
HAL Id: hal-00935067
https://hal.science/hal-00935067

Submitted on 23 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-Based Filtering of Combinatorial Test Suites
Taha Triki, Yves Ledru, Lydie Du Bousquet, Frédéric Dadeau, Julien Botella

To cite this version:
Taha Triki, Yves Ledru, Lydie Du Bousquet, Frédéric Dadeau, Julien Botella. Model-Based Filtering
of Combinatorial Test Suites. FASE’2012, 15th Int. Conf. on Fundamental Approaches to Software
Engineering, Jan 2012, Estonia. pp.439 - 454. �hal-00935067�

https://hal.science/hal-00935067
https://hal.archives-ouvertes.fr

Model-based filtering of combinatorial test suites

T. Triki1, Y. Ledru1, L. du Bousquet1, F. Dadeau2, and J. Botella3

1 UJF-Grenoble 1/Grenoble-INP/UPMF-Grenoble 2/CNRS,
LIG UMR 5217, F-38041, Grenoble, France

{Taha.Triki, Yves.Ledru, Lydie.du-Bousquet}@imag.fr
2 LIFC - INRIA CASSIS Project, 16 route de Gray, 25030 Besançon, FRANCE

frederic.dadeau@lifc.univ-fcomte.fr
3 Smartesting, Besançon, France
julien.botella@smartesting.com

Abstract. Tobias is a combinatorial test generation tool which can effi-
ciently generate a large number of test cases by unfolding a test pattern
and computing all combinations of parameters. In this paper, we first
propose a model-based testing approach where Tobias test cases are first
run on an executable UML/OCL specification. This animation of test
cases on a model allows to filter out invalid test sequences produced by
blind enumeration, typically the ones which violate the pre-conditions of
operations, and to provide an oracle for the valid ones. We then intro-
duce recent extensions of the Tobias tool which support an incremental
unfolding and filtering process, and its associated toolset. This allows to
address explosive test patterns featuring a large number of invalid test
cases, and only a small number of valid ones. For instance, these new
constructs could mandate test cases to satisfy a given predicate at some
point or to follow a given behavior. The early detection of invalid test
cases improves the calculation time of the whole generation and execu-
tion process, and helps fighting combinatorial explosion.

1 Introduction

Combinatorial testing is an efficient way to produce large test suites. In its basic
form, combinatorial testing identifies sets of relevant values for each parame-
ter of a function call, and the production of the test suite simply generates all
combinations of the values of the parameters to instantiate the function call.
JMLUnit [4] is a simple and efficient tool based on this technique, which uses
JML assertions as the test oracle. Extended forms of combinatorial testing al-
low to sequence sets of operations, each operation being associated to a set of
relevant parameters values. This produces more elaborate test cases, which are
appropriate to test systems with internal memory whose behaviour depends on
previous interactions. Tobias [19, 17, 18] is one of these combinatorial generators.
It was used successfully on several case studies [3, 9, 10] and has inspired recent
combinatorial testing tools, such as the combinatorial facility of the Overture
toolset for VDM++[16] or jSynoPSys [8].

Tobias takes as input a test pattern and performs its combinatorial unfolding
into a possibly large set of test cases. Each test case usually corresponds to a
sequence of test inputs. An additional oracle technology is needed to decide
on successful or failed test executions. In the past, we have mainly used the
run-time evaluation of JML assertions as a test oracle [3]. But the tool can
be used in other contexts than Java/JML. In this paper, we adopt a model-
based testing approach where tests are first played on a UML/OCL specification
of the system under test. The animation of a sequence of operations on the
UML/OCL specification is performed by the Test Designer tool of Smartesting 4

and brings two kinds of answers. First, it reports whether the sequence is valid,
i.e. each of its calls satisfies the pre-condition of the corresponding operation
and is able to produce an output which verifies the post-condition. Then, it
provides the list of intermediate states and operation results after each operation
call. This information can be used as test oracle to compare with the actual
states and results of the system under test. It must be noted that the model is
deterministic, which forces all accepted implementations to produce the same
results and intermediate states (if observable). In summary, the model is used
(a) to discard invalid sequences, and (b) to provide an oracle for valid ones.

Combinatorial testing naturally leads to combinatorial explosion. This is ini-
tially perceived as a strength of such tools: large numbers of tests are produced
from a test pattern. This helps to systematically test a system by the exhaustive
exploration of all combinations of selected values. The latest version of Tobias
has been designed to generate up to 1 million abstract test cases. It is actually
only limited by the size of the file system where the generated tests are stored.
Unfortunately, the translation of these test cases into a target technology such
as JUnit, the compilation of the resulting file and its execution usually require
too much computing resources and, in practice, the size of the test suite must
be limited between 10 000 and 100 000 test cases.

Several techniques can be adopted to limit combinatorial explosion. The most
classical one is the use of pairwise testing techniques [5] which does not cover
all combinations of parameter values but simply covers all pairs of parameter
values. This technique is very efficient to reduce a large combinatorial test suite
to a much smaller number of test cases, but it relies on the hypothesis that
faults result from a combination of two parameters. Therefore it may miss faults
resulting from a combination of three or more parameters. The technique can be
generalized to cover all n-tuples of parameters but it may always miss combina-
tions of n + 1 parameters. Another approach is the use of test suite reduction
techniques [13] which select a subset of the test suite featuring the same code
coverage as the original test suite. This technique has several limitations. First,
it requires to play the full test suite in order to collect coverage information.
Also, empirical studies have shown that test suite reduction may compromise
fault detection [20].

In this paper, we consider the case where combinatorial test suites lead to a
large proportion of invalid test cases, i.e. test cases which will not be accepted

4 http://smartesting.com

by the specification. These invalid test cases must be discarded from the test
suite because the specification is unable to provide an oracle for these tests.
Discarding these invalid test cases leads to a safe reduction of the test suite. We
present a tool which incrementally unfolds a test pattern and discards invalid
test cases. The tool is based on an evolution of the Tobias tool where several
new constructs have been added to the base language.

Section 2 introduces an illustrative case study. Then Section 3 presents the
basic constructs of Tobias, using the case study. Section 4 presents additional
constructs which help filter combinatorial test suites. Section 5 presents the
toolset which incrementally unfolds the test patterns and filters the resulting
test suite. Section 6 reports on several experiments carried with this tool set.
Section 7 gives an overview of the research literature related to our work. Finally,
Section 8 draws the conclusions of this work.

2 An illustrative case study

Perso

Use

Invalid

SetBPC,SetHPC

setBPC,SetHPC,

checkpin

checkPin, credit,

debit, getBalance

SetHPC,

authBank,

checkPin

checkpin

authBank

setHPC

Method signature Informal description

beginSession(int) Opening of session

endSession() Termination of session

setBpc(int) Sets the bank’s pin

setHpc(int) Sets the holder’s pin

checkPin(int) Identifies the holder

authBank(int) Identifies the bank

credit(int) credit of the purse

debit(int) debit of the purse

getBalance() value of the balance

Fig. 1. The main modes of the bank card and the main operations

We consider the example of a smart card application, representing an elec-
tronic purse (e-purse). This purse manages the balance of money stored in the
purse, and two pin codes, one for the banker and one for the card holder. Similarly
to smart cards, the e-purse has a life cycle (Fig. 1), starting with a Personaliza-

tion phase, in which the values of the banker and holder pin codes are set. Then
a Use phase makes it possible to perform standard operations such as holder
authentication (by checking his pin), crediting, debiting, etc. When the holder
fails to authenticate three consecutive times, the card is invalidated. Unblock-
ing the card is done by a banker’s authentication. Three successive failures in
the bank authentication attempts make the card return to the Personalization

phase. Each sequence of operations is performed within sessions, which are ini-
tiated through different terminals. This example has originally been designed to
illustrate access control mechanisms, and it is used a basis for test generation
for access control5. It was already used to illustrate test suite reduction with

5 the original code of the application (in B and Java/JML) is available at
http://membres-liglab.imag.fr/haddad/exemple site/index.html

Pre-condition:

(self.isOpenSess_ = true and self.mode_ = Mode::USE and

self.terminal_ = Terminal::PDA and self.hptry_ > 0) = true

Post-condition:

if (pin = self.hpc_) then /**@AIM: HOLDER_AUTHENTICATED */

self.isHoldAuth_ = true and self.hptry_ = self.MAX_TRY

else /**@AIM: HOLDER_IS_NOT_AUTHENTICATED */

self.hptry_ = self.hptry_@pre - 1 and self.isHoldAuth_ = false and

if (self.hptry_ = 0) then /**@AIM: MAX_NUMBER_OF_TRIES_REACHED */

self.mode_ = Mode::INVALID

else /**@AIM: MAX_NUMBER_OF_TRIES_IS_NOT_REACHED */

true

endif

endif

Fig. 2. Pre and post-condition for checkPin(int) operation

Tobias [7]. The original example was specified in JML. We have translated this
specification into a UML/OCL model for the Smartesting Test Designer tool.

In Test Designer (TD), information about the behaviour of operations is
captured in assertions associated to the operations. In the perspective of anima-
tion, these assertions must characterize a deterministic behaviour. An example
of the pre- and post-conditions of the checkPin(int) operation is given Fig. 2.
Post-conditions represent the code to be animated by TD if the pre-condition is
verified. TD uses an imperative variant of OCL6, inspired by the B language [1].
The variables appearing in the right hand side of a = sign are implicitly taken
in their pre-state (usually denoted in OCL by @pre). In the model, the condi-
tional branches are tagged with special comments. For example if the pin code is
equal to the right one (self.hpc_), the tag @AIM:HOLDER_AUTHENTICATED will
be activated and saved by the animator. After animation of an operation call,
TD provides the list of all activated tags. The set of activated tags after an
execution represents a behaviour of an operation. For example, the set:
B1 = {@AIM:HOLDER_IS_NOT_AUTHENTICATED,@AIM:MAX_NUMBER_OF_TRIES_REACHED}

is a behaviour of the checkPin operation leading to INVALID mode.

3 Basic Tobias test patterns

To generate test cases, Tobias unfolds a test pattern (also called “test schema”).
The textual Tobias input language (TSLT) contains several types of constructs
allowing the definition of complex system scenarios. The key concept in the
Tobias input language is the group concept which defines a set of values or
sequences of instructions. The group concept is subject to combinatorial unfold-
ing. Some other concepts can be applied to instructions like iteration or choice.
To illustrate these constructs, let us consider the following pattern:
6 The example presented in this paper follows the standard OCL syntax.

group EPurseSchema1 [us=true, type=instruction] {

@IUT; @Personalize; @AuthenticateHolder; @Transaction{1,3};}

group IUT [type=instruction] { EPurse ep = new EPurse(); }

group Personalize [type=instruction] {

ep.beginSession(Terminal.ADMIN); ep.setBpc(@BankPinValue);

ep.setHpc(@UserDebitValue); ep.endSession(); }

group AuthenticateHolder{

ep.beginSession(Terminal.PDA); ep.checkPin(@UserPinValue){1,4}; }

group Transaction [type=instruction] {

(ep.credit(@Amounts) | ep.debit(@Amounts)); }

group BankPinValue [type=value] {values = [12,45];}

group UserPinValue [type=value] {values = [56,89];}

group Amounts [type=value] { values = [-1,0,50]; }

EPurseSchema1 is a group of instructions (type = instruction), and the flag
us indicates whether the group will be unfolded (=true) or not. This group is a
sequence of 4 other groups: IUT, Personalize, AuthenticateHolder and Transac-
tion. This last group will be repeated one to three times in the sequence. The IUT
group defines a new instance of class EPurse. Then, the Personalize group opens
a new ADMIN session, sets the banker and the holder PIN codes, and finally
closes the session. The AuthenticateHolder group authenticates the holder, and
finally the Transaction group allows to do transactions. We use groups of values
in some operation calls. For instance, the parameter of the setBpc method has
2 possible values.

The iteration construct {m,n} repeats an instruction, or a sequence of in-
structions, from m to n times or exactly m times. For example, in group Au-
thenticateHolder, the checkPin operation is iterated 1 to 4 times (to check all
possible sequences of correct/incorrect user authentication.

The Transaction group illustrates the choice construct. It consists of an ex-
clusive choice between the two operation calls Debit or Credit. Each of them
can be instantiated by three different amounts.

The EPurseSchema1 pattern is unfolded into 30 960 test cases :
1 * (2*2) * (21+22+23+24) * ((3 ∗ 2)1+(3 ∗ 2)2+(3 ∗ 2)3). Only 2776 test cases
are valid ones (i.e. satisfy the pre-conditions). In Fig. 3, examples of test cases
unfolded from EPurseSchema1 are given, TC3 is valid, contrary to TC26835 (which
executes 4 consecutive calls to the checkPin operation with the wrong Pin code)
and TC30960 (which executes a debit operation but never credits).

If we put the maximum iteration bound of Transaction to 10, it would result
into 8 707 129 200 test cases and would cause combinatorial explosion. In the
next sections, we will see how the new Tobias constructs make it possible to take
such explosive test patterns into account.

4 New Tobias constructs

Here, we introduce three new constructs for the Tobias input language. These
constructs support new techniques for filtering test cases. This allows to control
the size of the produced test suite, and incrementally pilot the combinatorial

...

TC3: EPurse ep = new EPurse(); ep.beginSession(Terminal.ADMIN);

ep.setBpc(12); ep.setHpc(56); ep.endSession();

ep.beginSession(PDA); ep.checkPin(56); ep.credit(50)

...

TC26835: EPurse ep = new EPurse(); ep.beginSession(ADMIN);

ep.setBpc(45); ep.setHpc(89); ep.endSession();

ep.beginSession(PDA); ep.checkPin(56); ep.checkPin(56);

ep.checkPin(56); ep.checkPin(56); ep.credit(50)

...

TC30960: EPurse ep = new EPurse(); ep.beginSession(Terminal.ADMIN);

ep.setBpc(45); ep.setHpc(89); ep.endSession();

ep.beginSession(PDA); ep.checkPin(89); ep.checkPin(89);

ep.checkPin(89); ep.checkPin(89); ep.debit(50); ep.debit(50);

ep.debit(50)

Fig. 3. Examples of test cases unfolded from EPurseSchema1

unfolding process. These constructs are inspired by the jSynoPSys scenario lan-
guage [8] and are syntactically and semantically adjusted to meet our needs.

The State predicate construct inserts an OCL predicate in the test sequence.
The predicate expresses that a property is expected to hold at this stage of the
test sequence. Tests whose animations do not satisfy this OCL predicate should
be discarded from the test suite. It allows the tester to select a subset of the
unfolded test suite featuring a given property at execution time. For example,
not all AuthenticateHolder animations succeed. Therefore, we define a state
predicate to select the tests which succeed the authentication. The pattern is
defined as follows:
group EPurseSchema5 [us=true, type=instruction] { @IUT; @Personalize;

@AuthenticateHolder❀({ep} , self.isHoldAuth_ = true); @Transaction; }

AuthenticateHolder performs checkPin one to four times. Then the pattern se-
lects those sequences which end up with a successful authentication. The TSLT
construct takes the form❀(set of targets , OCL predicate), where the set
of targets identifies the objects which correspond to self in the OCL predicate.
Here the set of targets is the singleton including ep.

The behaviours construct is another way to filter tests. It applies to an operation
and keeps the tests whose animation covers a given behaviour, expressed as a
set of tags. For example, in the previous pattern (EPurseSchema5), instead of
using a state predicate to keep tests that succeed the holder authentication, we
select the authentication sequences whose last call to checkPin covers the tag
@AIM:HOLDER_AUTHENTICATED.
group EPurseSchema6 [us=true, type=instruction] {

@IUT; @Personalize; @AuthenticateHolder2; @Transaction; }

group AuthenticateHolder2 {

ep.beginSession(Terminal.PDA); ep.checkPin(@UserPinValue){0,3};

ep.checkPin(@UserPinValue)/w{set(@AIM:HOLDER_AUTHENTICATED)}; }

After the last call to checkPin, we put the symbol /w and we define a set of tags
that must be activated after the operation execution. Here, when the pin code
is correct, the tag @AIM:HOLDER AUTHENTICATED is covered in the post-condition
of checkPin (see Sect. 2).

The Filtering key is called after an instruction. It allows to accept a set of
succeeded tests at some position and to discard the others. Then it will select
some of the succeeded tests. TSLT provides four filtering keys (ONE, ALL, n,
%n) to keep one, all, n or n% of the valid prologues. If we want to accept all of
them we use ALL, just one we use ONE and n (resp. %n) randomly selects
n (resp. n% of the) test cases amongst the valid ones. For example consider
EPurseSchema7. The prologue group leads the purse to a state where the holder
is authenticated. If the test engineer simply wants to keep one of these, he can
add keyword _ONE after the prologue :
group EPurseSchema7 [us=true, type=instruction] {

@Prologue_ONE; @Transactions; }

group Prologue [us=true, type=instruction] {

@IUT;@Personalize; @AuthenticateHolder2; }

5 The incremental unfolding and filtering process

5.1 Standard unfolding and filtering process

Before introducing the mechanism of incremental unfolding, we begin by present-
ing the process of generation, animation and filtering of test cases by coupling
the Tobias and Test Designer tools (Fig. 4). The starting point is a schema file
including a test pattern written in TSLT. Three steps are automatically involved
to produce the test evaluation results:

1. The schema file is unfolded by the Tobias tool which generates one or several
test suite files written in the XML output language of the tool (outob file).
For each group marked in TSLT as us=true, Tobias produces an outob
file. This file contains all abstract test cases generated by the combinatorial
unfolding of the corresponding group.

2. The outob files are translated into JUnit test suites including all necessary
information to animate test cases. Each JUnit test case interacts with the
API of TD to animate the model. We take advantage of the JUnit framework
and the Java API of TD to animate the tests in a popular and familar tool
for engineers, and to benefit from the JUnit structure of test suites.

3. JUnit executes the test suites. Each test case is animated on the TD model
through the TD API. The animation process allows to identify and filter out
invalid test cases, i.e. the ones which:

– include some operation call that violates its precondition,
– include some operation call that violates its postcondition,
– do not fulfill some state predicate or

Fig. 4. The process of generation and filtering test cases (standard process)

– include some operation call that fails to activate its associated behaviours.

The animation of test cases proceeds sequentially. If an instruction fails
because of one of these four reasons, the animation of the test stops and the
test case is declared as failed and discarded from the test suite. The valid
ones are saved to a repository.

5.2 Incremental unfolding and filtering process

Algorithm The standard process requires to completely unfold the test patterns
and to animate each test case of each test suite. At this stage, we did not take
advantage of filtering keys (ONE, ALL, n, n%). These filtering keys can be
applied on the resulting test suite to select the relevant test cases. In this section,
we will see that the early application of filtering keys may lead to significant
optimisations of (a) the unfolding process and (b) the animation of the test
suite.

The incremental process is defined for the unfolding of a single pattern p. It
can be generalized to unfold multiple patterns. Its algorithm is given in Fig. 5
and performs the following steps:

– At each iteration, pattern p is divided into a prefix, located before the first
filtering key, and a postfix, located after it.

– The standard unfolding and filtering process of Sect. 5.1 is applied to the
prefix. It results into a group of valid unfolded prefixes.

– A subset of this group is selected according to the filtering key.
– This subset of valid unfolded prefixes is concatenated with the postfix to

form the new value of p.
– The process iterates until all filtering keys are processed in the pattern.
– A last unfolding is applied to the resulting pattern stored in p.

algorithm Incremental_Generation_And_Execution_Process (p):

while(p contains at least one filtering key)

Let (prefix _1stKey ; postfix) match p in

validPrefixes := apply_Standard_Process(prefix);

validPrefixesSubset := Select_Subset_Of_

Valid_Prefixes_According_To(1stKey);

p := (validPrefixesSubset ; postfix);

end while

result := apply_Standard_Process(p);

end

Fig. 5. The incremental unfolding algorithm

Example To illustrate this incremental process, consider the following pattern:
group EPurseSchema9 [us=true, type=instruction] { @IUT; @Personalize;

@AuthenticateHolder❀({ep} , self.isHoldAuth_ = true)_ONE; @Transactions;}

Before calling @Transactions, we would like to choose just one (_ONE) sequence
of operations that succeeds holder authentication.
The prefix of this pattern is:
group EPurseSchema9pre [us=true, type=instruction] { @IUT; @Personalize;

@AuthenticateHolder❀({ep} , self.isHoldAuth_ = true); }

This prefix is then unfolded using the standard process. The three steps are
executed to generate, animate and filter test cases. It unfolds into 120 tests,
where only 56 are valid. A valid test is choosen randomly between them and
inserted as a prefix in the new pattern:
group EPurseSchema9b [us=true, type=instruction] {

(ep.beginSession(ADMIN) ; ep.setBpc(45) ; ep.setHpc(56) ;

ep.endSession() ; ep.beginSession(PDA) ; ep.checkPin(89) ;

ep.checkPin(56) ; ep.checkPin(56) ;); @Transactions; }

Since there is no remaining filtering key, the whole pattern will be unfolded to
generate the final test cases. This unfolding leads to 6 test cases, where only 3
are valid. The final number of valid test cases may depend on the prefix that
will be chosen randomly. These test cases will be animated to discard the invalid
ones, and then produce the filtered test suite. This process is clearly optimized
since only 126 test cases were completely unfolded, instead of 720 in the standard
process. In the next section, we present experimental results on more complex
examples.

6 Some experimental results

Let us consider the following example:
group EPurseExample [us=true, type=instruction] {@IUT; @Personalize;

@AuthenticateHolder❀({ep} , self.isHoldAuth_ = true);@Transactions{4};}

The EPurseExample is unfolded into 155 520 test cases. Our tools succeed to
achieve steps 1 and 2 (translation into TSLT and production of an outob file).
Unfortunately, the translation of the outob XML file into a JUnit file crashes due
to a lack of memory (we used up to 1.5Gb of RAM). If this had succeeded, we

presume that the compilation of the JUnit file would also crash. These technical
problems can be overcome by decomposing our files into smaller ones, but still the
whole process would take time and computing resources. Other group definitions
can rapidly reach over 1 million test cases which may require untractable time
and memory resources. We redefine the pattern by introducing filtering keys:
group EPurseExampleUsingKeys [us=true, type=instruction] {

@IUT; @Personalize; @AuthenticateHolder❀({ep} , self.isHoldAuth_ = true);

@Transactions_ALL; @Transactions_ALL; @Transactions_ALL; @Transactions; }

This pattern will produce the same valid test cases as the previous one, since
we used the _ALL key. Using the incremental process, we need four iterations
to remove the three filtering keys and unfold the resulting pattern. The pattern
is completely unfolded and animated in 175 seconds as given in Fig. 6. As a

Iteration Nb of tests unfolded Nb of tests accepted

1 720 168

2 1008 560

3 3360 1904

4 11424 6496

Fig. 6. Results of EPurseExampleUsingKeys unfolding

result our 155 520 test cases only include 6496 valid ones. To identify these, our
incremental process needs four iterations but only unfolds and plays 16512 test
cases. In this case, it performed the selection process using 10% of the resources
needed for the standard one, and kept the test suites small enough to avoid tool
crashes.

Support for a brute force approach. Let us consider another explosive pattern,
based on Fig. 1. The aim of this pattern is to find test sequences where the purse
goes back to Personalisation mode, before being set in Use mode. The only way
to reach this goal is to start from Perso mode, go into Use and Invalid modes,
before getting back to Perso and finally to Use. These major steps are captured
in the state predicates of the following pattern:
group EPurseSchema18op [us=true, type=instruction] {

@IUT;

@ALLOps{4}❀({ep}, self.mode_ = Mode::USE);

@ALLOps{5}❀({ep}, self.mode_ = Mode::INVALID);

@ALLOps{5}❀({ep}, self.mode_ = Mode::PERSO);

@ALLOps{4}❀({ep}, self.mode_ = Mode::USE); }

In order to change states, we adopt a brute force approach where a single group
has been defined for all operations offered by the card. Group ALLOps can be
unfolded in 19 elements.
group ALLOps { ep.beginSession(@TerminalValue) | ep.endSession() |

ep.setBpc(@BankPinValue) | ep.setHpc(@UserDebitValue) |

ep.authBank(@BankPinValue) | ep.checkPin(@UserDebitValue) |

ep.credit(@Amounts) | ep.debit(@Amounts); }

EPurseSchema18op repeats all operations 4 times, until it reaches the Use mode.
Finding that it requires 4 iterations can result from a trial and error process, or
from a careful study of the specification. Since we adopt a brute force approach,
let us consider that the engineer has attempted to reach the Use mode in one
to three steps, without success, and finally found that four steps were sufficient
(session opening, setting the Holder and Bank codes, and session close). Sim-
ilarly he found that 5 steps are the minimum to reach state Invalid (session
opening, three unsuccessful attempts to checkPin and session close), and to then
reach state Perso (session opening, three unsuccessful attempts to authBank
and session close). As a result, to find a valid sequence reaching the Use mode
and returning to the same mode after visiting the other modes, we need to
call at least 18 operations (4+5+5+4). EPurseSchema18op represents 1918 test
cases (about 1023 test cases), and thus cannot be directly unfolded. Because of
the brute force approach, and because we inserted filtering predicates, a large
number of these test cases will be invalid. This enables us to call the incremental
process.
We redefine EPurseSchema18op using the filtering key ALL to keep all valid
prefixes.
group EPurseSchema18opWFilteringKey [us=true, type=instruction] {

@IUT;

@ALLOps_ALL; @ALLOps_ALL; @ALLOps_ALL;

@ALLOps❀({ep}, self.mode_ = Mode::USE)_ALL;

@ALLOps_ALL; @ALLOps_ALL; @ALLOps_ALL; @ALLOps_ALL;

@ALLOps❀({ep}, self.mode_ = Mode::INVALID)_ALL;

@ALLOps_ALL; @ALLOps_ALL; @ALLOps_ALL; @ALLOps_ALL;

@ALLOps❀({ep}, self.mode_ = Mode::PERSO)_ALL;

@ALLOps_ALL; @ALLOps_ALL; @ALLOps_ALL;

@ALLOps❀({ep}, self.mode_ = Mode::USE); }

EPurseSchema18opWFilteringKey is unfolded incrementally in 18 iterations.
Fig. 7 shows the number of unfolded and accepted tests at each iteration. Steps
9 and 14 show how filtering predicates dramatically decrease the number of ac-
cepted tests. Fig. 7 shows that the number of test cases animated at each step
remains small enough to be handled with reasonable time and computing re-
sources, and to avoid tool crashes. As a result, we unfolded and animated a
total of 85424 test cases for the 18 iterations in less than 17 minutes, instead
of 1918 in the standard process. We finally found all 640 valid test cases hidden
into this huge amount of potential test cases. This second example shows that
this incremental technique is efficient to find complex test cases hidden in a huge
search space. The key to success is to make sure that the use of filtering keys will
effectively reduce or limit the number of test cases at each iteration. Therefore,
one should prefer a specification and a test pattern which help identify invalid
test cases as soon as possible.

Improvements with respect to our previous work. In the past [17, 18], we have
proposed two techniques to master combinatorial explosion with Tobias: test
filtering at execution time, and test selection at generation time. Filtering at

Iteration Nb of tests

unfolded

Nb of tests

accepted

1 19 3

2 57 7

3 133 29

4 551 24

5 456 40

6 760 104

7 1976 312

8 5928 1136

9 21584 56

Iteration Nb of tests

unfolded

Nb of tests

accepted

10 1064 72

11 1368 184

12 3496 376

13 7144 1160

14 22040 64

15 1216 80

16 1520 224

17 4256 624

18 11856 640

Fig. 7. Results of EPurseSchema18opWFilteringKey unfolding

execution time is based on a simple idea: if the prefix of a test case fails, then
all test cases sharing the same prefix will fail. In [17], we have proposed an intel-
ligent test driver which remembers the failed prefixes, and avoids to execute a
test case starting with a prefix which previously failed. This idea is close to the
one presented in this paper. Still, there are significant advances in the new tech-
nique proposed here. First, the original technique required to produce the full
test suite. Every test was examined to check if it included a failing prefix. Our
new incremental process does not generate the full test suite, it incrementally
builds and filters the prefixes by alternating between unfolding and animation
activities. Because we avoid the full unfolding of the test suite, we are able to
consider test patterns corresponding to huge numbers of test cases (1918 in the
last example). Another contribution of this paper is the definition of new con-
structs for test patterns (state predicates, behaviours, filtering keys), which help
invalidate earlier the useless test cases in the unfolding process. Selection at gen-
eration time is another technique, where one selects a subset of the test suite
based on some criterion. This selection takes place during the unfolding process
and does not require to execute or animate test cases. In [18] we filtered the ele-
ments of the test suite whose text did not fulfill a given predicate. This predicate
is freely chosen by the test engineer and does not prevent to filter out useful test
cases. For example, one could filter out all test cases whose length was longer
than a given threshold. In [7, 18], we investigated the use of random selection
techniques. These techniques are by essence unable to distinguish between valid
and invalid test cases, but they are able to reduce the number of test cases to
an arbitrary number whatever be the size of the initial test suite. Compared to
these selection techniques, our incremental process does not discard valid test
cases, but makes the assumption that the number of valid test cases is small
enough to remain tractable.

7 Related work

In [15], authors propose to study test reduction in the context of bounded-
exhaustive testing, which could be described as a variation of combinatorial
testing. Three techniques are proposed to reduce test generation, execution time

and diagnosis. In particular, the Sparse Test Generation skips some tests at
the execution to reduce the time to the first failing test. Unlike ours, this ap-
proach does not rely on a model to perform test generation and reduction. Our
approach allows filtering large combinatorial test suites by animating them on
an UML/OCL model. It eliminates tests which don’t verify the pre and post
conditions of operations and/or given predicates or states. Generating tests or
simply checking their correctness, is a classical approach when a model is avail-
able (principle of the “model-based testing” approaches). For instance, in [12],
authors generate automatically a combinatorial test suite, that satisfies both
the specification and coverage criteria (among which pairwise coverage of pa-
rameter values). The generation engine is based on a constraint solver and the
specification is expressed in Spec#. In [2], authors also propose to automate
test case generation with a constraint solver, but the specification is expressed
as contracts extended with state machines. For both, the objective of the work
is to generate a test suite which fulfills a coverage criterion on a model. In our
approach, the test schema gives a supplementary selection criterion for test gen-
eration. In [6], specification is expressed as IOLTS and generation is done with
respect to a test purpose, for conformance testing. In some way, our test schema
can be compared to a sort of test purpose, but contrary to this work where only
one test is generated for each test purpose, we aim at generating all the test
cases satisfying the test purpose.

The problem of test suite reduction is to provide a shorter test suite while
maintaining the fault detection power. The approach presented in [14] generates
test suites from a model and traps properties corresponding to structural cover-
age criteria. An algorithm is then executed on the resulting test suite to generate
a reduced test suite having the same coverage than the original one. The origi-
nal and the reduced test suites are animated on a faulty model to compare their
fault localization capabilities. In [11], authors propose an approach where test
cases created thanks to model-checker are transformed such that redundancy
within the test-suite is avoided, and the overall size is reduced. Our approach
differs from test suite reduction techniques in two points. First, we don’t need to
execute all tests of the original test suite to perform the reduction, and second,
we consider that all valid test cases are equivalent when performing reduction
with the filtering keys. YETI7 is a random test generation tool which generates
test cases from program bytecode. The number of generated test cases is limited
by the available time. The report shows in a real time GUI the bugs found sofar,
the coverage percentage according to a classical coverage criteria, the number
of system calls and the number of variables used in the system to carry out the
test generation and execution. Compared to our toolset, our approach performs
the generation of tests from a UML/OCL model and not from a program. The
choice of the methods under test, the length of the call sequences and the param-
eter values is not done randomly as in the YETI tool but according to a careful
test schema defined by the user. Contrary to our tool, the notion of filtering

7 Tool website : http://www.yetitest.org/

against specific states or behaviors and the incremental unfolding do not exist
in the YETI tool whose purpose is to maximize bugs detection and structural
coverage.

8 Conclusion and perspectives

In this paper, we address the problem of filtering a large combinatorial test
suite with respect to a UML/OCL Model. The whole approach relies on three
main steps. First the set of tests to generate has to be defined in terms of a
test pattern, expressed in a textual language called TSLT. Second, this schema
is unfolded to produce abstract test cases that are animated within Smartest-
ing Test Designer tool. This animation allows to identify and remove invalid
test cases. The process of unfolding and filtering can be done incrementally so
that potential combinatorial explosion can be mastered. Several examples have
been presented. They show that the incremental process is able to generate all
valid test cases scattered in a huge search space, provided that the number of
valid test cases remains small enough. This paper has presented several new con-
structs which help the test engineer to express more precise test patterns and
to filter out invalid test cases at early stages of the unfolding process. From a
methodological point of view, this requires to augment the test pattern with state
predicates, behaviour selectors, and filtering keys, which keep the incremental
process within acceptable bounds. This approach has been defined in the context
of the ANR TASCCC Project. We intend to apply it soon to the Global Plat-
form case study provided by Gemalto, a last-generation smart card operating
system8. This model presents 3 billions of possible atomic instantiated operation
calls, due to combination of operations parameters values. A large proportion of
these latters represent erroneous situations that should not be considered.

Acknowledgment This research is supported by the ANR TASCCC Project under

grant ANR-09-SEGI-014.

References

1. Abrial, J.R.: The B Book - Assigning Programs to Meanings. Cambridge University
Press (Aug 1996)

2. Belhaouari, H., Peschanski, F.: A constraint logic programming approach to auto-
mated testing. In: The 24th Int. Conf. on Logic Programming. pp. 754–758. ICLP
’08, Springer (2008)

3. du Bousquet, L., Ledru, Y., Maury, O., Oriat, C., Lanet, J.L.: Reusing a JML spec-
ification dedicated to verification for testing, and vice-versa: case studies. Journal
of Automated Reasoning, Springer 45(4) (2010)

4. Cheon, Y., Leavens, G.T.: A simple and practical approach to unit testing: The
JML and JUnit way. In: ECOOP’02. No. 2374 in LNCS, Springer (2002)

5. Cohen, D.M., Dalal, S.R., Parelius, J., Patton, G.C.: The combinatorial design
approach to automatic test generation. IEEE Softw. 13(5), 83–88 (1996)

8 http://www.globalplatform.org/specifications.asp

6. Constant, C., Jeannet, B., Jéron, T.: Automatic test generation from interproce-
dural specifications. In: Testing of Software and Communicating Systems, LNCS,
vol. 4581, pp. 41–57. Springer (2007)

7. Dadeau, F., Ledru, Y., Bousquet, L.D.: Directed random reduction of combinatorial
test suites. In: Random Testing ’07. pp. 18–25. ACM (2007)

8. Dadeau, F., Tissot, R.: jSynoPSys – a scenario-based testing tool based on the
symbolic animation of B machines. In: Finkbeiner, B., Gurevich, Y., Petrenko, A.
(eds.) MBT’09 proceedings. ENTCS, vol. 253-2, pp. 117–132 (2009)

9. Dupuy-Chessa, S., du Bousquet, L., Bouchet, J., Ledru, Y.: Test of the ICARE
platform fusion mechanism. In: DSVIS’05. LNCS, vol. 3941. Springer (2006)

10. Ferro, L., Pierre, L., Ledru, Y., du Bousquet, L.: Generation of test programs for
the assertion-based verification of TLM models. In: Design and Test Workshop,
2008. IDT 2008. 3rd International. pp. 237–242. IEEE (dec 2008)

11. Fraser, G., Wotawa, F.: Redundancy based test-suite reduction. In: 10th Int. Conf.
on Fundamental Approaches to Software Engineering. pp. 291–305. FASE, Springer
(2007)

12. Grieskamp, W., Qu, X., Wei, X., Kicillof, N., Cohen, M.B.: Interaction coverage
meets path coverage by SMT constraint solving. In: The 21st IFIP WG 6.1 Int.
Conf. on Testing of Software and Communication Systems and 9th Int. FATES
Workshop. pp. 97–112. (TESTCOM/FATES), Springer (2009)

13. Harrold, M.J., Gupta, R., Soffa, M.L.: A methodology for controlling the size of a
test suite. ACM Trans. Softw. Eng. Methodol. 2(3), 270–285 (1993)

14. Heimdahl, M., George, D.: On the effect of test-suite reduction on automatically
generated model-based tests. Automated Software Engineering 14, 37–57 (2007)

15. Jagannath, V.and Lee, Y., Daniel, B., Marinov, D.: Reducing the costs of bounded-
exhaustive testing. In: Fundamental Approaches to Software Engineering. LNCS,
vol. 5503, pp. 171–185. Springer (2009)

16. Lausdahl, K., Lintrup, H.K.A., Larsen, P.G.: Connecting UML and VDM++ with
open tool support. In: Cavalcanti, A., Dams, D. (eds.) FM 2009: Formal Methods,
Second World Congress. LNCS, vol. 5850, pp. 563–578. Springer (2009)

17. Ledru, Y., du Bousquet, L., Maury, O., Bontron, P.: Filtering TOBIAS combi-
natorial test suites. In: ETAPS/FASE’04 – Fundamental Approaches to Software
Engineering. LNCS, vol. 2984, pp. 281–294. Springer (2004)

18. Ledru, Y., Dadeau, F., du Bousquet, L., Ville, S., Rose, E.: Mastering combina-
torial explosion with the Tobias-2 test generator. In: IEEE/ACM Int. Conf. on
Automated Software Engineering. pp. 535–536. ACM (2007), demonstration

19. Maury, O., Ledru, Y., Bontron, P., du Bousquet, L.: Using Tobias for the auto-
matic generation of VDM test cases. In: 3rd VDM Workshop (in conjunction with
FME’02) (2002)

20. Rothermel, G., Harrold, M.J., Ostrin, J., Hong, C.: An empirical study of the
effects of minimization on the fault detection capabilities of test suites. In: Int.
Conf. on Software Maintenance. pp. 34–43. IEEE (1998)

