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Passive electro-optic antenna using
polymer material

A. Gardelein, S. Le Tacon, E. Tanguy, N. Breuil and
T. Razban-Haghighi

The experimental results of a polymer microwave electro-optic

antenna are reported. The device amplitude-modulates an optical

input beam with a free-space propagating electromagnetic wave. By

using a new dipole printed antenna, the electromagnetic energy is

concentrated inside the device. An antenna factor of 168 dB=m is

achieved with only 1 mm of electro-optic polymer.

Introduction: During the past decade, microwave photonics interfaces

have been under constant development. These interfaces have many

applications, from field sensing to telecommunications networks. Field

sensing covers applications such as radar fields cartography, or EMC

compatibility measurements for electronic devices. In the telecommu-

nications networks, with the recent emergence of wireless technologies

such as Wi-Fi and the growth of related services such as video on

demand, there arises a need for a link between wireless networks and

high bit-rate networks such as optical fibre ones. Nowadays, this link

exists as a combination of many components such as antennas,

amplifiers and active microwave photonics devices such as DFB laser

diodes or passive components such as electro-optic (EO) or electro-

absorption amplitude modulators. A DFB laser diode is bandwidth

limited while EO modulators based on lithium niobate present a very

high microwave permittivity (28) limiting the sensitivity of the sensor.

In this Letter we introduce a newmicrowave photonics interface, which

can fulfil both purposes. Although the design may be applied to all EO

materials, the application we present is based on EO organic polymer.

Organic polymers are promising materials owing to their low dielectric

constant, frequencies applications up to 100 GHz [1] and the electro-optic

coefficient capabilities. At the University of Nantes, the Laboratoire de

Synthèse Organique optimised the synthesis of a cross-linkable

PGMA=DR1 composite [2] and is able to provide quantities up to 10 g

per synthesis. Therefore we chose this polymer because it is synthesised

in our vicinity. We characterised this polymer, and measured a dielectric

constant of 4.5 and a maximum electro-optic coefficient of 11 pm=V [3].

Microwave photonics interface, the electro-optic antenna: The objec-

tive of a microwave photonics interface is to amplitude-modulate an

optical beam with free-propagating microwave information (E-field

amplitude, data). The electro-optic effect is well suited to achieve this

objective. Indeed, this effect arises in non-centrosymetric materials;

when an electric field is applied the optical index changes. For

example, in a uniaxial material such as lithium niobate or organic

polymer, when the electric field E is applied along the extraordinary

axis, the indices no and ne become:

noðEÞ ¼ no �
1

2
n3or31E and neðEÞ ¼ ne �

1

2
n3er33E ð1Þ

where r31 and r33 are the relevant electro-optic coefficients of the

material in this configuration. For an input incident beam polarised at

45� of the material optical axis, each orthogonal component of the beam

is phase modulated. At the output, the combination of both phase

modulated components generates a polarisation-modulated beam. This

polarisation modulator can be placed in a crossed polarisers setup, thus

obtaining an single beam amplitude EO modulator.

To achieve an efficient device, we improved the microwave photonics

interaction, represented by the half-wave field Ep:

Ep ¼
l

ðn3or31 � n3er33Þd
ð2Þ

where l is the incident beam wavelength. Among those parameters, the

optical indices and the microwave relative dielectric constant er (implied

by the presence of the electric field), are intrinsic to the material and

could not be optimised. The electro-optic coefficients r31 and r33 can be

increased by selecting the appropriate material, or by chemical engi-

neering in the polymer case. The optical path length may be also

increased by either changing the material length or using optical

resonance such as the Fabry-Perot effect. However, we chose the

more convenient possibility to decrease the half-wave Ep by concen-

trating the electric field in the microwave photonics interaction zone.
Because our device concentrates the free-propagating microwave

radiation in a fixed location, we named it an electro-optic antenna.

Electro-optic antenna design: To increase the electric field in the

microwave optic interaction zone, we use a dipole antenna printed on

a glass substrate. However, there are two slight differences with a

classical dipole antenna. First, the two dipole arms are located on each

face of a 1 mm-thick EO polymer layer. Secondly, at the centre of the

dipole, the two arms are overlapping on a short length, forming the

microwave concentration zone. With those two differences, the

received electric field is concentrated in the polymer EO material.

We evaluated the performances of this structure with IE3D, a moment

method based microwave 2.5D simulator. Due to the lowest simulator

resolution, we computed the results using a polymer thickness of 3 mm,

although the experimental value will be 1 mm, the highest available

thickness. Since polymer thickness is negligible compared to the

electrical wavelength, the design basic principle will not change.

However, the electric field’s computed values will be a lower estimation

of the experimental ones.

Simulation results, in Fig. 1, show the dependence of the E-field

concentration on the frequency and the overlapping zone length. These

results highlight the excellent concentration ratio; with a 1 V=m
incident plane, the E-field in the interaction zone is up to 3500 V=m.

When the overlapping zone shrinks 66% from 0.3 to 0.1 mm, the

maximum E-field amplitude in the interaction zone increases 230%, and

the frequency decreases 4%.

Fig. 1 Simulation results showing maximum electric field amplitude in
interaction zone against frequency

Interaction length
––s–– 0.1 mm
–e– 0.2 mm
� � �e� � � 0.3 mm
Parameters: 20 mm total dipole length, 0.5 mm dipole width, 3 mm polymer
thickness, 4.5 polymer dielectric constant, 1 V=m normal incident plane

Fig. 2 Prototype expanded view

Dipole 20 mm long, 0.5 mm width, conducting layer 1 mm thick as well as
polymer layer. Glass substrate 1 mm thick

Although an overlapping zone of 0.1 mm gives the best concentration

ratio, we use a value of 0.3 mm, owing to available technology in our



labs. To let the optical beam enter in the microwave concentration zone,

we replaced the adequate extremity of the bottom arm with a transpar-

ent and conducting material such as ZnO. Fig. 2 shows the expanded

view of the prototype. Using this configuration, the optical beam is

incident to the sample on the back of the glass substrate. The beam goes

through the substrate, the ZnO part of the dipole bottom arm, the

polymer layer and reflects back on the aluminium dipole top arm. This

polarisation modulator is placed between the crossed polariser to form

an amplitude EO modulator. The microwave signal is incident by the

other side of the sample.

Fig. 3 Prototype test bench

Electro-optic antenna placed at 70 cm of emitting horn. Electro-optic antenna is
passive component: absolutely no electrical contact (neither for power supply, nor
for signal) with device

Measurements: To characterise our prototype we set up a test bench

as in Fig. 3. This bench contains a microwave part and an optical part.

The microwave signal is generated by a frequency synthesiser, then

amplified 35 dB and emitted in the air by a horn antenna of 10 dB

gain. The total emitted power is 45 dBm, leading to an incident

electric field of 70 V=m on the electro-optic antenna placed at

70 cm of the emitting horn. The microwave bandwidth is 2–6 GHz

owing to the amplifier and the isolator. The output microwave signal is

measured by a spectrum analyser Agilent A4440, at resolution

bandwidth of 1 Hz, enabling a noise level of �144 dBm. The input

optical signal, at 1,31 mm wavelength for a power of þ13 dBm, is

generated by a DFB laser. The output optical signal, modulated by the

electro-optic antenna, is collected by an amplified photodiode, a New

Focus model 1554.

Fig. 4 Measured output signal spectrum at 3.7 GHz
To limit direct couplings we moved the sensitive parts (laser, detector

and analyser) away from the vicinity of the chamber, at a distance of

40 m. We then measured the output signal in two configurations: using

a mirror instead of the electro-optic antenna, and setting the horn

antenna polarisation at 90� of the dipole antenna. In both cases there

was no significant perturbations. Finally, we measured the antenna in

the optimum configuration. The maximum antenna response is

�118 dBm at a frequency of 3.7 GHz, as shown in Fig. 4. Based on

those results, we deduce the antenna factor of our device, the ratio

between the emitted electric field and the microwave detected voltage.

The incident electric field is 70 V=m, and the output signal is

�118 dBm on a 50 O load, leading to a detected voltage of 281 nV.

The antenna factor is thus 20 log 70=281� 10�9
¼ 168 dB=m.

Conclusion: We have presented our first prototype of an electro-optic

antenna, a microwave photonics interface which can be used for field

sensing applications as well as telecommunications ones. The antenna

design is based on a simple structure, a dipole antenna optimised for a

thin layer. We built a sample and measured the antenna response using

our test bench. The optimum received signal is �118 dBm at a

frequency of 3.7 GHz leading to an antenna factor of 168 dB=m.

This antenna factor is achieved with only 1 mm of polymer thickness,

and without any electrical contact with the antenna. Using this

original design we achieved a contactless electrically passive micro-

wave photonics interface. This structure can be enhanced, either by

reducing the microwave optic interaction zone, or by using a wave-

guide technique for the optical beam propagation.
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