Duc-Cuong Dang
email: duc-cuong.dang@hds.utc.fr.

Rym Nesrine Guibadj

Aziz Moukrim

An effective

Keywords: Vehicle routing, knapsack problem, interval graph, optimal split, swarm intelligence

published or not. The documents may come

Introduction

The term Orienteering Problem (OP), first introduced in [START_REF] Golden | The orienteering problem[END_REF], comes from an outdoor game played in mountainous or forested areas. In this game, each individual player competes with the others under the following rules. Each player leaves a specific starting point and tries to collect as many rewards as possible from a set of check points in a given time limit before returning to the same starting point. Each check point can reward each player at most once and each player is aware of the position of each check point as well as the associated amount of rewards. There always exists an optimal strategy to achieve the maximum amount of rewards. In general, finding such a strategy (or solving OP) is NP-Hard [START_REF] Golden | The orienteering problem[END_REF], the player should select a correct subset of check points together with determining the shortest Hamiltonian circuit connecting these points and the starting point. OP and its variants have attracted a good deal of attention in recent years [START_REF] Aráoz | Solving the prize-collecting rural postman problem[END_REF][START_REF] Bérubé | An exact epsilon-constraint method for bi-objective combinatorial optimization problems: Application to the traveling salesman problem with profits[END_REF][START_REF] Tricoire | Heuristics for the multi-period orienteering problem with multiple time windows[END_REF][START_REF] Vansteenwegen | Metaheuristics for tourist trip planning[END_REF] as a result of their practical applications [START_REF] Chao | A fast and effective heuristic for the orienteering problem[END_REF][START_REF] Golden | The orienteering problem[END_REF][START_REF] Leifer | Strong linear programming relaxations for the orienteering problem[END_REF][START_REF] Tsiligirides | Heuristic methods applied to orienteering[END_REF] and their hardness [START_REF] Butt | A heuristic for the multiple tour maximum collection problem[END_REF][START_REF] Fischetti | Solving the orienteering problem through branch-and-cut[END_REF][START_REF] Keller | Algorithms to solve the orienteering problem: A comparison[END_REF]. Readers are referred to Vansteenwegen et al. [START_REF] Vansteenwegen | The orienteering problem: A survey[END_REF] for a recent survey of these problems.

Adding the cooperative aspect to OP, without neglecting the competitive one, yields to the Team Orienteering Problem (TOP) [START_REF] Chao | The team orienteering problem[END_REF]. In this problem, the players are partitioned into teams and players of a team work together to collect as many rewards as possible within the time limit. Each check point can reward each team at most once. The specific vehicle routing problem, analogous to this game that we also denote by TOP, is the problem where a limited number of vehicles are available to visit customers from a potential set, the travel time of each vehicle being limited by a time quota, each customer having a specific profit and being visited at most once. The aim of TOP is to organize an itinerary of visits so as to maximize the total profit. Solving this problem is also NP-Hard [START_REF] Chao | The team orienteering problem[END_REF]. The applications of TOP include athlete recruiting [START_REF] Chao | The team orienteering problem[END_REF], technician routing [START_REF] Bouly | Un algorithme de destruction/construction itératif pour la résolution d'un problème de tournées de véhicules spécifique[END_REF][START_REF] Tang | A tabu search heuristic for the team orienteering problem[END_REF] and tourist trip planning [START_REF] Vansteenwegen | Metaheuristics for tourist trip planning[END_REF][START_REF] Vansteenwegen | The orienteering problem: A survey[END_REF]. In this paper, we are interested in TOP as the core variant of OP for multiple vehicles. This work was motivated by several lines of research first put forward by Veolia Environnement [START_REF] Bouly | Un algorithme de destruction/construction itératif pour la résolution d'un problème de tournées de véhicules spécifique[END_REF][START_REF] Bouly | A memetic algorithm for the team orienteering problem[END_REF].

As far as we know, there are only three exact algorithms for TOP [START_REF] Boussier | An exact algorithm for team orienteering problems[END_REF][START_REF] Butt | An optimal solution procedure for the multiple tour maximum collection problem using column generation[END_REF][START_REF] Poggi De Aragão | The team orienteering problem: Formulations and branch-cut and price[END_REF]. In contrast to exact solving approaches, a number of heuristics and metaheuristics have been developed for TOP. Two fast heuristics were developed by Butt and Cavalier [START_REF] Butt | A heuristic for the multiple tour maximum collection problem[END_REF] and by Chao et al. [START_REF] Chao | A fast and effective heuristic for the orienteering problem[END_REF]. Tang and Miller-Hooks [START_REF] Tang | A tabu search heuristic for the team orienteering problem[END_REF] proposed a tabu search embedded in an adaptive memory procedure. Two tabu search approaches and two versions of a Variable Neighborhood Search (VNS) algorithm were developed by Archetti et al. [START_REF] Archetti | Metaheuristics for the team orienteering problem[END_REF]. Those four methods make use of infeasible tours and of a repairing procedure. Among these, the slow version of the VNS (SVNS) gave very good results on the standard benchmark. Later, Ke et al. [START_REF] Ke | Ants can solve the team orienteering problem[END_REF] developed four versions of an Ant Colony Optimization (ACO) approach. A guided local search and a skewed variable neighborhood search were then proposed by Vansteenwegen et al. [START_REF] Vansteenwegen | A guided local search metaheuristic for the team orienteering problem[END_REF][START_REF] Vansteenwegen | Metaheuristics for tourist trip planning[END_REF]. More recently, Bouly et al. [START_REF] Bouly | A memetic algorithm for the team orienteering problem[END_REF] introduced giant tours, i.e. permutations of all customers, to represent solutions of TOP and designed an effective Memetic Algorithm (MA). The results of MA [START_REF] Bouly | A memetic algorithm for the team orienteering problem[END_REF] were as good as those of SVNS [START_REF] Archetti | Metaheuristics for the team orienteering problem[END_REF] with several strict improvements. Souffriau et al. [START_REF] Souffriau | A path relinking approach for the team orienteering problem[END_REF] submitted two versions of a Path Relinking (PR) approach and independently produced the strict improvements. Like [START_REF] Archetti | Metaheuristics for the team orienteering problem[END_REF], PR approach uses a repairing procedure during the relinking phase to deal with infeasible tours. Those tours are obtained from a gradual combination of each of the random generated solutions with the best ones. The slow version of the Path Relinking (SPR), despite its name, required very small computational times. It is also worth mentioning that Tricoire et al. [START_REF] Tricoire | Heuristics for the multi-period orienteering problem with multiple time windows[END_REF] proposed a VNS algorithm for a generalized version of OP and provided their results on the original TOP instances. Furthermore, there are two methods based on Particle Swarm Optimization (PSO) designed to TOP: Bonnefoy [START_REF] Bonnefoy | L'optimisation par essaims particulaires appliquée au team orienteering problem[END_REF] developed a PSO algorithm combined with a linear programming technique whereas Muthuswamy and Lam [START_REF] Muthuswamy | Discrete particle swarm optimization for the team orienteering problem[END_REF] introduced a discrete version of PSO (DPSO) to solve TOP.

In short, three methods stand out as the state-of-the-art algorithms for TOP: the slow version of the VNS (SVNS) in [START_REF] Archetti | Metaheuristics for the team orienteering problem[END_REF], the MA algorithm in [START_REF] Bouly | A memetic algorithm for the team orienteering problem[END_REF] and the slow version of the PR (SPR) in [START_REF] Souffriau | A path relinking approach for the team orienteering problem[END_REF]. Unlike the other two, MA proposed an interesting technique to represent the solutions of TOP, known as giant tours. This technique was previously introduced in [START_REF] Beasley | Route-first cluster-second methods for vehicle routing[END_REF] for the Vehicle Routing Problem (VRP). According to a recent survey on heuristic solutions for variants of VRP [START_REF] Vidal | Heuristics for multi-attribute vehicle routing problems: A survey and synthesis[END_REF], it is classified as an indirect representation of the solution space. Indeed, each giant tour represents a neighborhood of solutions from which the best one can easily be extracted by an evaluation process. A heuristic using this representation tends to have better visions during the search and a better chance to reach the global optimum. Several search algorithms exploiting this strategy have been discussed in [START_REF] Prins | Tour splitting algorithms for vehicle routing problems[END_REF] for the case of VRP and variants.

In this paper, we propose an effective PSO-inspired algorithm (PSOiA) for TOP. This work is based on our preliminary study of a PSO-based memetic algorithm (PSOMA), which was communicated in [START_REF] Dang | A pso-based memetic algorithm for the team orienteering problem[END_REF]. The main contribution of our paper is a faster evaluation process than the one proposed in [START_REF] Bouly | A memetic algorithm for the team orienteering problem[END_REF]. This enables PSOiA and possibly further methods in the literature to examine a larger number of neighborhoods and explore faster the search space. Experiments conducted on the standard benchmark of TOP clearly show that PSOiA outperforms the existing solution methods of the literature. It achieves a relative error of 0.0005% and detects all but one of the best known solutions. Moreover, a strict improvement was found for one instance of the benchmark. The remainder of this paper is organized as follows. Section 1 provides a formal formulation of TOP. PSOiA and the new optimal split procedure are described in Section 2. The dynamic management of the parameters and computational results on the standard benchmark are described in Section 3. In section 4, we introduce a new set of large instances and provide the respective results. Finally, some conclusions and further developments are discussed in Section 5.

Formulation of the problem

TOP is modeled with a graph G = (V ∪ {d} ∪ {a}, E), where V = {1, 2, ..., n} is the set of vertices representing customers, E = {(i, j) | i, j ∈ V } is the edge set, d and a are respectively departure and arrival vertices for vehicles. Each vertex i is associated with a profit P i , and each edge (i, j) ∈ E is associated with a travel cost C i,j which is assumed to be symmetric and satisfying the triangle inequality. A tour R is represented as an ordered list of q customers from V , so R = (R [START_REF] Aráoz | Solving the prize-collecting rural postman problem[END_REF], . . . , R[q]). Each tour begins at the departure vertex and ends at the arrival vertex. We denote the total profit collected from a tour R as

P (R) = i=q i=1 P R[i]
, and the total travel cost/time as

C(R) = C d,R[1] + i=q-1 i=1 C R[i],R[i+1] + C R[q],a . A tour R is feasible if C(R) ≤ L
with L being a predefined travel cost/time limit. The fleet is composed of m identical vehicles. A solution S is consequently a set of m (or fewer) feasible tours in which each customer is visited at most once. The goal is to find a solution S such that R∈S P (R) is maximized. One simple way of reducing the size of the problem is to consider only accessible customers. A customer is said to be accessible if a tour containing only this customer has a travel cost/time less than or equal to L. For mixed integer linear programming formulations of TOP see [START_REF] Boussier | An exact algorithm for team orienteering problems[END_REF][START_REF] Butt | An optimal solution procedure for the multiple tour maximum collection problem using column generation[END_REF][START_REF] Ke | Ants can solve the team orienteering problem[END_REF][START_REF] Poggi De Aragão | The team orienteering problem: Formulations and branch-cut and price[END_REF][START_REF] Vansteenwegen | The orienteering problem: A survey[END_REF].

A PSO-inspired algorithm

Particle Swarm Optimization (PSO) is a swarm intelligence algorithm proposed by Kennedy and Eberhart [START_REF] Kennedy | Particle swarm optimization[END_REF] with the basic idea of simulating the collective behavior of wild animals in the nature. PSO was first used for optimization problems in continuous space as follows. A set known as a swarm of candidate solutions, referred to as particles, is composed of positions in the search space. The swarm explores the search space according to Equations (1) and [START_REF] Archetti | Metaheuristics for the team orienteering problem[END_REF]. In these equations, x t i and v t i are respectively the vectors of position and velocity of particle i at instant t. Three values w, c 1 and c 2 , called respectively inertia, cognitive factor and social factor, are parameters of the algorithm. Two values r 1 and r 2 are random numbers generated in the interval [0, 1]. Each particle i memorizes its best known position up to instant t as x lbest i , and the best known position up to instant t for the swarm is denoted as x gbest .

v t+1 i = w • v t i + c 1 • r 1 • (x lbest i -x t i) + c 2 • r 2 • (x gbest -x t i) (1) x t+1 i = x t i + v t+1 i (2)
With this design, PSO is highly successful at performing optimizations in continuous space [START_REF] Banks | A review of particle swarm optimization. part I: background and development[END_REF][START_REF] Kameyama | Particle swarm optimization -a survey[END_REF]. In contrast, when applied to problems of combinatorial optimization, PSO encounters difficulties in interpreting positions and velocities, as well as in defining position update operators. As a result, there are a variety of discrete PSO variants (DPSO) [START_REF] Banks | A review of particle swarm optimization. part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications[END_REF], and it is difficult to choose an appropriate variant for any given combinatorial optimization such as TOP.

Basic algorithm

Our PSO works with a population of particles, so called the swarm and denoted S. Each particle memorizes its current position, i.e. a representation of a solution, and its best known position, called local best position, according to an evaluation process. A basic iteration of the algorithm consists of updating the position of each particle in the swarm. In the standard PSO, this update is influenced by PSO parameters and it takes into account the current position, the local best position and the global best position. In our method, each particle also has a small probability ph to be moved out of its current position and transfered to a completely new position. This new position is generated using a randomized heuristic. Moreover, each new position has pm probability to be improved through a local search process. The algorithm is stopped after itermax consecutive position updates have failed to give rise to new local best. Because itermax is usually set to be proportional to n m [START_REF] Bouly | A memetic algorithm for the team orienteering problem[END_REF][START_REF] Dang | A pso-based memetic algorithm for the team orienteering problem[END_REF]

Position representation and evaluation

A position in our PSO is a permutation π of all accessible customers, usually referred to as a giant tour, in a particular problem scenario. The principle of the split technique that optimally extracts a solution from a giant tour was introduced by Bouly et al. [START_REF] Bouly | A memetic algorithm for the team orienteering problem[END_REF] for TOP. The basic idea is the following. All possible subsequences of π, denoted by (π[i], . . . , π[i + l i]) or i, l i π for short, that can form a feasible tour of TOP end are considered. For convenience, we use the term extracted tours or simply tours in this section to refer to these subsequences. The goal of a split procedure is then to find a set of m distinct tours (without shared customer) such that the sum of their profits is maximized. Such a procedure guarantees that if a set of tours forming an optimal solution for the TOP is currently present as subsequences in a permutation π * , the application of the split procedure on π * will return the optimal TOP solution.

The authors of [START_REF] Bouly | A memetic algorithm for the team orienteering problem[END_REF] proposed a split procedure for TOP. The algorithm requires to find the longest path in an acyclic auxiliary graph. This graph represents the successor relations between extracted tours, i.e. the possibility of a tour to follow another in a valid solution. They also introduced the notion of saturated tours, i.e. a tour in which l i is maximal (denoted by l max i), and proved that solutions containing only saturated tours are dominant. Therefore, only saturated tours were considered in their procedure and the number of arcs in the acyclic graph is reduced. The worst case complexity of their procedure is O(m • n 2).

In this work, the limited number of saturated tours is exploited more efficiently to reduce the complexity of the evaluation process. Before going in the detail of our new split procedure, we recall the definition of a knapsack problem with conflicts (KPCG) [START_REF] Yamada | Heuristic and exact algorithms for the disjunctively constrained knapsack problem[END_REF] as follows. In a KPCG, we have a set of items to be put into a knapsack. A value and a volume are associated to each item. The knapsack has a limited volume, so it cannot generally hold all items. In addition to the knapsack volume, some items are in conflict with each other and they cannot be put in the knapsack together. The aim of the KPCG is to find a subset of items to fit into the knapsack such that the sum of their values is maximized. In such a problem, the conflicts between items are usually modeled with a graph, called conflict graph. We also recall the definition of an interval graph [START_REF] Tarjan | Graph theory and gaussian elimination[END_REF] as follows. A graph G = (V, E) is called an interval graph if there is a mapping I from V to sets of consecutive integers (called intervals) such that for all i and j of V , [i, j] ∈ E if and only if I(i) ∩ I(j) = ∅. Then the following proposition holds for the split procedure of TOP. Proof. Each possible tour extracted from a giant tour is in fact a set of positions of customers in the giant tour. Since these customers are adjacent in the giant tour, the positions are consecutive integers and the set of extracted tours can be mapped to the set of vertices of an interval graph X. Additionally, an edge of X (or a) a split problem a non-empty intersection between two sets of positions) indicates the presence of shared customers between the associated tours. As mentioned above, a split procedure looks for m tours without shared customer such that the sum of their profit is maximized. So this is equivalent to solve a knapsack problem with X as the conflict graph, a unitary volume for each item and m as the knapsack's volume. In this particular knapsack problem, the number of items is equal to the number of possible tours. This number is equal to n when only saturated tours are considered. Based on the work of Sadykov and Vanderbeck [START_REF] Sadykov | Bin packing with conflicts: a generic branch-and-price algorithm[END_REF], we deduce that such a problem can be solved in O(m • n) time and space.

Our new evaluation process is summarized as below. For each saturated tour starting with customer π[i], we use P [i] to denote the sum of profits of its customers. Its first successor, denoted by succ[i], is computed as follows:

succ[i] = i + l max i + 1 if i + l max i + 1 ≤ n 0 otherwise (3)
A two-dimensional array Γ of size m • n is used to memorize the maximum reachable profit during process. The algorithm then browses the saturated tours in reversed order, meaning from customer π[n] to customer π [START_REF] Aráoz | Solving the prize-collecting rural postman problem[END_REF], and updates Γ based on the recurrence relation described in Equation 4.

Γ(i, j) = max{Γ(succ[i], j -1) + P [i], Γ(i + 1, j)} if 1 ≤ i ≤ n and 1 ≤ j ≤ m 0 otherwise (4)
At the end, Γ(1, m) corresponds to the profit of the optimal solution. A simple backtrack is then performed on Γ in order to determine the corresponding tours. That is to say if Γ(succ[i], j -1) + P [i] is used over Γ(i+1, j) in the relation, then the saturated tour starting with customer π[i] belongs to the optimal solution. Figure 1 depicts the same example of the split problem described in [START_REF] Bouly | A memetic algorithm for the team orienteering problem[END_REF] but with the new evaluation process. More precisely, in this problem we have 8 customers with π = (1, 2, 3, 4, 5, 6, 7, 8), profits [START_REF] Boussier | An exact algorithm for team orienteering problems[END_REF][START_REF] Sadykov | Bin packing with conflicts: a generic branch-and-price algorithm[END_REF][START_REF] Boussier | An exact algorithm for team orienteering problems[END_REF][START_REF] Vidal | Heuristics for multi-attribute vehicle routing problems: A survey and synthesis[END_REF][START_REF] Vidal | Heuristics for multi-attribute vehicle routing problems: A survey and synthesis[END_REF]50,[START_REF] Boussier | An exact algorithm for team orienteering problems[END_REF]120), L = 70 and m = 2. According to the distances given in the figure, the saturated tours are 1, 0 , 2, 2 , 3, 1 , 4, 1 , 5, 2 , 6, 1 , 7, 1 and 8, 0 with profits 10, 80, 50, 80, 100, 60, 130 and 120 respectively. The interval model is shown in Figure 1.b and the detail of the first successor relations as well as solving steps are given in Figure 1.c. The new algorithm actually returns the same solution composed of the same saturated tours (starting with customers 5 and 8) as expected in [START_REF] Bouly | A memetic algorithm for the team orienteering problem[END_REF].

Randomized heuristics

Particle positions in the swarm, including local best positions, are initialized to a random sequence. In order to accelerate the algorithm, a small portion of the swarm containing N IDCH particles will have their local best positions generated using a good heuristic. During the search, a faster heuristic is occasionally used to generate a completely new position for a particle. The heuristics that we use are randomized variants of the Iterative Destruction/Construction Heuristic (IDCH) of [START_REF] Bouly | A memetic algorithm for the team orienteering problem[END_REF].

The core component of IDCH is a Best Insertion Algorithm (BIA). Our BIA considers a partial solution (which can be empty) and a subset of unrouted customers to be inserted in the solution. This constructive method then evaluates the insertion cost Ci,z+Cz,j -Ci,j (Pz) α of any unrouted customer z between any couple of successive customers i and j in a tour r. The feasible insertion that minimizes the cost is then processed and the method loops back to the evaluation of the remaining unrouted customers. If more than one possible insertion minimizes the insertion cost, one of them is chosen at random. This process is iterated until no further insertions are feasible, either because no tour can accept additional customers, or because all the customers are routed. The only parameter of BIA is α and it is set to 1 in [START_REF] Bouly | A memetic algorithm for the team orienteering problem[END_REF][START_REF] Souffriau | A path relinking approach for the team orienteering problem[END_REF]. In this work, a random value of α is generated each time BIA is called. This generation makes our IDCH less predictable and actually a randomized heuristic. The computational method used to generate α is detailed in Section 3.

IDCH is described as follows. Firstly, BIA is called to initialize the current solution from scratch. On following iterations a small part of the current solution is destroyed by removing a limited random number (1, 2 or 3) of random customers from tours, and a 2-opt procedure is used to reduce the travel cost of tours. A reconstruction phase is then processed using a Prioritized Best Insertion Algorithm (PBIA). The destruction and construction phases are iterated, and each time a customer remains unrouted after the construction phase its priority is increased by the value of its associated profit. In the PBIA, the subset of unrouted customers with the highest priority is considered for an insertion using a BIA call. When no more of these customers can be inserted, unrouted customers with lower priorities are considered, and so on. The idea behind this technique is to explore solutions composed of high profit customers. IDCH memorizes the best discovered solutions so far and stops after a fixed number of Destruction/Construction iterations without improvement of this solution. This number is set to n for the fast version of IDCH. This version is used to generate a new position for a particle when it is moved out of its current position. For the slower version used to initialize the PSO, this value is set to n 2 . In the slow version, after n iterations without improvement a diversification process is applied. This involves destroying a large part of the solution while removing a number (bounded by n/m rather than by 3) of customers from tours then applying 2-opt to each tour to optimize the travel cost, and finally performing the reconstruction phase.

Improvement of positions through local search

In our PSO, whenever a new position, i.e. a new permutation, is found, it has a pm probability of being improved using a local search technique (LS). This LS contains 3 neighborhoods which were proved to be efficient for TOP [START_REF] Bouly | A memetic algorithm for the team orienteering problem[END_REF]:

• shift operator : evaluate each permutation obtained by moving each customer i from its original position to any other position in the permutation.

• swap operator : evaluate each permutation obtained by exchanging every two customers i and j in the permutation.

• destruction/repair operator : evaluate the possibility of removing a random number (between 1 and n m) of customers from an identified solution and then rebuilding the solution using BIA procedure described in the previous section.

The procedure is as follows. One neighborhood is randomly chosen to be applied to the particle position.

As soon as an improvement is found, it is applied and the LS procedure is restarted from the new improved position. The LS is stopped when all neighborhoods are fully applied without there being any improvement.

In addition, we enhanced the randomness of shift and swap operators. That is to say the possibilities of moving or exchanging customers in those operators are evaluated in random order.

Genetic crossover operator to update position

In combinatorial optimization, the particle position update of PSO can be interpreted as a recombination of three positions/solutions according to inertia, cognitive and social parameters. There are various ways of defining this kind of recombination operator [START_REF] Banks | A review of particle swarm optimization. part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications[END_REF]. In our approach, the recombination operator is similar to a genetic crossover whose core component is an extraction of l customers from a permutation π. To make sure that a customer can be extracted at most once from sequential calls of the core component, a set M is used to mark extracted customers from previous calls. The extracted subsequence is denoted π l M and the procedure is described as follows:

• Step 1 : generate a random location r in π and initialize π l M to empty.

• n, (1 -w) • n • c1.r1 (c1.r1+c2.r2) and (1 -w) • n • c2.r2 (c1.r1+c2.r2) .
Here r 1 and r 2 are real numbers whose values are randomly generated in the interval [0, 1] with a uniform distribution. Real numbers obtained from those computations are truncated to integral values. .lbest). Figure 2 gives an example of the update procedure that indicates the new position for the particle x of (8, 5, 6, 9, 10, 1, 7, 2, 4, 3).

Our particle position update procedure therefore works with the standard PSO parameters w, c 1 and c 2 , the only restriction being that w has to be in the interval [0, 1[. Our PSO approach can be classified as PSO with position only, given that no velocity vector is used [START_REF] Pant | A new pso algorithm with crossover operator for global optimization problems[END_REF]. It is noteworthy to mention that the core component was created to adapt to a linear permutation order, but it can easily be adapted to a circular order by changing Step 3.

Swarm local best update

In some situations, PSO can be trapped in a local optimum, especially when all the local best positions of particles in the swarm are identical. In our approach, the fact that a particle can be randomly moved out of its current position reduces this premature convergence. However, the effect of this reduction is only partial because the probability to move a particle out of its current position is set to a small value. This setting is due to two main reasons: firstly, a frequent use of the IDCH heuristic to generate new positions is time-consuming and secondly, a frequent use of perturbing operations is undesired in a PSO algorithm [START_REF] Zhao | A perturbed particle swarm algorithm for numerical optimization[END_REF]. So then to strengthen the diversification process, whenever a new position is found by a particle x in the swarm S, instead of updating S[x].lbest, the algorithm will search for an appropriate particle y in the swarm using a similarity measure and update S[y].lbest. The similarity measure is based on two criteria: the total collected profit and the travel cost/time of the identified solution. Two positions are said to be similar or identical if the evaluation procedure on these positions returns the same profit and a difference in travel cost/time that is lower than a value δ. Our update rules are based on Sha and Hsu [START_REF] Sha | A hybird particle swarm optimization for job shop scheduling problem[END_REF] but simplified as follows. For convenience, the particle having the worst local best position of the swarm is denoted as S[worst]. The implementation of these rules was made efficient through the use of a binary search tree to sort particles by the performance of their local best positions using the two criteria. In the next section, the performance of our PSO on the standard benchmark for TOP is discussed.

Numerical results on the standard benchmark

PSOiA is coded in C++ using the Standard Template Library (STL) for data structures. The program is compiled with GNU GCC in a Linux environment, and all experiments were conducted on an AMD Opteron 2.60 GHz. In order to compare the performance of our approach with those of the existing algorithms in the literature, we use 387 instances from the standard benchmark for TOP [START_REF] Chao | The team orienteering problem[END_REF]. These instances comprise 7 sets. Inside each set the original number of customers and customer positions are constant, however the maximum tour duration L varies. Therefore the number of accessible customers are different for each instance. The number of vehicles m also varies between 2 and 4.

Protocol and performance metrics

Our approach was tested using the same protocol as in [START_REF] Ke | Ants can solve the team orienteering problem[END_REF][START_REF] Muthuswamy | Discrete particle swarm optimization for the team orienteering problem[END_REF][START_REF] Souffriau | A path relinking approach for the team orienteering problem[END_REF]. For each instance of the benchmark, the algorithms were executed 10 times. The average and maximal scores as well as the average and maximal computational times were recorded. In order to evaluate separately the performance of different configurations or methods, the best known result in the literature for each instance, denoted by Z best , is used as the reference score of the instance. These best results for all instances of the benchmark are collected from [START_REF] Archetti | Metaheuristics for the team orienteering problem[END_REF][START_REF] Bouly | A memetic algorithm for the team orienteering problem[END_REF][START_REF] Dang | A pso-based memetic algorithm for the team orienteering problem[END_REF][START_REF] Ke | Ants can solve the team orienteering problem[END_REF][START_REF] Souffriau | A path relinking approach for the team orienteering problem[END_REF][START_REF] Tang | A tabu search heuristic for the team orienteering problem[END_REF] and also from our PSO algorithms, but not from Chao et al. [START_REF] Chao | A fast and effective heuristic for the orienteering problem[END_REF] because the authors used a different rounding precision and some of their results exceeded the upper bounds given in [START_REF] Boussier | An exact algorithm for team orienteering problems[END_REF].

For an algorithm tested on an instance, obtained solutions of 10 runs are recorded and we use Z max and Z avg to denote respectively the maximal and average scores of these runs. Then the relative percentage error (RPE) and the average relative percentage error (ARPE) are used to evaluate the performance of the algorithm. RPE is defined as the relative error between Z best and Z max . It was used in [START_REF] Muthuswamy | Discrete particle swarm optimization for the team orienteering problem[END_REF][START_REF] Souffriau | A path relinking approach for the team orienteering problem[END_REF] to show the performance of the algorithm over 10 runs.

RP E = Z best -Z max Z best • 100 (5)
ARPE is defined as the relative error between Z best and Z avg . It was used in [START_REF] Muthuswamy | Discrete particle swarm optimization for the team orienteering problem[END_REF] to show the robustness of the algorithm over 10 runs. In other words, a small value of ARPE indicates a higher chance of getting a good score (or a small RPE) for a limited number of runs of the algorithm on the instance. The instances, for which there is no accessible customer (or Z best = 0) are discarded from the comparison. The number of instances is then reduced to 353.

ARP E = Z best -Z avg Z best • 100 (6)
For a set of instances, the respective average values of RPE and ARPE of the instances are computed to show the performance and robustness of the algorithm. For a benchmark composed of different sets, the average value of the latter ones on all the sets is computed to show the overall performance and robustness of the algorithm on the benchmark. As a complement measure for a benchmark, NBest is used to denote the number of instances in which Z best are reached.

Parameter setting

Values of some parameters are directly taken from the previous studies of [START_REF] Bouly | A memetic algorithm for the team orienteering problem[END_REF][START_REF] Dang | A pso-based memetic algorithm for the team orienteering problem[END_REF]. Therefore, we did not do further experiments on those parameters:

• N , the population size, is set to 40.

• N IDCH , the number of local best positions initialized with the slow version of IDCH, is set to 5.

• pm, the local search rate, is set to 1 -iter itermax . • δ, the similarity measurement of particles, is set to 0.01.

• c 1 , c 2 , the cognitive and social factors of the particles, are set to 0.5 (c 1 = c 2 = 0.5).

• w, the inertia parameter, decreases gradually as the algorithm proceeds. It is initialized to 0.9 and multiplied by 0.9 after each iteration of the PSO.

• α, the control parameter of intuitive criteria of the BIA heuristic, is generated as follows. Two random numbers r 1 and r 2 are first generated in [0, 1] with a uniform distribution, then α = 1 + 2 • r1 r1+r2 is computed.

The most important parameter which could be up for discussion is the stopping condition k. We tested PSOiA on the 353 instances of the benchmark using varied values of k from 10 to 100 with steps of 10. In order to maximally exploit in these tests the crossover operator and the evaluation process, we set the probability ph of a particle to be moved out of its current position equal to 0.1. We will return to the ph parameter later (once k is fixed) to check whether it is over-tuned. Figures 3 illustrate the evolution of RPE, ARPE and the average computational time in terms of k. One may notice that from k = 40, the algorithm starts to provide the best RPE and interesting values of ARPE. On the other hand, the computational time linearly increases in terms of k, hence the value k = 40 were selected to present our final results of PSOiA.

Next, we set k to 40 and varied the value of ph from 0 to 1 with a step equal to 0.1. Figures 4 show the evolution of RPE, ARPE and the average computational time in terms of ph. In these tests, the computational time linearly increases in terms of ph (with a small exception for ph = 1.0) and value 0.1 is the right choice for the parameter.

Comparison with the literature

The results of PSOiA (k = 40) on instances of Chao's benchmark are then compared with the state-ofthe-art algorithms in the literature:

• SVNS proposed by Archetti et al. [START_REF] Archetti | Metaheuristics for the team orienteering problem[END_REF], tested on an Intel Pentium 4 2.80 GHz,

• MA proposed by Bouly et al. [START_REF] Bouly | A memetic algorithm for the team orienteering problem[END_REF], tested on an Intel Core 2 Duo 2.67 GHz,

• SPR proposed by Souffriau et al. [START_REF] Souffriau | A path relinking approach for the team orienteering problem[END_REF], tested on an Intel Xeon 2.50 GHz,

• PSOMA (with w = 0.07, the best configuration) described in [START_REF] Dang | A pso-based memetic algorithm for the team orienteering problem[END_REF] as the preliminary study of this work, tested on an AMD Opteron 2.60 GHz.

On the comparison between computers in use, machine performances of PSOiA, PSOMA, MA/MA10 [9] and SPR [START_REF] Souffriau | A path relinking approach for the team orienteering problem[END_REF] to 2.67 GHz. SVNS [START_REF] Archetti | Metaheuristics for the team orienteering problem[END_REF] used a computer with higher clock frequency (2.8 GHz) but that was a Pentium 4.

It is supposed to have a lower performance than the others.

In [START_REF] Souffriau | A path relinking approach for the team orienteering problem[END_REF], the authors of SPR algorithm talk about the 157 relevant instances of sets 4, 5, 6 and 7 and show only their results on these instances. Therefore, we will provide the comparison focused on these 157 instances. We also noted that results of SVNS were taken from the website of the first author of [START_REF] Archetti | Metaheuristics for the team orienteering problem[END_REF]. These results were updated in 2008 and the rounding convention problem reported in [START_REF] Bouly | A memetic algorithm for the team orienteering problem[END_REF][START_REF] Ke | Ants can solve the team orienteering problem[END_REF] was corrected. It also appears that these results are better than the ones published in the journal article [START_REF] Archetti | Metaheuristics for the team orienteering problem[END_REF]. Additionally, a different testing protocol which considered only 3 runs for each instance of the benchmark had been used for SVNS and MA. So in [START_REF] Dang | A pso-based memetic algorithm for the team orienteering problem[END_REF], the source code of MA [START_REF] Bouly | A memetic algorithm for the team orienteering problem[END_REF] was received from the authors and turned to match the new testing protocol: 10 executions per instance. Results of this new test for MA is denoted by MA10.

Our results are also compared with the other swarm intelligence algorithms available in the literature:

• Sequential version of the Ant Colony Optimization (ACO) proposed by Ke et al. [START_REF] Ke | Ants can solve the team orienteering problem[END_REF], tested on an Intel CPU 3.0 GHz,

• Discrete Particle Swarm Optimization (DPSO) proposed by Muthuswamy and Lam [START_REF] Muthuswamy | Discrete particle swarm optimization for the team orienteering problem[END_REF], tested on an Intel Core Duo 1.83 GHz.

Table 1 reports RPE averages for each data set of all methods. From this table, we observe that PSOMA (with very basic PSO components) already outperforms the other methods in the literature. This motivates our choice of testing the new optimal split procedure on PSO scheme instead of MA one. Regarding PSOiA, the results are almost perfect with zero RPE for sets 5, 6, 7 and only one instance was missed for set 4 with a very small value of RPE. From that table, we observe that PSOMA is less robust than MA10 on data sets 4 and 7. However, it is more robust than MA10 on data sets 5 and 6. Finally, PSOiA is the most robust method. The ARPE average on all data sets of PSOiA is 0.0436% which almost equivalent to the RPE averages on all data sets of the state-of-the-art algorithms (SVNS, SPR and MA) reported in the literature (ranging from 0.0394% to 0.0519%) as shown in Table 1. Tables 3 and4 report the average and maximal CPU times respectively for each data set of all methods. From this table, we notice that ACO and SPR are fast methods. However, their performances are not as good as SVNS, MA/MA10, PSOMA and PSOiA as seen in Tables 1 and2. SVNS is slower than the others. PSOMA is quite faster than MA10 but as mentioned above, MA10 is more robust than PSOMA. Computational efforts required for PSOiA and MA10 are almost the same. Based on a remark of [START_REF] Tricoire | Heuristics for the multi-period orienteering problem with multiple time windows[END_REF] and our own verification, it is worthy to mention that the maximal CPU times of ACO method reported in [START_REF] Ke | Ants can solve the team orienteering problem[END_REF] are in fact the maximal average CPU times, i.e. for each instance the average CPU time is computed, then the maximal value of these CPU times is reported for a whole set. Therefore, the maximal CPU times of ACO method are marked as n/a (not available) in Table 4.

Table 5 reports the number of instances (in percent) for which the value of ARPE is zero, which means that the results of all runs are identical or that the algorithm is stable. From this table, one may notice that PSOiA is stable in most cases (72%). Additionally, the performance analysis of SVNS, MA, SPR, PSOMA and PSOiA indicates that the results from data sets 4 and 7 are generally less stable than those from data sets 5 and 6. This can be explained by the differences between the features of those instances. Data sets 4 and 7 contain up to 100 customers for which both profits and positions are randomly distributed. On the other hand, data sets 5 and 6 have at most 64 customers arranged in a grid such that large profits are assigned to customers located far away from the depots.

Finally, detailed results of MA10, PSOMA and PSOiA for the 157 instances are reported in Tables 7, 8, 9 and 10. For each instance, columns CP U avg report the average computational time in seconds of the ten runs. Complete results of the 353 tested instances are available at http://www.hds.utc.fr/˜moukrim. According to these results, p4.4.n is the only instance of the whole benchmark from which PSOiA was not able to find the best known solution. One unit of profit was missed for this instance. Furthermore, a strict improvement was detected for instance p4.2.q with a new score of 1268 instead of 1267.

A set of larger instances for the team orienteering problem

From the previous section, we observe that PSOiA achieves a value of RPE of 0.0005%. Therefore, it would be very difficult to develop better heuristics for the current standard benchmark instances. In order to promote algorithmic developments for TOP, we introduce a new set of benchmark instances with a larger number of customers. Our new instances are based on the OP instances of Fischetti et al. [START_REF] Fischetti | Solving the orienteering problem through branch-and-cut[END_REF] with the transformation of Chao et al. [START_REF] Chao | The team orienteering problem[END_REF]. This transformation consists of designing the travel length limit of vehicles for TOP as L T OP = L OP m . In this formulation, m is the number of vehicles of the new TOP instance and L OP is the travel length limit of the vehicle of the former OP instance.

We used instances from the two classes described in [START_REF] Fischetti | Solving the orienteering problem through branch-and-cut[END_REF] to generate TOP instances. According to the authors, the first class was derived from instances of the Capacitated Vehicle Routing Problem (CVRP) [START_REF] Christofides | Combinatorial Optimization, chapter The Vehicle Routing Problem[END_REF][START_REF] Reinelt | A traveling salesman problem library[END_REF] in which customer demands were transformed into profits and varied values of L OP were considered. The second class was derived from instances of the Traveling Salesman Problem (TSP) [START_REF] Reinelt | A traveling salesman problem library[END_REF] in which customer profits were generated in different ways: equal to 1 for each customer (gen1); using pseudo-random function so that the output values are in [1, 100] (gen2); using distance-profit function such that large profits are assigned to nodes far away from the depots (gen3).

In total, 333 new instances were used in our test. It can be seen that PSOiA is very stable for a large part of those instances, especially the ones from the CVRP benchmark. So Table 11 reports the results of PSOiA for which the value of ARPE is non-zero. A complete specification, including the number of accessible customers n, the number of vehicles m, the travel length limit L and the way to generate the profits for the customers gen, is also given for each instance. The values in the last row corresponding to Z avg and CP U avg columns respectively indicate the ARPE and the average computational time on the set of instances. All tested instances and the other results are available on the previously mentioned website. In addition, we also analyzed the computational behavior of PSOiA on the new instances according to the various generations of the profits (namely gen1, gen2 and gen3). In this analysis, for each TSP instance, three variants of TOP instances are available. This implies the same sample size of 93 instances per generation and provides a fair comparison. Table 6 reports the number of instances (in percent) for which the ARPE is zero and the average computational time CP U avg for each generation. From this table, one may notice that PSOiA is more stable and requires less computational effort on generation gen1 (equal profits) than on generations gen2 (random profits) and gen3 (large profits distributed to customers located far away). Finally, it should be noted that the sample size to analyze the stability of PSOiA according to the positions of the customers is not statistically large enough to reveal the detail.

Conclusion

This paper presented an effective Particle Swarm Optimization approach for the Team Orienteering Problem. The approach uses giant tours to indirectly encode particle positions. A new fast evaluation process based on an interval graph model was proposed. This process enabled more iterations for the PSO without increasing the global computational time. Numerical results on the standard benchmark for TOP demonstrate the competitiveness of the algorithm. Our approach outperforms the prior methods both in terms of computational time and solution quality. Hence it improved considerably solving methods for TOP, a new strict improvement on one instance was detected and the newly attained relative error for all instances being 0.0005%. This success is due to the new accelerated split procedure, the good design of the recombination operator to update particle positions, the introduction of extra positions to the swarm, as well as the appropriate management of dynamic parameters. In summary, the results presented in this paper are encouraging for the application of Particle Swarm Optimization to solve combinatorial problems, as already indicated in [START_REF] Banks | A review of particle swarm optimization. part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications[END_REF] and for the application/acceleration of optimal split procedures in dealing with vehicle routing problems, as already indicated in [START_REF] Duhamel | Efficient frameworks for greedy split and new depth first search split procedures for routing problems[END_REF].

Proposition 2 . 1 .

 21 The split procedure can be done optimally in O(m • n) time and space.

Figure 1 :

 1 Figure1: The new evaluation process for the same split problem described in[START_REF] Bouly | A memetic algorithm for the team orienteering problem[END_REF] with 8 customers, m = 2 and L = 70.

•

 Phase 2 : link three extracted subsequences in a random order to update S[x].pos. To illustrate the update procedure, we consider an arbitrary instance of TOP with ten customers and an arbitrary particle x with S[x].pos =(4, 5, 2, 6, 10, 1, 7, 8, 9, 3), S[x].lbest = (4, 2, 3, 8, 5, 6, 9, 10, 7, 1) and S[best].lbest = (1, 2, 4, 9, 8, 10, 7, 6, 3, 5). PSO parameters are w = 0.3, c 1 = 0.5 and c 2 = 0.3. Random variables r 1 and r 2 generated are respectively 0.5 and 0.5. Then the desired numbers of customers to be extracted for S[x].pos, S[x].lbest and S[best].lbest are respectively 3 (= ⌊0.3 * 10⌋), 4 (= ⌊(1 -0.3) * 10 * 0.5 * 0.5/(0.5 * 0.5 + 0.3 * 0.5)⌋) and 3 (= 10 -3 -4). Random extraction order in Phase 1 is (S[x].pos, S[x].lbest, S[best].lbest) and random linking order in Phase 2 is (S[x].lbest, S[x].pos, S[best]

Figure 2 :

 2 Figure 2: An example of position update for an arbitrary instance of ten customers. Black dots represent random generated locations r and shaded boxes represent marked customers from M during Phase 1.

Figure 3 :Figure 4 :

 34 Figure 3: Performance of PSOiA in terms of the stopping condition k.

 • Step 2 : browse customers from π[r] to π[n] and add them to the end of π l M if they are not in M . If |π l M | reaches l then go to Step 4, otherwise go to Step 3. • Step 3 : browse customers from π[r] down to π[1] and add them to the beginning of π l M if they are not in M . If |π l M | reaches l then go to Step 4. • Step 4 : add customers from π lM to M . With the core component, the position update procedure of particle x from the swarm S with respect to the three PSO parameters w, c 1 and c 2 is as follows:

• Phase 1 : apply sequentially but in a random order the core component to extract subsequences from S[x].pos, S[x].lbest and S[best].lbest with a common set M of customers to be skipped. M is initialized to the empty set and the desired numbers of customers to be extracted from S[x].pos, S[x].lbest and S[best].lbest are respectively w

•

 Rule 1 : the update procedure is applied if and only if the performance of new position S[x].pos is better than the worst local best S[worst].lbest.

• Rule 2 : if there exists a particle y in S such that S[y].lbest is similar to S[x].pos, then replace S[y].lbest with S[x].pos. • Rule 3 : if no such particle y according to Rule 2 exists, replace S[worst].lbest with S[x].pos. Each successful application of this rule indicates that a new local best has been discovered by the swarm.

Table 1 :

 1 are almost the same: recent dual-core processors with clock frequency varying from 2.50 GHz Performance comparison based on RPE average for each data set of the relevant instances.

	Method Year	RPE average for each data set	NBest
				4		5	6	7	avg
	SVNS	2007 0.0680 0.0267	0	0.0627 0.0394	134
	ACO	2008 0.3123 0.0355	0	0.0064 0.0885	128
	MA	2010 0.0548 0.0612	0	0.0571 0.0433	129
	SPR	2010 0.1157 0.0465	0	0.0454 0.0519	126
	DPSO	2011 2.0911 0.7828 0.3375 1.7618 1.2433	39
	MA10	2011 0.0304 0.0612	0	0.0127 0.0261	146
	PSOMA 2011 0.0262 0.0151	0	0.0211 0.0156	146
	PSOiA	2012 0.0019	0	0	0	0.0005	156
	Method Year	ARPE average for each data set
					4	5	6	7	avg
	SVNS	2007	n/a	n/a	n/a	n/a	n/a
	ACO	2008 1.8663 0.8228 1.1754 0.5118 1.0941
	MA		2010	n/a	n/a	n/a	n/a	n/a
	SPR		2010	n/a	n/a	n/a	n/a	n/a
	DPSO	2011 5.1956 3.7100 2.0073 4.1986 3.7779
	MA10	2011 0.2068 0.0953 0.0169 0.1056 0.1061
	PSOMA 2011 0.2851 0.0904	0	0.1790 0.1386
	PSOiA	2012 0.1105 0.0336	0	0.0305 0.0436

Table 2 :

 2 Robustness comparison based on ARPE average for each data set of the relevant instances.

 Table 2 reports ARPE averages for each data set of the standard benchmark.

	Method	Average CPU time in seconds for each data set
		1	2	3	4	5	6	7
	SVNS	7.78 0.03 10.19 457.89 158.93 147.88 309.87
	ACO	5.77 3.16 6.50	37.09	17.36	16.11	30.35
	MA	1.31 0.13 1.56 125.26 23.96	15.53	90.30
	SPR	n/a n/a	n/a	36.74	11.99	8.96	27.28
	DPSO	n/a n/a	n/a	n/a	n/a	n/a	n/a
	MA10	1.95 0.24 2.06 182.36 35.33	39.07 112.75
	PSOMA 0.18 0.01 0.49	83.89	14.72	7.59	49.09
	PSOiA	2.15 0.41 3.18 218.58	49.5	47.08	97.47

Table 3 :

 3 Average CPU time for each data set of the standard benchmark.

	Method	Maximal CPU time in seconds for each data set	
		1	2	3	4	5	6	7
	SVNS	22	1	19	1118	394	310	911
	ACO	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	MA	4.11 0.531 3.963 357.053 80.19 64.292 268.005
	SPR	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	DPSO	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	MA10	8.59	1.16	6.34	635.75 113.58 96.89	443.59
	PSOMA 4.35	0.03	4.88	466.65	78.12	48.77	350.86
	PSOiA	10.61 2.20 10.93 1274.52 170.09 115.93 420.50

Table 4 :

 4 Maximal CPU time for each data set of the standard benchmark.

	Method Year	Number of instances (%)	
			4	5	6	7	avg
	SVNS	2007 n/a n/a n/a n/a n/a
	ACO	2008	7	18	0	21	11
	MA	2010 n/a n/a n/a n/a n/a
	SPR	2010 n/a n/a n/a n/a n/a
	DPSO	2011	0	2	0	0	1
	MA10	2011 33	84	93	47	61
	PSOMA 2011 26	76	100	33	55
	PSOiA	2012 52	87	100	74	72

Table 5 :

 5 Stability comparison based on the number of instances having zero APRE.

Table 6 :

 6 Generation Number of instances with ARPE zero (%) CP U avg Influence of profit generations on the stability of PSOiA

	gen1	81%	4123.84
	gen2	73%	4764.23
	gen3	75%	5357.32
		76%	4748.47

Table 7 :

 7 Results for set 4 of the benchmark.

	Instance Z best	MA10			PSOMA			PSOiA		
			Z max	Z avg	CP U avg Z max	Z avg	CP U avg Z max	Z avg	CP U avg
	p4.2.a	206	206	206	13.71	206	206	0.21	206	206	5.88
	p4.2.b	341	341	341	51.8	341	341	0.65	341	341	39.21
	p4.2.c	452	452	452	83.16	452	452	2.05	452	452	67.12
									continued on next page
						14					

Table 7

 7

		-continued								
	Instance Z best	MA10			PSOMA			PSOiA		
			Z max	Z avg	CP U avg Z max	Z avg	CP U avg Z max	Z avg	CP U avg
	p4.2.d	531	531	530.7	143.67	531	530.8	29.77	531	531	124.29
	p4.2.e	618	618	616.8	205.89	618	618	25.23	618	618	197.94
	p4.2.f	687	687	679.6	204.92	687	681.4	109.12	687	687	322.64
	p4.2.g	757	757	756	190.49	757	755.5	97.95	757	757	206.54
	p4.2.h	835	835	828.1	245.31	835	826.1	126.94	835	833.6	257.24
	p4.2.i	918	918	918	366.45	918	913.6	150.45	918	918	368.2
	p4.2.j	965	965	962.6	300.78	965	963.1	167.88	965	965	258.36
	p4.2.k	1022 1022 1020.7	370.53	1022 1020.2	180.83	1022	1021	350.07
	p4.2.l	1074 1071 1070.8	281.38	1071 1066.9	160.98	1074 1072.3	357.41
	p4.2.m	1132 1132 1129.4	303.22	1132 1129.9	201.95	1132 1130.6	321.08
	p4.2.n	1174 1174 1172.7	374.27	1174 1170.3	158.34	1174	1172	427.5
	p4.2.o	1218 1218	1216	306.18	1218 1211.7	154.13	1218 1210.9	415.43
	p4.2.p	1242 1242 1241.2	311.23	1241 1238.4	198.04	1242 1239.5	347.47
	p4.2.q	1268 1267 1264.3	313.03	1267 1264.6	192.02	1268 1266.2	588.22
	p4.2.r	1292 1292 1288.7	352.5	1292 1287.8	178.19	1292 1289.9	470.01
	p4.2.s	1304 1304 1301.8	297.88	1304 1302.1	190.02	1304 1303.8	486.19
	p4.2.t	1306 1306	1306	292.66	1306	1306	167.27	1306	1306	408.65
	p4.3.c	193	193	193	6.07	193	193	0.05	193	193	1.89
	p4.3.d	335	335	335	29.92	335	335	1.08	335	335	16.6
	p4.3.e	468	468	468	39.23	468	468	2.6	468	468	36.41
	p4.3.f	579	579	579	107.55	579	579	6.3	579	579	72.88
	p4.3.g	653	653	653	117.44	653	651.4	32.49	653	653	70.44
	p4.3.h	729	728	724.7	138.95	729	724.7	60.24	729	729	194.18
	p4.3.i	809	809	809	197.7	809	808.6	41.17	809	809	247.26
	p4.3.j	861	861	859.5	175.98	861	857.6	85.71	861	860.9	229.11
	p4.3.k	919	919	918.2	218.73	919	916.7	94.55	919	919	275.31
	p4.3.l	979	979	975.2	206.99	979	977.4	89.28	979	976.9	258.33
	p4.3.m	1063 1063 1057.9	231.16	1063 1058.4	103.42	1063	1062	281.42
	p4.3.n	1121 1121 1115.9	197.23	1121 1115.6	104.57	1121 1118.4	309.03
	p4.3.o	1172 1172	1169	306.3	1172 1169.7	145.44	1172	1172	371.72
	p4.3.p	1222 1222 1219.4	301.81	1222	1222	123.77	1222	1222	284.61
	p4.3.q	1253 1253	1250	220.44	1253 1250.2	112.58	1253 1252.2	448.69
	p4.3.r	1273 1273 1270.2	218.38	1273 1269.5	115.4	1273 1269.4	288.72
	p4.3.s	1295 1295 1293.8	255.25	1295 1291.5	115.6	1295 1289.5	278
	p4.3.t	1305 1305 1303.7	210.95	1304 1301.1	124.38	1305 1304.3	305.85
	p4.4.e	183	183	183	0.45	183	183	0.02	183	183	0.65
	p4.4.f	324	324	324	16.5	324	324	0.2	324	324	8.61
	p4.4.g	461	461	461	35.13	461	461	0.74	461	461	24.19
	p4.4.h	571	571	571	52.23	571	567.1	5.56	571	571	36.74
	p4.4.i	657	657	657	72.75	657	657	1.71	657	657	65.48
	p4.4.j	732	732	732	95.06	732	731.2	9.2	732	732 81.35 821 119.45
	p4.4.l	880	880	879.1	113.9	880	879.1	54.34	880	879.5	101.6
	p4.4.m	919	916	912.7	129.08	919	915.6	67.59	919	916.6	223.19
	p4.4.n	977	969	965.5	197.89	969	964.2	72.07	976	967	257.14
	p4.4.o	1061 1061 1057.7	185.94	1061 1051.6	91.63	1061	1060	208.36
	p4.4.p	1124 1124 1119.8	226.38	1124 1115.9	102.16	1124 1122.7	193.14
									continued on next page

Table 8 :

 8 Results for set 5 of the benchmark.

	Instance Z best	MA10			PSOMA			PSOiA		
			Z max	Z avg	CP U avg Z max	Z avg	CP U avg Z max	Z avg	CP U avg
	p5.2.h	410	410	410	50.52	410	410	1.34	410	410	51.98
	p5.2.j	580	580	580	41.63	580	580	1.45	580	580	54.37
	p5.2.k	670	670	670	41.12	670	670	1.63	670	670	60.78
	p5.2.l	800	800	800	65.16	800	800	37.6	800	800	88.15
	p5.2.m	860	860	860	62.88	860	860	33.52	860	860	90.5
	p5.2.n	925	925	925	53.75	925	925	25.21	925	925	72.46
	p5.2.o	1020 1020	1020	47.56	1020	1020	29.7	1020	1020	65.93
	p5.2.p	1150 1150	1150	96.04	1150	1150	59.14	1150	1150	109.63
	p5.2.q	1195 1195	1195	53.26	1195	1195	36.71	1195	1195	116.62
	p5.2.r	1260 1260	1260	68.66	1260	1260	37.6	1260	1260	92.78
	p5.2.s	1340 1330	1325	63.44	1340 1329.5	37.04	1340	1340	85.78
	p5.2.t	1400 1400	1397	52.27	1400	1400	37.39	1400	1400	111.2
	p5.2.u	1460 1460	1460	68.79	1460	1460	44.59	1460	1460	110.39
	p5.2.v	1505 1505 1503.5	65.45	1505 1504.5	43.79	1505	1505	112.4
	p5.2.w	1565 1560	1560	50.22	1560	1560	47.45	1565 1562.5	124.13
	p5.2.x	1610 1610	1610	57.27	1610	1610	50.02	1610	1610	124.68
	p5.2.y	1645 1645	1645	66.25	1645	1645	37.98	1645	1645	112.34
	p5.2.z	1680 1680	1680	64.77	1680	1679	41.75	1680	1680	122.55
	p5.3.k	495	495	495	30.34	495	495	1.36	495	495	33.27
	p5.3.l	595	595	595	39.81	595	595	1.25	595	595	53.91
	p5.3.n	755	755	755	41.9	755	755	1.87	755	755	48.68
	p5.3.o	870	870	870	34.7	870	870	2.13	870	870	48.93
	p5.3.q	1070 1070	1070	49.38	1070	1070	23.28	1070	1070	51.54
	p5.3.r	1125 1125	1125	43.97	1125	1125	22.68	1125	1125	46.7
	p5.3.s	1190 1190	1189	41.16	1190	1189	26.6	1190	1190	59.48
	p5.3.t	1260 1260	1260	54.36	1260	1260	32.65	1260	1260	69.12
	p5.3.u	1345 1345	1345	51.74	1345	1345	26.21	1345	1345	57.97
	p5.3.v	1425 1425	1425	48.05	1425	1425	29	1425	1425	56.21
	p5.3.w	1485 1485 1481.5	44.83	1485	1477	36.32	1485 1484.5	76.2
	p5.3.x	1555 1555 1547.5	50.42	1555 1546.5	36.79	1555	1552	76.78
	p5.3.y	1595 1590	1590	54.95	1595 1590.5	30.46	1595	1591	70.54
	p5.3.z	1635 1635	1635	61.91	1635	1635	32.64	1635	1635	84.24
	p5.4.m	555	555	555	22.29	555	555	1.46	555	555	20.76
	p5.4.o	690	690	690	33.08	690	690	1.69	690	690	42.91
	p5.4.p	765	760	760	46.44	765	760.5	27.36	765	760.5	48.35
	p5.4.q	860	860	860	50.91	860	860	1.53	860	860	61.58
									continued on next page

Table 9 :

 9 Results for set 6 of the benchmark.

Table 10

 10

		-continued								
	Instance Z best	MA10			PSOMA			PSOiA		
			Z max	Z avg	CP U avg Z max	Z avg	CP U avg Z max	Z avg	CP U avg
	p7.2.m	827	827	827	203.14	827	827	104.68	827	827	177.68
	p7.2.n	888	888	887.9	261.33	888	887.6	142.88	888	888	186.65
	p7.2.o	945	945	945	221.07	945	945	109.36	945	945	208.93
	p7.2.p	1002 1002 1001.6	274.36	1002	999.2	103.42	1002 1001.8	241.83
	p7.2.q	1044 1044 1043.8	247.36	1044 1039.2	130.83	1044 1043.7	181.26
	p7.2.r	1094 1094	1094	232.16	1094 1091.3	126.52	1094	1094	182.32
	p7.2.s	1136 1136	1136	258.83	1136 1134.5	127.36	1136	1136	228.1
	p7.2.t	1179 1179 1176.3	280.06	1179 1174.1	157.24	1179	1179	277.18
	p7.3.h	425	425	424.8	43.6	425	424.2	3.62	425	425	27.88
	p7.3.i	487	487	487	70.87	487	487	5.96	487	487	45.65
	p7.3.j	564	564	563.6	98.35	564	562.7	30.49	564	564	54.98
	p7.3.k	633	633	632.7	130.31	633	632	56.7	633	633	88.79
	p7.3.l	684	684	682.1	112.98	683	682	50.14	684	684	100.72
	p7.3.m	762	762	762	158.38	762	760.9	64.26	762	762	127.04
	p7.3.n	820	820	820	164.08	820	817.6	114.61	820	820	175.64
	p7.3.o	874	874	871	173.12	874	872.5	84.87	874	874	196.91
	p7.3.p	929	929	926	165.55	927	924.8	73.3	929	928	162.61
	p7.3.q	987	987	987	205.16	987	980.6	107.93	987	987	168.7
	p7.3.r	1026 1026 1022.4	218.64	1026 1021.7	101.17	1026 1022.6	203.02
	p7.3.s	1081 1081 1079.7	245.28	1081 1079.5	123.09	1081	1081	242
	p7.3.t	1120 1120 1118.7	266.55	1120 1118.2	138.14	1120 1118.4	151.73
	p7.4.g	217	217	217	10.06	217	217	0.08	217	217	1.72
	p7.4.h	285	285	285	13.28	285	285	0.16	285	285	4.44
	p7.4.i	366	366	366	29.69	366	366	0.46	366	366	12.68
	p7.4.k	520	520	518.4	61.08	520	518.2	14.42	520	518.2	39.94
	p7.4.l	590	590	587.9	80.05	590	588.4	19.85	590	590	53.8
	p7.4.m	646	646	646	109.07	646	646	33.59	646	646	100.05
	p7.4.n	730	726	726	113.62	726	725.9	37.48	730	728.8	110.63
	p7.4.o	781	781	779.4	133.82	781	779.3	54.97	781	780.4	93.27
	p7.4.p	846	846	843.7	167.49	846	841.4	62.24	846	846	124.32
	p7.4.q	909	909	907	165.07	909	907	77.59	909	908.7	134.35
	p7.4.r	970	970	970	147.92	970	970	65.89	970	970	143.04
	p7.4.s	1022 1022 1020.8	170.42	1022 1020.7	62.23	1022	1022	150.72
	p7.4.t	1077 1077	1077	180.48	1077	1077	88.03	1077	1077	128.13

Table 11 :

 11 Results of the new instances.

	Instance	n	m	L	gen	PSOiA
					Z max	Z avg	CP U avg
	cmt101c m3	100 3	126.33 gen2 1300	1299	111.109
	cmt151b m3	150 3	116.67 gen2 1385	1373.8	754.007
	cmt151c m2	150 2	262.5	gen2 1963	1962	1799.641
	cmt151c m3	150 3	175	gen2 1916	1909.1	1376.236
	cmt151c m4	150 4	131.25 gen2 1880	1875.6	881.114
	cmt200b m2	199 2	191	gen2 2096	2088.2	4180.987
					continued on next page

Acknowledgements

This work was partially supported by the GDR in Operations Research of the French National Center for Scientific Research (CNRS), ARFRO's project "multi-objective and multi-modal path planning on large graphs". Finally, the authors would like to thank two anonymous reviewers for their helpful comments and suggestions that improved the quality of the paper.