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Abstract

A new model for describing a three-dimensional (3D) trajectory is proposed in this article. The studied trajectory is viewed as a lin-

ear combination of rotatable 3D patterns. The resulting model is thus 3D rotation invariant (3DRI). Moreover, the temporal patterns

are considered as shift-invariant. This article is divided into two parts based on this model. On the one hand, the 3DRI decom-

position estimates the active patterns, their coefficients, their rotations and their shift parameters. Based on sparse approximation,

this is carried out by two non-convex optimizations: 3DRI matching pursuit (3DRI-MP) and 3DRI orthogonal matching pursuit

(3DRI-OMP). On the other hand, a 3DRI learning method learns the characteristic patterns of a database through a 3DRI dictionary

learning algorithm (3DRI-DLA). The proposed algorithms are first applied to simulation data to evaluate their performances and

to compare them to other algorithms. Then, they are applied to real motion data of cued speech, to learn the 3D trajectory patterns

characteristic of this gestural language.

Keywords: 3D motion trajectory, rotation invariant, shift-invariant, Procrustes registration, orthogonal matching pursuit,

dictionary learning.

1. Introduction

Different communities (computer vision, signal processing,

statistics, robotics and machine learning) deal with 3D rota-

tions. Although with different terminologies, these domains are

interested in the same challenges. In 3D space, a time-varying

3D trajectory of N temporal samples is decomposed on elemen-

tary patterns, and thus described as the sum of K basis vec-

tors. Different models described thereafter can be considered to

study it.

1.1. The models

For computer vision, Bregler et al. [1] described a non-rigid

3D object of P points as N successive instantaneous 3D shapes

(or point sets). These shapes are decomposed on a shape basis,

and this is a common way to analyze 3D data [2, 3, 4, 5]. Re-

cently, the duality between shape basis and trajectory basis has

been shown by Akhter et al. [6]. They described the 3D object

of P points as P temporal trajectories of N samples [6]. In our

work, we focus on the 3D trajectory of a single point. Thus, the

3D trajectory y ∈ R3×N is defined as:

y =

K
∑

k=1

ak fk , (1)
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where ak ∈ R
3×1 are the coefficients, and fk ∈ R

1×N are the

trajectory basis vectors. Then, the trajectory y is the sum of K

trajectory basis vectors { fk}
K
k=1. With this model, the discrete

cosine transform (DCT) appears to be a well-adapted generic

basis to study motion signals [6]. This new trajectory model to

study 3D data opens many prospects.

In signal processing, a multicomponent temporal signal is de-

scribed in [7] as the sum of the multicomponent patterns. Con-

sidering here the particular case of tricomponent data, a 3D tra-

jectory of N samples is viewed as the sum of K 3D trajectories.

The trajectory y ∈ R3×N is defined as:

y =

K
∑

k=1

xk φk , (2)

where xk ∈ R are the coefficients, and φk ∈ R
3×N are the 3D

patterns. This model is different from the Akhter model. In-

deed, in model (1), each unicomponent trajectory θk (1D pat-

tern) is multiplied by three coefficients, one by dimension. In

model (2), each tricomponent trajectory φk (3D pattern) is mul-

tiplied by a scale factor. Thereby, the trajectory y is viewed as

a weighted sum of 3D patterns. The advantage of model (2) is

to deal with 3D trajectory patterns φk ∈ R
3×N where the three

components can be different, contrary to model (1), which has

the same pattern on the three components. The differences be-

tween model (1), known as the multichannel framework, and

model (2), known as the multivariate framework, are detailed

in [7].

In order to be clear, our study deals with tricomponent sig-

nals, and not tridimensional ones. Classically, a temporal sig-
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nal y ∈ R
3×N composed of N temporal 3D coordinates is in-

correctly called tridimensional. In effect, a such signal is not

tridimensional, but tricomponent (either trivariate or trichannel,

depending on the model). A tridimensional signal would be

y ∈ RN1×N2×N3 , such as video frames or other cubic data.

The purpose of this article is to provide a 3D rotation invari-

ant (3DRI) model for 3D trajectories. Thus, a rotation matrix

Rk ∈ R
3×3 is added to each 3D pattern φk and model (2) be-

comes:

y =

K
∑

k=1

xk Rk φk . (3)

Each rotation matrix Rk has to be orthogonal, so they have to

verify the condition: RkRT
k
= Id (Co). This trajectory y is

represented as a weighted sum of rotatable 3D patterns. The

differences between these three models are illustrated in [8].

As explained in the following paragraph, two problems can

be handled on this model: the first one estimates coefficients

x = {xk}
K
k=1 and matrices R = {Rk}

K
k=1 when Φ is fixed, and the

second one estimates the best Φ = {φk}
K
k=1 from data.

1.2. The organization

This article is divided into two parts: one for 3DRI decompo-

sition extending the previous work [8], and one for 3DRI learn-

ing, with both based on the new model (3).

In the first part, we want to solve the estimation of coeffi-

cients x and rotation matrices R. The problem is expressed as:

minx,R

∥

∥

∥

∥

∥

∥

∥

y −

K
∑

k=1

xk Rk φk

∥

∥

∥

∥

∥

∥

∥

2

s.t. ∀k∈NK ,RkRT
k = Id , (4)

where ‖.‖ is the Frobenius norm, 〈A, B〉 = Tr(ABT ) is the asso-

ciated matrix inner product, and (.)T is the transpose operator.

This problem has not been addressed, and we ignore if an an-

alytic solution exists to solve it. It can be viewed as a gener-

alization of the orthogonal Procrustes problem [9, 10, 11, 12],

which usually deals with the registration of a single pattern.

In our study, the shift-invariant case will be considered here-

after. Using a sparsity constraint, we propose in a first part two

non-convex optimizations to solve this more complex problem

(shift-invariant case). They are based on the matching pursuit

(MP) principle: 3DRI-MP and 3DRI-orthogonal MP (OMP).

In the second part, we are interested in the 3D patterns Φ.

The goal is to learn the best basis adapted to the data stud-

ied. Algorithms based on expectation-maximization (EM) al-

low the learning of the basis of the structure-from-motion do-

main [2, 13]. In signal processing and machine learning com-

munities, a redundant basis, called a dictionary, provides a more

efficient representation than a basis [14, 15, 16]: it is more ro-

bust to noise, it has more flexibility for matching features in the

data, and it allows a more compact representation. Dictionary

learning algorithms (DLAs) learn a dictionary that is adapted

to the data [17, 14, 18]. Based on model (3), we present the

3DRI-DLA that learns a dictionary composed of trivariate pat-

terns invariant to 3D rotations.

In this article, existing methods to make 3D registration are

first presented in Section 2. Then, the context is narrowed in

Section 3, with the introduction of the shift-invariant case. The

3D rotation invariant MP and OMP are introduced in Sections 4

and 5. The second part begins with a presentation of the exist-

ing methods for learning 3D patterns, in Section 6. The 3D

rotation invariant dictionary learning algorithm is explained in

Section 7. As validation, experiments on simulation data are

shown in Section 8, and on real data of French cued speech in

Section 9.

2. 3D decomposition: state of the art

In this section, 3D decomposition problems related to prob-

lem (4) are mentioned.

2.1. Rigid 3D registration or orthogonal Procrustes problem

A rigid transformation composed of a 3D rotation R and a

spatial translation T is considered here, between the trivariate

pattern φ and the original signal y. The orthogonal Procrustes

problem consists of finding parameters R and T such that:

minR,T ‖ y − R φ − T ‖2 s.t. RRT = Id . (5)

Eggert et al. [10] reviewed the main methods that give an an-

alytical solution to this rigid 3D registration problem: singular

value decomposition (SVD) [9, 19], unit quaternions [20], or-

thonormal matrix [21], and dual quaternions [22].

In [11], Gower and Dijksterhuis reviewed multiple different

Procrustes problems and many generalizations. However, they

did not address our problem in Eq. (4). It is the same for the

multiview challenge which reconstructs a 3D object from sev-

eral overlaping observations taken for different angles [23].

2.2. 3D matching

Compared to problem (5), the spatial translation is not con-

sidered here any more, and ψ(t) is a short shiftable pattern (zero-

padded to have N samples). The 3D curve matching consists of

solving:

minR,τ ‖ y(t) − R ψ(t − τ) ‖2 s.t. RRT = Id , (6)

where τ is the sample shift. This problem is solved by calculat-

ing the optimal registration matrix R using a method based on

the orthonormal matrix for each sample τ [24]. If there is no

shift, the simple rigid 3D registration problem (5) is recovered.

Remark that methods based on rotation invariant shape signa-

tures/features (as curvature or torsion for example) [25, 26, 27]

or rotation invariant metrics [28] are not considered here since

they do not make the estimation of the rotation matrix. More-

over, they match a 3D curve with an other, and not a 3D curve

with a linear combination of 3D patterns.

Finally, note that the iterative closest point (ICP) algorithm

[29] allows the matching of two 3D sets, where one is a subset

of the other, and thus does not solve Eq. (4).
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2.3. Tricomponent decompositions

Different models dealing with tricomponent signals are re-

viewed here. As indicated in the Introduction, a 3D object

can be described as a linear combination of shape basis vec-

tors [1, 4]. Using the dual model (1), the object is now a linear

combination of trajectory basis vectors [6]. Note that these two

contributions come from the structure-from-motion of the com-

puter vision community, so an orthogonal projection is used to

estimate the 3D structure from 2D motions.

Studying signals of length N, Akhter et al. [6] sought com-

pactness for their representations, using only K vectors, with

K≪N. However, using PCA or DCT for their decompositions,

they ignored how to choose the constant K, and how to select

the K vectors among the N possible. So, a manual trade-off

(between K and the residual error) is used on an exhaustive

search on all possibilities to determinate the optimal vectors

[6]. To solve this problem, multichannel sparse approximations

[30],[7] could be used.

In the signal processing community, a redundant basis com-

posed of M > N elements is called a dictionary. In this case,

elements of the dictionary are not called vectors any more, but

atoms. Model (2) was introduced in this domain, and the choice

of atoms and coefficient estimations are achieved by multivari-

ate sparse approximation (see Section 3.2). The introduced

model (3) allows atoms to rotate but needs an appropriate ap-

proximation method to estimate the associated rotation matrices

as well.

3. Shift and 3D Rotation Invariant Model

If some decompositions of 3D patterns reviewed previously

involve both shapes and trajectories, we insist on the fact that

our work concern 3D temporal trajectories. In this section, the

context is narrowed: the shift invariance, the sparse approxima-

tion, and the shift and 3D rotation invariance are detailed.

3.1. The shift-invariant case

In the shift-invariant case, we want to sparsely code the tem-

poral signal y as a sum of a few short structures, known as ker-

nels, that are characterized independent of their positions. This

model is usually applied to time-series data, and it provides a

compact kernel dictionary [31].

The L shiftable kernels of the compact dictionaryΨ are repli-

cated at all of the positions, to provide the M atoms of the dic-

tionary Φ. The N samples of the signal y, the residual error

ǫ, and the atoms φm are indexed1 by t. The kernels {ψl}
L
l=1 can

have different lengths. The kernel ψl(t) is shifted in the τ sam-

ples to generate the atom ψl(t−τ): zero padding is carried out to

have N samples. The subset σl collects the translations τ of the

kernel ψl(t). For the few kernels that generate all of the atoms,

1Note that a(t) and a(t − t0) do not represent samples, but the signal a and

its translation of t0 samples.

we have:

y(t) =

M
∑

m=1

xm φm(t) + ǫ(t) (7)

=

L
∑

l=1

∑

τ∈σl

xl,τ ψl(t − τ) + ǫ(t) . (8)

As a result, the signal y is approximated as a weighted sum of a

few shiftable kernels ψl.

3.2. Sparse approximation

Due to shift invariance, the dictionaryΦ is the concatenation

of L Toeplitz matrices [32] and is L times overcomplete. Since

M>N, the dictionary is redundant and the linear system is thus

under-determined and has multiple solutions. The introduction

of constraints such as sparsity allows the solution to be regu-

larized. The sparse approximation selects only K active atoms

among the M that are possible, and computes the associated co-

efficients vector x to have a better approximation of the signal

y. One way to formalize the sparse approximation is:

minx

∥

∥

∥

∥

∥

∥

∥

y(t) −

L
∑

l=1

∑

τ∈σl

xl,τ ψl(t − τ)

∥

∥

∥

∥

∥

∥

∥

2

s.t. ‖x‖0 ≤ K , (9)

where K≪M is a constant, and ‖x‖0 is the number of nonzero

elements of vector x. But this problem is NP-hard [33], and

non-convex pursuits tackle it sequentially, such as MP [34].

The OMP [35] assures that coefficients x are the orthogonal

projection of the signal over the selected atoms. Using only

K active atoms among the M that are possible, sparsity pro-

vides the compactness that was so searched for by [6]. From

the beginning of Section 3, explanations were given for uni-

variate signals. However, they are extended to trivariate signals

by multivariate OMP (M-OMP) [7].

3.3. The shift & 3D rotation invariant case

Now, by combining shift and 3D rotation invariances prob-

lems, we obtain the following equation to solve:

minx,R

∥

∥

∥

∥

∥

∥

∥

y(t) −

L
∑

l=1

∑

τ∈σl

xl,τ Rl,τ ψl(t − τ)

∥

∥

∥

∥

∥

∥

∥

2

s.t. ‖x‖0≤K and ∀l∈NL,∀τ∈σl, Rl,τR
T
l,τ = Id . (10)

More than Eq. (4), Eq. (10) is the real issue that is addressed

in this article. Eq. (10) combines Eq. (4), which we ignore if

an analytic solution exists, and Eq. (9), which is NP-hard. As

briefly introduced in [8], we propose two non-convex optimiza-

tions to solve this particularly hard problem.

Eq. (10) has two particular cases already solved: when K =

1, the 3D curve matching of Eq. (6) is retrieved; and when each

Rk = Id, the sparse approximation of Eq. (9) is retrieved, with

trivariate signals, and this case is solved by M-OMP. Note that

2DRI-OMP [7] simply tackles Eq. (10) in the 2D case using

complexes. The presented article can be viewed as a non-trivial

3D extension based on a generalized Procrustes problem, that

explains the names of the methods presented.
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4. 3D Rotation Invariant Matching Pursuit

In the two following sections, our proposed sparse 3DRI de-

composition algorithms are going to be introduced. In this sec-

tion, we first detail the chosen method for the 3D registration,

which will be the core of the introduced algorithm. Then, a non-

convex optimization based on the MP principle is introduced to

solve Eq. (10), which is called 3DRI-MP.

4.1. 3D registration by SVD

Registration problem (5) is considered here with a normal-

ized trivariate pattern φ ∈ R3×N , but without spatial translation.

Sought parameters are the rotation R and the scale factor x:

minx,R ‖ y − x R φ ‖2 s.t. RRT = Id . (11)

For solving this 3D registration equation, the SVD method is

chosen among the other possible methods because it is the

cheapest and it simply deals with the particular cases of noise

and planar patterns [10]. Introduced by [9] to solve the orthog-

onal Procrustes problem, the SVD method fails in the particular

cases mentioned above. It was finally improved by [19], where

it was ensured that R is a rotation (detR = 1) and not a reflection

(det R = −1).

The method chosen described in Algorithm 1 is resumed

in five steps. After having computed the correlation matrix

Mc = yφT ∈ R3×3 (step 1), its SVD is carried out: (U,Σ1,V) =

SVD(Mc) (step 2). Defining matrix Σ2 such that (step 3):

Σ2 =





















1

1

det(UVT )





















, (12)

the optimal rotation is: R = UΣ2VT (step 4). The correlation

value which provides the scale factor is computed such that:

x = Tr(RφyT ) = Tr(Σ2Σ1) ≥ 0 (step 5).

Algorithm 1 : (x,R) = Reg SVD (φ, y)

1: Correlation Matrix: Mc ← yφT

2: SVD: (U,Σ1,V)← SVD(Mc)

3: Matrix Σ2: Σ2 ← diag(1, 1, det(UVT ))

4: Optimal Rotation Matrix: R← UΣ2VT

5: Correlation Value: x← Tr(Σ2Σ1)

This registration method is the core of the following algo-

rithms.

4.2. Description of 3DRI-MP

In this section, the 3DRI-MP is going to be explained step

by step. A trivariate signal y ∈ R
3×N and a dictionary Ψ of

shiftable trivariate kernels are considered. It is important to note

that the dictionary is normalized, which means that each kernel

is normalized. Given this redundant trivariate dictionary, 3DRI-

MP produces a sparse approximation of the signal y described

in Algorithm 2.

The initialization (step 1) allocates the studied signal y to the

residue ǫ0. At the current iteration k, the algorithm selects the

atom that produces the absolute strongest decrease in the mean

square error (MSE)
∥

∥

∥ǫk−1
∥

∥

∥

2
. Denoting ǫk−1(t) = xl,τRl,τψl(t −

τ) + ǫk(t), and using the rule of the derivative of a matrix trace

[36], we have:

∂
∥

∥

∥ǫk−1(t)
∥

∥

∥

2

∂xl,τ

=
∂Tr

(

ǫk−1(t)ǫk−1(t)
T )

∂xl,τ

(13)

= 2 Tr
(

Rl,τψl(t − τ) ǫk−1(t)
T )

= 2
〈

Rl,τψl(t − τ), ǫk−1(t)
〉

.

This is thus equivalent to finding the registered atom that is

the most correlated to the residue ǫk−1. The correlation value

xk
l,τ
= Tr

(

Rk
l,τ
ψl(t − τ) ǫk−1(t)

T )

is computed for each shift τ,

with Rk
l,τ

the optimal rotation matrix to register ψl(t − τ) on

ǫk−1(t). To carry out this step, algorithm Reg SVD is applied

for each τ and each l = 1..L (step 5), and then, the maximum

of the values xk
l,τ

(≥ 0) is searched for to select the optimal atom

(step 7), which is characterized by its kernel index lk and its

position τk. Selected atoms form an active dictionary. The vec-

tor x accumulates the active (i.e. nonzero) coefficients that are

the maximum correlation values (step 8). Associated rotation

matrices are grouped in R (step 9) and the current residue is

computed (step 10).

Different stopping criteria (step 12) can be used: a threshold

on k for the number of iterations, a threshold on the relative

root MSE (rRMSE)
∥

∥

∥ǫk
∥

∥

∥ / ‖y‖, or a threshold on the decrease

in the rRMSE. In the end, the 3DRI-MP provides a K-sparse

approximation of y using the K selected active elements:

ŷK =

K
∑

k=1

xk
lk ,τk Rk

lk ,τk ψlk (t − τ
k) . (14)

Algorithm 2 : (x, R) = 3DRI MP (y,Ψ)

1: initialization: k = 1, residue ǫ0 = y, x = ∅, R = ∅

2: repeat

3: for l← 1, L do

4: 3D Registration for each τ:

5: (xk
l,τ
,Rk

l,τ
)← Reg SVD ( ψl(t − τ), ǫk−1(t) )

6: end for

7: Selection: (lk, τk)← arg max l,τ xk
l,τ

8: Active Coefficients: x← x ∪ xk
lk ,τk

9: Active Matrices: R← R ∪ Rk
lk ,τk

10: Residue: ǫk ← ǫk−1 − xk
lk ,τk Rk

lk ,τk ψlk (t − τ
k)

11: k ← k + 1

12: until stopping criterion

4.3. Comments on the 3DRI-MP

Without considering the nonconvexity of the algorithm, if

there is no overlap between the selected atoms, 3DRI-MP gives

the orthogonal projection of the signal on the active dictionary

in Eq. (10). Otherwise, it is suboptimal, since atom overlaps

generate cross terms that are not treated by 3DRI-MP, as ob-

served in [8]. The difference with 3DRI-OMP will be explained

below.
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Note that the description of Algorithm 2 is detailed in order

to be clear, although its complexity is O(N2). A more rapid

implementation is possible. Indeed, each of the nine elements

of the N correlation matrices Mc(l, τ) = ǫk−1(t) ψl(t − τ)T can

be first computed by fast Fourier transform in O(NlogN) for

every τ, and then the N registrations are computed in O(N).

The resulting complexity is O(NlogN).

Note also that the method presented can be easily extended to

a higher dimension D> 3, considering y ∈ R
D×N . In this case,

the physical signification of the orthogonal matrix R ∈ RD×D is

obviously lost. The extension, which can be called nDRI-MP

[37], modifies only the registration (steps 4-5), extending the

definition of the inner variable Σ2 = diag(1, . . . , 1, det(UVT )) ∈

R
D×D.

5. 3D Rotation Invariant Orthogonal Matching Pursuit

After having introduced 3DRI-MP, we present 3DRI-OMP,

its orthogonal version. The similarities and differences are first

explained, and the algorithm is then detailed.

5.1. Description of 3DRI-OMP

In 3DRI-MP described in Algorithm 2, the coding coefficient

xk
lk ,τk of the selected atom ψlk (t − τ

k) is the optimal correlation

value (step 8), and equally for the rotation matrix Rk
lk ,τk (step

9). It provides an approximated solution for Eq. (10), although

this is not optimal in the least-squares meaning, as it does not

take into account the correlation terms due to overlaps between

the selected atoms. In 3DRI-OMP, coding coefficients and ro-

tation matrices are computed via the orthogonal projection of

the signal y on the selected atoms of the active dictionary. Pre-

vious coefficients and matrices values are corrected to take into

account the new atom and to give the least-squares solution of

Eq. (10). These are modified only if there are correlations be-

tween the new atom and the old ones.

3DRI-OMP solves the least-squares Eq. (10) sequentially, by

increasing K iteratively (Algorithm 3). 3DRI-OMP described

in Algorithm 3 is similar to 3DRI-MP for steps 1 to 10, but

computes the least-squares solutions x and R at each iteration k

in step 11. This allows better selection at the following iteration

k + 1. Thereafter, the superscript k on variables xlk ,τk and Rlk ,τk

is omitted, to lighten notations, and index κ = 1..k nominates

the different elements that were already selected at iteration k.

In 3DRI-OMP, at the current iteration k,

• active coefficients x =
{

xlκ ,τκ
}k
κ=1

• and active matrices R =
{

Rlκ ,τκ
}k
κ=1

are the solutions of Eq. (15) defined as:

minx,R

∥

∥

∥

∥

∥

∥

∥

y(t) −

k
∑

κ=1

xlκ ,τκ Rlκ ,τκ ψlκ (t − τ
κ)

∥

∥

∥

∥

∥

∥

∥

2

s.t. ∀κ∈Nk, Rlκ ,τκR
T

lκ ,τκ = Id . (15)

The optimization procedure (step 11) that tackles this problem

is detailed in the following paragraph.

The stopping criteria (step 14) are the same as for 3DRI-MP.

Finally, 3DRI-OMP gives K-sparse approximations using the

least-squares coefficients and matrices.

Algorithm 3 : (x, R) = 3DRI OMP (y,Ψ)

1: initialization: k = 1, residue ǫ0 = y, x = ∅, R = ∅

2: repeat

3: for l← 1, L do

4: 3D Registration for each τ:

5: (xl,τ,Rl,τ)← Reg SVD ( ψl(t − τ), ǫk−1(t) )

6: end for

7: Selection: (lk, τk)← arg max l,τ xl,τ

8: Active Coefficients: x← x ∪ xlk ,τk

9: Active Matrices: R← R ∪ Rlk ,τk

10: Residue: ǫk ← ǫk−1 − xlk ,τk Rlk ,τk ψlk (t − τ
k)

11: Optimization Procedure: (x, R)← arg minx,R (15)

12: Residue: ǫk ← y − ŷk

13: k ← k + 1

14: until stopping criterion

5.2. Optimization procedure for coefficients and matrices

In this paragraph, the optimization procedure to solve

Eq. (15) at step 11 of Algorithm 3 is detailed. Problem (15)

is solved by alternating updates on coefficients x and rotation

matrices R, updating one when the others are fixed. Moreover,

each update is based on gradient descent.

The 3DRI-MP solution is a good initialization for this opti-

mization, as it is not so far from the optimal solution of Eq. (15).

Thus, the procedure uses the 3DRI-MP solution given by steps

8, 9 and 10 as the initial x, R and ǫk of the optimization. Both

updates are now detailed. Thereafter, a superscript i is added to

variables to denote the current optimization procedure iteration.

Update on coefficients x

Based on the least mean squares (LMS) method [38], Eq. (15)

is derived with respect to xlκ ,τκ , and each coefficient is updated

such that:

xi
lκ ,τκ = xi−1

lκ ,τκ + λ
i
1 · Tr

(

Ri−1
lκ ,τκ ψlκ (t − τ

κ) ǫk(t)
T )

, (16)

where λi
1
= 1/i0.6 is the adaptive descent step. Solving the

update on coefficients x with the gradient method is better than

giving an exact solution by pseudo-inverse. Indeed, in solving

the coefficients update so well in comparison with the matrices,

there is the risk of getting the global optimization stuck in a

local minimum.

Update on rotation matrices R

This update has to maintain the orthogonality of rotation matri-

ces R. In the same manner as previously, LMS can be used for

matrices, giving an additive update. To guarantee the orthogo-

nality of the updated matrices, a second stage with an orthogo-

nal penalization has to be added [39]. The drawbacks are that

this update is empirically less robust to noise and is made in two

stages rather than one. So, we choose a multiplicative update
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which intrinsically keeps the rotation matrix orthogonal in the

orthogonal Stiefel manifold [40, 39]. Each rotation matrix Rlκ ,τκ

is updated following the geodesic of the manifold:

Ri
lκ ,τκ = expm(−µGi−1

κ ) Ri−1
lκ ,τκ , (17)

where Gi−1
κ is defined in Eq. (18). The constant µ is set up to 0.1

in the following and expm is the matrix exponential function.

Gi−1
κ = xi

lκ ,τκ

(

Ri−1
lκ ,τκ

ψlκ (t − τ
κ) ǫk(t)

T

− ǫk(t) ψlκ (t − τ
κ)T Ri−1

lκ ,τκ
T

)

.

(18)

Alternating optimization

The optimization procedure which solves Eq. (15) at step 11 is

resumed:

1: initialization of x, R and ǫk on the 3DRI-MP solution

2: for i← 1, I do

3: for κ ← 1, k do

4: Update of the coefficient xi
lκ ,τκ

with Eq. (16)

5: end for

6: Update of residue ǫk

7: for κ ← 1, k do

8: Update of the matrix Ri
lκ ,τκ

with Eq. (17)

and update of residue ǫk

9: end for

10: end for .

The number of iterations I can be chosen as constant, or as a

function of k (in this way, the last coefficients have more itera-

tions to approach the least-squares solution than the first ones).

Note that it is no use to carry out this optimization procedure

at the first iteration k = 1, as there is no overlap in the active

dictionary reduced to a single atom.

Due to non-convexity of the alternating updates, even with

enough iterations, this optimization procedure is not guaranteed

to converge to the optimal least-squares solution of Eq. (15).

5.3. Comments on the 3DRI-OMP

The first things to note is that 3DRI-OMP does not have

a unique implementation. Here, we have presented one pos-

sible implementation of the optimization procedure to solve

Eq. (15). However, other choices can be made to improve this

least-squares optimization.

Note that 3DRI-MP can be viewed as 3DRI-OMP without

optimization of the problem (15), i.e. setting I = 0. This ex-

plains why 3DRI-MP is more rapid, but sub-optimal.

To continue the nDRI extension evoked in Section 4.3, the

optimization procedure is unchanged to give the nDRI-OMP.

6. 3D Learning: state of the art

After having presented sparse 3DRI decomposition algo-

rithms, in this section, learning methods for 3D objects are re-

viewed. These aim at learning 3D patterns from a signal set.

6.1. Basis learning

Basis learning methods are mostly based on the expectation-

maximization (EM) algorithm [41]. They alternate between an

expectation step that estimates the coefficients, and a maximiza-

tion step that optimizes the vectors. As explained in the Intro-

duction, Bregler et al. described a 3D object as linear combi-

nations of shape basis vectors [1]. As shape basis is dedicated

to a studied object, it has to be re-estimated for each new ob-

ject. Torresani et al. [2] use a generalized EM algorithm to

learn 3D shapes that were adapted to the data they studied, and

this approach was improved by [4]. Akhter et al. represents a

3D object with trajectory basis vectors in the dual model (1),

independent of the studied object; so the generic basis of DCT

can be used [6]. However, Su et al. [13] used an EM-like algo-

rithm to learn 1D trajectories adapted to the data studied, and

obtained better results than [2] and [6].

With the advantages of dictionary over basis mentioned in

Section 1.2, dictionary learning will now be detailed.

6.2. Dictionary learning

Dictionary learning algorithms (DLAs) empirically learn a

dictionary that is dedicated to a signal set [17, 14, 42, 31, 18,

43], [7]. These algorithms alternate between two steps: extrac-

tion of the main patterns (the sparse decomposition step) that

are then learned (the dictionary update step). At the end of the

learning, each signal of the set can be approximated sparsely

with this dictionary. DLAs are different from EM as they use a

sparsity constraint in the decomposition/ expectation step: spar-

sity makes informative patterns emerge from data. As seen in

[7], the EM approach gives less sparsity than DLAs. This learn-

ing approach provides adapted dictionaries that can outperform

generic ones, such as gammatones, wavelets, DCT, and others

[31], [7]. In addition, the advantages of DLA over PCA and

ICA are detailed in [14].

Considering a set of trivariate signals that represents instan-

taneous 3D objects, Zhang et al. learn a shape dictionary [5],

but without time-varying aspect. Studying trivariate tempo-

ral trajectories, the multivariate DLA (M-DLA) [7] based on

model (2) computes a trivariate temporal dictionary. However,

there is no rotation between the three components. So, based

on model (3), a 3D rotation invariant DLA (3DRI-DLA), which

learns a rotatable trivariate temporal dictionary, is now pro-

posed.

7. 3D Rotation Invariant Dictionary Learning Algorithm

In this section, we explain how to compute a 3DRI dictionary

from a trivariate training set.

7.1. Description of the 3D rotation invariant dictionary learn-

ing algorithm

A training set of trivariate signals Y =
{

yq

}Q

q=1
is considered,

and the index q is added to the variables. In our learning algo-

rithm, named as the 3DRI-DLA described in Algorithm 4, each

training signal yq is treated one at a time. This is an online alter-

nation between two steps: a sparse 3DRI decomposition and a
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dictionary update. The sparse 3DRI decomposition (steps 4-5)

is carried out by 3DRI-OMP:

xq, Rq = arg minx,R

∥

∥

∥

∥

∥

∥

∥

yq(t) −

L
∑

l=1

∑

τ∈σl

xl,τ Rl,τ ψl(t − τ)

∥

∥

∥

∥

∥

∥

∥

2

s.t. ‖x‖0 ≤ K and ∀l∈NL,∀τ∈σl, Rl,τR
T
l,τ = Id . (19)

The dictionary update (steps 6-7) is based on maximum likeli-

hood criterion [17], on the assumption of Gaussian noise:

Ψ = arg minΨ

∥

∥

∥

∥

∥

∥

∥

yq(t) −

L
∑

l=1

∑

τ∈σl

xl,τ;q Rl,τ;q ψl(t − τ)

∥

∥

∥

∥

∥

∥

∥

2

s.t. ∀ l∈NL, ‖ψl‖ = 1 . (20)

This criterion is usually optimized by gradient descent [17, 31,

32]. To achieve this optimization, we prefer a stochastic gradi-

ent descent (SGD) based on the LMS. It has the particularity to

deal with 3D rotation matrices, so we name it 3DRI-LMS and

it is derived using the derivative rules of trace matrix [36]:

−
∂
∥

∥

∥ ǫq(t)
∥

∥

∥

2

∂ψl

= 2
∑

τ∈σl

xl,τ;q RT
l,τ;q ǫτ(t) , (21)

with ǫ
τ

denoting the residue localized at the shift τ and limited

to the temporal support of ψl, i.e. ǫ
τ
= ǫ|t=τ..τ+Tl

, with Tl the

length of ψl. The current iteration is denoted as j. For l = 1..L,

each trivariate kernel ψl is updated such that:

ψ
j

l
(t) = ψ

j−1

l
(t) + λ

j

2
·
∑

τ∈σl

x
j

l,τ;q
R

j

l,τ;q

T
ǫ

j−1
q (t + τ) , (22)

where t are the indices limited to the ψl temporal support, and λ2

is the adaptive descent step. This is chosen such that λ
j

2
= 1/ j.

The three components of the trivariate kernel ψl are updated

simultaneously. Kernels are normalized at the end of each iter-

ation, and their lengths can be modified. They are lengthened

if there is some energy in their edges, and they are shortened

otherwise.

At the beginning of the algorithm (step 1), the kernels are

initialized as white uniform noise (between 0 and 1) and they

are normalized. At the end, different stopping criteria (step 10)

can be used: a threshold on the rRMSE computed for the whole

of the training set, or a threshold on j, the number of iterations.

At the end of the algorithm, elementary patterns that are char-

acteristic of the training set Y have been learned empirically in

the optimal dictionary, which jointly gives sparse approxima-

tions for all of the signals of this set.

7.2. Comments on the 3D rotation invariant dictionary learn-

ing algorithm

During the learning, we observe sometimes that some ker-

nels do not converge, and they are not used in decompositions

as they are similar to white noise. Consequently, they are sup-

pressed from the dictionary at the end of the learning.

Algorithm 4 : Ψ = 3DRI DLA

(

{

yq

}Q

q=1

)

1: initialization: j = 1,Ψ0 = {L kernels of white noise}

2: repeat

3: for q← 1,Q do

4: Sparse 3DRI Decomposition:

5: (x
j
q, R

j
q)← 3DRI-OMP (yq,Ψ

j−1)

6: Dictionary Update:

7: Ψ
j ← 3DRI-LMS (yq, x

j
q, R

j
q,Ψ

j−1)

8: j← j + 1

9: end for

10: until stopping criterion

In 3DRI-DLA, the 3DRI-OMP is stopped by a threshold on

the number of iterations. We cannot use rRMSE here, because

at the beginning of the learning, the kernels of white noise can-

not span a given part of the space studied. Moreover, at the first

iteration of the 3DRI-DLA ( j = 1), optimization of Eq. (15) of

the 3DRI-OMP (step 11) is not carried out. So, the constant is

set up as: I = j − 1.

Figure 1: Dictionary of L = 6 trivariate kernels at the end of the learning. The

solid, dashed and dotted lines represent the three components vx, vy and vz of

the velocity kernels. Note that the axes are all the same for each subfigure.

To illustrate this on real data, we apply 3DRI-DLA to trivari-

ate velocity signals to learned an adapted dictionary. In Fig. 1,

the dictionary of L = 6 trivariate kernels is shown at the end of

the learning. The solid, dashed and dotted lines represent, re-

spectively, the three components vx, vy and vz. This convention

for the line style will be used henceforth.

To finish the nDRI extension begun in Sections 4.3 and 5.3,

Eq. (22) is unchanged for the dictionary update of the nDRI-

DLA, using a nDRI-OMP for the sparse decomposition.

8. Experiments on Simulation Data

In this section, the introduced methods are applied to simu-

lation data, and compared to evaluate their performance.

8.1. Experiment 1: 3D rotation invariant decompositions

This first experiment compares the 3DRI-MP and 3DRI-

OMP performances. A dictionaryΨ of L = 50 trivariate kernels

is randomly created: the normalized kernels are drawn from

white Gaussian noise. The kernel length is T = 65 samples.

One hundred signals of N = 250 samples are composed of the
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sum of K = 15 atoms, for which the coefficients (strictly posi-

tive), rotation matrices, kernel indices, and shift parameters are

randomly drawn on uniform distributions. As a consequence,

the different atoms overlap. Each signal is approximated by

3DRI-MP and 3DRI-OMP with K = 15 iterations, to recover

the 15 simulated atoms. The M-OMP used in a trivariate case

is also tested on these signals. A normalized univariate dic-

tionary is computed avering the trivariate one, and the multi-

channel OMP (Mch-OMP) [30] used in a trichannel case is also

compared. The rRMSE
∥

∥

∥ǫk
∥

∥

∥/‖y‖ is averaged (mean and stan-

dard deviation) over the 100 signals and is plotted in Fig. 2 as a

function of the inner iterations k = 1..2K of the four algorithms.

Figure 2: Comparison between the performances of 3DRI-MP, 3DRI-OMP, M-

OMP and Mch-OMP. The rRMSE averaged over 100 signals is plotted as a

function of the inner iteration k.

We observe that the 3DRI-OMP gives better approximation

performances than the 3DRI-MP. At the beginning, both al-

gorithms have similar behaviors, as there are not many active

atoms in the decompositions, and so the optimization procedure

(see Section 5.2) of the 3DRI-OMP does not have a significant

impact. At the end of the K iterations, the 3DRI-OMP has a

rRMSE of 0.2%, whereas 3DRI-MP has a rRMSE of 13.4%.

This shows the optimality of the 3DRI-OMP, which provides

the least-square solution, contrary to the 3DRI-MP. Sometimes,

when the overlaps between atoms are sizeable, the 3DRI-OMP

does not recover the good parameters
{

lk
}K

k=1
and

{

τk
}K

k=1
. This

explains why the averaged rRMSE in Fig. 2 is not exactly equal

to 0 at the end of the 3DRI-OMP (k = 15). Concerning M-OMP

and Mch-OMP, their rRMSE are huge since they do not recover

the good atoms. So, these algorithms are not appropriate for

rotated data. The rRMSE for iterations k = K..2K are shown to

verify that there is no breakpoint in the curves.

This experiment highlights the relevance of the 3DRI algo-

rithms for the decomposition of revolved data, and the optimal-

ity of 3DRI-OMP over 3DRI-MP.

8.2. Experiment 2: 3D rotation invariant dictionary learning

This experiment was designed to test the recovery ability of

the 3DRI-DLA. The experimental protocol described hereafter

was inspired by [43, 7, 44] which tested shift-invariant DLAs.

A dictionary Ψ of L = 45 normalized trivariate kernels is cre-

ated from white uniform noise, and the kernels length is T = 18

samples. The training set Y1 is composed of Q = 2000 signals

of length N = 20, and it is synthetically generated from this dic-

tionary. For the kernels, circular shifts are not allowed, and so

only three shifts are possible. Each training signal is composed

of the sum of three atoms, for which the coefficients (strictly

positive), rotation matrices, kernel indices, and shift parame-

ters are randomly drawn. White Gaussian noise is also added

at several levels: a signal-to-noise ratio of 10, 20 and 30 dB,

and without noise. The dictionary initialization is made on the

training set, and the learned dictionary Ψ̂ is returned after 80

iterations over the training set (i.e. j ≤ 80×Q). For the first 40

iterations, the adaptive step is chosen as: λ
j

2
= 1/( j − q + 1)1.5,

as constant for each loop of the training set, and it is then kept

constant for the last iterations: λ
j

2
= 1/401.5.

The experimental protocol was slightly changed to give the

training set Y2. In this case, there is no more rotation when

composing the training signals with the trivariate kernels (i.e.

Rl,τ= Id).

In the experiment, a learned kernel ψ̂l is considered as de-

tected, i.e. recovered, if its correlation value µl, after 3D reg-

istration, with its corresponding original kernel ψl respects the

following rule:

µl ≥ 0.99 with (µl, .) = Reg SVD(ψ̂l, ψl) . (23)

As the M-DLA used in a trivariate case, is also tested for com-

parison, its detection condition is simply:

µl =

∣

∣

∣

∣

〈

ψl, ψ̂l

〉

∣

∣

∣

∣

≥ 0.99 . (24)

Table 1 summarizes the detection rates averaged over 10 tests,

given in percentages as a function of the noise levels (columns)

and the DLA type (rows). 3DRI-DLA (a) gives the results for

the training set Y1 and the detection condition (23); 3DRI-DLA

(b) gives the results for the training set Y2 and the detection

condition (23); and M-DLA gives the results for the training set

Y2 and the detection condition (24).

Table 1: Detection rate results (in %) as a function of the noise level and the

DLA type.

Noise level (in dB) 10 20 30 No noise

3DRI-DLA (a) 96.8 95.8 95.1 96.8

3DRI-DLA (b) 58.0 72.2 76.3 77.8

M-DLA 56.4 57.3 61.1 61.1

Note that a similar experiment was done by [7], to compare

different shift-invariant DLAs, but in the univariate case. First,

we note that the results of the M-DLA in the trivariate case are
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similar to the univariate one [7]. Thus, the trivariate nature of

the signals has no influence on the results considered. However,

the differences in the results between the three rows of Table 1

can seem surprising.

On the first hand, trivariate kernels are white noised but are nev-

ertheless correlated since they are short (T = 18). For 100 000

tries, the averaged correlations between two trivariate normal-

ized white Gaussian noise are 0.2, and 0.4 after 3D registration.

Thus, in this case, the registration doubles the correlation value.

The 3DRI approach intrinsically improves the ability to recover

the kernels, which explains the better results of 3DRI-DLA over

M-DLA used in the trivariate case.

On the other hand, random rotations in the training set Y1 pro-

vide a faster and a more stable convergence of the non-convex

3DRI-DLA, compared to Y2. Kernels, which are the rotational

invariants of the data, are multiplied by rotation matrices with

different angles in Y1. As different rotations are observed, al-

gorithm separates faster the kernel from the rotations. In a nut-

shell, when everything rotates, it is easy to identify what does

not rotate. That explains why results 3DRI-DLA(a) are better

than 3DRI-DLA(b) (which give similar results with more itera-

tions).

This phenomenon is in agreement with stochastic optimization

theory [45]. In non-convex optimization, several local minima

exist. When optimization gets stuck in a local minimum, the

cost to go out is function to the data diversity/entropy in the op-

timization space. Consequently, the convergence of an iterative

non-convex optimization for high diversity data is faster than

data with low diversity.

To conclude this section, our proposed algorithms have been

successfully evaluated and compared on simulation data.

9. Experiments on Real Data

In this section, our methods are now applied to real data.

First, the data are presented, and then methods are applied to

the original data and to the revolved data.

9.1. Application data

Our methods are applied to motion signals of French cued

speech, which is a gestural language, to complement speech

reading [46, 47]. This language associates speech articulation

to cues formed by the hand. In the following, only the motions

of the hand are studied. The hand can be put in place in different

shapes (finger configurations corresponding to consonants) as

shown in Fig. 3, and in different placements (locations on the

face corresponding to vowels).

To make the acquisition, retroreflective markers are put on

the hands of a skilled cuer who usually practices French cued

speech [46, 47]. Data are acquired by 12 cameras which record

the 3D coordinates of these markers using a Vicon R© Motion

Capture System, as shown in Fig. 4. At the end of the acquisi-

tion, tricomponent coordinates are obtained for each marker at

120 Hz. These raw data are parsed in Q = 57 positions signals,

and are then derived to give velocity signals vx, vy and vz. These

signals v = [ vx ; vy ; vz ]T are going to be the input to our al-

gorithms. As a single point/ marker is studied, among all of the

Figure 3: Hand shapes of French cued speech (reprinted from [46]).

Figure 4: Acquiring motion data: the 3D positions of the retroreflective markers

are given by a Vicon R© Motion Capture System (reprinted from [46]).

available markers shown in Fig. 4, we arbitrarily chose the one

located on the top on the thumb. The data units are centime-

tres (cm) for positions and centimetres per second (cm/s) for

velocities. To lighten figures, units will be omitted hereafter.

Note that the introduced algorithms are independent of the

motion capture system: inertial, magnetic and optical systems

(active or passive markers). All of these data acquisitions fi-

nally give 3D spatial signals, which are then processed by our

algorithms.

9.2. Experiment 3: dictionaries learning

In this experiment, we applied 3DRI-DLA to the trivariate

dataset described in the previous paragraph. We also made a

comparison with the M-DLA used in the trivariate case. A

dictionary processed by M-DLA is called an oriented learned

dictionary (OLD), as kernels are learned in a fixed orientation,

without possible rotation. A dictionary processed by 3DRI-

DLA is called a non-oriented learned dictionary (NOLD), as

kernels are invariant to rotation and can be used in all possible

orientations. A DCT used with Mch-OMP (Mch-DCT) is also

considered to compare results with model (1).

Hyper-parameters have been chosen empirically. Parameter

L corresponds to the number of underlying motion primitives,
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Figure 5: Rotatable 3D trajectories associated with the nonoriented learned

dictionary (NOLD) processed by 3DRI-DLA. Axes are all the same.

ie kernels, which the user expects to be present in database sig-

nals. Since primitives are invariant to rotation, their number

L can be reduced [7]. Parameter K corresponds to the num-

ber of actives primitives, ie atoms, which compose each signal.

The user has to determinate K = K1 + K2 in order to provide

K1 primary primitives coding main energy, and K2 secondary

primitives coding small variabilities between signals.

A NOLD is processed with L = 6 kernels, as the dictio-

nary shown in Fig. 1. The rRMSE averaged over the dataset

is 18.2%, with K = 20 atoms in each decomposition. The ve-

locity signals are integrated only to provide a more visual rep-

resentation of the dictionary, even though it is not easy to see

a 3D trajectory on a 2D figure. Fig. 5 shows the rotatable 3D

trajectories associated with the NOLD, and the stars represent

the beginning of the trajectories. Due to integration, different

velocity kernels can provide very similar trajectories. These

trajectories, which were extracted by 3DRI-DLA, correspond

to the elementary patterns of these data. They are the motion

primitives of the cued speech gestural language.

In the same manner, different OLDs are learned with L = 6,

10 and 14 kernels. With K = 20 atoms, the averaged rRMSE are

respectively 27.7%, 25.7% and 24.2%. Even with kernels over

twice those of the NOLD, the oriented learning cannot span the

space as much as the non-oriented learning. For the Mch-DCT,

the averaged rRMSE is 48.1%. These results already show the

relevance of the non-oriented approach, which provides an ef-

ficient kernel dictionary that is more compact than the oriented

ones, which are themselves better than the Mch-DCT.

Figure 6: Original y52 (a) and approximated ŷ52 (b) velocity signals, and the

associated spikegram (c) which is a time-kernel representation.

9.3. Experiment 4: test on data

We then applied 3DRI-OMP with the NOLD, to give an

adapted and non-oriented decomposition. We now explain how

to visualize the coefficients obtained from a shift and 3DRI de-

composition. Usually, real coding coefficients xl,τ are displayed

by a time-kernel representation called a spikegram [48]. This

condenses three indications:
• the temporal position τ (abscissa),

• the kernel index l (ordinate),

• the coefficient amplitude xl,τ (gray level of the spike).
This presentation allows an intuitive readability of the decom-

position. With complex coefficients, the coefficient modulus is

used for the amplitude and its argument gives the angle value,

which is written next to the spike [7]. This coefficient presenta-

tion provides clear visualization.

In the present case, each spike has a coding coefficient xl,τ

and a rotation matrix Rl,τ, which means that there are several

parameters to display for each coefficient. To maintain good vi-

sualization, each rotation matrix is converted in a univocal way

into 3 Euler angles [49]. Two gray shading levels are set up for

this spikegram: one for coefficient amplitude and one for Euler

angles. The angles scale, defined from -180◦ to +180◦, is vi-

sually circular: a negative angle just above -180◦ thus appears

visually close to a positive one just below +180◦. Finally, the

decomposition parameters are thus displayed with six indica-

tions:
• the temporal position τ (abscissa),

• the kernel index l (ordinate),

• the coefficient amplitude xl,τ ≥ 0 (colorbar),

• the 3 Euler angles θ1
l,τ

, θ2
l,τ

, θ3
l,τ

displayed vertically (circu-

lar colorbar).
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Figure 7: Signal y52. Original trajectory (a) and approximations with K = 5 atoms for nonoriented (b), oriented (c) and Mch-DCT (d) approaches.

Figure 8: rRMSE on cued speech data as a function of the sparsity K of the

approximation for the different dictionaries.

To illustrate this, the signal y52 is processed by 3DRI-OMP with

the NOLD and is presented in Fig. 6. The signal (a) is the orig-

inal signal y52 composed of three components (solid, dashed

and dotted lines), and the signal (b) is the approximated signal

ŷ52 with K = 10 atoms. The associated spikegram is plotted

in (c) and can be viewed as the result of the signal deconvolu-

tion through the learned dictionary. The low number of atoms

used in the signal approximation shows the sparsity of the de-

composition, which is called sparse code. Primary atoms are

the largest amplitude ones, like kernels 3, 4 and 6, and they

concentrate the signal energy. The secondary atoms code the

variabilities between the different realizations of the same ges-

ture.

Approximated trajectories of the signal y52 with K = 5 atoms

are plotted in Fig. 7. The original 3D trajectory is plotted in

Fig. 7(a), the non-oriented approximated one using 3DRI-OMP

with NOLD in Fig. 7(b), the oriented approximated one using

Figure 9: Signal y52. Nonoriented reconstructed (a), and oriented reconstructed

(b) trajectories using primary atoms.

M-OMP with OLD (L = 6) in Fig. 7(c), and the Mch-DCT

approximated one in Fig. 7(d). On this visualization, quality

degradation of approximed trajectories is obviously observed

To quantitatively confirm this observation, rRMSE for different

values of the sparsity K are plotted in Fig. 8. These results con-

firm the efficiency of the non-oriented dictionary with respect

to the the oriented ones, which are themselves better than the

Mch-DCT.

Now, we are interested in the contributions of the primary

atoms. The trajectory of the signal y52 is reconstructed using

its five primary atoms in Fig. 9. For instance, for the recon-

struction of Fig. 9(a), the y52 is rebuilt as the sum of the NOLD

kernels 3, 4 and 6 (used three times), which are specified by

the amplitudes and rotations of the spikegram (Fig. 6). The

non-oriented reconstruction and the oriented one are now com-

pared. Reconstruction is not possible for DCT since its atoms

are not time-localized. Considering the original 3D trajectory

plotted in Fig. 7(a), the non-oriented reconstructed trajectory

is plotted in Fig. 9(a) and the oriented reconstructed one in

Fig. 9(b). In Fig. 9(a), we observe that the NOLD kernel 6 is
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used three times with different orientations (see the Euler angles

of Fig. 6), whereas in Fig. 9(b), the OLD kernel 6 is used two

times, but without the possibility to change the orientation to

provide better matching of the original trajectory. Notice that,

in the 3D oriented case treated by M-OMP, a negative coeffi-

cient xl,τ gives a reflection of the associated trajectory.

To conclude this experiment, we have observed that the 3DRI

approach provides an efficient and compact rotatable kernel dic-

tionary and favors better fitting of the kernels, allowing their

rotations.

9.4. Experiment 5: test on revolved data

In this experiment, the signals of the dataset are revolved by

different angles, which were randomly chosen and are now de-

noted by (.)′. The NOLD and the OLDs learned in the previous

experiment are kept to carry out the decompositions of the re-

volved signals. With K = 20, the rRMSE averaged over the

dataset is 18.2% for the non-oriented case, 48.5% for the ori-

ented one with L = 6, and 48.1% for the Mch-DCT. rRMSE for

different values of the sparsity K are plotted in Fig. 10. Com-

paring Fig. 8 and 10, we observe that rRMSE curves of the

NOLD are identical, that proves its rotation invariance, con-

trary to OLDs with decreasing performances. We also observe

that Mch-DCT is not sensible to data rotation.

Figure 10: rRMSE on revolved cued speech data as a function of the sparsity K

of the approximation for the different dictionaries.

The revolved signal y′
52

is processed by 3DRI-OMP with the

NOLD and is shown in Fig. 11. Signal (a) is the revolved sig-

nal y′
52

, the signal (b) is the approximated signal ŷ′
52

(b) with

K = 10 atoms. The associated spikegram is displayed in (c).

The two spikegrams of Fig. 6(c) and Fig. 11(c), come from

non-oriented decompositions of signals y52 and y′
52

, and they

are now compared. The kernel indices, shift parameters and co-

efficient amplitudes are the same. However, as the rotations are

visually displayed, it is not possible to see if the angle differ-

ences correspond to the applied random rotation. The random

rotation matrix is denoted by Rr, the estimated rotation matrices

Figure 11: Revolved y′
52

(a) and approximated ŷ′
52

(b) velocity signals, and the

associated spikegram (c).

are denoted by Re4 for Experiment 4 and by Re5 for Experiment

5. For each signal yq, the error eq between rotation matrices is

computed such that:

eq =
1

K

K
∑

k=1

∥

∥

∥

∥

Re5
lk ,τk ; q

− Rr
q Re4

lk ,τk ; q

∥

∥

∥

∥

/

∥

∥

∥

∥

Rr
q Re4

lk ,τk ; q

∥

∥

∥

∥

. (25)

This error is averaged over the dataset and it is null. Thus, the

differences between the rotation parameters of Experiment 4

and Experiment 5 correspond exactly to the random rotations

applied to the signals. This proves the 3D rotation invariance of

our nonoriented method.

As in the previous experiment, the trajectory of the revolved

signal y′
52

is reconstructed on the primary atoms in Fig. 12.

The 3D trajectory of y′
52

is plotted in Fig. 12(a), the non-

oriented reconstructed one in Fig. 12(b), and the oriented re-

constructed one in Fig. 12(c). The reconstructions of Fig. 9(a)

and Fig. 12(b) are similar, taking into account the rotation. The

reconstructions of Fig. 9(b) and Fig. 12(c) are totally different,

notably concerning the atoms used. This shows the limitation

of an oriented dictionary fixed in a particular orientation, and

thus not appropriate for multiple orientation data.

Better results of the nonoriented approach over the oriented

approach have already been noted in the previous experiment,

even without rotation of the data, but they are obviously high-

lighted in this experiment that deals with revolved data. The

nonoriented approach is robust to rotation: the rRMSE is equal

and the selected atoms are identical whatever the rotation. To

conclude this section, our 3DRI methods have been applied

to trajectories analysis, and the comparative experiments have

shown the necessity and the relevance of these methods.
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Figure 12: Revolved signal y′
52

. Original (a), nonoriented reconstructed (b), and oriented reconstructed (c) trajectories using primary atoms.

10. Discussions and Prospects

Different applications and reflections are discussed in this

section.

10.1. Gesture recognition

Mallat recently noted that the key for the classification is not

the representation sparsity, but its invariances [50, 51]. 3D rota-

tion is a difficult problem, which is often circled around rather

than evaluated. For making recognition, most of the methods

do not evaluate rotation parameters, but use rotation invariant

descriptors, which are often called shape signatures/ features

[25, 26]. As rotation parameters are not computed, there is a

loss of information. Our decomposition methods compute the

parameters of the 3D transformation of a trivariate signal mod-

eled as a linear combination of rotatable 3D patterns. In the

3DRI case, the decompositions are invariant to temporal shift

(parameter τ), to rotation (parameter Rl,τ), to scale (parameter

xl,τ) and to spatial translation (use of velocity signals instead of

position signals).

Considering these reflections, we are also working on the

classification of sparse codes, to carry out gesture recognition.

Some classification methods have been set up in [52, 53] to

deal with model (2) with good results, but have to be adapted to

model (3).

10.2. Motion primitives learning for robotics

Considering a dataset that has acquired a phenomenon, dic-

tionary learning can extract the generating causes of this phe-

nomenon [17, 31]. The learned patterns correspond to the un-

derlying structures of the observed phenomenon and provide

efficient coding. In the same way, studying 2D handwritten

characters, Barthélemy et al. [7] learnt 2D gestural primitives

of the handwriting, and in this article, 3D gestural primitives

of the French cued speech have been learned. It is thus related

to trajectory data mining [54] and motion primitives learning

[55, 56].

In robotics, differents studies have learnt motion primitives

for specific locomotion modes of biped robots [57, 58, 59].

However, a heavy parametric formalism was used to model

the robot kinematics. It is possible to solve this problem

with 3DRI-DLA, which is a nonparametric approach. Using

a dataset containing several signals of specific motion realized

by a subject, 3DRI learning is carried out for each robot joint

(hip, knee and ankle). This gives motion primitives dedicated

to specific locomotion modes.

11. Conclusion

This article proposes a new model for describing a time-

varying 3D object as the sum of the rotatable 3D patterns. The

model considered combines the 3D rotation invariance and the

shift-invariance of the patterns. Based on sparse approximation,

3DRI-MP and 3DRI-OMP carry out 3DRI decompositions, and

3DRI-DLA carries out the learning of 3DRI patterns. Such

an approach provides a compact rotatable kernel dictionary, is

robust to 3D rotations, and is efficient even when the studied

trivariate data are not revolved. As validation, these algorithms

were here applied to motion signals of French cued speech.

There are multiple applications in various domains: non-

rigid structure-from-motion, 3D curve matching, 3D tracking,

gesture representation and analysis, motion primitives learning,

trajectory data mining, 3D pattern discovery and all other pro-

cessings based on 3DRI decomposition.

The considered prospects are to extend the presented meth-

ods to the multisensors case, when physically linked P points/

markers/ sensors are studied (cf. Introduction), and to add

a classification step adapted to our model to provide gesture

recognition.

Acknowledgements

The authors thank C. Richard and anonymous reviewers for

their comments, A. Souloumiac from CEA, LIST for his plenti-

ful advice about the Procrustes problem, J. Atif from LRI, TAO

for his help about optimization theory, F. Elisei from GIPSA-

Lab, DPC for his explanations about cued speech data (acquired

by Attitude Studio during the RNRT 01/37 ARTUS project),

and C. Berrie for his help about English usage.

13



References

[1] C. Bregler, A. Hertzmann, H. Biermann, Recovering non-rigid 3D shape

from image streams, in: Proc. IEEE Conf. Computer Vision and Pattern

Recognition CVPR, pp. 690–696.

[2] L. Torresani, A. Hertzmann, C. Bregler, Learning non-rigid 3D shape

from 2D motion, in: Advances in Neural Information Processing Systems

NIPS ’04, pp. 1555–1562.

[3] A. Srivastava, S. Joshi, W. Mio, X. Liu, Statistical shape analysis: clus-

tering, learning, and testing, IEEE Trans. Pattern. Anal. Mach. Intell. 27

(2005) 590–602.

[4] L. Torresani, A. Hertzmann, C. Bregler, Nonrigid structure-from-motion:

Estimating shape and motion with hierarchical priors, IEEE Trans. Pat-

tern. Anal. Mach. Intell. 30 (2008) 878–892.

[5] S. Zhang, Y. Zhan, Y. Zhou, M. Uzunbas, D. Metaxas, Shape prior mod-

eling using sparse representation and online dictionary learning, in: Med-

ical Image Computing and Computer-Assisted Intervention - MICCAI

2012, volume 7512 of Lecture Notes in Computer Science, pp. 435–442.

[6] I. Akhter, Y. Sheikh, S. Khan, T. Kanade, Trajectory space: A dual repre-

sentation for nonrigid structure from motion, IEEE Trans. Pattern. Anal.

Mach. Intell. 33 (2011) 1442–1456.
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