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Distributed optical fiber sensors (DOFS) have gained an increasingly prominent role in structural-health monitoring. These are composed of an optical fiber cable in which a light impulse is launched by an opto-electronic device. The scattered light is of interest in the spectral domain: the spontaneous Brillouin spectrum is centered on the Brillouin frequency, which is related to the local strain and temperature changes in the optical fiber. When coupled to an industrial Brillouin optical time-domain analyzer (B-OTDA), an optical fiber cable can provide distributed measurements of strain and/or temperature, with a spatial resolution over kilometers of 40 cm. This article focuses on the functioning of B-OTDA device, where we address the problem of the improvement of spatial resolution. We model a Brillouin spectrum measured within an integration base of 1 m as the superposition of the elementary spectra contained in the base. Then, the spectral distortion phenomenon can be mathematically explained: if the strain is not constant within the integration base, the Brillouin spectrum is composed of several elementary spectra that are centered on different local Brillouin frequencies. We propose a source separation methodology approach to decompose a measured Brillouin spectrum into its spectral components. The local Brillouin frequencies and amplitudes are related to a portion of the integration base where the strain is constant. A layout algorithm allows the estimation of a strain profile with new spatial resolution chosen by the user. Numerical tests enable the finding of the optimal parameters, which provides a reduction to 1 cm of the 40-cm spatial resolution of the B-OTDA device. These parameters are highlighted during a comparison with a reference strain profile acquired by a 5-cm-resolution Rayleigh scatter analyzer under controlled conditions. In comparison to the B-OTDA strain profile, our estimated strain profile has better accuracy, with centimeter spatial resolution.

 [START_REF] Lopez-Higuera | Fiber optic sensors in structural health monitoring[END_REF]. DOFS offer a multitude of advantages, such as reduced weight and dimensions, strong immunity to electromagnetic interference, environmental robustness, long-gauge measurements, and low cost [START_REF] Yin | Distributed fiber optic sensors[END_REF]. For these reasons, in addition to traditional sensors, EDF uses DOFS to monitor dykes and dams, and to detect and locate water leakage [START_REF] Khan | A source separation technique for processing of thermometric data from fiberoptic DTS measurements for water leakage identification in dikes[END_REF] and internal erosion [START_REF] Blairon | Truly distributed optical fiber extensometers for geotechnical structure monitoring (dikes and underground repository): Influence of sensor external coating[END_REF].

DOFS are composed of an opto-electronic device that is linked to an optical fiber cable, which provides the sensing element. The opto-electronic device, which is classically known as the interrogator, launches a light impulse into the optical fiber and records the backscattered light. Three phenomena are identified: the Raman, Brillouin, and Rayleigh scatterings. The Raman scattering is only dependent on the temperature in the optical fiber cable, while the Brillouin and Rayleigh scatterings can be linked to the temperature and strain changes. Several devices take advantage of these phenomena to measure the distribution of temperature and strain profiles along fiber optics. The Rayleigh device has the advantage that it can be used to provide centimeter spatial resolution, although in this configuration the sensor length is limited to 70 m [START_REF] Frogatt | High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter[END_REF]. Whereas the Brillouin devices provides measurements over kilometers, although a meter spatial resolution [START_REF] Bao | Experimental and theorical studies on a distributed temperature sensor based on Brillouin scattering[END_REF]. However, to monitor important structures, the needs of EDF indicate centimeter spatial resolution with a sensing length of over 5 km. We need to understand and model the Brillouin spectra recorded by these devices to enhance the spatial resolution while maintaining the same sensing length.

For over two decades, DOFS based on Brillouin scattering devices have gained significant interest as they can be used to monitor temperature and strain in large infrastructures, thus replacing thousands of classical sensors. The thermal and strain sound-wave agitations in the optical fiber cable result in acoustic waves that induce refractive index fluctuations in the optical fiber. This phenomenon means that the incident light waves are scattered with shifted frequencies. Various industrialized devices are based on Brillouin scattering. They exploit the interaction of light with the acoustic phonons that propagate in the fiber core. This interaction induces a spontaneous Brillouin spectrum that is centered on a Brillouin frequency that is related to the local temperature and strain conditions in the optical fiber [START_REF] Bao | Experimental and theorical studies on a distributed temperature sensor based on Brillouin scattering[END_REF]. Classical Brillouin optical time-domain analyzers (B-OTDAs) are based on this stimulation of Brillouin scattering. The industrial B-OTDA devices have the advantage of a gauge length of 25 km, although the spatial resolution of 40 cm [START_REF] Bao | Recent progress in Brillouin scattering based on fiber sensors[END_REF] is not enough for many applications.

In recent years, increasing attention has been paid to the improvement of the spatial resolution, while maintaining the same measurement performance and gauge length. Many promising studies have been carried out in optical physics [START_REF] Bao | Recent progress in Brillouin scattering based on fiber sensors[END_REF] to fulfill this goal; e.g., pre-pumping of the acoustic waves can achieve a spatial resolution in the centimeter range [START_REF] Bao | Recent progress in Brillouin scattering based on fiber sensors[END_REF]. These methods are still under laboratory development. Other studies have been based on the observation of the Brillouin spectra. [START_REF] Ravet | Signature of structure failure using asymmetric and broadening factors of Brillouin spectrum[END_REF] highlighted the Brillouin distortion phenomena [START_REF] Ravet | Signature of structure failure using asymmetric and broadening factors of Brillouin spectrum[END_REF]: when a local and substantial load is applied within the spatial resolution, the measured Brillouin spectrum becomes distorted from an asymmetric form to multiple peaks.

They proposed a deconvolution technique to detect and quantify centimeter-long defects applied to the optical fiber cable [START_REF] Ravet | Signal processing technique for distributed Brillouin sensing at centimeter spatial resolution[END_REF]. This technique relies on an optical physics model, whose parameters include strain distribution within the base integration, extension rate, intensity and frequency of the light waves, and sensing length [START_REF] Ravet | Signal processing technique for distributed Brillouin sensing at centimeter spatial resolution[END_REF]. The main drawback in our case is that these parameters are not provided by industrial B-OTDA units. The Ravet method is not suitable in our case.

Our previous studies have strengthened the observation and quantification of the Brillouin distortion phenomena within industrial devices under semi-controlled conditions [START_REF] Buchoud | Detection of ground movement using the shape of Brillouin spectrum[END_REF]. In this report, we propose another model that is based on signalprocessing techniques. The shape of the spontaneous Brillouin spectrum is changed by the acquisition system [START_REF] Smith | Pulse width dependence of the Brillouin loss spectrum[END_REF], from a Lorentzian to a Gaussian distribution. This can be modeled using a transfer function that depends on the acquisition system, and thus the optical physics parameters are not needed anymore. Then, we assume that the Brillouin spectrum measured within the B-OTDA device integration base is the sum of several Brillouin spectra that are centered on local Brillouin frequencies. Therefore, if the strain is not constant within the integration base, then the resulting spectrum will be distorted, as has been observed previously. Going beyond this particular study, we emphasis here that the analysis of a distorted spectrum by a source separation technique allows the estimation of its spectral components. Their central frequencies and amplitudes are linked to a constant strained portion within the integration base. Due to this property, a layout methodology within the integration base is needed to provide centimeter resolution measurements. Keeping the same DOFS with an industrial B-OTDA device allows centimeter strain measurements to be achieved.

Numerical and experimental tests with a B-OTDA device were here carried out under laboratory conditions. A Rayleigh device that provides 1-cm spatial resolution measurements over the same optical fiber cable is considered as the reference in this study [START_REF] Soller | High resolution optical frequency domain reflectometry for characterization of components and assemblies[END_REF]. This reference serves for comparison purposes with the output of our method. We show that our methodology enables centimeter resolution strain measurements with an industrial B-OTDA unit. In addition, the accuracy of the DOFS is enhanced where the strain variations are important within the spatial resolution. This kind of process is entirely new in the application domain.

We start in section II with a description of the principle of the acquisition using a B-OTDA device. We focus on the interpretation of the Brillouin spectra and propose a model to define its functioning. The theoretical formulation of the problem is presented in section III, using the advanced technique of non-negative source factorization. After a brief theoretical description of the non-negative least-squares (NNLS) algorithm, a scheme is proposed to retrieve the Brillouin frequency profile that allows the reconstruction of the strain profile along the optical fiber cable. Section IV presents two applications of the proposed methodology. The first is a numerical dataset, with a comprehensive discussion about the parameters involved in the algorithm, which provides an understanding of their influence on the new sampling and the results. The second application includes an experimental dataset, with a comparison between the reference Rayleigh measurement and the output of the proposed method, which provides validation of our methodology. The conclusions follow in section V, which arise from the results of the previous sections, and which emphasize the further applications to which this methodology can be applied.

II. ACQUISITION PRINCIPLE AND DATA INTERPRETATION

A. Distributed Sensing For Temperature and Strain Monitoring

DOFS are composed of an optical fiber cable that is linked to an opto-electronic device. The sensing cable is composed of several optical fibers that are made of silica and are wrapped in a protective coating. The opto-electronic device, which is classically known as the interrogator, launches a light impulse at wavelength λ 0 into the optical fiber and records the backscattered light.

In the frequency domain, three distinct phenomena can be highlighted in the backscattered light, as illustrated in Fig. 1. The first is Rayleigh scattering, which is due to fluctuations in the silica density and composition. The light returns with the same frequency, but parts of the power have been frequency spread, which is called the Rayleigh wing. The second phenomenon is Brillouin scattering, which is due to photonphonon interactions. This is characterized by a shifted frequency spectrum in the Stokes and anti-Stokes components. These two phenomena are both sensitive to temperature and strain changes in the optical fiber cable, and they are fully explained below. The third phenomenon, the Raman effect, is caused by thermal molecular vibrations, although this is not considered further here. The Raman effect is only temperature sensitive.

Monitoring structures using this kind of sensor consist of installing a sensing cable into the structure, as illustrated in Fig. 2 (top panels). The opto-electronic device provides temperature or strain measurements, depending on the distance into the optical fiber cable. Previous studies in collaboration with EDF have enabled the detection of water leakage in industrial dams using the Raman effect [START_REF] Khan | A source separation technique for processing of thermometric data from fiberoptic DTS measurements for water leakage identification in dikes[END_REF]. A Rayleigh-based optical backscatter reflectometer unit (OBR) provides 1-cm spatial resolution, although its drawback is the limited sensing length [START_REF] Frogatt | High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter[END_REF]. In the present report, measurements provided by the Rayleigh OBR will be considered as the reference measurements, due to their high spatial resolution and precision.

However, the goal of EDF is the monitoring of long structures, such as dams. Therefore, their need is for a distributed strain sensor with a sensing length of over 5 km. These qualities can be fulfilled by Brillouin technology. Several devices based on the Brillouin phenomenon exist, but the present report focuses on the industrial B-OTDA device. The goal of this section is to understand its functioning and to model the recorded Brillouin spectra. The OTDR technique consists of injection of monochromatic light into the optical fiber and measurement of the backscattered intensity, which depends on time. Depending on the optical index n g in the sensing medium and the period of the pulse round-trip Δt, the localization z of the pulse is given by: [START_REF] Vogel | Leakage detection systems by using distributed fiber optical temperature measurements[END_REF] where c is the light velocity in the medium. The smallest distance Δz between two independent measurements is defined as the spatial resolution. Based on this principle, the use of Brillouin scattering in optical fiber sensing was first proposed in 1989 by Horiguchi and Tateda [START_REF] Horiguchi | B-OTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory[END_REF]. They showed that local temperature and strain variations in the optical fiber induce local changes in the density and tension of the silica. The consequence is the appearance of a local velocity of the acoustic phonons, called acoustic waves. Interaction of phonons with photons will shift the photon frequency proportionally. Thus, the Brillouin scattered light will be frequency shifted depending on the temperature and strain changes. The Brillouin frequency v B is given by following formula [START_REF] Bao | Experimental and theorical studies on a distributed temperature sensor based on Brillouin scattering[END_REF]: [START_REF] Johansson | Downstream seepage detection using temperature measurements and visual inspection monitoring experiences from Røsvatn field test dam and large embankment dams in Sweden[END_REF] where n eff is the effective mode refractive index of the fiber as a function of the curvilinear abscissa x, V a is the velocity of sound in glass, and λ 0 is the wavelength of the monochromatic light. Measurements of this frequency shift are in the range of 9 GHz to 13 GHz for a wavelength of around 1.3 µm to 1.6 µm in standard single mode communication fibers. Based on the stimulated Brillouin scattering, B-OTDA devices use a pump-probe wave approach. This involves launching a short pump pulse at a frequency ν p into one extremity of the test fiber, and a continuous wave (CW) probe beam at a frequency ν CW into the other end. The width of the light impulse is noted as τ and an energy transfer occurs between the two waves when they encounter each other in the optical fiber. When the frequency difference is equal to the Brillouin frequency in the optical fiber, the energy transfer is maximum. Then, the CW probe intensity will vary along the fiber depending on time and frequency. By measuring the time-dependent CW signal over a wide range of frequency differences v, it is possible to localize the position through Eq. ( 1). The width of the impulse is linked with the scanned portion of the optical fiber, known as the integration base, w, whereby:

(3) where v g is the pulse group velocity in the optical fiber. As an example, a 10-ns pulse width provides a meter integration base. The integration base is centered on z, which is the sensing acquisition point. Spatial redundancy appears between two adjacent acquisition points when the spatial resolution Δz is less than w. Fig. 2 (bottom panel) illustrates how the link between these parameters is defined. Thus, for each position z of the optical fiber, a stimulated Brillouin spectrum is measured. These spectra are centered on v B (z), but their shape varies between Lorentzian and Gaussian distributions depending on the acquisition parameters, such as: the intensity and frequency of the pump and probe waves, and the extension rate, τ. [START_REF] Bao | Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10 ns) pulses[END_REF]. A classical effect is that the spectrum broadens when the width of the pump pulse becomes shorter than 10 ns.

B. Data Interpretation and Mathematical Modeling

The state of the art in data interpretation and modeling of the B-OTDA unit tells us that this type of sensor has been widely studied. Bao et al. [START_REF] Bao | Experimental and theorical studies on a distributed temperature sensor based on Brillouin scattering[END_REF] proposed a theoretical model to describe the behavior of a DOFS. Based on coupled wave equations and optical physics, the CW beam can be modeled according to distance. Ravet et al. [START_REF] Ravet | Signal processing technique for distributed Brillouin sensing at centimeter spatial resolution[END_REF] modeled a Brillouin spectrum that depended on the strain distribution within the integration base, w. Several types of parameters were considered in their models: the power of the two beams, the extinction rate of the beam, the length of the sensor, the integration base and finally the spatial sampling. The first three of these are linked to the optical part of the device and cannot be chosen by the user; these are not provided in our case. The last two are chosen by the user and are well defined. Therefore, these processes cannot be applied to an industrial device like the DITEST STA-R. To our knowledge, no other studies have modeled the Brillouin spectra recorded by B-OTDA devices without the use of optical parameters.

This part of the present article is dedicated to the understanding of the phenomena linked to the device functioning as a signal processor. Taking into account that the spontaneous Brillouin spectrum S N (v) shape is spoiled by the device, as was shown by Ravet et al. [START_REF] Ravet | Signal processing technique for distributed Brillouin sensing at centimeter spatial resolution[END_REF], we have defined a transfer function F(v). This transfer function depends on the acquisition parameters, although its dependency is not considered here. The convolution product between S N (v) and F(v) gives an elementary Brillouin spectrum, S e (v), which is expressed as:

(4)

The shape of the elementary spectrum will evolve between Lorentzian and Gaussian distributions, depending on the acquisition parameters.

Considering an infinitesimal part dx of the optical fiber centered at x, the spontaneous Brillouin spectrum is centered on the local Brillouin frequency v B (x). Due to the convolution, S e (v) is also centered on v B (x). As the device has an integration base of w, the Brillouin spectrum measured by the B-OTDA unit at the acquisition point z k along the fiber optic cable is modeled here as the integration of all of the local elementary Brillouin spectra contained within w:

(5) Thus, if the shape of the elementary spectrum can be estimated, deconvolution processing allows the evaluation of the frequencies v B (x) within w for an acquisition point.

C. Brillouin Distortion Phenomenon

In structural-health monitoring, the sensing cable is affected by various factors, such as the ground response of the environmental effects, anomalies (e.g., cracks), and others. In terms of the strain, these anomalies are highly energetic and can be smaller than w: a high strain variation within a few centimeters. The goal is to detect and localize these anomalies, to optimize the maintenance of such structures.

If the strain is not constant within w, the Brillouin spectrum becomes distorted. As a consequence, the intensity of the received CW beam will vary depending on the frequency v. When v is equal to one of the Brillouin frequencies, the intensity will increase in the Brillouin gain spectrum. So the Brillouin spectrum contains multiple peaks for non-constant strain within w, whereas the spectrum is a single peak if the strain is constant. This phenomenon has been seen and quantified with experimental data acquired under controlled conditions [START_REF] Ravet | Signature of structure failure using asymmetric and broadening factors of Brillouin spectrum[END_REF]- [START_REF] Buchoud | Detection of ground movement using the shape of Brillouin spectrum[END_REF]. This also highlights the limits of the industrial device: the algorithm of the industrial B-OTDA device does not take into account the Brillouin distortion.

We propose a description of this phenomenon founded on the proposed model (see Eq. ( 5)). As the Brillouin spectrum is the sum of the local spectra within w, when the strain is not constant (see Fig. 3a), the centers of these spectra vary depending on x. The Brillouin spectrum that is measured by the industrial B-OTDA device is distorted, as shown in Fig. 3b. Based on Eq. ( 5), it is possible to link the distortion of the spectrum with the shape of the local Brillouin frequencies. Dividing the integration base w into segments of size x in which we assume that the strain is constant, we can rewrite Eq. ( 5) as: [START_REF] Hénault | Quantitative strain measurement and crack detection in RC structures using a truly distributed fiber optic sensing system[END_REF] where N is the number of segments, N = w/ x. N can also be seen as the sum of the spectral components within w. As the strain is assumed to be constant within x, v B (x) is constant with x. This means that the integral of S e (v-v B (x)) within i x is equal to x.S e (v-v Bi ). However, as several portions of w might be related to the same value of the strain, they have the same v Bi . Therefore, we assume that the spectrum is a combination of elementary Brillouin spectra that are centered on several local frequencies, v Bj : [START_REF] Nikles | Greatly extended distance pipeline monitoring using fiber optics[END_REF] where the new indices are a subset of , S e (v-v Bj ) are the spectral components that are contained in the distorted Brillouin, and P is their number. Fig. 3c shows that the distorted spectra of Fig. 3b can be roughly approximated by only two elementary Brillouin spectra. The number of spectral components P that allows the modeling of a measured Brillouin spectrum is an important parameter, and this will be discussed further later. The relative amplitude of the j th spectral component can be expressed as a section of w:

(8)
That is, is a percentage of the integration base where the portions are similarly stressed.

The identification of the spectral components of a measured Brillouin spectrum leads to the finding of the local frequencies and the related weight of the elementary Brillouin spectra, as shown in Fig. 3c. The next goal is to find the amplitudes and frequencies of the spectral components contained in the distorted spectrum.

D. From Raw Data to Strain Measurement

The raw data recorded by a B-OTDA device is a Brillouin spectrum matrix. This is denoted as G, and it depends on the frequency v and the abscissa : [START_REF] Lopez-Higuera | Fiber optic sensors in structural health monitoring[END_REF] where N v and N L are the total acquisition frequency and the number of acquisition points, respectively. The parameters chosen by the user are the integration base w, the spatial resolution Δz, which is given by the length of the optical fiber cable divided by the number of acquisition points, and the frequency sampling Δv. For example, typical values for industrial B-OTDA-based DOFS of 5-km gauge length are a 1-m integration base and a spatial resolution of 40 cm, with the finest frequency sampling available being 1 MHz. Usually, the central frequency v B of the spectrum is found by optimizing the parameters of a pseudo-Voigt distribution [START_REF] Smith | Pulse width dependence of the Brillouin loss spectrum[END_REF]: a Brillouin profile v B (z) is provided by the B-OTDA device that depends on the distance z, as shown in Fig. 2. Therefore, the accuracy of the frequency profile is dependent on the frequency sampling.

Between two states of the optical fiber cable (reference and stressed), two measurements of v B (z) are acquired by the device. From these, a relative frequency shift denoted as Δv B (z) is calculated. This is assumed to be proportional to the temperature variations ΔT(z) and the strain [START_REF] Bao | Experimental and theorical studies on a distributed temperature sensor based on Brillouin scattering[END_REF] [21], such that: [START_REF] Yin | Distributed fiber optic sensors[END_REF] with C T and C as the characteristics of the fiber type (which depend on the operating wavelength and the device). For a B-OTDA unit and standard fiber cables operating at λ 0 = 1550 nm, typical values of these coefficients are 1 MHz/°C and 0.05 MHz/µε, respectively [START_REF] Frogatt | High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter[END_REF].

III. NON-NEGATIVE SOURCE SEPARATION METHODOLOGY

A. Data Decomposition

Our issue is similar to a deconvolution problem. Several algorithms can be fit to solve it, such as inverse problem frameworks and Bayesian approaches, among others. Our spectra are positive, and the shape of the elementary Brillouin spectrum can be estimated for an optical fiber cable, where a straightforward solution is to use the non-negative matrix factorization formulation.

1) Non-Negative Matrix Factorization

Given a Brillouin matrix, we have to define the elementary Brillouin spectra that are contained within each Brillouin spectrum recorded. Thus, the problem can be formulated as: The problem is thus to define matrices S and A from the observation matrix G while minimizing the quadratic error C between the observation data and the estimation, with the only hypothesis being that the shape of the sources is known as the elementary Brillouin spectrum, S e (v).

2) Source Dictionary Definition

Taking into account Eq. ( 6), a Brillouin spectrum is a combination of the spectral components with the shape of S e (v) that are centered in several local frequencies. Therefore, 

x v B d 1 d 2 v B2 v B1 v v Bg v v B1 v B2 a 2 a 1 G(v,z i ) z G (v,z i )
the elementary Brillouin spectrum S e (v) is the atom of the dictionary. We can thus define S as shifted versions of the atom, with the n th column of the matrix S being: [START_REF] Blairon | Truly distributed optical fiber extensometers for geotechnical structure monitoring (dikes and underground repository): Influence of sensor external coating[END_REF] where Δf B is the frequency shift between two adjacent sources, and N is the number of possible spectral components related to the number of segments in which the strain is assumed to be constant. Therefore, the scale of the possible local frequencies is sampled by Δf B . Then, the algorithm estimates each weight corresponding to each component. The smaller Δf B is, the more accurate the estimation of the spectrum will be. However, the size of the possible sources will increase, and some of them have very small amplitudes that might cause stability problems. Therefore, a sparse algorithm has to be defined to optimize the number of nonzero values into A.

3) The Non-Negative Least-Square Algorithm

To solve non-negative matrix factorization, several algorithms that assure the convergence of C are available (see Lee and Seung [START_REF] Lee | Algorithm for non-negative matrix factorization[END_REF], and references therein). The main drawback of these algorithms is the nonunicity of the estimated sources. This can influence the weights, and so portions of w, and bias the strain estimation.

As in our case the shape of the elementary Brillouin spectrum can be estimated, S e (v), another solution is the NNLS algorithm [START_REF] Lawson | Linear least squares with linear inequality constraints[END_REF]. This has been used recently in several applications, such as for blind separation in the electromagnetics field [START_REF] Wei | Robust estimation of the discrete spectrum of relaxations for electromagnetic induction responses[END_REF], and for the bioinformatics domain [START_REF] Repsilber | Biomarker discovery in heterogeneous tissue samples-taking the in-silico confounding approach[END_REF]. The problem is reformulated as follows: taking an observation column g from the Brillouin matrix , given a dictionary S , find the vector a minimizing: [START_REF] Frogatt | High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter[END_REF] subject to the Karush-Kuhn-Tucker optimality conditions: where λ corresponds to the gradient of c(a). This principle can be easily implemented by the active set algorithm presented in [START_REF] Bro | A fast non-negativity-constrained least squares algorithm[END_REF]. A passive set Z and an active one R are defined: Z comprises the indices of all of the amplitudes that are strictly positive of the N sources; R contains the indices of the amplitudes that are fixed at zero. First, the set R is filled with the N indices of all of the sources. An equivalent of the Lagrange multiplier, denoted as l = S T (g-Sa), is calculated: the index of the maximum of l is removed from R and included in Z. Then the amplitudes are optimized to minimize c. In this step, one or several amplitudes can become zero, and hence the corresponding indices go from Z to R to optimize the length of Z. Therefore, an optimal number of nonzero values is found. This is the main advantage of this algorithm: given N possibilities, it will find P nonzero values. Thus, for the k th column of the matrix , the algorithm will find the associated weight vector a k with P k nonzero values among the prior N possibilities. As the algorithm works for one column of , this scheme is reiterated for each column, and thus we obtain the sparse matrix A. It has been shown that the algorithm always converges [START_REF] Lawson | Linear least squares with linear inequality constraints[END_REF]. However, there is no cut-off in the iteration required, and sometimes the computation time is very long. Another possible algorithm could be weighted least squares depending on the distortion of the spectrum.

B. Brillouin Profile Reconstruction

The goal of this section is the estimation of a Brillouin frequency profile that depends on the curvilinear abscissa. As explained above, for each acquisition point z k on the optical fiber cable that corresponds to an integration base w, the algorithm provides an estimation of the amplitudes and frequencies of the components contained in the measured Brillouin spectrum. In contrast to the device algorithm, which estimates a Brillouin frequency as the abscissa of the maximum of the measured Brillouin spectrum and places it in the center of the studied portion, w, our decomposition algorithm finds several local frequencies. The issue is to know the layout of those frequencies within w.

Through our model in Eq. ( 8), we know that the amplitudes of the components are related to the segments (portions) of size contained in w that are similarly stressed. The idea is to lay out these segments in order to estimate the Brillouin frequency profile along the optical fiber cable. The device functioning allows an overlap between two studied portions. Therefore, the common components are found between two adjacent measured spectra. We take advantage of this property to sort out the components.

First, by observing the components of three adjacent positions, , and , it is possible to reveal a global tendency in the organization. The mean of the local Brillouin frequencies is calculated and denoted as . By comparing these, four simple scenarii can be defined to describe the tendencies, as shown in Table I. The example given in Fig. 4 corresponds to case 3. This means that there is a local maximum in the integration base at the k th position that should influence the positioning of the local frequencies. The maximum of the local frequencies in this k th integration base is placed in the center. The other segments, or more precisely their size , are split in two sub-ensembles. The mean of the frequency increases between z k-1 and z k , and the hypothesis is to dispose the elements of the first sub-ensemble such that the related frequencies are arranged in increasing order on the left side. Mutually, the decrease between and leads to dispose the elements of the other sub-ensemble such that the related frequencies are arranged in decreasing order on the right side. Note that this method can be refined, for example, by taking into consideration the left versus right slope in defining the splitting operation, although such a solution is beyond the scope of the present report.

To illustrate this concept, Fig. 4a-c shows the elements (frequencies and amplitudes) of the decomposition of three distorted spectra at positions , and . Note that the amplitudes are expressed in a relative size form (see in Eq. ( 8)); i.e., the sum of the segments represented for example in Fig. 4a is equal to the size of the integration base, w. We assume here that position was previously identified as a first-case scenario. This means that the segments that correspond to position should be arranged such that the related frequencies are in increasing order (see Fig. 4d). We also assume that the position will be identified in the next step as the second-case scenario. This means that the segments that correspond to position will be arranged such that the related frequencies are in decreasing order (see also Fig. 4d). For the elements related to the position, these are arranged in Fig. 4d as previously explained: the maximum of the local frequencies in the center, increasing on the left side and decreasing on the right side.

Secondly, as there is spatial redundancy, the superposition of several frequencies can appear over several portions, as can be seen in Fig. 4d. We propose here to compute the mean of the superposed frequencies while using a nonoverlapping sliding window of length Δx: [START_REF] Bao | Recent progress in Brillouin scattering based on fiber sensors[END_REF] where Q is the number of estimated local frequencies v B that exist within Δx. Finally, we estimate a Brillouin frequency profile that depends on the distance x, with a new spatial resolution of Δx. Fig. 4e shows the Brillouin frequency obtained for the rearranged estimated local frequencies of Fig. 4d. The user has to choose the size Δx of the sliding window, which is another parameter that will be discussed later.

The next section is dedicated to applications to numerical and experimental datasets, and this shows that the proposed method can enhance the Brillouin frequency distribution estimation along the distance.

IV. RESULTS AND DISCUSSION

We first applied the proposed methodology to estimate the Brillouin frequency profile with a new spatial resolution on a numerical dataset built through the model in Eq. ( 6). Discussion about the influence of the parameters is provided. Then, the proposed methodology is tested on an experimental dataset acquired under controlled conditions.

A. Numerical Dataset 1) Description

First, a numerical dataset is built using a Brillouin frequency profile as input. The profile shown in Fig. 5a was chosen to present several kinds of local frequency variations to test the algorithm in different configurations. Five areas can be identified and are shown in Fig. 5a: a null slope over the first 2 m, and from 8 m to 10 m, denoted as '0'; a positive slope between 2 m and 4.6 m, and from 7.5 m to 8 m, denoted as '+'; a local maximum at a frequency of 10.92 GHz and a distance of 4.6 m, denoted as 'max'; a decreasing slope between 4.6 m and 6 m to 10.72 GHz, denoted as '-'; and local variations between 6 m and 7.5 m, denoted as 'min', and comprising one local maximum and two local minima.

To build a data matrix , as in Eq (9), the parameters were chosen as follows: a frequency sampling of Δv = 1 MHz for a total acquisition frequency N v = 600 covering the 10.5 GHz to 11.1 GHz band; an integration base w = 1 m; a spatial resolution Δz = 40 cm; and a number of acquisition points N L = 40 that simulate a 10-m optical fiber cable. A classical pseudo-Voigt distribution was used to simulate the elementary Brillouin spectrum Se(v). These parameters are classically encountered for industrial B-OTDA units. The constructed data matrix is shown in Fig. 5b. As expected by the theory of Brillouin distortion phenomenon, when the slopes of the curve are important within w, the resulting Brillouin spectrum is distorted. This is mostly visible between 2 m and 4.6 m, 4.6 m and 6 m, and 7.5 m and 8 m. 
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Estimated Brillouin profile

2) Results and Discussion

The proposed algorithm is applied to the Brillouin spectrum matrix. The source dictionary S is constructed with the same elementary Brillouin spectrum Se(v) used to construct the Brillouin spectrum matrix . The dictionary constructed with is shown in Fig. 6a. As the frequencies span between 10.5 GHz and 11.1 GHz, the size of S is N v = 600 × N = 600. With this dictionary, the NNLS algorithm is applied to the numerical Brillouin, and the estimated P nonzero values among the N possibilities as explained in section III.1. These are shown in Fig. 6b according to the distance and the local Brillouin frequency. As observed, from 0 m to 1.4 m and from 8.6 m to 10 m, where the Brillouin spectrum is not distorted, P = 1. It is obvious that P increases with the importance of the spectrum distortion. This correlates with the increase in the number of spectral components contained in the distorted spectrum. For z = 4.6 m, P has the highest value and corresponds to the most distorted spectrum. A new spatial sampling is chosen at Δx = 5 cm. The estimated Brillouin profile can be compared to the reference profile, as shown in Fig. 6c. The qualitative approach enables the validation of the methodology: except where the slope of the curve is very high, the estimated profile is mixed in with the reference profile.

a)

Choice of the Brillouin Frequency Sampling ∆f B

The frequency shift is a major parameter in the proposed method: it defines the sampling of the local Brillouin frequency. Therefore, if increases, then the number of possible spectral components N will decrease, although the Brillouin frequency sampling will not be precise enough. In this case, according to Eq. ( 7), the reconstructed spectrum will not correctly fit the spectrum measured.

To study the influence of the frequency sampling on the estimated Brillouin profile, we chose several values between 1 MHz and 10 MHz. For this study, we fixed the new spatial sampling to Δx = 1 cm. For each , we apply the step described above and estimate a Brillouin profile. For quantitative analysis, we can calculate the relative mean square error (RMSE) between the reference Brillouin profile and the estimated profile. The RMSE for the five areas highlighted in Fig. 6c with respect to the different values of are shown in Fig. 6d, which highlights that the quantification errors of the profile are highly dependent on the value of . Globally, with increasing , the RMSE increases whatever the kind of slope. For the smallest quantification error, it is important to fix a small . On the other hand, if is too small, the calculation time increases significantly, as well as the size of the dictionary.

b)

Choice of the new spatial sampling ∆x

Applying the Brillouin profile reconstruction algorithm, a Brillouin frequency profile is estimated. As previously explained, we first rearrange the segments within each integration base of size w located at position based on a tendency, then we apply an averaging step with a new spatial resolution Δx. This second step can remove some misplacement defects, although it also misses some local frequency variations. Therefore, an optimal value of Δx has to be found to ally the small spatial resolution with a precise reconstruction. To study the influence of this parameter, we chose several values from 40 cm to 1 cm, with fixed to 1 MHz, the value that gave the smallest RMSE. Then, we computed the RMSE between the estimated profile and the reference profile; i.e., the Brillouin profile used to construct the Brillouin spectrum matrix. The RMSE for the five areas highlighted in Fig. 6c with respect to the different values of are shown in Fig. 6e, which shows that the averaging step can miss local variations. Depending on Δx, the errors are relatively constant when the slope is null, and then they decrease where there are local minima and maxima. Where there are positive slopes, the errors increase. As the slope is less important between 2.5 m and 4 m, the error is smaller than between 7.8 m and 8 m. The higher RMSE is where there is the greater gradient. Our algorithm is then sensitive to the slope: the greater the gradient, the higher the errors. Small numbers of cases have been picked and may misplace some sub-resolution elements and hence will not deliver the resolution as expected. This limitation is revealed big changes that happen into a short As seen in Fig. 6(c), the local maximum is not retrieved in the reconstruction. The follow-up of our study will be for the improvement of this algorithm. Nevertheless, in response to several local trials, the proposed algorithm can be used to find a profile that integrates local and global variations with much smaller spatial resolution; i.e., 5 cm instead of 40 cm. As the first result is encouraging, the methodology was tested on an experimental dataset.

B. Experimental Dataset 1) Description

A trial was carried out in an EDF laboratory under controlled conditions. An industrial optical fiber cable composed of several optical fibers wrapped in a protective coating was used with two industrial devices: a Rayleigh OBR and a B-OTDA. The OBR was a Luna Technologies device, with the following characteristics: 1-cm spatial resolution over 70 m, with a precision of 1 µm/m and 0.1 °C [START_REF] Soller | High resolution optical frequency domain reflectometry for characterization of components and assemblies[END_REF]. The industrial B-OTDA unit, known as a DITEST STA-R, and furnished by Omnisens, can measure strain and temperature over 20 km with a precision of 20 µm/m and 1 °C. The acquisition parameters were: integration base w = 1 m, spatial resolution Δz = 40 cm, and frequency sampling Δv = 1 MHz. The cable was installed between two fixed points, denoted x 1 = 10.5 m and x 2 = 14 m. During the experiment, the temperature was controlled and its variation can be considered as negligible. Therefore, the frequency variations were only linked to the strain changes, with reference to Eq. [START_REF] Yin | Distributed fiber optic sensors[END_REF].

A first acquisition was performed using both of the devices when the cable was relaxed: the initial state A. Then, the cable was pulled between the fixed points, which induced a stressed state, state B, with another acquisition performed with both of the devices. The B-OTDA raw data are shown in Fig. 7a,b for the two states of the optical fiber cable. From these matrices, the device provides Brillouin frequency profiles that are estimated as the abscissa of the maximum of each measured Brillouin spectrum, as the profiles that are plotted in crossed lines in Fig. 7a,b. As can be seen, the Brillouin frequency increased in the stressed area between x 1 and x 2 .

The B-OTDA strain profile output with a spatial resolution of Δz = 40 cm is plotted in Fig. 7c (circles), whereas the OBR strain profile output with a spatial resolution of 1-cm is plotted as the dotted line in Fig. 7c. As the OBR has a centimeter spatial resolution, it will be considered in the present study as the reference strain profile for the two states of the fiber. In this strain measurement, several areas can be distinguished: from 8 m to 10.2 m, the profile varies between -500 µm/m and 500 µm/m over a few meters; and a high strain variation from -500 µm/m to 1500 µm/m appears afterwards, within a few centimeters; from 10.5 m to 14 m, the profile varies between 1000 µm/m and 1550 µm/m with a peak with a width of 15 cm; there is another high strain variation at around 14 m, where the strain evolves from 1200 µm/m to -600 µm/m within a few centimeters; finally, the strain is relatively constant from 14 m to 15.3 m.

In comparison with the OBR output, the B-OTDA profile follows the global strain and misses some high-strain variations, such as for z = 10.6 m and after z = 14 m. At z 1 = 10.6 m, the integration base w is shown in Fig. 7c by a continuous line segment. As can be seen, within w, the strain variations are high within a few centimeters. As explained in Section II, the measured Brillouin spectrum will be distorted at the position z 1 = 10.6 m. The measured Brillouin spectrum G(v,z 1 ) is plotted in Fig. 7d for the two states of the optical fiber. Indeed, from a symmetric distribution, this evolves into an asymmetric and broadening spectrum.

Therefore, the algorithm of the industrial device is not sufficient to detect important and local events in the structure, such as cracks. The proposed algorithm will be applied on the two Brillouin spectrum matrices recorded by the B-OTDA device, to estimate a new strain profile. Our goal is to estimate this strain profile with optimal spatial resolution and the best strain precision.

2) Results and Discussion

First of all, the elementary Brillouin spectrum S e (v) has to be estimated in order to apply our methodology. Taking into account Eq. ( 5), the elementary Brillouin spectrum can be found when no strain is imposed within the integration base. Under our experimental conditions, several meters of cable were laid with no stress. The Brillouin spectra were acquired for these positions, denoted here as , , …, . At each position, the measured Brillouin spectrum will approximate S e (v). The elementary Brillouin spectrum S e (v) is estimated as the mean of these spectra; i.e.: The source dictionary S is then constructed using Eq. ( 12) with = 1 MHz. As the frequency span varies between the two states, the number of possible spectral components N will differ, although has to be the same to have the same quantification error for both of the estimated Brillouin profiles.

(16) (a) (b) (c) (d) 
The NNLS algorithm is applied to both of the Brillouin spectrum matrices. This decomposition enables local Brillouin frequencies, with their associated amplitudes, to be found. The estimated amplitude matrices are shown in Fig. 8a,b, where the k th column of each image represents the relative amplitudes (see Eq. ( 8)) for position . As observed in the first matrix, few components are found in the spectra. The Brillouin frequency distribution is centered around 10.86 GHz, with a small standard deviation. This means that the strain is relatively constant within w. In the second matrix, the standard deviation is much more important, especially for several positions of where the spectrum is distorted; e.g., at z k = 10.6 m. In such cases, the number P of the estimated spectral components increases, because the spectrum is much more distorted, as can be seen in Fig. 7d.

The Brillouin profile reconstruction step was applied to the estimated amplitude matrices with new spatial resolution Δx = 5 cm. This choice was made with respect to the results obtained with the numerical data discussed above. Two Brillouin frequency profiles were estimated, one for state A (initial state) and one for state B (stressed state). These profiles are not shown here. Then, through Eq. ( 10), a strain profile was estimated, which is shown in Fig. 8c. As can be seen, compared with the OBR reference strain profile, our methodology can detect and localize very high strain variations within w, such as for the peak located between 10.5 m and 11 m.

For a quantitative comparison, the error between the reference profile and the estimated profile is shown as a Tukey box plot in Fig. 8d. The median is equal to 4.6 µm/m, the error is essentially contained between -265 µm/m and 286 µm/m, and 50% of the errors are between -61 µm/m and 81 µm/m. This is satisfactory, as the strain variations are of the order of 1000 µm/m. This result validates the source separation methodology for the improvement of the accuracy and spatial resolution of the industrialized device. Our proposed method enables the sensor model to be simplified, as the signal processing approach needs fewer steps than the state-of-the-art approach, such as that presented in [START_REF] Ravet | Signal processing technique for distributed Brillouin sensing at centimeter spatial resolution[END_REF]. In terms of computational costs, our decomposition and reconstruction steps are short time consuming (few seconds) whereas for a similar configuration, the state-of-art approach needs less than 5 min with a standard desktop computer.

V. CONCLUSION

In this report, we have addressed the problems of the improvement of the accuracy and spatial resolution of industrial B-OTDA devices. A method to estimate the strain profile in an optical fiber cable using the Brillouin spectrum matrix measured by a B-OTDA unit is proposed. We first described a signal processing approach to model the device behavior. The state-of-the-art models are based on optical physics and fitted experimental devices. Our model is based only on the elementary Brillouin spectrum that can be estimated for portions of cable laid out with no stress. We have shown how it is possible to model Brillouin spectrum distortion: if the strain is not constant, the elementary Brillouin spectrum is frequency-shifted locally and integrated within the base integration. Therefore, the spectrum measured by a B-OTDA device can be seen as a sum of the elementary Brillouin spectra centered on the local Brillouin frequencies. Using this model, and with the help of techniques based on data decomposition and source separation, we can identify the amplitudes and frequencies of the spectral components contained in the measured distorted Brillouin spectrum. The amplitudes of the components are associated with portions within the integration base. We proposed a methodology based on the spectral component characteristics to estimate the Brillouin frequency profile with new spatial resolution.

Numerical data enabled the quantification of the error between a simulated Brillouin frequency profile and the estimated profile, which allowed the identification of the optimal parameters. Optimal spatial resolution was found as 1 cm, which is a significant improvement when compared with the 40-cm spatial resolution of industrial B-OTDAs. This resolution provides the best ratio between the smallest spatial resolution and the higher precision of the reconstruction.

To fully validate the methodology, an experiment was carried out under controlled conditions. A complementary OBR that provided strain profile measurements with centimeter spatial resolution was used as the reference. This device cannot be used in long-range applications, as the sensor length is limited to 70 m. The Brillouin frequency matrices were acquired by the industrial device for the two states of the optical fiber cable. Our algorithm allowed the estimation from these matrices of a strain profile with a new spatial resolution of 5 cm. This estimation was compared with the strain profile output of the reference OBR (at 1-cm spatial resolution) and with the internal algorithm of an industrial B-OTDA device (at 40-cm spatial resolution). Unlike the device algorithm, the proposed algorithm allows the detection and localization of high strain variations. Some improvements can be made to the profile reconstruction algorithm to enhance the accuracy. On the other hand, other source separation algorithms or sparsity criteria can be tested. As the modeling of the recorded Brillouin spectra by the device is validated, an inverse method can also fit such a problem. The development of this methodology for Brillouin spectrum matrices acquired on large structures will form the follow-up to this study.
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 21 Fig. 2. Ilustration of the B-OTDA-based DOFS. The opto-electronic unit (the industrial B-OTDA) is coupled to the optical fiber cable. The B-OTDA device records a Brillouin spectrum matrix that depends on the distance and frequency. The B-OTDA device has a data-processing unit that estimates the Brillouin profile at each position zk as the abscissa of the maximum of the measured Brillouin spectrum within the integration base w.

  matrix (the Brillouin spectra recorded by the B-OTDA device at the acquisition points are the columns of ), designates the source matrices, and represents the weight associated to each source. N is the number of possible spectral components.
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 3 Fig. 3. (a) Brillouin frequency profile within w. (b) The resulting Brillouin spectra. (c) Identification of two elementary Brillouin spectra.
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 4 Fig. 4. Example of the layout methodology to find the Brillouin profile for the third-case scenario. (a-c) Elements (amplitudes and frequencies) of the NNLS decomposition of three distorted spectra at positions k-1, k, and k+1. (d) Overlapping layout. (e) Estimation of the Brillouin profile that depends on distance, with new spatial resolution Δx.
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 5 Fig. 5. (a) Numerical Brillouin frequency profile that depends on the curvilinear abscissa x, in GHz. (b) The associated normalized Brillouin spectrum matrix with acquisition parameters of w = 1 m and Δz = 40 cm. The color scale is related to a normalized gain.
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 6 Fig. 6. (a) Dictionary of sources with frequency shift of 1 MHz between 10.5 GHz and 11.15 GHz. (b) The amplitudes found for the sources contained in the dictionary for each integration base, located at positions . The scale corresponds to a normalized gain with a threshold at 0.05% of the maximum. (c) Superposition of two Brillouin profiles: the input (black line) used to construct the Brillouin spectrum matrix; the estimation using the proposed algorithm (gray line) with Δx = 1 cm. (d) Relative errors between the estimated Brillouin profile and the reference profile for several values of and a fixed spatial resolution of Δx = 1 cm. (e) Relative errors between the estimated Brillouin profile and the reference profile for several values of the spatial resolution and for a frequency shift of 1 MHz.
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 7 Fig. 7. (a, b) Normalized Brillouin spectrum matrices and the B-OTDA Brillouin frequency profile (crossed line) for the two states of the optical fiber: state A (initial state; a); state B, (stressed state; b). The acquisition parameters were w = 1 m, Δz = 40 cm, Δv = 1 MHz. c. Strain profile provided by the OBR (Rayleigh) with centimeter spatial resolution (dotted line) and the Brillouin device (circles). d. Normalized Brillouin spectra G(v,z k ) at a fixed distance z k = 10.6 m for state A (dotted line) and state B (continuous line).
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 8 Fig. 8. (a, b) Decomposition of the Brillouin spectra acquired in the defined source dictionary for the initial state A (a) and the stressed state B (b). The scales correspond to the normalized gain. (c) Several strain profiles: the output from the OBR (dotted line) and the estimation by the proposed methodology (crossed line). (d) Box plot representation of the errors between the reference strain profile (OBR) and the estimated profile.

TABLE I TENDENCIES

 I RELATED TO THE MEANS OF THE LOCAL BRILLOUIN

		FREQUENCIES	
	Case	Frequencies comparison	Tendency
	1		Increasing
	2		Decreasing
	3		
			Local maximum
	4		
			Local minimum