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Abstract

The soliton dynamics is studied using the Frenkel Kontorova (FK) model with non-
convex interparticle interactions immersed in a parameterized on-site substrate po-
tential. The case of a deformable substrate potential allows theoretical adaptation of
the model to various physical situations. Non-convex interactions in lattice systems
lead to a number of interesting phenomena that cannot be produced with linear
coupling alone. In the continuum limit for such a model, the particles are governed
by a Singular Nonlinear Equation of the Second Class. The dynamical behavior of
traveling wave solutions is studied by using the theory of bifurcations of dynamical
systems. Under different parametric situations, we give various sufficient conditions
leading to the existence of propagating wave solutions or dislocation threshold, high-
lighting namely that the deformability of the substrate potential plays only a minor
role.
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1 Introduction1

Simplicity and universality are two key requirements of a good physical model.2

Universal models, which can be used to describe a variety of different phenom-3

ena, are very rare and yet are of major importance. They have been proved4

useful at several scales and moreover possess an educational value. A simple5

example of such models is the Frenkel Kontorova (FK) model [1]. The FK6

model has become very popular in many niches of solid state and nonlinear7

physics. They invented their model in order to describe the motion of a dislo-8

cation in crystals. Meanwhile, the FK model has also become a model for an9

adsorbate layer on the surface of crystal, for ionic conductors, for glassy ma-10

terials, for charge-density-wave (CDW) transport, and for chains of coupled11

Josephson junctions. Especially, a number of current researches, such as slid-12

ing friction [2,3] , heat conduction [4–6] , chaos control and nonlinear coupled13

pendulum [7] are also carried out using the FK model.14

The standard FK model describes a chain of coupled atoms subjected to an
external periodic potential and its Hamiltonian is defined as

H = T + U. (1)

T and U are the kinetic and potential energies respectively. U consists of
interparticle interactions Vc that take into account the linear and nonlinear
couplings between the nearest neighbors of the chain and the substrate ex-
ternal potential Ve along the chain with spatial period a. b stands for the
natural spacing of the unperturbed chain. The contribution of the particle i

to potential energy U is then defined as follows:

U (xi) = Vc(ri) + Ve (xi) , 1 ≤ i ≤ n (2)

where ri = xi+1 − xi − b + a represents the distance between the nearest15

neighbors.16

One of the basic restrictions of this traditional model adopted originally by17

the authors, which makes it applicable for small lattice misfits only, is the18

purely elastic interaction between neighboring atoms as a substitute for the19

real inter-atomic forces. In addition, in real physical systems, the shape of the20
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1 This author is supported by the National Natural Science Foundation of China
(10831003).
2 This author is supported by the Regional Council of Burgundy.

2



substrate potential can deviate from the standard (sinusoidal or rigid) one and21

this may affect strongly the transport properties of the system.22

As a better approach for modeling real systems, many researchers have con-23

sidered the FK model while either modifying the external periodic potential24

[1] or modifying interactions between atoms [8–12]. For realistic anharmonic25

interactions, such as those of Toda, Morse, Markov and Trayanov, besides the26

position of the minimum there exists a second characteristic length at which27

the tensile strength of the bond reaches its maximum, that is the inflection28

point rinf . This makes the behavior of such systems more complex. The29

mathematical challenges of solving the problem analytically increase since the30

equations are no more single valued. It has been reported in a numerical study31

of the discrete FK model with anharmonic interactions (Toda, Morse) [13] that32

beyond some critical values of the independent parameters (the natural lattice33

mismatch and/or amplitude of the external periodic potential), these equa-34

tions have no solution which was interpreted as a disintegration of the system35

.36

This work aims to consider a non-convex pair potential Vc [13–15] defined as
:

Vc (r) =
V0B

(

r

r0

)2

1 +B

(

r

r0

)2
(3)

with r0 =
a

2π
· B changes the width of the potential well with depth V0.37

It is a single non-convex even potential with a single minimum and infinitely38

differentiable. The curvature (elastic constant) of Vc(r) is 2BV0 at r = 0,39

and Vc(r) has inflection points at ±rinf =
r0√
3B

. This potential, plotted
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Fig. 1. Plot of the coupling potential Vc(r)
40

versus the nearest neighbors distance
r

r0
in Fig.1, is infinitely differentiable41
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and supposed to bear all qualitatively important features of the problem under42

the influence of a nonlinear periodic deformable substrate Ve.43

For this purpose, we used an important type of on-site potential that describes
many realistic situations (e.g., the dynamics of atoms adsorbed on crystal
surfaces, Josephson jonctions, charge density wave condensate, · · · ) [1], that
is:

Ve (xi) = εs

sin2

(

πxi

a

)

σ2 + (1− σ2) sin2

(

πxi

a

) , (4)

where σ is related to the coefficient s introduced by Peyrard and Remoissenet44

[1] by σ =
1 + s

1− s
. The parameter εs is the parameter that controls or adjusts45

the strength of the energy barriers of the substrate potential. In adsystem,46

εs is the activation energy for diffusion of an isolated adatom. At σ = 147

the potential Ve(xi, σ) has a sinusoidal shape, while at σ < 1, broad wells48

separate narrow barriers, and at σ > 1, deep narrow wells separate broad49

gently sloping barriers (see Fig. 2).
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Fig. 2. Substrate potential Ve(xi) at different values of parameter σ

50

The next section will be devoted to the presentation of the equations and51

integrals of motion. The phase portraits will be presented in section 3, while52

the main behaviors of the wave solutions will be studied in (§4), followed by53

a summary and some conclusion remarks.54
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2 The equations of motion55

The Hamiltonian for such a system is defined as:

H = A
n
∑

i







1

2

(

dφi

dt

)2

+
C2

0

2b2
(φi+1 − φi − P )2

1 +B(φi+1 − φi − P )2
+

+ ω2
0

sin2

(

φi

2

)

σ2 + (1− σ2) sin2

(

φi

2

)























, (5)

where φi =
2πxi

a
is the scalar dimensionless displacement of particles,56

P = 2π

(

b

a
− 1

)

stands for the natural lattice incompatibility between sub-57

strate and overlayer, while the factor A = m

(

a

2π

)2

sets the energy scale.58

The parameters C0 and ω0 are the characteristic velocity and frequency59

respectively, and are related to the non-convex dimensionless constant B (the60

parameter that controls the strength of the nonlinear coupling) and the ampli-61

tude of the substrate potential εs through C2
0 =

2BV0b
2

A
and ω2

0 =
(

2π

a

)2 εs

m
·62

Finally, m represents the mass of atoms.63

In the continuum limit, with dimensionless variables X =
x

b
and T = ω0t,

when φi (t) is replaced by φ (X, T ), the particles are governed by the following
Euler-Lagrange equation:

∂2φ

∂T 2
− C2

0

b2ω2
0



















1− 3B

(

∂φ

∂X
− P

)2



1 +B

(

∂φ

∂X
− P

)2




3



















∂2φ

∂X2
+
1

2

σ2 sin (φ)
[

(σ2 − 1) sin2

(

φ

2

)

− σ2

]2
= 0.

(6)
In extreme cases B → 0 and σ → 1, equation (6) leads to the well-
known Sine Gordon equation. Using the independent propagating variable
u = X − vT , where v is a constant velocity, (6) yields:



















1− 3B

(

dφ

du
− P

)2



1 +B

(

dφ

du
− P

)2




3
− V

2



















d2φ

du2
=

1

2

λσ2 sin (φ)
[

(σ2 − 1) sin2

(

φ

2

)

− σ2

]2
, (7)
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where V =
vbω0

C0

is a more suitable dimensionless expression to determine

the velocity of the travelling waves. d0 =
C0

ω0

is the characteristic length

of the system, while λ =

(

b

d0

)2

denotes the scaled amplitude of the pe-

riodic potential and measures the effective depth of the substrate potential
of the system. The study of Eq. (7) can be best driven in the phase plane
(

φ, y =
dφ

du

)

. Eq(7) can then be rewritten as:

dφ

du
= y,

dy

du
=

1

2f (y)

λσ2 sin (φ)
[

(σ2 − 1) sin2

(

φ

2

)

− σ2

]2
, (8)

with

f(y) =
1− 3B(y − P )2

[1 +B(y − P )2]3
− V

2. (9)

If the function f(y) has at least a real zero at y = y0, (8) is a singular nonlinear
system of the second class (see [17–19]). By using the transformation du =
f(y)dξ when y 6= y0, system (8) becomes the associated regular system as
follows:

dφ

dξ
= yf(y),

dy

dξ
=

1

2

λσ2 sin (φ)
[

(σ2 − 1) sin2

(

φ

2

)

− σ2

]2
≡ Q(φ). (10)

Systems (8) and (10) have the same first integral defined as:

H (φ, y) =
(1− 3BP 2) y2 + 4BPy3 − By4

(1 +BP 2)
(

1 +B(y − P )2
)2

− V
2y2 −

2λsin2

(

φ

2

)

[

σ2 + (1− σ2) sin2

(

φ

2

)]

= h,

(11)
where h is a constant.64

System (10) is 2π-periodic in φ. Hence, the state (φ, y) can be viewed, for the65

main properties, on a phase cylinder S1 × R, where S1 = ]− π, π] and −π is66

identified with π (see Fig. 3).67

Without loosing generality, we will assume in the following that σ is fixed,68

which leads to consider the systems (8) and (10) as four-parameter systems69

depending on (B,V, P, λ). The role of σ will be discussed later.70
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Fig. 3. The phase cylinder S1 ×R of system (10).

Obviously, y = G(φ) can not be derived explicitly from (11). Therefore, it is71

not possible to obtain explicit solutions by solving equation (7). However with72

the qualitative theory of differential equations, Eq. (7) can be solved and all73

related informations to its solutions can be derived, as well as phase portraits74

[20,21].75

Let Y = (y − P )2. For V 6= 0, to find the zeros of function f(y) is equivalent
to find the roots of the cubic polynomial

F (Y ) = Y 3 +
3

B
Y 2 +

3

B2

(

1 +
1

V2

)

Y +
1

B3

(

1− 1

V2

)

≡ Y 3 + a2Y
2 + a1Y + a0.

(12)

Let q =
1

3
a1 −

1

9
a22, r =

1

6
(a1a2 − 3a0) −

1

27
a32. Then, the discriminant S =76

q3 + r2 of cubic equation F (Y ) = 0 is S =
1 + 4V2

V6B6
> 0. It follows that F (Y )77

has only one real root Y = Y0.78

If and only if a0 < 0, i.e., 0 < V < 1, the only real root Y0 of cubic polynomial79

F (Y ) is positive. Then f(y) has two real roots y1 and y2.80

Therefore, for any P 6= 0, looking for the equilibrium points of system (10),81

we have the following conclusions:82

(1) For the static (V = 0) or subsonic velocity (0 < V < 1) cases:83

For V = 0, f(y) becomes zero for y1 = P + rinf , and y2 = P − rinf ,84

while if 0 < V < 1, y1 = P −
√
Y0 and y2 = P +

√
Y0.85

Then, for (0 ≤ V < 1), there exist six equilibrium points of system (10)86

in the phase cylinder, at O(0, 0), A(π, 0), B1(0, y1), B2(π, y1), C1(0, y2)87

7



and C2(π, y2). On the straight lines y = y1 and y = y2,
dy

du
, defined88

by system (8), becomes infinite. These two straight lines are then two89

singular straight lines for system (8).90

(2) For the case of sonic velocities (V = 1) .91

There exist four equilibrium points of system (10) at O(0, 0), A(π, 0),92

B1(0, P ) and B2(π, P ). On the straight lines y = P ,
dy

du
, defined by93

system (8), becomes infinite. Thus, the straight line y = P is a singular94

straight line for system (8).95

(3) For the case of supersonic velocities (1 < V < ∞) .96

There exist two equilibrium points of system (10) at O(0, 0) and A(π, 0).97

In this case, because f(y) has no real zero, system (8) is a regular dy-98

namical system.99

We notice that f(0) = −V
2F (P 2)B3

(1 +BP 2)3
·100

(a) When 1 < V < ∞, F (P 2) > 0 and f(0) < 0.101

(b) When 0 < V < 1, if P 2 < Y0, then f(0) > 0, while if P 2 > Y0, then102

f(0) < 0.103

Let M(φi, yj) be the matrix of the linearized approximation of system (10) at
the equilibrium point (φi, yj). Then, we have

detM(φi, yj) = −Q′(φi)[yjf
′(yj) + f(yj)],

where

f ′(y) =
12B (y − P )

[

B(y − P )2 − 1
]

[

B(y − P )2 + 1
]4

,

and Trace M (φi, yj) = 0.104
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Thus,

J(0, 0) = detM(0, 0) = − λ

2σ2
f(0),

J(π, 0) = detM(π, 0) =
λσ2

2
f(0),

J(0, yj) = detM(0, yj) = − λ

2σ2
yjf

′(yj),

J(π, yj) = detM(π, yj) =
λσ2

2
yjf

′(yj), j = 1, 2.

The theory of planar dynamical systems gives the following results for an105

equilibrium point of a planar integrable system:106

• if J < 0, then the equilibrium point is a saddle point;107

• If J > 0 then it is a center point;108

• if J = 0 and the Poincaré index of the equilibrium point is 0, then this109

equilibrium point is a cusp [19,20].110

For the Hamiltonian values defined by (11), we have

h0 = H(0, 0) = 0,

h1 = H(π, 0) = −2λ,

h2,3 = H(0, y1,2) =
(1− 3BP 2)y21,2 + 4BPy31,2 − By41,2

(1 +BP 2) (1 +B(y1,2 − P )2)2
− V

2y21,2,

h4,5 = H(π, y1,2) =
(1− 3BP 2)y21,2 + 4BPy31,2 − By41,2

(1 +BP 2) (1 +B(y1,2 − P )2)2
− V

2y21,2 − 2λ.

3 The phase portraits of the model111

Note first that the case P and −P are symmetric with respect to the φ-axe,112

which allows us to restrict our study to P ≥ 0.113

In order to solve the four-parameter systems (8) or (10), and to draw the114

portrait phases, we will discuss according the different cases V = 0, 0 <115

V < 1, V = 1 and V > 1. Using the above informations to perform116

qualitative analysis, we also represent in phase portraits the corresponding117

singular straight lines. They intersect transversally some families of orbits.118

We should emphasize that when these singular straight lines of system (8)119
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exist, the vector fields defined by system (8) and system (10) are different. If120

an orbit of system (8) intersect a singular straight line y = yj, that is f(yj) = 0121

in a particular point (φ0, yj), where φ0 is not a multiple of π, then at122

this point, the second derivative
d2φ

du2
of φ(u) becomes infinite as shown123

by equation (7). The direction of vector field defined by system (8) changes124

rapidly to the inverse direction of the vector field defined by system (10). This125

lets the wave solution φ(u) of (7) associated with system (8) degenerate into126

a breaking solution, meaning physically a dislocation of the particle lattice, as127

we will show now.128

Considering first the static case V = 0, the coupling potential Vc can be
rewritten as

∑

i

Vc (ri) =
∑

i

V0B (φi+1 − φi − P )2

1 +B(φi+1 − φi − P )2
· (13)

Deriving Vc versus φi gives the resulting force from the lattice on particle
number i, namely

Fi = −2V0B







φi+1 − φi − P
[

1 +B(φi+1 − φi − P )2
]2

− φi − φi−1 − P
[

1 +B[φi − φi−1 − P )2
]2





 (14)

Using the continuous media approximation

(

φi+1 − φi →
∂φ

∂X

)

gives

Fi = −2V0B
∂2φ

∂X2



















1− 3B

(

∂φ

∂X
− P

)2



1 +B

(

∂φ

∂X
− P

)2




3



















(15)

This result shows that when
∂φ

∂X
= P± 1√

3B
, the resulting force on particle i129

from the lattice vanishes. The attraction on particle i from the left neighbors is130

exactly balanced by the one from the right neighbors, resulting on a breaking131

of the lattice cohesion.132

Note that the particle remains submitted to the substrate potential Ve(xi) (see133

Eq. (4)) but the links to their neighbors are broken.134

Finally, with y =
∂φ

∂X
=

dφ

du
, (we recall that u = X − vT = X for V = 0),135

the lattice submits a dislocation when f(y) = 0, that is on the singular136

straight lines.137

When V 6= 0, the coupling potential must be replaced by an effective one,138
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taking into consideration the propagative variable u = X − vT . Then, dislo-139

cations occur when the slope y =
dφ

du
reaches one of the roots of f(y) = 0,140

when they exist. In the phase portraits, this corresponds to any intersection141

of the orbits with the singular straight lines, except at the minima of the142

potential Ve(φi).143

(i) Phase portraits in the static case (V = 0) with P = 0144

For a given B, we have y1 = −y2 = − 1√
3B

, h2 = h3 =
1

8B
, h4 =145

h5 =
1

8B
− 2λ. Hence, when λ =

1

16B
, it follows that h4 = h5 = h0 = 0.146

When λ increases, the cases h1 < 0 < h4 < h2, h1 < h4 = 0 < h2 and147

h1 < h4 < 0 < h2 are successively obtained, as shown in Fig.4.148

− 2*pi − pi 0 pi 2 pi

−1

−0,5

0

1

φ

y

y
0

(a) λ = 0.06; σ = 1.5·

− 2*pi −pi 0 pi 2*pi

−1

−0.5

0

1

φ

y
y

0

(b) λ = 0.0694; σ = 1.5·

− 2*pi − pi 0 pi 2*pi

−1

−0.5

0

1

φ

y

y
0

(c) λ = 0.008; σ = 1.5·

− 2*pi − pi 0 pi 2*pi

−1

−0,5

0

1

φ

y

y
0

(d) λ = 0.008; σ = 3·

Fig. 4. The bifurcation of phase portraits of system (10) for V = 0, P = 0, B = 0.9,

(a) λ <
1

16B
, (b) λ =

1

16B
, (c) λ >

1

16B
and (d) λ >

1

16B
but σ is now 3.

(ii) Phase portraits of the subsonic velocity case (0 < V < 1)149

In this case, there exist a fixed positive root Y0 of F (Y ).150

If P = 0, y1,2 = ±
√
Y0 and h2 = h3 =

Y0(1− BY0)

4(1 +BY0)2
− V

2Y0, h4 =151

h5 =
Y0(1− BY0)

4(1 +BY0)2
− V

2Y0 − 2λ. Let λb =
1

2

(

Y0(1− BY0)

4(1 +BY0)2
− V

2Y0

)

. It152

is easy to see that respectively the case λ < λb (λ = λb, then λ > λb)153

leads to h1 < 0 < h4 < h2 (respectively h1 < h4 = 0 < h2, then154

11



h1 < h4 < 0 < h2), while these different phase portraits are shown in155

Fig.5.156

–1
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y
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xphi

(a) λ < λb.

–1
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0
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y
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x

phi

(b) λ = λb.

–1

–0.5

0

0.5

1

y

–6 –4 –2 2 4 6

x

phi

(c) λ > λb.

Fig. 5. The bifurcation of phase portraits of system (10) for P = 0, 0 < V < 1. (Pa-
rameters: B = 0.9, V = 0.2, σ = 1.5, (a) λ = 0.025, (b) λ = λb = 0.03118632263,
(c) λ = 0.05.

If P =
√
Y0, then y1 = 0, y2 = 2Y0, F (P 2) = 0. Consequently f(0) = 0157

and the two equilibrium points O(0, 0) and A(π, 0) are cusps.158

When P varies from 0 to ∞, there exists a value P = Pb such159

that h2 = h5. On Fig. 6, we present the phase portraits highlighting160

the bifurcations obtained when the parameter P increases.161

(iii) Phase portraits in the sonic velocity case (V = 1)162

We have now Y0 = 0, and y1 = y2 = P . The two equilibrium points163

B1(0, P ) and B2(π, P ) are cusps, and h2,3 = − BP 4

1 +BP 2
. Thus, for a164

given parameter pair (B, λ), h1 = h2,3 when P = Pa ≡ λ+

√

λ2 +
2λ

B
;165

we see in Fig. 7 the phase portraits for P < Pa, P = Pa and P > Pa.166

(iv) Phase portraits in the supersonic velocity case (V > 1)167
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Fig. 6. The bifurcation of phase portraits of system (10) for 0 < V < 1 and for
B = 0.9, σ = 1.5, λ = 0.03.

The phase portraits are simple without singular lines. As shown on Fig.8,168

no bifurcation occurs when P or λ are varied.169

In this section, we have studied the main characteristics of the phase portraits170

for the systems (8) and (10). We notice at this stage that the deformability171

parameter σ acting on substrate potential (4) does not play an important role.172

In fact, it only slightly and qualitatively changes the shapes of the trajectories173
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Fig. 7. The bifurcation of phase portraits of system (10) for V = 1 (sketch for any
given parameter set (B,λ)).
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Fig. 8. Example of phase portraits of system (10) for V > 1 (sketch for any given
parameter set (B,P, λ)).

in the different phase portraits (compare Fig. 4(c) and Fig. 4(d)) where only174

the parameter σ is varied.175

14



4 Dynamics of the solutions of equation (7)176

In this section, we consider the solutions of equation (7) giving the wave177

profile φ(u) and corresponding to some trajectories of the phase portraits of178

section 3. For a sake of simplicity, we will consider the velocity as a decreasing179

parameter.180

(I) Case of supersonic velocities: V > 1. (see Fig. 8) .181

In this case, the function f(y) has no real zero. Thus, systems (8) and182

(10) lead both to the phase portraits of Fig. 8 for any kind of parameter183

set (B,P, λ).184

(i) Corresponding to the family of closed orbits defined by H(φ, y) =185

h, h ∈ ]− 2λ, 0[, there exists a family of oscillating periodic solu-186

tions of equation (7), as depicted in Fig.9(a).187
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(b) Kink wave.
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2π

φ (u)

u

(d)

Fig. 9. Solution wave φ(u) of equation (7) corresponding to the case V > 1. The
abscisse scale is arbitrary. [The initial values for the pair (φ, y) are respectively: a)
(−2.4, 0). b) (−π, 0). c) (π, 0). d) (−3π, 0.1).]
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(ii) Corresponding to heteroclinic orbits joining points A to A′ in188

Fig.8, such as H(φ, y) = −2λ, there exist two kink solutions as189

shown in Fig. 9(b) and 9(c).190

(iii) Corresponding to open orbits defined by H(φ, y) = h, h ∈ ] −191

∞,−2λ[, there exist rotating solutions of equation (7) with only192

periodic changes of positive slope y. Although these solutions may193

not correspond to realistic behaviors in the context of lattice sys-194

tems, they are represented on figure 9(d).195

(II) Case of sonic velocities (V = 1, see Fig. 7).196

(II-1) If P = 0 (see Fig. 7(a)), there exist only the equilibrium points197

O, A and A′, and the families of solutions for Eq. (7) are the198

same as the ones reported in § 4(I).199

(II-2) If 0 < P < Pa (see Fig. 7(b)) or P = Pa (Fig. 7(c)) we have200

h4 < h1 < h2 < 0 or h4 < h1 = h2 < 0 respectively.201

• Corresponding to the family of closed orbits defined by H(φ, y) =202

h, h ∈ ]h2, 0[, there exists a family of oscillating periodic203

solutions of Eq. (7) similar to those shown on Fig. 9(a).204

• Corresponding to the family of closed orbits defined by205

H(φ, y) = h, h ∈ ]h1, h2], there exists a family of oscillating206

periodic solutions of Eq. (7). But these orbits intersect the207

singular straight line y = P first for −π < φ < 0. For208

example, the orbit starting from the point A′(φ = −π, y = 0)209

in Fig. 7(b) intersects the singular straight line at point M .210

The wave profile, as shown on Fig. 10 leads to the lattice211

dislocation when φ = φ0 and y = P . At this point, this212

gives rise to a breaking solutions φ(u).213

u

φ 
(u

)

M
− π

φ
0

Fig. 10. Sketch of a dislocation. Starting from the point A′ in Fig. 7(b), the orbit

intersects the singular straight line at point M , when the slope
dφ(u)

du
= P . (Same

parameter set as for Fig. 7).

• Considering the two heteroclinic orbits linking the equi-214
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librium points A and A′ [H(φ, y) = h1], the upper one215

intersects also the singular straight line y = P first for216

−π < φ < 0 (behavior similar to the one depicted in Fig.217

10) while the lower one is a standard anti-kink wave (similar218

to Fig. 9(c)).219

• Corresponding to H(φ, y) < h1, there exist different families220

of trajectories. For the lower ones, the profiles φ(u) resemble221

to the curves on Fig. 9(d) while the upper ones intersect the222

singular straight line y = P and correspond to breaking223

wave solution as on Fig. 10.224

(II-3) P > Pa. In this case h4 < h2 < h1 < 0. In addition to the previous225

case, we notice the presence of a heteroclinic orbit joining the226

points A′ and A, corresponding to a kink wave solution φ(u)227

similar to the curve on Fig. 9(b).228

(III) Case of subsonic velocities (0 < V < 1).229

(III-1) Let us consider first the case P = 0 (see Fig. 5 (a, b, c)).230

Some families of orbits do not intersect the singular straight231

lines y = y1 =
√
Y0 and y = y2 = −

√
Y0. There are limit cycles232

around the equilibrium points A′ or A. The corresponding wave233

solution φ(u) of Eq. (7) is similar to those depicted on Fig. 9(a),234

with only a difference concerning the ordinate values.235

We notice even, when λ < λb (Fig. 5(a)), that a kink (antikink)236

solution links the point O to the point O′(2π, 0), with the cor-237

responding wave solutions φ(u) sketched in Fig. 11. Note here238

the influence of parameter σ on the shape of the wave φ(u) : it239

only concerns the width of the kink (compare Fiq. 11 (a), (b)240

and (d)).241

The other families of orbits in this case all intersect one of the242

singular straight lines. They correspond thus to breaking waves243

solution φ(u), with the dislocation happening precisely when244

their slope y =
dφ

du
reaches either

√
Y0 or −

√
Y0.245

(III-2) 0 < V < 1 and P 6= 0 (see Fig. 6(a)→ 6(f)).246

In this case, almost all orbits of systems (8) and (10) intersect247

the singular straight lines y = P +
√
Y0 and y = P −

√
Y0, giv-248

ing rise to breaking solutions φ(u). The only difference between249

these waves stands on the position of the initial condition.250

A few orbits do not intersect the singular straight lines. They251

correspond to periodic oscillations around the equilibrium points252

A′ and A (if P ≤
√
Y0) and around the equilibrium point O (if253

P > Pb). In this later case, an heteroclinic orbit linking A to A′
254

exist, whose corresponding φ(u) is an anti-kink wave.255
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Fig. 11. The kink wave and anti-kink wave of Eq (7) for 0 < V < 1 (Parameters:
P = 0, V = 0.2, B = 0.9, λ = 0.025. For (a) , (b) and (d) φ(−∞) = 0, y(−∞) = 0
but σ takes different values. For (c) φ(−∞) = 2π, y(−∞) = 0).

5 Conclusion256

In summary, we have studied the dynamic behaviors of traveling wave solu-257

tions of the generalized Frenkel-Kontorova model. Our model extends previ-258

ous lattice soliton-bearing one-dimensional models discussed in the literature,259

by considering the contribution of anharmonic couplings. Such couplings are260

achieved through a non-convex interaction potential and a deformable sub-261

strate potential. In the continuum limit, a Singular Nonlinear Equation of the262

Second Class governs the displacement of the particles. Under different para-263

metric conditions, we have shown that various sufficient conditions lead to the264

existence of a rich diversity of solitary and periodic wave solutions. Another265

effect is related to an opening of phase trajectories of the system taking place266

beyond some threshold values of the lattice parameters, and depending on267

the velocity of the soliton patterns. Analytical expression for the breakdown268

threshold has been derived although it is quite indifferent of the deformabil-269

ity of the substrate (σ being not a bifurcation parameter). The deformability270

of substrate in such model gradually has only an influence on the width of271

the wave solutions. The parameter P , as well as other defects, may locally272

influence the breakdown threshold and thus plays a major role with respect273

to nonlinear excitations in such systems.274

The bifurcations and dynamic behaviors of traveling wave solutions can be275

suitable for another nonlinear wave equation. Although it is tremendously276

challenging to analytically determine the explicit travelling wave solutions,277

our preliminaries results suggest that they can be combined with a bifurca-278

tion method in order to provide an insight of at least implicit solutions. The279
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findings reported in this paper might be of critical impacts in several areas of280

applied sciences. For instance, they can help to explain the formation of cracks281

originating from dislocations that are observed in semiconductor heterostruc-282

tures [1,14–16]. Moreover, they can help to better understand the break up283

(rupture) of a stretched polymer chain by pulling and its relation to soliton284

destruction [22].285
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