∈ Inter f aces.





Binding(i) = ir

∨
Delegate(i) = ir







(CC.12)
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C Architectural Substitutability Constraints SCSubst

ParametersA ⊆ ParametersR ∧ PTypesA ⊆ PTypesR (SC.1)

∀p.(p ∈ ParametersA⇒ (ParamTypeA(p) = ParamTypeR(p)∧ValueA(p) =ValueR(p))) (SC.2)

∀p.





p ∈ ParametersR

\ParametersA
⇒

ContainerR(p) ∈
ComponentsR

\ComponentsA

∧∀cA.

(

cA ∈ComponentsA \ComponentsR⇒
Subst(cA) 6=ContainerR(p)

)



 (SC.3)

∀c.(c ∈ComponentsA∩ComponentsR⇒ StateA(c) = StateR(c)) (SC.4)

∀c ∈ComponentsA∩ComponentsR,
∀x ∈ Inter f acesA⊎ParametersA

.(ContainerA(x) = c⇒ContainerR(x) = c) (SC.5)

∀c ∈ComponentsA

∩ComponentsR,
∀c′ ∈ComponentsA

.













(c,c′) ∈ ParentA⇒













c′ ∈ComponentsR∧ (c,c
′) ∈ ParentR

∨
c′ /∈ComponentsR∧
∃c” ∈ComponentsR \ComponentsA.
(Subst(c′) = c”∧ (c,c”) ∈ ParentR)

























(SC.6)

∀cA.

(

cA ∈ComponentsA

\ComponentsR
⇒

(

∃cR ∈ComponentsR

\ComponentsA
.(Subst(CA) = cR)

))

(SC.7)

∀cA ∈ComponentsA \ComponentsR,∀cR ∈ComponentsR \ComponentsA

.(Subst(cA) = cR⇒ StateA(cA) = StateR(cR))
(SC.8)

∀cA ∈ComponentsA \ComponentsR,∀cR ∈ComponentsR \ComponentsA

.(Subst(cA) = cR⇒ (∀i ∈ Inter f acesA.ContainerA(i) = cA⇒ContainerR(i) = cR))
(SC.9)

∀cA ∈ComponentsA

\ComponentsR,
∀cR ∈ComponentsR

\ComponentsA,
∀p ∈ ParametersA

.









Subst(cA) = cR∧
ContainerA(p) = cA

⇒









ContainerR(p) = cR

∨
∃c′R ∈ComponentsR \ComponentsA.
((c′R,cR) ∈ Parent+∧ContainerR(p) = c′R)

















(SC.10)

∀cA ∈ComponentsA

\ComponentsR,
∀cR ∈ComponentsR

\ComponentsA,
∀c′A ∈ComponentsA

.













Subst(cA) = cR∧
(cA,c

′
A) ∈ ParentA

⇒













c′A ∈ComponentsR∧ (cR,c
′
A) ∈ ParentR

∨
c′A /∈ComponentsR∧
∃c′R ∈ComponentsR \ComponentsA.
((cR,c

′
R) ∈ Parent ∧Subst(c′A) = c′R)

























(SC.11)

∀cR ∈ComponentsR

\ComponentsA,
∀cA ∈ComponentsA

\ComponentsR

.





Subst(cA) 6= cR⇒
∃c′R ∈ComponentsR \ComponentsA.

((cR,c
′
R) ∈ ParentR)



 (SC.12)

ITypesA ⊆ ITypesR ∧ Inter f acesA ⊆ Inter f acesR

∧ProvInter f acesA ⊆ ProvInter f acesR∧ ReqInter f acesA ⊆ ReqInter f acesR
(SC.13)
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∀i.(i ∈ Inter f acesA⇒ Inter f aceTypeA(i) = Inter f aceTypeR(i)) (SC.14)

∀i.(i ∈ ReqInter f acesA⇒ContingencyA(i) =ContingencyR(i)) (SC.15)

∀i.





i ∈ ReqInter f acesR

\ReqInter f acesA
⇒

ContainerR(i) ∈
ComponentsR

\ComponentsA

∧∀cA.

(

cA ∈ComponentsA \ComponentsR

⇒ Subst(cA) 6=ContainerR(i)

)



 (SC.16)

∀i.

(

i ∈
ProvInter f acesR

\ProvInter f acesA
⇒ContainerR(i) ∈

ComponentsR

\ComponentsA

)

(SC.17)

∀pi ∈ ProvInter f acesA,
∀ri ∈ ReqInter f acesA

.(BindingA(pi) = ri⇒ BindingR(pi) = ri) (SC.18)

∀i, i′ ∈ Inter f acesA.(DelegateA(i) = i′⇒ DelegateR(i) = i′) (SC.19)

∀pi ∈ ProvInter f acesR,∀ri ∈ ReqInter f acesR

.

((

BindingR(pi) = ri

∧BindingA(pi) 6= ri

)

⇒

(

pi ∈ ProvInter f acesR \ProvInter f acesA

∧ri ∈ ReqInter f acesR \ReqInter f acesA

))

(SC.20)

∀i, i′ ∈ Inter f acesR

.

















DelegateR(i) = i′

∧DelegateA(i) 6= i′
⇒

















i ∈ Inter f acesR \ Inter f acesA

∧













i′ ∈ Inter f acesR \ Inter f acesA

∨
i′ ∈ Inter f acesA∧
∃cA ∈ComponentsA \ComponentsR.
(Subst(cA) =ContainerR(i

′))













































(SC.21)
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