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Abstract. This paper is a contribution to the study of regular lan-
guages defined by fragments of first order or even monadic second order
logic. More specifically, we consider the operation of enriching a given
fragment by adding modular predicates. Our first result gives a simple
algebraic counterpart to this operation in terms of semidirect products of
varieties together with a combinatorial description based on elementary
operations on languages. Now, a difficult question is to know whether
the decidability of a given fragment is preserved under this enrichment.
We first prove that this is always the case for so-called local varieties.
The problem remains open in the nonlocal case but our main results also
gives several sufficient conditions to preserve decidability. We use these
latter results to establish the decidability of three fragments of the first
order logic with two variables.

1 Introduction

The decision problem for a given class of regular languages consists in deciding,
given a regular language, whether or not it belongs to this class. Solving the
decision problem for various fragments of monadic second order is a well-studied
problem on regular languages [5, 6, 8–11, 13, 15, 19–23]. Fragments of logic are
usually defined in terms of their quantifier complexity (Σn-classes) or number
of variables allowed in the formulae. Another possible parameter is to impose
restrictions on the numerical predicates in the signature. A complete classifica-
tion of the numerical predicates defining only regular languages was given by
Péladeau [14] and Straubing [20]. There are essentially three basic groups of
such predicates: the linear order, the local predicates LOC and the modular
predicates MOD. Given a fragment F [σ] on the signature σ, the enrichment
F [σ] → F [σ,LOC] has been widely studied [16, 19, 24]. For instance, Straubing
[19] gave a nice algebraic interpretation of the enrichment F [<] → F [<,LOC]
when F is the fragment BΣn of Boolean combinations of Σn-formulae. The nat-
ural framework to state this kind of result is Eilenberg’s theory of varieties and
can be roughly summarized as follows:

⋆ The authors are supported by the project ANR 2010 BLAN 0202 02 FREC, the
second author is supported by Fondation CFM.



1. In good cases (but not always) the enrichment by LOC corresponds to the
operation V → V ∗ LI (the semidirect product by the variety LI of locally
trivial semigroups) on varieties.

2. If V is a local variety, then V is decidable if and only if V ∗LI is decidable.
3. The nonlocal case requires advanced algebraic tools (notably derived cate-

gories) and is still the topic of intense research. Several important cases have
been solved positively, but Auinger [2] exhibited an example of a decidable
variety V such that V ∗ LI is undecidable.

The aim of this paper is to establish similar results for the enrichment F [σ] →
F [σ,MOD]. Our first result (Theorem 6) states that the algebraic counterpart
to this enrichment is another semidirect product, the operation V → V∗MOD,
where MOD is the variety of cyclic stamps. Our second result (Theorem 15)
shows that when V is local, then V is decidable if and only if V ∗ MOD is
decidable. Finally, our main result (Theorem 19) deals with the nonlocal case.
Its proof relies on the equational theory for variety of finite categories. Figure 6,
which can be found at the end of section 6, summarizes the consequences of our
results for deciding various fragments of first-order logic.

2 Preliminaries

2.1 Words and logic

Let A be a finite alphabet and σ a relational signature. Given a word u =
a0 · · · an−1 of length n, we associate to u the relational structure Mu = {[0, n−
1], (a)a∈A, (P

u)P∈σ}, where Pu is is the interpretation of the symbol P over
the interval [0, n − 1] and (a)a∈A are disjoint monadic predicates given by the
positions of the letters over the structure. For instance, if u = aabbab, then
a = {0, 1, 4} and b = {2, 3, 5}. Basic examples of predicates include the binary
predicate <, interpreted as the usual order on integers. For each k > 0, we define
the LOCk predicates to be the unary predicates x = min + k, which is true at the
position k, the dual predicate x = max− k and the binary predicate x = y + k.
The class LOC of local predicates is the union of all LOCk. We also consider
the modular predicate MODd

i , which holds at all positions equal to i modulo d,
and the 0-ary modular predicate Dd

i which is true if the word length is equal to
i modulo d. For u = aabbab, we haveMOD2

0 = {0, 2, 4}, and D3
1 is false whereas

D3
0 is true. We denote by MODd the set of modular predicates modulo d. We

define MOD as the union of all MODd.
Formulae are interpreted on words in the usual way (see [20]). For instance

the formula ∃x ∃y ∃z ax ∧ by ∧ az ∧ (x < y) ∧ (y < z) defines the language
A∗aA∗bA∗aA∗. Since a sentence defines a language, one can naturally associate
a class of languages to a class of sentences.

In [9], Kufleitner and Lauser defined fragments of logic as sets of formulae
closed under some syntactical substitutions. Here, we only require substitutions
on an atomic level. Thus in this paper, a fragment of logic is a set of formulae
closed under atomic substitutions. Classical examples include BΣn, and its two
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variable restriction BΣ2
n. If needed the alphabet will be specified. For instance

F [σ](B∗) will denote the set of languages of B∗ definable by a formula of the
fragment F on the signature σ.

2.2 Enriched words

We now fix a positive integer d and an alphabet A. Let Zd be the cyclic group
of order d.

Definition 1 (Enriched alphabet). We call the set Ad = A × Zd the en-
riched alphabet of A, and we denote by πd : A∗

d → A∗ the projection defined by

πd(a, i) = a for each (a, i) ∈ Ad. For example, the word (a, 2)(b, 1)(b, 2)(a, 0) is

an enriched word of abba for d = 3. We say that abba is the underlying word of

(a, 2)(b, 1)(b, 2)(a, 0).

Definition 2 (Well-formed words). A word (a0, i0)(a1, i1) · · · (an, in) of A∗
d

is well-formed if for 0 6 j 6 n, ij = j (mod d). We denote by Kd the set of all

well-formed words of A∗
d.

Let αd : A∗ → A∗
d be the function defined for any word u = a0a1 · · · an ∈ A∗ by

αd(u) = (a0, 0)(a1, 1) · · · (an, n mod d). The word αd(u) is called the well-formed
word attached to u.

Note that the restriction of πd to the set of well-formed words is one-to-one.
For instance, the enriched word (a, 0)(b, 1)(b, 2)(a, 0) is a well-formed word for
d = 3. It is the unique well-formed word having the word abba as underlying
word. The following lemma is an easy consequence of this observation.

2.3 Algebraic notions

We refer to [16] for the standard definitions of semigroup theory.
A stamp is a surjective monoid morphism from A∗ onto a finite monoid. For

a stamp ϕ : A∗ → M , the set ϕ(A) is an element of the powerset monoid of
M . As such it has an idempotent power. The stability index of a stamp is the
least positive integer s such that ϕ(As) = ϕ(A2s). This set forms a subsemigroup
called the stable semigroup of ϕ. The set ϕ((As)∗) is called the stable monoid of
ϕ and the morphism from (As)∗ onto the stable monoid induced by ϕ is called
the stable stamp. The stable monoid of a regular language is the stable monoid
of its syntactic stamp.

A (pseudo) variety of finite monoids is a class of finite monoids closed under
division and finite products.

We say that a morphism between finitely generated monoids is length-preserving
if the image of each letter is a letter. Let C be a class of morphisms between
finitely generated free monoids closed under composition and containing the
length-preserving morphisms. Examples include the morphisms between finitely
generated free monoids (all), the non-erasing (ne) morphisms (morphisms for
which the image of letters are non empty words) and the length-multiplying (lm)
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morphisms (morphisms for which there is an integer k such that the image of
each letter is a word of size k).

Given such a class of morphism C, we recall the notion of C-varieties of stamps.
A stamp ϕ : A∗ → M C-divides another stamp ψ : B∗ → N if and only if there
exists a pair (α, β) such that α is a C-morphism from A∗ to B∗, β : N → M
is a partial surjective monoid morphism and ϕ = β ◦ ψ ◦ α. The pair (α, β) is
called an C-division. Then a C-variety of stamps is a class of stamps closed under
C-division and finite product.

A∗ B∗

M N

α

ϕ ψ

β

Example 3. Given d > 0, let MODd be the class of all stamps of the form
πd : A∗ → Zd with πd(a) = πd(b) for all letters a and b. Then MODd is a
lm-variety of stamps and the corresponding lm-variety of languages MODd is
the lm-variety generated by the languages {(Ad)∗Ai | 0 6 i < d}. The class
MOD =

⋃
d>0 MODd is also a lm-variety of stamps.

Example 4. Let DA be the variety of monoids satisfying the equation (xy)ω =
(xy)ωx(xy)ω where x 7→ xω is the application that maps an element to its
idempotent power. Alternatively DA is the variety of monoids whose regular
D-classes are aperiodic semigroups. The corresponding variety of languages is
the class of languages definable in FO2[<], the two-variable first order logic
[22]. When adding the local predicates we obtain a ne-variety of languages. The
variety of stamps corresponding to FO2[<,LOC] is LDA, the class of stamps
η : A∗ → M such that for every idempotent e of the semigroup η(A+), the
submonoid eMe is in DA. For instance, the syntactic stamp of the language
(ab)∗ is in LDA but the syntactic stamp of the language c∗(ce∗bc∗)∗ is not.

3 Wreath product

3.1 Wreath Product Principle for MOD

The wreath product is an algebraic operation on monoids that specializes the
semidirect product. This operation has been studied intensively in semigroup
theory. The reader is referred to [18] for applications to languages. In logic,
this operation often encodes the addition of some new predicates. In particular,
for many cases, the −∗LI operation corresponds to adding local predicates to a
given signature. The rather technical definition of the wreath product is omitted.
We will only use it through the following theorem, a consequence of the Wreath
Product Principle for stamps presented in [5].

Theorem 5 (Wreath Product Principle for MOD [5]). Let V be a (ne)-
variety, let V be the corresponding (ne)-variety of languages, L a regular language

of A∗ and d a positive integer. Then the following properties are equivalent:
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(1) The language L is recognized by a stamp in V ∗MODd,

(2) The language L belongs to the lattice of languages generated by the lan-

guages of the form (Ad)∗Ai for i < d and of the form πd(L
′ ∩Kd) where

L′ ∈ V(A∗
d).

Furthermore, a language L is recognized by a stamp in V ∗MOD if and only if

there exists d > 0 such that L is recognized by a stamp in V ∗MODd.

The next theorem is the main result of this section.

Theorem 6. Let F [σ] be a fragment equivalent to variety (ne)-V, L a regular

language and d a positive integer. Then the following properties are equivalent:

(1) L is definable by a formula of F [σ,MODd],

(2) ηL belongs to V ∗MODd,

(3) there exist some languages L0, . . . , Ld−1 of V(A∗
d) such that:

L =

d−1⋃

i=0

(
(Ad)∗Ai ∩ πd(Li ∩Kd)

)
(a)

Furthermore, a language L is definable in F [σ,MOD] if and only if L is recog-

nized by a stamp in V ∗MOD.

Proof. We only treat the case of a variety of monoids, since the proof for a variety
is the same. (3) implies (2) follows from Theorem 5.
(2) implies (3). Assume that ηL belongs to V ∗MOD. By Theorem 5, we can
suppose that L belongs to the lattice generated by languages of the form (Ad)∗Ai

for i < d and πd(L
′∩Kd) with L

′ ∈ V(A∗
d). Recall that the lattice is distributive

and the languages (Ad)∗Ai form a partition of A∗. Therefore, there are languages
H0, . . . , Hd−1 in the lattice of languages generated by πd(L

′ ∩ Kd) with L′ ∈

V(A∗
d) such that L =

⋃d−1
i=0

(
(Ad)∗Ai ∩Hi

)
. Thus, for 0 6 i < d, there exists a

language Li ∈ V(A∗
d) such that Hi = πd(Li ∩Kd).

For the equivalence between (1) and (3) we need an auxiliary result which gives
a decomposition of the language defined by a formula into smaller pieces.

Lemma 7. Let F [σ,MOD] be a fragment of logic and ϕ a formula of F [σ,MODd].
Then there exists d formulae ψi of F [σ,MODd] that do not contain any predicate

Dd
j and such that ϕ ≡ ∨d−1

i=0 (ψi ∧D
d
i ). Moreover, we have:

L(ϕ) =

d−1⋃

i=0

(
(Ad)∗Ai ∩ L(ψi)

)
.

The proof is omitted here. It relies on some elementary manipulations of formu-
lae. We now conclude the proof of Theorem 6. Let ϕ be a formula of F [σ,MOD].
Then ϕ belongs to F [σ,MODd] for some d > 0. Using Lemma 7, we know it
is sufficient to consider a formula ϕ without any length predicate. We trans-
form it into a formula ψ by replacing every predicate MODd

i (x) by
∨

a∈A

(a, i)x
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and every predicate ax by
∨

06i<d

(a, i)x. The resulting formula ψ is in F [σ](A∗
d)

and L(ϕ) = πd(L(ψ) ∩Kd). Conversely, we transform a formula ψ of F [σ](A∗
d)

into a formula ϕ of F [σ,MODd] by replacing every predicate (a, i)x in ψ by
ax ∧MODd

i (x). We also get L(ϕ) = πd(L(ψ) ∩Kd). ⊓⊔

The semidirect product does not necessarily preserve decidability (see e.g. [2]).
The remainder of the article focuses on varieties of categories to obtain decid-
ability results for this semidirect product.

4 Categories

4.1 The Derived Category Theorem

A (small) category C is a set of objects denoted Ob(C) equipped with a set
of arrows between any pair of objects, with a composition law for consecutive
arrows. A loop is an arrow whose initial object is the same as its final object. A
category contains, for each object u, an identity denoted 1u. Thus the set of loops
around a given object, equipped with the composition law, forms a monoid, called
the local monoid of that object. We refer to Tilson [24] for complete definitions.
Here we only consider finite categories, seen as a generalization of finite monoids,
since a monoid can be viewed as a one-object category. Here we give the definition
of the derived category for MOD which is an adaptation of the one introduced
by Tilson [24] and specialized for MOD in [5].

Definition 8. Let ϕ : A∗ → M be a stamp and d an integer. The d-derived
category of ϕ, denoted Cd(ϕ), is the category with Zd as set of objects, and the

arrows from i to j are the elements m of M such that there exists a word u
satisfying ϕ(u) = m and i + |u| ≡ j mod d. The d-derived category of a regular

language L, denoted Cd(L), is the category Cd(ηL).

Lemma 9. Let d be a positive integer, and L be a regular language of stabil-

ity index s. Then the local monoids of Cd(L) are isomorphic to ηL((A
d)∗). In

particular, the local monoids of Cs(L) are isomorphic to the stable monoid of L.

Example 10. The 4-derived category of the language (aa)∗ab(bb)∗ is given below.
Let η be its syntactic morphism and S its stable monoid. Its stability index is 4.

0

1

2

3

S = {1, aa, bb, aabb, ba}

SA = {a, b, aab, abb}

SA2 = {aa, bb, aabb, ba}

SA3 = SA

SA

SA3SA3

SA

SA

SA3 SA3

SA

SA2

S

S

SS
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To pursue the parallel with monoids, we recall the notion of division of categories,
which extends the notion of division on monoids. First for a categoryC we denote
by Ob(C) the set of objects of C and by C(u, v) the set of arrow between the
objects u and v of C.

Let C,D be two categories. A division of categories τ : C → D is given by a
mapping τ :Ob(C) →Ob(D), and for each pair of objects u and v, by a relation
τ : C(u, v) → D(τ(u), τ(v)) such that

1. τ(x)τ(y) ⊆ τ(xy) for consecutive arrows x, y,
2. τ(x) 6= ∅ for any arrow x,
3. τ(x) ∩ τ(y) 6= ∅ implies x = y if x and y are coterminal,
4. 1τ(u) ∈ τ(1u) for any object u of C.

One can see that this definition is exactly a generalization of a notion of
division if we take, for instance, two categories C and D with only one object
(ie monoids). Then C divides D in a sense of category if and only if C divide D
in a sense of monoid. The global of a variety V, denoted by gV, is the variety
of all categories that divide a monoid in V, seen as a one-object category.

Proposition 11. Let L be a regular language. For any 0 < d 6 d′, if d divide

d′, then Cd′(L) divides Cd(L).

Proof. Let L be regular language and 0 6 d < d′ be integers such that d divides
d′. We define the relation τ : Cd′(L) → Cd(L). The object application Ob(τ) :
Zd′ → Zd is defined by Ob(τ)(x) = x mod d for any x ∈ Zd′ . Let (x,m, y) be
an arrow of Cd′(L). By definition, there exists u ∈ A∗ such that ηL(u) = m and
|u| ≡ y − x mod d′. Let a = x mod d and b = y mod d. Then, since d divides d′,
|u| ≡ b− a mod d. Thus, the arrow (a,m, b) is in Cd(L). We define τ(x,m, y) =
(a,m, b). The application τ is a morphism and for any (x,m, y) 6= (x,m′, y), we
have τ(x,m, y) 6= τ(x,m′, y). Therefore, τ defines a division from Cd′ to Cd. ⊓⊔

The derived category theorem was originally proved by Tilson [24] for varieties of
monoids and semigroups. In [4], Chaubard extended this theorem to C-varieties.
Here we give the specialization to MOD of this latter generalization.

Theorem 12 (Derived Category’s Theorem for MOD [4]). Let V be a

variety and L a regular language. A language L has its syntactic stamp in V ∗
MOD if and only if there exists d > 0 such that Cd(L) is in gV.

4.2 Rank of a variety

In the same way that varieties of monoids are characterized by profinite equations
over alphabets, varieties of categories can be described by profinite equations on
labelled graphs. Then a profinite path equation is given by a domain graph and
the equality of two coterminal paths. As in the case of monoids, it is known [24]
that varieties of categories are exactly the classes of categories satisfying sets of
path equations.
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Then given a variety of monoids V, we say that V is of finite rank if the
variety of categories gV can be described by paths equations over a finite graph.
Furthermore, the rank of V is defined as the minimal size of graphs describing
gV. We refer to Tilson [24] for complete definitions and proofs and we give here
examples of varieties of finite rank below.

Example 13. 1. Varieties of rank 1 are called local. This is the case for several
varieties. For instance, the variety of semilattice monoids J1 = Jxy = yx, x2 = xK,
the variety DA = J(xy)ωx(xy)ω = (xy)ωK see Example 4, the variety of ape-
riodic monoids A = Jxω = xω+1K.

2. The variety of commutative monoids Com = Jxy = yxK. The variety of
categories gCom is defined by

xyz = zyx

x, z

y

3. A recent algebraic description of the languages definable by formulae of
BΣ2

k+1[<] was established in [8, 11]. In the subsequent we will denote by Vk

the equivalent variety of monoids. This result was extended to BΣ2
k+1[<,+1]

in [9]. From this latter result we derive the following description of gVk.

We set U1 = (sx1)
ωs(y1t)

ω and V1 = (sx1)
ωt(y1t)

ω

Um = (pmUm−1qmxm)ωpmUm−1qm(ympmUm−1qm)ω

Vm = (pmUm−1qmxm)ωpmVm−1qm(ympmUm−1qm)ω

gVk satisfies the equations Uk = Vk

p3 q3

pk qk· · ·
...

...

s, t

x1, y1

q2

x2, y2

xk, yk

p2

5 The local case

For any variety V, we define QV to be the lm-variety of stamps whose stable
monoid is in V. Following Tilson [24], we denote by ℓV the variety of categories
whose local monoids are all in V. The next theorem makes explicit the link be-
tween QV and ℓV.

Theorem 14. Let V be a variety and L a regular language of A∗ of stability

index s. The following properties are equivalent:
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(1) L is recognized by a stamp in QV,

(2) there exists an integer d such that Cd(L) is in ℓV,

(3) Cs(L) is in ℓV.

Proof.

(1) → (3). If L is recognized by a stamp in QV, then its syntactic stamp is also
in QV and its stable monoid is in V. But, thanks to Lemma 9, the local monoids
of Cs(L) belong to V, and thus Cs(L) is in ℓV.
(3) → (2). Is obvious.
(2) → (1). Suppose that Cd(L) is in ℓV. Then the local monoids of Cd(L), which
are isomorphic to ηL((A

d)∗) by Lemma 9, belong to V. Thus ηL((A
ds)∗), which

is a submonoid of ηL((A
d)∗), also belongs to V. Finally, by definition of the

stability index, the monoid ηL((A
s)∗) = ηL((A

ds)∗) is in V and thus ηL is in
QV. ⊓⊔

Observe that any monoid of V, viewed as a one-object category, belongs to ℓV.
Therefore by definition of gV, any category of gV divides a category of ℓV, and
thus gV ⊆ ℓV. The varieties satisfying gV = ℓV are exactly the local varieties.
Combining Theorem 12 and Theorem 14 yields the following theorem.

Theorem 15. Let V be a variety. Then V ∗MOD ⊆ QV. If furthermore V is

local, then V ∗MOD = QV.

Since the stability index and the stable monoid of a given regular language
are computable, one gets the following corollary.

Corollary 16. Let F [σ] be a fragment equivalent to a local variety. Then F [σ]
is decidable if and only if F [σ,MOD] is decidable.

Given a variety of monoids V, we define LV to be the variety of semigroups
S such that for any idempotent e of S, the set eSe belongs to V. It is known [24]
that for local varieties, this operator is equal to the semidirect product by the
variety LI. The next corollary extends the previous result to LV when only
V is known to be local. Recall that J1 denotes the variety of idempotent and
commutative monoids.

Corollary 17. Let V be a local variety containing J1. Then, V ∗LI ∗MOD =
QLV.

Remark 18. The equality V ∗ MOD = QV does not always hold. A coun-
terexample is the variety J, which is known to be nonlocal. Chaubard, Pin and
Straubing proved the decidability of J ∗ MOD [5], using the characterization
of gJ given by Knast in [7]. Using this characterization, we can prove that the
language (aa)∗ab(bb)∗, whose stable monoid is in J does not satisfy Knast’s
equation, proving that J ∗MOD ( QJ (see Example 10).
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6 Main results

Theorem 6 gives a description of the languages definable in F [σ,MOD] together
with a non effective algebraic characterization. What this characterization tells
us is that the decidability problem can be divided into two parts. The first one
consists in computing effectively this integer d, given the language L. We call it
the Delay problem for MOD in reference to the Delay Theorem [19, 24] which
solves a similar problem for the operation V → V ∗ LI. The second problem
is to find effectively some languages L0, . . . , Ld−1 occurring in Theorem 6 (a).
Finding these languages can be reduced to the membership problem for gV.
We now state our main result, which gives a delay index assuming that the
decidability and the rank of the variety gV are known.

Theorem 19 (A Delay Theorem for MOD). Let V be a variety of rank k.
Then a stamp with stability index s belongs to V∗MOD if and only if it belongs

to V ∗MODks.

A proof of this Theorem can be found in the Appendix. The main idea of the
proof is that when you consider the ks-derived category, you can ensure that
the vertices from any projection from graphs of size k are far enough to use the
main property of the stability index, that is words of length s can be pumped to
any length multiple of s with the same behaviour regarding L. Thus projections
from the graph description of gV can be extended to any multiple of s greater
than ks, allowing us to conclude.

Let us now deduce several corollaries from this result. First, since it is known
that gV is decidable if and only if V ∗ LI is decidable [2, 24], the next result
follows from Theorems 12 and 19.

Corollary 20. Let V be a variety of finite rank. If V ∗ LI is decidable, then

V ∗MOD is also decidable.

Since the global of any decidable variety containing the syntactic stamp of (ab)∗

is known to be decidable [24], the following corollary is straightforward.

Corollary 21. LetV be a variety of finite rank that contains the syntactic stamp

of the language (ab)∗. Then V is decidable if and only if V ∗MOD is decidable.

Another result with a very similar approach applies to variety of semigroups of
the form V ∗ LI.

Theorem 22. Let V be a variety of rank k containing the variety J1. Then a

stamp with stability index s belongs to V ∗ LI ∗MOD if and only if it belongs

to V ∗ LI ∗ MODks. Consequently, if V is decidable then V ∗ LI ∗ MOD is

decidable

The following table summarizes some effective algebraic characterizations
obtained as consequence of our results.
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BΣ1 = BΣ2

1 BΣ2

k+1 FO2 FO

[<]
J Vk DA A

[15, 23] [11, 8] [22] [13, 17]

[<,LOC]
J ∗ LI Vk ∗ LI LDA A

[7] [10] [22] [13, 17]

[<,MOD]
J ∗MOD Vk ∗MOD QDA QA

Corollary 20 or [5] Corollary 20 New Theorem 15 or [6] Theorem 15 or [20, 3]

[<,LOC,MOD]
J ∗ LI ∗MOD Vk ∗ LI ∗MOD QLDA QA

Theorem 22 or [12] Theorem 22 New Corollary 17 New Theorem 15 or [20, 3]

Conclusion

We presented a study of the enrichment operation on logical fragments: F [σ] →
F [σ,MOD]. For fragments equivalent to a variety, this operation exactly corre-
sponds to the algebraic operation V → V ∗MOD. Our main result states that
decidability can be obtained from the decidability through equations of a known
variety of categories. This work subsumes several known results and leads to
the decidability of new fragments. The main ingredients are the partial Delay
Theorem for MOD and a decision process for the global of V. Both of them
might be improved. Indeed, in the case of MOD, the decidability of a weaker
version of the global might be sufficient for the wreath product by MOD. On
the other hand our Delay Theorem require some more complex notions than the
traditional variety of monoids. We know that our bounds are not always tight, as
it is the case for the variety J whose rank is 2. Moreover, the decidability remains
open for varieties where little is known about gV. An interesting case of study
would be the variety generated by the syntactic monoid of the language (ab)∗,
sometimes referred to as the universal counterexample. Indeed, this variety does
not fall into the scope of any of our theorems.
Acknowledgements We would like to thank Olivier Carton for his helpful
advices and Jean-Éric Pin for his time, commitment and tenacity during the
genesis of this article.
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7 Appendix

7.1 Wreath Product

Here we give the definition of the wreath product by MOD. The wreath product
of a monoid M and the cyclic group of order d, Zd, is denoted by M ◦Zd and is
defined on the set MZd × Zd equipped with the following product:

(f, i)(g, j) = (f · jg, i+ j)

with · being the pointwise product on MZd and jg : Zd → M is defined by
jg(t) = g(t+ j). Having define the wreath product of two monoids, we can now
define the wreath product of (ne-)variety by MOD. Let V be a (ne-)variety. A
stamp η : A∗ → M belongs to V ∗MOD if and only if there exists d > 0 and
µ : (B × Zd)

∗ → N , with µ ∈ V such that η lm-divides the stamp µ′ : B∗ →
N ◦ Zd, defined by µ′(b) =

(
f, 1

)
with f(i) = µ(b, i).

Lemma 9. Let F [σ,MOD] be a fragment of logic and ϕ a formula of F [σ,MODd].
Then there exists d formulae ψi of F [σ,MODd] that do not contain any predicate

Dd
j and such that ϕ ≡ ∨d−1

i=0 (ψi ∧Dd
i ). Moreover, we have:

L(ϕ) =
d−1⋃

i=0

(
(Ad)∗Ai ∩ L(ψi)

)
.

Proof. For i < d, we define the formula ψi to be the formula ϕ where we replaced
every predicate Dd

i by true and every Dd
j with j 6= i by false. One should notice

that, by definition of a fragment [9], the formulae ψi are in F [σ,MODd]. We can
conclude the proof since the formula (Dd

i ) recognizes the language (Ad)∗Ai. ⊓⊔

7.2 The local case

Corollary 17. Let V be a local variety containing J1. Then, V ∗LI ∗MOD =
QLV.

Proof. This corollary is proved by considering the notion of locality adapted
to the semigroups framework. The ne-variety LV can be seen as a variety of
semigroups. Therefore, one can use the notion of locality obtained in [1] for
varieties of semigroups. In particular, we claim that the variety of semigroups
LV is local. A semigroupoid S belongs to gLV if and only if the consolidated
semigroup Scd belongs to LV. Note that an idempotent of Scd is an idempotent
loop of S. Therefore Scd belongs to LV if and only if the local semigroup of S
belongs to LV. Since this is exactly the definition of a local variety, this show
that LV is a local variety of semigroups. It is tempting to use the version of
Theorem 15 for the ne-variety. Unfortunately, it is not clear that the locality
of a variety of semigroups is equivalent to the locality of the corresponding ne-
variety. However, the proof of Theorem 15 is easily adaptable to varieties of
semigroups.
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7.3 Main Results

Theorem 22. Let V be a variety of rank k containing the variety J1. Then a

stamp with stability index s belongs to V ∗ LI ∗MOD if and only if it belongs

to V ∗ LI ∗MODks.

The proof stems from results from [24]. We first introduce two definitions from [24].

Definition 23 (Consolidated semigroup). Let C be a finite category and

Arr(C) the set of arrows of C. We denote by Ccd the semigroup defined on the

set

E = Arr(C) ∪ {0}

with for any x ∈ E, 0x = x0 = 0, and for x, y ∈ Arr(C),

x.y =

{
xy if x and y are consecutives arrows,

0 otherwise.

Definition 24 (Idempotent category). Let S be a semigroup. We denote by

SE the finite category whom object are idempotents of S and arrows from e to f
the set eSf .

The next proposition is stated in [24, Proposition 16.1]

Proposition 25. Let C be a finite category. Then (Ccd)E and C divide each

other.

The next Theorem corresponds to [24, Theorem 17.1]

Theorem 26 (Delay Theorem). Let S be a semigroup and V a non trivial

variety of monoids. The semigroup S belongs to V ∗LI if and only if SE belongs

to gV.

We now conclude the proof of Theorem 22. Let W be the ne-variety of languages
equivalent to V ∗ LI. First remark that for any alphabet A and any a ∈ A, the
syntactic stamps of the languages A∗a and, for any d, Kd belong to J1 ∗ LI.
Therefore, they belong to V ∗LI. In this case, item 3 of Theorem 6 simplifies as
the union can be transferred inside the πd morphism. Then the syntactic stamp
of the language L belongs to V ∗ LI ∗ MOD if and only if there exists d > 0
such that

Ld = π−1
d (L) ∩Kd ∈ W(A∗

d).

We denote by ηd : A+
d → Sd(L) the syntactic stamp of Ld.

Lemma 27. The semigroup Sd(L) divides Cd(L)cd and Cd(L)cd divides a prod-

uct of Sd(L). Furthermore, Sd(L) belongs to V∗LI if and only if Cd(L)cd belongs

to V ∗ LI.
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Proof. We set η : A∗
d → Cd(L)

1
cd with η(a, i) = (i, ηL(a), i + 1). Then, Ld =

η−1(P ) where
P = {(0,m, j) | m ∈ ηL(L) and j ∈ Zd}.

ThereforeCd(L)cd recognizesLd and consequently Sd(L) divides Cd(L)cd. We de-
note by ∼ the syntactic congruence of P on Cd(L)cd. It appears that Cd(L)cd/ ∼
is isomorphic to Sd(L). Furthermore, for any m,m′ ∈M and j ∈ Zd, (0,m, j) ∼
(0,m′, j) implies m = m′. Finally Cd(L)cd is isomorphic to the sub-semigroup
of (Cd(L)cd/ ∼)d containing the elements

((i,m, j), (i+ 1,m, j + 1), . . . , (i+ d− 1,m, j + d− 1)) .

⊓⊔

The syntactic stamp of the language L belongs to V ∗ LI ∗MOD if and only if
there exists d > 0 such that Cd(L)cd is in V ∗LI. By Theorem 26, for all d > 0,
Cd(L)cd is in V ∗ LI if and only if (Cd(L)cd)E ∈ gV. By Proposition 25, for all
d > 0, (Cd(L)cd)E is in gV if and only if Cd(L) is in gV. Therefore, the language
L belongs to V ∗ LI ∗MOD if and only if there exists d > 0 such that Cd(L) is
in gV. By Theorem 12 and Theorem 19, since V has rank k, there exists d > 0
such that Cd(L) is in gV if and only if Cks(L) ∈ gV, which concludes the proof.

7.4 Proof of the main result

First notice that since the if condition is trivial, we only need to prove the only
if implication. Remark now that if rank(V) = 1 then the variety is local and we
know that we can restrict to congruence modulo the stability index. For the rest
of the proof we assume that rank(V) = k > 1.
Let now d be such that Cd(L) ∈ gV. Without loss of generality, we assume that
d is greater than k. Indeed if d 6 k, we consider d′ = dk. Then by Proposition 11
Cd′(L) divides Cd(L) and thus also belongs to gV.
So in the remainder of the proof we will assume that ds > ks. Since Cd(L) ∈ gV
we know that Cds(L) ∈ gV. Then Cds(L) satisfies every path equation (X,u = v)
defining gV. The goal of this proof is to show if Cks(L) does not satisfy a path
equation defining gV, then Cds(L) cannot satisfy it either.

So assume that there exists a path equation (X,u = v) of rank k defining
gV that is not satisfied by Cks(L). Then, there exists a category morphism
ϕ : X∗ → Cks(L) such that ϕ̂(u) 6= ϕ̂(v). We define V = ϕ(Ob(X)) the set of
objects of Cks(L) that has a preimage by ϕ, and E = {(i,m, j) ∈ Cks(L) | ∃e ∈
Xϕ(e) = (i,m, j)} the set of arrows that have a preimage by ϕ. Notice that
E ⊆ V ×ML × V .

We will construct a category morphism ψ : X∗ → Cds(L) such that ψ̂(u) 6=

ψ̂(v). In order to do that, we define a map θ : V → Cds(L) such that for all
(i,m, j) in E, (θ(i),m, θ(j)) is an arrow of Cds(L).

Lemma 28. There exists a smallest integer iV < ks such that {iV +1, . . . , iV +
s− 1 mod ks} ∩ V = ∅.
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Proof. As the size of X is k, the size of V is at most k. Then the maximal
distance between two consecutive vertices of V is at least ks/k = s. ⊓⊔

We define θ : V →Ob(Cds(L)) as follow :

θ :

{
i 7→ i mod ds if i 6 iV

i 7→ ds+ i− ks otherwise.

The idea behind this is that i = θ(i) if i appears before the gap and ks − i =
ds−θ(i) if i appears after it. Then each arrow from E will either appear directly
as it does for Cks(L) if it does not go over the gap, and since the gap is of size
s, we will be able to pump the arrows that go over it.

Lemma 29. For any arrow (i,m, j) of E, (θ(i),m, θ(j)) is an arrow of Cds(L).

Proof. Let (i,m, j) be an arrow of E. Then there exists a word u such that
ηL(u) = m and i+ |u| = j mod ks. We now distinguish the cases depending on
the length of u.

– If |u| > s, then we know, by definition of the stability index, that for any
positive integer ℓ, there exists a word uℓ such that ℓs 6 |uℓ| < (ℓ + 1)s,
|u| = |uℓ| mod s and u ≡L uℓ. Then as θ preserves the congruence modulo
s, (θ(i), ηL(uℓ), θ(j)) = (θ(i),m, θ(j)) is an arrow of Cds(L).

– If |u| < s, then we have to treat several subcases:
• If θ(i) = i and θ(j) = j, then θ(i)+|u| = θ(j) mod ds. Thus (θ(i),m, θ(j))
is an arrow of Cds(L).

• If θ(i) = ds + i − ks and θ(j) = ds + j − ks, then as u has a size
smaller than s, we have i < j and θ(j) − θ(i) = j − i. Consequently
θ(i) + |u| = θ(j) mod ds and (θ(i),m, θ(j)) is an arrow of Cds(L).

• If θ(i) = ds+ i− ks and θ(j) = j, then i+ |u| = j + ks. So θ(i) + |u| =
ds+ i− ks+ |u| = j + ds. The same word u labels an arrow from θ(i) to
j and thus (θ(i),m, θ(j)) is an arrow of Cds(L).

• Finally, the case where θ(i) = i and θ(j) = ds + j − ks cannot happen
since it implies that i 6 iV and j > iV +s, and that |u| = j−i > s mod ks
which contradicts the |u| < s hypothesis.

⊓⊔

We now define a new morphism ψ : X∗ → Cds. We proceed as follow:

– First we define Ob(ψ) to be θ◦Ob(ϕ).
– We now have to define ψ on arrows. Let e be an arrow of X and ϕ(e) = (i,m, j).
We set ψ(x) =

(
θ(i),m, θ(j)

)
. This is well defined thanks to Lemma 29.

Lemma 30. Let u be a path in X∗. If ϕ(u) = (i,m, j), then ψ(u) =
(
θ(i),m, θ(j)

)
.

Proof. Let u = u1 · · ·un ∈ X∗ such that ϕ(uℓ) = (iℓ,mℓ, jℓ) and ϕ(u) = (i,m, j).
Therefore, ψ(uℓ) =

(
θ(iℓ),mℓ, θ(jℓ)

)
. However, since for all 1 6 ℓ < n jℓ = iℓ+1,

we have φ(u) = (i1,m1 · · ·mn, jn) = (i,m, j) and ψ(u) =
(
θ(i1),m1 · · ·mn, θ(jn)

)
=(

θ(i),m, θ(j)
)
. ⊓⊔
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Recall that ϕ̂(u) 6= ϕ̂(v). Then we can find u′, v′ ∈ X∗ co-terminal paths of

X∗ such that ϕ(u′) = ϕ̂(u), ϕ(v′) = ϕ̂(v), ψ(u′) = ψ̂(u) and ψ(v′) = ψ̂(v).
We set u′ = u1 · · ·un with ui ∈ X for any i and v′ = v1 · · · vp with vi ∈ X
for any i. To conclude we show that ψ(u′) 6= ψ(v′) which is absurd. Indeed, if
ϕ(u′) = (i,m, j) ∈ Cks(L) and ϕ(v′) = (i,m′, j) ∈ Cks(L), then m′ 6= m since
widehatϕ separates u and v. Furthermore, by Lemma 30, we also have ψ(u′) =(
θ(i),m, θ(j)

)
and ψ(v′) =

(
θ(i),m′, θ(j)

)
in Csd(L). Finally ψ(u

′) 6= ψ(v′) and
thus Cds does not satisfy (X,u = v), holding a contradiction.
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