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Abstract: A control law for an aircraft is presented. It is valid on the whole flight envelope and
able to track any prescribed reference trajectory. The design relies on the flatness property of
a simplified model globally approximating the real aircraft and the use of time scales.
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1. INTRODUCTION

Automatic flight control systems (AFCSs) rely more often
than not on the principle “one function, one controller”:
loosely speaking, for each flight control (pitch attitude con-
trol, wing leveler, sideslip suppressor,. . . ) a specific control
law is designed, using a partial model of the aircraft. All
these flight functions can be seen as special cases of the prob-
lem of generating and then tracking a reference trajectory of
the “complete” (nonlinear) model describing the aircraft (for
these simple functions the references trajectories correpond
to steady state conditions). This appears even more clearly
for sophisticated flight functions required of modern AFCSs:
landing, very low altitude flight (to avoid radar detection),
target tracking, etc; the reference trajectories can be here
arbitrary. The traditional approach in AFCSs’ design usually
ignores this nonlinear generation/tracking point of view, and
prefers to rely on linear methods (and models); very loosely
speaking, it has to restrict to reference trajectories, around
which there is a (nearly) time-invariant tangent linear approx-
imation (in other words pieces of straight lines, circles and
helices with slowly varying altitude). Since it cannot easily
handle more general trajectories, it often leads to a very com-
plicated AFCS structure lacking theoritical ground, especially
when it comes to sophisticated flight functions, and has to rely
heavily on simulations.

We propose here a different approach, based on the remark
that the nonlinear model of the aircraft is flat [2]: all the
variables are completely determined as soon as the time
evolution of the center of mass and sideslip angle are fixed.
These four scalar quantities are “differentially independent”
and correspond (in a nonlinear and coupled way) to the four
controls (throttle, ailerons, rudder, elevators). Thanks to this
property, it is possible on the one hand to easily translate most
of the flight objectives into a reference trajectory, and on the
other hand to design a controller –valid on the whole flight
envelope– able to track any reference trajectory. By lack of
space, we will concentrate in the sequel only on the controller,
without insisting on the trajectory generator.

This work is an abridged version of [4, chapter IV] and stems
from a collaboration with Sextant Avionique under DRET
funding.

2. MODEL OF THE AIRCRAFT

A flying aircraft is a very complicated system. It is never-
theless possible to write down a rather simple and, as far as
control is concerned, accurate model based on the follow-
ing standard assumptions. The complete derivation can be
found in [4, chapter IV]; we have partly followed [8,9] (see
also [6,1,5]):
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� The aircraft is a six degree of freedom rigid body with a
plane of symmetry.

� Constant mass and inertia.
� Quasisteady aerodynamic flow fields
� Atmosphere obeys the “standard” model
� Earth’s curvature is neglected.

The more questionable assumption is probably to consider the
aircraft as a rigid body. The aeroelastic effects may in some
cases be very important, and have to be taken into account
from the beginning in the control law, which makes the design
much more difficult.

By applying Newton’s Second Law, the equations of mo-
tion can be established, resulting in �� first-order differential
equations linking the �� following state variables: �� �� �,
components of the center of mass in the Earth axes; �� �� �,
velocity, angle of attack and sideslip angle; �� 	� 
, orientation
of the wind axes; �� �� , components of the angular velocity
in the body axes. The aircraft is “conventianally” actuated
by four independent controls: the thrust � and the positions
�Æ�� Æ�� Æ�� of the deflection surfaces.

Projected in the wind axes, the sum of the external forces
(aerodynamic, gravitational and propulsive (thrust)) reads
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The dimensonless aerodynamic coefficients ��, ��, �� are
experementally determined in a wind tunnel; � is the air den-
sity. � (reference surface) and � (orientation of the propulsor)
are constant. Similarly, the sum of the moments of the external
forces about the center of mass read in the body axes�
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where ��, ��, ��are dimensionless aerodynamic coefficients
and �� �, � are constant (reference lengths). The gravitational
forces do of course not contribute.

It is commonly assumed that ��� ��� ��� ��� ��� �� depend
on the translational velocity (i.e., �� �� �) and acceleration
� �� � ��� ���, angular velocity ��� �� �, position of the deflection
surfaces �Æ�� Æ�� Æ��, and Mach number (i.e., ���, where �
is the velocity of sound in air). These coefficients consist of
arrays of data obtained from experiments in a wind tunnel
(see [8] for an example). They vary a lot with the Mach num-

ber in transsonic flight. A crucial remark for the design of our
control law will be that, for nearly every aircraft, ��� ��� ��

depend only “slightly” on �� � ��� ��, �� �� , Æ�� Æ�� Æ�. In the
same way, though it is not as important, ��� ��� �� depend
only “slightly” on �� � ��� ��� �� ��  (of course they “strongly”
depend on Æ�� Æ�� Æ�).

The aerodynamic forces and moments depend on the air den-
sity � and, through the Mach number, on the sound veloc-
ity �. The “standard atmoshere model” [9] allows to express
these quantities as functions depending only on the altitude �.
It relies on some classical laws of thermodynamics and on
an empiric formula expressing the absolute temperature in
function of the altitude; notice these quantities are sensitive
to altitude (for instance � is divided by three between sea
level and ���). The aerodynamic forces and moments can
therefore be written only in terms of the state variables. Since
� varies a lot with altitude, so do the aerodynamic forces.

Projected in the wind axes (translational equations) and body
axes (rotational equations), Newton’s Second Law reads
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where  is the aircraft matrix of inertia and ���� �� �����
are the sum of forces and moments previously described.

On a modern aircraft, the deflection surfaces are actuated
through electric or hydraulic servoactuators. These servoac-
tuators are commonly modelled only as “fast” transfer func-
tions. We will use a crude first-order model, representing the
“slow”servoactuators dynamics:
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where �Æ�� �Æ�� �Æ� are the actual controls, and ! is a stable
matrix.

For the sake of simplicity, we will not consider here the (rather
complicated) dynamic relation between the thrust � and the
throttle, which is the actual control. Let us only mention our
control scheme can nevertheless take it into account.

3. THE IDEAL AIRCRAFT IS FLAT

An essential consequence from the previous section is that
the aerodynamic forces ���� � depend on �� �� �� �� � but
only “slightly” on �� � ��� ��� �� �� � Æ�� Æ�� Æ�. Similarly, the
moments ����� depend “slightly” on �� � ��� ��� �� �� . By
neglecting these small dependencies, we obtain an “ideal”
aircraft, that we will use to design the control law. The idea
is that the ideal aircraft is flat, hence easy to control, whereas
the real aircraft isn’t. We thus consider the “true” system

�� � �� � "��� #� � ����� #��

with � a “small” parameter, as a perturbation of an “ideal”
system

�� � �� � "��� #��

If � is small enough, a standard argument of regular pertur-
bations theory [7] proves that a control stabilizing �� around
a trajectory will also stabilize � around a nearby trajectory
(with an error of order �). Notice that the approximation made
here is structural and valid on the whole state space, contrary
to a linear tangent approximation, valid only locally.

We now prove without calculations, only by using the struc-
ture of the equations, that the ideal aircraft is flat, with
��� �� �� �� as a flat output (see [2,4] for a more formal ap-
proach of flat systems). This simply means that any trajectory
of the ideal aircraft, i.e. any map
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��$�� ���$�� ���$�� ��$�� Æ���$�� Æ���$�� Æ���$��
�Æ���$�� �Æ���$�� �Æ���$��

sasitsfying the model equations, is completely determined by
����$�� ���$�� ���$�� ���$��. This can be seen as an explicit
parametrization of all the trajectories of the system by dif-
ferentially independent functions. Indeed, by inverting the
equations (1)–(3), we can obviously write

��� 	� �� � �� ��� ��� ���� (12)

Inverting the equations (4), (7) et (8), and because the forces
���� � do not depend on �� �� ,Æ�� Æ�� Æ�, we can then write
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where (12) and its derivative have been used to express �� 	� �
and their derivatives in function of ��� ��� ��� ��� ��� ��. Similarly,
using (5),(6) and (9), we can write
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Going on with this process, it easily follows from (10)
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and eventually from (11)
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At this stage, all the variables entering the model have been
expressed in terms of the flat output and its derivatives. We
insist that this means in particular that the orientation and
angle of attack of the aircraft are completely determined by
the evolution of the center of mass and sideslip angle.

A consequence of this remarkable flatness property is that the
ideal aircraft is easy to control, using for instance a linearizing
dynamic feedback.

4. CONTROL SCHEME

4.1 Control design using time scales

For nearly any aircraft, the numerical values of the model
parameter imply the existence of time scales: the system (1)–
(11) can be rewritten as

�� � "����� � � (13)

� �� ������� � � �&����� � �Æ (14)

�� �Æ�!Æ � �Æ� (15)

where � is a “small” parameter,� �� ��� �� �� �� �� �� 	� �� 
�,
� �� ��� �� �, Æ �� �Æ�� Æ�� Æ�� and �Æ �� ��Æ�� �Æ�� �Æ��. The
“slow” part (13) corresponds to equations (1)-(9), the “fast”
part (14) to (10) and the “very fast” part (15) to (11). The
physical interpretation is that the servoactuators react fast
compared to the aircraft dynamics, and that the deflection
surfaces rapidly affect the angular velocity.

The existence of time scales allows to simplify the controller
design by using singular perturbations theory [7,3]. The idea
is to split the controller into three independent pieces and in
fact to reduce the problem to the control of the slow part.
Indeed, assume we know a feedback law � �� �	�$���,
� � � 	�$��� which does the job for the slow part (13). If
� could be directly acted on, the problem would be solved;
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instead, the fast part is used to drive � to �	: if Æ could be
directly acted on, this could be done by the feedback

Æ	 �� &�� ������	�� �� �

where � is a stable matrix (the closed-loop fast part would
then become ' �� � �����	�). For that, it suffices to drive Æ
to Æ	 by the feedback

�Æ �� �!Æ	 � �!&�� ������	�� �� �

This scheme allows to control the full system; indeed, since
the very fast part is stable, Æ � �!���Æ � Æ	 after a very
short time; this implies that the fast part is stable, hence that
� � �	 after a short time. After this short time, the slow
part react as if it were directly actuated by �	. This heuristic
explanation can be made more formal by a standard argument
of singular perturbations theory [7,3]. Notice all this remains
valid even if ! and � are not constant (and even if the fast
and very fast parts are not linear); in particular, it can be
useful to have � depend on the altitude � and velocity �
to take into account the variation in efficiency with respect
to these variables of the deflection surfaces. The only thing
which matters is to ensure that �	 and � are not too large
(i.e., order � with respect to �) in order not to “mix” the time
scales.

The control design by time scales leads to a not only simpler
and more modular control law, but also more robust. Indeed
the existence of time scales means the system is numerically
ill-conditioned. A control law ignoring these aspects tends to
be also ill-conditioned, hence more difficult to implement and
more sensitive to modeling errors.

4.2 Control of the slow part

As a direct consequence of flatness, the system can be
linearized by (dynamic) feedback and coordinate change.
Putting aside theoritical considerations (see [2,4] for details),
the linearizing feedback can here be immediately recov-
ered from the flat output ��� �� �� ��: indeed, differentiating
��� �� �� three times and � once, we get�
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where � is an invertible matrix. This is just a rephrasement
of the relations obtained in section 3. In other words, we have
three chains of nonlinear integrateurs of length � and one of
length � involving the � variables ��� � �. In other words, the
mapping

��� � � �� ��� �� �� ��� ��� ��� ��� ��� ��� ��

can be seen as a coordinate change. In these new coordinates,
the system acted on by the (dynamic) feedback
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is clearly linear. To track a reference trajectory ����$�� ���$�� ���$��
which is, as shown in the previous section, completely deter-
mined by ����$�� ���$�� ���$�� ���$��, it suffices to place the
poles of the feedback linearized system by
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It is possible, though rather tedious, to put the above lin-
earizing feedback into a form quite appealing from a physical
point of view, which moreover shows that it is defined for
all normal flight conditions; we refer the reader to [4] for the
details. Notice the feedback uses the first partial derivatives of
the aerodynamic coefficients ��� ��� ��. As they represent
the major aerodynamic effects, they are known with a good
precision and can be numerically differentiated (though the
result might be not so good in transsonic flight, where these
coefficients vary a lot). Notice also that is in theory possible
to feedback linearize the full ideal aircraft without relying
on a time-scale decomposition. This is nevertheless not very
sensible to implement this in practice, since it would result
in a very complicated control law, moreover very sensitive to
model errors (in particular, the third partial derivatives of the
aerodynamic coefficients would be needed). The time-scale
approach leads to a much better-behaved controller.

5. SIMULATIONS: NONPLANAR DIVE

We present simulations for the �� fighter aircraft; the com-
plete aerodynamic data can be found in [8]. These arrays of
coefficients have been interpolated by cubic splines; the main
coefficients, the partial differentials of wich are used in the
controller, have then been numerically differentiated and fil-
tered (as mentionned before, these numerical differentiations
give rather accurate results, except maybe in transsonic flight,
where the coefficients vary rapidly). The simulation includes
the full aircraft dynamics with all the aerodynamic effects
and the servoactuators dynamics; the controller and trajec-
tory generator are designed from the reduced ideal model.
The goal is to track for one minute the reference trajectory
(“nonplanar dive”, fig. 5) determined by
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Fig. 1. Nonplanar dive
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� �$� � � $
��
� �$� � ����� $�

��
� �$� � ���� ��� $�

��
� �$� � �

At $ � , the aircraft is flying level at ���* along the
�-axis at the altitude of ��� : �� � � �� � � �� �
���� �� � � ��� � �� ��� � � ��� � � ��� � � ��� �
� ��� �  (MKSA units). This trajectory is not as simple as it
may look for an AFCS: it is not a planar curve (hence strong
couplings), altitude and velocity vary a lot (more than ���
altitude loss, velocity from ���* to ����*, it breaks the
sound barrier (Mach number from ��� to Mach ���). The
variation of atmospheric and aerodynamic parametersalong
the trajectory is therefore very large.

Figure 2 shows the norm of the error in position (i.e., the dis-
tance between the reference and actual position), figure 3 the
error in cartesian velocity and figure 4 the error in cartesian
acceleration; figure 5 shows the sideslip angle. The results are
very good. The position error is maximum (about ���) when
breaking the sound barier (see the Mach number on figure 6),
that is, when the aerodynamic coefficients are not very accu-
rately known; most of this error could be removed by adding
some integral terms in the linear feedback loop. Notice the
initial bumps due to a mismatch in initial conditions (there is
a discontinuity in curvature between level flight and the dive).

Figure 7 shows the angle ot attack.

Figures 8–10 illustrate the “complexity” of the trajectory for
an AFCS: the orientation angles vary a lot and in a coupled
way, much beyond the validity domain of a tangent linear
approximation.
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