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Extended optimality criteria for
optimum design in nonlinear regression

Andrej Pázman1 and Luc Pronzato2

Abstract Among the major difficulties that one may encounter when es-
timating parameters in a nonlinear regression model are the non-uniqueness
of the estimator, its instability with respect to small perturbations of the
observations and the presence of local optimizers of the estimation criterion.

We show that these estimability issues can be taken into account at the
design stage, through the definition of suitable design criteria. Extensions of
E, c and G-optimality criteria will be considered, which, when evaluated at a
given θ0 (local optimal design), account for the behavior of the model response
η(θ) for θ far from θ0. In particular, they ensure some protection against close-
to-overlapping situations where ‖η(θ) − η(θ0)‖ is small for some θ far from
θ0. These extended criteria are concave, their directional derivative can be
computed and necessary and sufficient conditions for optimality (Equivalence
Theorems) can be formulated. They are not differentiable, but a relaxation
based on maximum-entropy regularization is proposed to obtain concave and
differentiable alternatives. When the design space is finite and the set of
admissible θ is discretized, their optimization forms a linear programming
problem.

1 Introduction

We consider a nonlinear regression model with observations

yi = y(xi) = η(xi, θ̄) + εi , i = 1, . . . , N ,
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where the errors εi satisfy IE(εi) = 0, var(εi) = σ2 and cov(εi, εj) = 0
for i 6= j, i, j = 1, . . . , N , and θ̄ ∈ Θ, a compact subset of Rp such that
Θ ⊂ int(Θ), the closure of int(Θ). In a vector notation, we write

y = η(θ̄) + ε , with IE(ε) = 0 , Var(ε) = σ2IN , (1)

where η(θ) = ηX(θ) = (η(x1, θ), . . . , η(xN , θ))>, y = (y1, . . . , yN )>, ε =
(ε1, . . . , εN )> and X is the exact design (x1, . . . , xN ). We suppose that η(x, θ)
is twice continuously differentiable with respect to θ ∈ int(Θ) for any x ∈X
compact. We shall consider design measures ξ, which correspond to proba-
bility measures on X . The information matrix for the design X at θ is

Mθ(X) =
N∑
i=1

∂η(xi, θ)
∂θ

∂η(xi, θ)
∂θ>

and we have Mθ(ξ) =
∫

X [∂η(x, θ)/∂θ] [∂η(x, θ)/∂θ>] ξ(dx). Denoting ξN the
empirical design measure associated with X, ξN = (1/N)

∑N
i=1 δxi with δx

the delta measure at x, we have Mθ(X) = N Mθ(ξN ).
The set of all hypothetical means of the observed vectors y in the sam-

ple space RN forms the expectation surface Sη = {η(θ) : θ ∈ Θ}. Since
η(θ) is supposed to have continuous first and second-order derivatives in
int(Θ), Sη is a smooth surface in RN with a (local) dimension given by
r = rank[∂η(θ)/∂θ>]. If r = p (which means full rank), the model (1) is said
regular. In regular models with no overlapping of Sη, i.e. when η(θ) = η(θ′)
implies θ = θ′, the LS estimator

θ̂ = θ̂NLS = arg min
θ∈Θ
‖y − η(θ)‖2

is uniquely defined, since as soon as the distributions of errors εi have prob-
ability densities (in the standard sense) it can be proven that η[θ̂NLS(y)]
is unique with probability one, see Pázman (1984) and Pázman (1993,
p. 107). However, there is still a positive probability that the function
θ −→ ‖y − η(θ)‖2 has a local minimizer different from the global one when
the regression model is intrinsically curved in the sense of Bates and Watts
(1980), i.e., when Sη is a curved surface in RN , see Demidenko (1989, 2000).
Moreover, a curved surface can “almost overlap”; that is, there may exist
points θ, θ′ such that ‖θ′ − θ‖ is large but ‖η(θ′) − η(θ)‖ is small (or even
equals zero in case of strict overlapping). This phenomenon can cause serious
difficulties in parameter estimation, leading to instabilities of the estimator,
and one should thus attempt to reduce its effects by choosing an adequate
experimental design. Note that putting restrictions on curvature measures is
not enough: consider the case dim(θ) = 1 with the overlapping Sη formed by
a circle of arbitrarily large radius and thus arbitrarily small curvature.

Important and precise results are available concerning the construction
of subsets of Θ where such effects are guaranteed not to occur, see, e.g.,
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Chavent (1983, 1990, 1991); however, their exploitation for choosing adequate
designs is far from straightforward. Also, the construction of designs with
restricted curvatures, as proposed by Clyde and Chaloner (2002), is based
on the curvature measures of Bates and Watts (1980) and uses derivatives
of η(θ) at a certain θ; this local approach is unable to catch the problem of
overlapping for two points that are distant in the parameter space.

The aim of this paper is to present new optimality criteria for optimum
design in nonlinear regression models that may reduce such effects, especially
overlapping, and are at the same time closely related to classical optimality
criteria like E, c or G-optimality (in fact, they coincide with those criteria
when the regression model is linear).

2 Extended (globalized) E-optimality

Consider the design criterion defined by

φeE(ξ) = φeE(ξ; θ) = min
θ′∈Θ

{
‖η(·, θ′)− η(·, θ)‖2ξ (K + ‖θ′ − θ‖−2)

}
,

to be maximized with respect to the design measure ξ, where K is some
positive tuning constant (to be chosen in advance) and ‖·‖ξ denotes the norm

in L2(ξ); that is, ‖φ‖ξ =
[∫

X φ2(x) ξ(dx)
]1/2 for any φ ∈ L2(ξ).

Notice that in a nonlinear regression model φeE(·) depends on the value
chosen for θ and can thus be considered as a local optimality criterion. On
the other hand, the criterion is global in the sense that it depends on the
behavior of η(·, θ′) for θ′ far from θ. We could remove this (limited) locality
by considering φMeE(ξ) = minθ∈Θ φeE(ξ), but this will not be considered in
what follows.

For a linear regression model with η(θ) = F(X)θ + v(X) and Θ =
Rp, we have minθ′∈Θ, ‖θ′−θ‖2=δ ‖η(θ′) − η(θ)‖2 = minθ′∈Θ, ‖θ′−θ‖2=δ(θ′ −
θ)>[NM(ξN )](θ′ − θ) = N δ λmin[M(ξN )], so that φeE(ξ) = λmin[M(ξ)] for
any K ≥ 0, which corresponds to the E-optimality criterion. For a nonlinear
regression model with no overlapping φeE(ξ; θ) can be made arbitrarily close
to λmin[Mθ(ξ)] by choosing K large enough; φeE(·) can thus be considered
as an extended E-optimality criterion. At the same time, choosing K not too
large ensures some protection against ‖η(θ′) − η(θ)‖ being small for some
θ′ far from θ for a φeE-optimum design ξ∗eE . Note that ξ∗eE is necessarily
non-degenerate, i.e., M(ξ∗eE) is nonsingular.

Properties of φeE(·)

φeE(·) is the minimum of linear functions of ξ and is thus concave: for all
ξ, ν ∈ Ξ, the set of design measures on X , for all α ∈ [0, 1], for all θ ∈ Θ,
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φeE [(1−α)ξ+αν] ≥ (1−α)φeE(ξ)+αφeE(ν). It is also positively homogeneous:
φeE(aξ) = aφeE(ξ) for all ξ ∈ Ξ, θ ∈ Θ and a > 0. Its concavity implies
the existence of directional derivatives and we have the following, see, e.g.,
Dem’yanov and Malozemov (1974).

Theorem 1. For any ξ, ν ∈ Ξ, the directional derivative of the criterion
φeE(·) at ξ in the direction ν is given by

FφeE (ξ; ν) = min
θ′∈Θθ(ξ)

{
‖η(·, θ′)− η(·, θ)‖2ν

(
K + ‖θ′ − θ‖−2

)}
− φeE(ξ) ,

where Θθ(ξ) =
{
θ′ ∈ Θ : ‖η(·, θ′)− η(·, θ)‖2ξ

(
K + ‖θ′ − θ‖−2

)
= φeE(ξ)

}
.

We can write FφeE (ξ; ν) = minθ′∈Θθ(ξ)
∫

X ΨeE(x, θ′, ξ) ν(dx) , where

ΨeE(x, θ′, ξ) = (K + ‖θ′ − θ‖−2)
×
{

[η(x, θ′)− η(x, θ)]2 − ‖η(·, θ′)− η(·, θ)‖2ξ
}
, (2)

and a necessary and sufficient condition for the optimality of a design mea-
sure ξ∗eE for the criterion φeE(·) is that supν∈Ξ FφeE (ξ∗; ν) ≤ 0. One should
notice that supν∈Ξ FφeE (ξ∗; ν) is generally not obtained for ν equal to a one-
point (delta) measure, which prohibits the usage of classical vertex-direction
algorithms for optimizing φeE(·). This is why a regularized version φeE,λ(·)
of φeE(·) is considered below, with the property that supν∈Ξ FφeE,λ(ξ; ν) is
obtained when ν is the delta measure δx∗ at some x∗ ∈X (depending on ξ).

Maximum-entropy regularization of φeE(·)

The criterion φeE(·) can be equivalently defined by

φeE(ξ) = min
µ∈M (Θ)

∫
Θ

{
‖η(·, θ′)− η(·, θ)‖2ξ (K + ‖θ′ − θ‖−2)

}
µ(dθ′) ,

where M (Θ) denotes the set of probability measures on Θ. We use the ap-
proach of Li and Fang (1997) and regularize φeE(ξ) through a penalization
of measures µ having small (Shannon) entropy, with a penalty coefficient
1/λ that sets the amount of regularization introduced. We then obtain the
regularized criterion

φeE,λ(ξ) = − 1
λ

log
∫
Θ

exp {−λHE(ξ, θ′)} dθ′ (3)

where
HE(ξ, θ′) = ‖η(·, θ′)− η(·, θ)‖2ξ(K + ‖θ′ − θ‖−2) . (4)

It satisfies limλ→∞ φeE,λ(ξ) = φeE(ξ) for any ξ ∈ Ξ and the convergence is
uniform when Θ is a finite set. Moreover, φeE,λ(·) is concave, its directional
derivative at ξ in the direction ν is
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FφeE,λ(ξ; ν) =

∫
X

∫
Θ

exp {−λHE(ξ, θ′)} ΨeE(x, θ′, ξ) dθ′ ν(dx)∫
Θ

exp {−λHE(ξ, θ′)} dθ′
, (5)

with ΨeE(x, θ′, ξ) given by (2). It is also differentiable (unlike φeE(·)) and a
necessary and sufficient condition for the optimality of ξ∗ maximizing φeE,λ(·)
is that supx∈X

∫
Θ

exp {−λHE(ξ∗, θ′)} ΨeE(x, θ′, ξ∗) dθ′ ≤ 0 . In order to fa-
cilitate computations, the integrals on θ′ in (3, 5) can be replaced by finite
sums.

A solution via linear-programming

When Θ is finite, i.e., Θ = {θ(1), θ(2), . . . , θ(m)}, φeE(ξ) can be written as
φeE(ξ) = minj=1,...,mHE(ξ, θ(j)), with HE(ξ, θ′) given by (4). If the design
space X is finite too, X = {x(1), x(2), . . . , x(q)}, then the determination of an
optimal design measure for φeE(·) amounts to the determination of a scalar
γ and of a vector of weights w = (w1, w2, . . . , wq)> such that c>[w>, γ]> is
maximized, with c = (0, 0, . . . , 0, 1)> and w and γ satisfying the constraints

q∑
i=1

wi = 1 ,

wi ≥ 0 , i = 1, . . . , q ,
q∑
i=1

wi[η(x(i), θ(j))− η(x(i), θ)]2(K + ‖θ(j) − θ‖−2) ≥ γ , j = 1, . . . ,m .

3 Extended (globalized) c-optimality

Define φec(ξ) = minθ′∈Θ
{
‖η(·, θ′)− η(·, θ)‖2ξ

(
K + |h(θ′)− h(θ)|−2

)}
, with

K some positive constant. When η(x, θ) and the scalar function h(θ) are both
linear in θ we get

φec(ξ) = min
θ′∈Θ, c>(θ′−θ)6=0

(θ′ − θ)>M(ξ)(θ′ − θ)
[c>(θ′ − θ)]2

and therefore φec(ξ) = [c>M−(ξ)c]−1, which justifies that we consider φec(ξ)
as an extended c-optimality criterion. Again, φec(ξ) can be approximated by
[c>M−1(ξ, θ)c]−1 for large K, whereas choosing K not too large ensures some
protection against ‖η(·, θ′)−η(·, θ)‖2ξ being small for some θ′ such that h(θ′) is
significantly different from h(θ). The criterion φec(·) is concave and positively
homogeneous; its concavity implies the existence of directional derivatives.

Theorem 2. For any ξ, ν ∈ Ξ, the directional derivative of the criterion
φec(·) at ξ in the direction ν is given by
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Fφec(ξ; ν) = min
θ′∈Θθ,c(ξ)

{
‖η(·, θ′)− η(·, θ)‖2ν

(
K + |h(θ′)− h(θ)|−2

)}
− φec(ξ) ,

where

Θθ,c(ξ) =
{
θ′ ∈ Θ : ‖η(·, θ′)− η(·, θ)‖2ξ

(
K + |h(θ′)− h(θ)|−2

)
= φec(ξ)

}
.

A necessary and sufficient condition for the optimality of ξ∗ maximizing
φec(·) is that supν∈Ξ Fφec(ξ

∗; ν) ≤ 0. A regularized version of φec(·) can be
obtained through maximum-entropy regularization

φec,λ(ξ) = − 1
λ

log
∫
Θ

exp {−λHc(ξ, θ′)} dθ′ (6)

where Hc(ξ, θ′) = ‖η(·, θ′)− η(·, θ)‖2ξ(K + |h(θ′)− h(θ)|−2) . The regularized
criterion φec,λ(·) is concave, differentiable with respect to ξ. Its directional
derivative at ξ in the direction ν is

Fφec,λ(ξ; ν) =

∫
X

∫
Θ

exp {−λHc(ξ, θ′)} Ψec(x, θ′, ξ) dθ′ ν(dx)∫
Θ

exp {−λHc(ξ, θ′)} dθ′
, (7)

where

Ψec(x, θ′, ξ) = (K + |h(θ′)− h(θ)|−2)
×
{

[η(x, θ′)− η(x, θ)]2 − ‖η(·, θ′)− η(·, θ)‖2ξ
}
.

A necessary and sufficient condition for the optimality of ξ∗ maximizing
φec,λ(·) is that supx∈X

∫
Θ

exp {−λHc(ξ∗, θ′)} Ψec(x, θ′, ξ∗) dθ′ ≤ 0 . Again,
in order to facilitate computations, the integrals in (6, 7) can be replaced by
finite sums. A linear programming solution can be obtained when both Θ
and X are finite, following an approach similar to that in Sect. 2.

4 Extended (globalized) G-optimality

Following the same lines as above, we can also define an extended G-
optimality criterion by

φGG(ξ) = min
θ′∈Θ

[
‖η(·, θ′)− η(·, θ)‖2ξ

{
K +

1
maxx∈X [η(x, θ′)− η(x, θ)]2

}]

with K some positive constant. The fact that it corresponds to the G-
optimality criterion for a linear model can easily be seen, noticing that in
the model (1) with η(x, θ) = f>(x)θ + v(x) we have
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sup
x∈X

N

σ2
var
[
f>(x)θ̂NLS

]}−1

= inf
x∈X

inf
u∈Rp,u>f(x)6=0

u>M(X)u
[f>(x)u]2

= inf
u∈Rp,u>f(x) 6=0

[
u>M(X)u

{
K +

1
maxx∈X [f>(x)u]2

}]
.

Directional derivatives can be computed and a regularized version can be
constructed similarly to the cases of extended E and c-optimality; an optimal
design can be obtained by linear programming when Θ and X are both finite.

5 Example

The model response is given by

η(x, θ) = θ1{x}1 + θ31(1− {x}1) + θ2{x}2 + θ22(1− {x}2) , θ = (θ1, θ2)> ,

with x ∈X = [0, 1]2 and {x}i denoting the i-th component of x. We consider
local designs for θ0 = (1/8, 1/8)>. The classical D and E-optimal designs are
supported on three and two points respectively,

ξ∗D(θ0) '


(

0
1

) (
1
0

) (
1
1

)
0.4134 0.3184 0.2682

 , ξ∗E(θ0) '


(

0
1

) (
1
0

)
0.5113 0.4887

 .

We replace integrals by finite sums in (3, 5) and consider regular grids
G(ρ,M) formed of M points uniformly distributed on a circle centered at θ0

with radius ρ. When Θ = ∪20
i=1G(0.1 i, 100), K = 0.01 and λ = 103, the opti-

mal design for φeE,λ is ξ∗eE(θ0) '


(

0
0

) (
1
0

) (
1
1

)
0.2600 0.3575 0.3825

 . Fig. 1 presents

a plot of the function δ ∈ R+ −→ Eξη,θ0(δ) = minθ′∈Θ, ‖θ′−θ0‖2=δ ‖η(·, θ′) −
η(·, θ0)‖2ξ for the three designs ξ∗D, ξ∗E and ξ∗eE . The minimum of ‖η(·, θ′) −
η(·, θ0)‖ξ, say for ‖θ′ − θ0‖ > 1, is 0.131 for ξ∗eE and only 0.082 for ξ∗D; it is
zero for ξ∗E since the parameters are only locally estimable for this design.
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