N

N
N

HAL

open science

Schemata of Formula in the Theory of Arrays

Nicolas Peltier

» To cite this version:

Nicolas Peltier. Schemata of Formula in the Theory of Arrays. TABLEAUX 2013 - 22th International
Conference on Automated Reasoning with Analytic Tableaux and Related Methods, Sep 2013, Nancy,
France. pp.234-249, 10.1007/978-3-642-40537-2_ 20 . hal-00934604

HAL Id: hal-00934604
https://hal.science/hal-00934604

Submitted on 22 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00934604
https://hal.archives-ouvertes.fr

Schemata of Formulae in the Theory of Arrays*

Nicolas Peltier

CNRS - Grenoble Informatics Laboratory
Nicolas.PeltierQimag.fr

Abstract. We consider schemata of quantifier-free formule, defined us-
ing indexed symbols and iterated connectives ranging over intervals (such
as VI, ¢ or \I_, ¢), and interpreted in the theory of arrays (with the
usual functions for storing and selecting elements in an array). We first
prove that the satisfiability problem is undecidable (it is clearly semi-
decidable). We then consider a natural restriction on the considered
structures and we prove that it makes the logic decidable by providing a
sound, complete and terminating proof procedure.

1 Introduction

In [2] (see also [3]) the logic of iterated schemata is defined, which enriches the
language of propositional logic with arithmetic parameters, indexed variables and
iterated connectives ranging over intervals of natural numbers. This language
allows one to formally define families of formulae depending on arithmetic pa-
rameters, such as, e.g., the parameterized formula (po AA:_y pi = Dit1) = Pat1-
Decidability and undecidability results have been obtained for the proposed lan-
guage (according to the form of the arithmetic expressions that occur in the for-
mulae) and proof procedures have been devised to test the validity of schemata
of formulae. These procedures use the usual decomposition rules of propositional
logic, together with rules performing a lazy instantiation of the parameters and
loop detection techniques encoding a limited form of mathematical induction.
In [5], these results have been extended to some theories beyond propositional
logic, including in particular a fragment of Presburger arithmetic. In the present
paper, we consider schemata of formula interpreted over the theory of arrays,
that plays a central role in program verification'. The theory of arrays is defined
by using two function symbols store and select encoding respectively the stor-
age and retrieving of an element in an array, and defined by the two following
axioms:

Y, z,v, select(store(x,z,v),z) ~ v (1)
Vo, z,w,v, z~wV select(store(z, z,v), w) ~ select(z,w) (2)
These axioms state that if an element v is inserted into an array x at some

position z, then the resulting array contains v at position z (first axiom) and
contains the same elements as in = elsewhere (second axiom).

* This work has been partly funded by the project ASAP of the French Agence Na-
tionale de la Recherche (ANR-09-BLAN-0407-01).
! This theory does not fall in the scope of the results in [5].

This theory allows for instance to model the heap when describing the be-
havior of a program. It is very well-studied and several procedures have been
proposed to test the validity of formulse modulo this theory and many extensions.
For instance, a decision procedure is defined in [9, 8] for dealing with formula
over the theory of arrays with uninterpreted or interpreted elements and indices,
which is able to handle a restricted form of quantification over indices. The work
described in [10] focuses on arrays with integer indices and devises a method
to combine existing decision procedures which makes it possible to handle some
important features of arrays such as sortedness or array dimension. We also
mention the logic presented in [11], which is devoted to reasoning with arrays of
integers (by reduction to the emptiness problem for counter automata).

In the present paper, we consider schemata of formulae interpreted on the
theory of arrays and defined using indexed variables and iterated connectives.
These indexed symbols may be used, for instance, to denote the state of the same
variable at different times during the running of a program. Consider for instance
the following example. If, in an array T, n elements eq,...,e, are inserted at
distinct indices i1, ...,1,, then it is clear that the result does not depend on the
order in which the insertion is performed. A particular instance of this problem
can be modeled by constructing the following two sequences T, and T,,:

To~T T} ~ store(T, i, a) Nj—oij # 7'
n . n .
Nj=o Tj+1 = store(Tj,ij,e5) Nj_o T = store(T},ij, €;)

Intuitively, T;,+1 is obtained from T by inserting the elements ej,...,e, in
the cells iy,...,14, respectively, and 7, ,, is obtained by inserting a,ei,..., e,
at ¢,i1,...,1,. We want to prove that the array obtained by storing a
into Ty41 in cell ¢ is identical to 7} ,, modulo extensionality, i.e. that
Vn Vi select(store(Ty, 11,1, a),i) ~ select(T, ,,,i) is a logical consequence of the
previous set of axioms. Note that the index variables j and n must be interpreted
as natural numbers hence this problem cannot be encoded in first-order logic?.
By negating the conclusion, we obtain a clause containing a constant interpreted
as a natural number. Existing SMT-solvers (see, e.g., www.SMT-LIB.org) cannot
decide the validity of such formulae, unless of course n is instantiated to some
fixed number?. For proving that the formula holds for all values of n, the use of
mathematical induction is essential.

The paper is structured as follows. After defining in Section 2 the syntax and
the semantics of the considered logic, we prove in Section 3 that the satisfiabil-
ity problem is undecidable (it is obviously semi-decidable), by reduction to the
Post correspondence problem. Remarkably, this result still holds if the syntax of
the formula is further restricted by forbidding arrays containing elements of the
same sort as their indices (thus discarding terms such as select(T, select(T, 7))).

2 It does not fall in the scope of existing procedures for handling combination of first-
order logic and Presburger arithmetic (see, e.g., [7]), since it necessarily involves
induction.

3 As far as we are aware, this problem is out of the scope of the known decidable
extensions of the theory of arrays.

In Section 4, we impose additional semantic restrictions on the considered in-
terpretations and define a decision procedure for testing the satisfiability of for-
mulz in this particular class of interpretations. The proof procedure is based on
propositional tableaux enriched by specific rules for equality reasoning modulo
the theory of arrays, together with new simplification and loop detection rules
ensuring termination. The conditions on the interpretations that make possible
the definition of the decision procedure are formally defined in Section 4.2. In-
formally, these conditions can be summarized as follows: two indexed constants
a; and bj, with ¢ < j encoding array indices cannot be equal, unless there ex-

ists a non-indexed constant c such that a; = ¢ = b; or a sequence of constants

¢, .., such that a; = ¢}y, = ... = C;:Zfl = b; holds in the consid-

ered interpretation. This restriction does not apply in a systematic way on all
the symbols occurring in the formula, but only on those encoding the indices
of certain arrays, more precisely those on which a store operation is performed,
and those containing elements of the same sort as their indices. We call the in-
terpretations satisfying this requirement contiguous. Going back to the previous
example, the requirement holds if we assume for instance (in addition to the pre-
vious properties) that the ¢;’s are pairwise distinct (more generally it is clear that
the requirement always holds if constants with distinct indices are interpreted by
distinct terms). Some simple examples of application of our work are presented
in Section 5, in which we show that our procedure can be employed to check
properties of simple programs with loops, where indexed constants a; are used
to denote the value of some variables a at iteration ¢. Section 6 briefly concludes
the paper and provides some lines of future work. Due to space restrictions, some
of the proofs are omitted.

2 Schemata of Formulse

2.1 Syntax

The set of sort terms T is constructed inductively over a finite set of base sorts
B using the operator —: if s and s’ are two sort terms in T then the sort term
s — s’ denotes the sort of the arrays (or functions) mapping elements of sort s
to elements of sort s’. Let nat be a special sort symbol, not occurring in B or T.
Let X' be a set of symbols (denoting either constants of a base sort or arrays).
Each symbol is X' is associated with a unique profile that is either a sort term
or of the form nat — s where s is a sort term. A symbol is called indexed iff
its profile is of the later form. The set of indexed and non-indexed symbols are
denoted by X,.¢ and X', respectively.

Let V be a set of arithmetic constants. An arithmetic expression of parameter
n € V is an expression of the form k or n+ k, where n € V and k € N. As usual,
n + 0 is simply written n. The set of arithmetic expressions of parameter n is
denoted by Tn(n). If o, 8 € Tn(n) then we write o < S iff the previous relation
holds regardless of the value of the parameter n, i.e., iff one of the following
conditions hold: « and § are natural numbers and o < 8, « and [are of the
form n+ k and n+ 1 respectively and k < [, or a is a natural number, 3 is of the
form n+ k and o < k.

The set of terms 7 (s,n) of sort s € T and of parameter n € V is built

inductively as follows.

- All non-indexed symbols u € X'; of profile s are terms in 7 (s,n).

- For all u € X, of profile nat — s and for all &« € Ty(n), we have u, € T (s,n).

- For all sort terms s', for all (t,u) € T (s’ — s,n)xT (s’,n), select(t,u) € T (s,n).

- If s is of the form s’ — s”, then for all (¢,u,v) € T(s,n) x T(s’,n) x T(s”,n),
store(t,u,v) € T(s,n).

The set 7 (n) denotes the entire set of terms 7 (n) = User T (s,n). If w is a term

of sort s — &, then s is the domain of uw and s’ is its range. For every arithmetic

expression a, we denote by X[a] the set of terms that are either element of X'

or of the form u,, with u € Xp.¢.

The term depth §(u) and the index depth t(u) of a term w are inductively
defined as follows: §(uy) = 6(u) = 1if u € Xpar U X1, d(select(t,u)) =
max(d(t),0(u)) + 1, d(store(t,u,v) = max(5(t),d(u),0(v)) + 1, t(u) =
if w € X, t(uprr) = wlug) = k4 1if B € N, u(select(t,u)) =
max(c(t),d(u)), t(store(t,u,v) = max(c(t),d(u),d(v)), For instance, if s € X
then select(tyi1, select(s, uy)) is of term depth 3 and of index depth 2.

The set F(n) of A-formule of parameter n is inductively constructed as
follows (note that we assume that all formula are in negation normal form).

- L, T € Fn).

- If u,v € T(s,n) for some sort s € T, then u ~ v and u % v are in F(n).

- If ¢,¢ € F(n) then ¢ A,V ¢p € F(n).

-IfieV, ¢ € F(i), and k,l € N then \/2T ¢ and ATTL ¢ are in F(n).

An expression « is an indez of a formule ¢ if it occurs in a term of the form u,,
of ¢. The term depth and index depth of an A-formula ¢ is the maximal term
(resp. index) depth of the terms occurring in ¢. The propositional depth w(¢)
is defined as follows. m(L) = 7(T) = w(u ~ v) = n(u 2 v) = 1, n(p+¢) =
1+ max(n(), 7(4)) and 7(I716) = 1+ 7() (with * € {V, A}, IT € {\V/, A}).

For every expression e, we denote by e{a — [} the expression obtained from
e by replacing every occurrence of a by S.

2.2 Semantics

The semantics of A-formule is defined in a straightforward way. An interpre-
tation T is a function mapping every expression e in T U V U {store, select} U
Unev(Tn(n) U T(n) U F(n)) to an object [e]” such that:

- For every sort s € T, [s]” is a non-empty set of elements (the domain of s).

- For every n € V, [n]” is a natural number.

- For every symbol u of profile s € T, [u]” is an element of [s]%.

- For every constant u of profile nat — s, [u]” is a function from N to [s
- K EkifkeN, and n+ k" 0" +kifneV,keN.

- [store]” is a function that maps every triple (e, ¢/, f) € ([s = s/, [s]", [s']%) to

2

T
an element of [s — s'] .
- [select]” is a function that maps every pair (e,¢’) € ([s — ']%,[s]*) to an
element of [s']”.

- T satisfies the axioms of the theory of arrays, i.e., for every ¢, u,v,w €

(s — &')%, [s]F, [s'1, [s]F), we have: [select]”([store]” (t,u,v),u) = v and
[select]” ([store]” (t,u,v), w) = [select]” (t,w) if u # w.

- [ual® £ [(Jo)F), and for every term f(t1,...,t,), where f € {select, store},
n = 2,3, we have [f(t1,....t:)]" 1 ()5 ., [ta]F)

- For every A-formula ¢, [¢>]I is a truth value in {true,false}, inductively de-
fined as follows.
- [T]I ' true, [J_}I & false, [u ~ v]I < true iff [u]I = [’U]I, [u U]I “ true
iff [u]” # [v]*, [0V) £ trueiff [¢]F = true or [¢)]" = true, and [¢ A] &
true iff [¢]” = true and [¢]” = false.

z
- [\/Il‘gC |” % true iff there exists a natural number m € [k, [n]” 4 1] such that

[¢]I[iem} = true, where Z[i < m| denotes the interpretation coinciding with

7 except on i, for which we have [i}z[‘“_m] Lt

z
- [/\Il‘gC " % true iff for all natural numbers m € [k, [n]" +] we have

[qb]z[iem} = true.
An interpretation Z is a model of an A-formula ¢ (resp. set of A-formulae
S) if [¢]" = true (resp. if V¢ € S,[¢]" = true). This is written Z = ¢ (resp.

Z = S). An A-formula or a set of A-formula having a model is satisfiable.
3 Undecidability Results

The following proposition is an immediate consequence of the previous definition.

Proposition 1. The satisfiability problem is semi-decidable for A-formule.

Proof. If the value of the parameter is fixed then all iterated formulae can be
replaced by standard disjunctions and conjunctions. The obtained A-formula is
then equivalent to a ground formula interpreted on the theory of arrays, for which
satisfiability can be tested by usual procedures. Thus it suffices to enumerate all
the possible values of the parameter until we get one for which the considered
formula is satisfiable.

The next theorem shows that the problem is not decidable.

Theorem 2. The satisfiability problem is undecidable for A-formule, even if
the sets of range and domain sorts are disjoint*.

Proof. We provide a brief informal overview of the proof. It is based on
an encoding of the Post correspondence problem. We thus consider two se-

quences of words w™!,...,wb™ and w*',...,w?™ and we construct an A-
formula ¢ that is satisfiable iff there exists a sequence I,...,I; such that
whii ok = w2l oo 2Tk (where 7 denotes word concatenation). To

this purpose, we use two indexed arrays W' and W? denoting the words

4 The case in which the domain and range of the arrays are allowed to be identical
follows immediately from the results in [5] about the undecidability of schemata of
equational formula in the empty theory.

whh oo wb e and w? .- w? !k respectively. More precisely W is defined
on the domain {ay,...,a,} and select(W? a;) contains the character j of the
word w1, ... bk defined as a pair (k,1) € [1,n] x [1, |w®*|], meaning that
this character is the [-th element of the word w®*. It is straightforward to state
as an A-formula that W indeed represents a word of the form w®/i. ...
for some sequence I}, ..., It: it suffices to check that the successor of any element
(k,1) is either of the form (k,l+1) (if [is not the last character in w"*) or of the
form (k', 1), for some k' € [1,n] (if [is the last element of w®*). Similarly, it is
easy to check that the words denoted by W' and W?2 are identical. The difficult
point is to check that the two sequences I{,...,I} (i = 1,2) are identical. For
expressing this property, we take advantage of the expressive power of the theory
of arrays: We introduce two indexed constants b® such that (b%,...,b%) is ezactly
the sequence of cells corresponding to the beginning of a new word in Wt. To
define these sequences, we construct two arrays B' (i = 1,2) containing true
exactly at the cells corresponding to the beginning of a new word in W* (which
can be expressed by stating that for every j = 1,...,n, select(B, aj) is true iff
select(W?, a;) is of the form (k,1)). Then we check that this array B’ is identical
to the array obtained by inserting true at every cell bé' (1 <j < n), inside an
array containing initially false at each cell a; (1 < j <n). This guarantees that
{bi,...,bi} is indeed the set of cells corresponding to the start of a new word.
The most subtle point is to ensure that the order of these cells is the intended
one, i.e. that the first new word after b; indeed starts at b;; and not, say, at
bj+2. This is done by adding axioms “copying” the value of the next element
corresponding to the start of a word all along the array W* in order to check
that two contiguous words really start at some cells bé. and bé 41+ Using these
sequences b;, it is straightforward to check that the sequences I;: are identical,
by verifying that select(W?,b;) is equal to select(W?,b;), for every j =1,...,n.

4 Decidability Results

The results in Section 3 show that the satisfiability problem is undecidable for
A-formulae. In such a situation, the standard approach consists in focusing on
particular syntactic fragments so that decidability and/or complexity results can
be obtained. In the present paper, instead of restricting the class of formulae, we
prefer to restrict the class of interpretations by imposing additional conditions
on the considered structures. These conditions are formalized in Section 4.2.

i It
Wk

4.1 Simplifying the Syntax

For technical convenience, we shall assume from now that all the formula satisfy
some additional syntactic restrictions:

1. The term depth is bounded by 2; and every literal is either an equation or a
disequation between constants or indexed constants or of the form f(u) ~ v,
with f € {select, store} and u, v are constants or indexed constants.

2. The only arithmetic expressions occurring in the considered formula are 0,
norn+ 1, wheren € V.

3. The formula contains no nested iterations, i.e., for every subformula of the
form \/71) ¢ or ATEL ¢, ¢ contains no iterated formula.

i

It is easy to check that these conditions do not reduce the expressive power
of the language. First, any arithmetic expression distinct from the parameter
n occurring as the upper bound of an iteration can be removed by unfolding
the considered iteration, e.g., \/Eg ¢ is equivalent to \/;_ ¢V ¢{i —n+ 1}V
#{i — n+2}. It is also easy to get rid of an iteration whose lower bound is
a number k # 0: this can be done by introducing a new atom p¥ stating that
i is strictly greater than k, and defined by the axioms: —pf A ... A =pF_; A
PE A Nio —pY Vv pF,,. Then an iteration \/;_, ¢ (resp. Al_, ¢) can be written
Vioo Pt A (resp. \i_, —p¥ V ¢). Condition 3 is also easy to enforce, because
any iteration Hjizow occurring inside an iteration can be replaced by a new
atom p;, while adding the axioms: =pg V ¢{i — 0} and Aj_;—pit1 V (¥{j —
i4 1} % py) (with (I7,x) € {(V,V),(A,A)}). Afterward, Condition 1 can be
enforced by applying the standard flattening operation (see for instance [6]),
i.e., every complex subterm u of parameter n can be (repeatedly) replaced by
a new constant v,, while adding the axiom /\i‘ié vy ~ u{n — i}. This ensures
that the term depth is at most 2 and that the symbols select and store only
occur in positive literals (and occur only once in every literal). Condition 2 is
ensured in a similar way, by (recursively) replacing any constant w4 with k > 1
by a constant ug,,_,, while adding the axiom /\11”_:(1) u} >~ wu;yq1. Due to space
restrictions, the formal description of these transformations is omitted, see [3,4]
for more details.

4.2 Restricting the Class of Interpretations

We first define a property of the sort terms which depends only on the syntactic
form of the formula. Intuitively, a sort s is called non-cyclic if: (i) no storing
operation is performed on arrays of domain s; and (ii) no array of sort s — s
occurs in the signature, even with array composition (by composing two arrays
of sort s — s’ and s’ — s one gets an array of sort s — s). The condition is
formalized as follows.

Definition 3. Let < be a (fized) ordering among sort terms, such that s,s’ <
s — s, for all sort terms s,s’. A sort s is non-cyclic in an A-formula ¢ if the
two following conditions hold.

- ¢ contains no term of the form store(u,v,w) where v is of sort s.

- ¢ contains no term of sort s’ — s with s’ ¥ s.

The second condition of Definition 3 is related to the notion of a stratified sig-
nature in [1]: if the formula at hand contains no occurrence of store and if the
signature is stratified then every sort is non-cyclic.

The conditions of Definition 3 are rather restrictive, thus instead of assuming
that every sort is non-cyclic, we prefer to allow cyclic sorts and to add further
restrictions on their interpretations. These restrictions are formalized in the fol-
lowing definition.

Definition 4. A sort s is contiguous in an interpretation L iff for every pair of
constant symbols u,v of profile nat — s and for every k,l € N such that k < [
and T | ug =~ vy, one of the following conditions holds:

- There exists a constant w of sort s such that T = up ~ w A v, ~ w.
- There exists | — k +1 constants w', ..., w' = *1 such that w' = u, w

and Vi€ 1,1 — k], T = wj,; 4~ w,lcfl

I=k+1 —

For instance the condition of Definition 4 holds if s is finite, because in this case
one may associate a non-indexed constant symbol w with each element of the
domain of s; or if the implication k+1 < I = uy % v; holds in Z, for all constant
symbols u,v € Xy, and for all k,1 € N. It also holds if the interpretation of the
constants of sort nat — s is monotonic, i.e., if there exists an ordering < such
that k < I = a; < b; holds (it suffices to add for each sort s a new constant u
such that wy is interpreted as the maximal term of sort s of the form vy_1).

Definition 5. An interpretation T is contiguous if every sort is contiguous in
. It is quasi-contiguous iff every cyclic sort is contiguous.

The following lemma shows that quasi-contiguous and contiguous interpretations
are equivalent for satisfiability testing:

Lemma 6. An A-formula has a quasi-contiguous model iff it has a contiguous
model (up to the addition of a finite set of new constant symbols and azioms).

In the next section, we shall therefore assume that all the considered interpre-
tations are contiguous.

4.3 Proof Procedure

We devise a tableau-based proof procedure deciding the satisfiability of A-
formulee in contiguous (or quasi-contiguous) interpretations. We first briefly re-
view some basic terminology. Tableaux are viewed as trees labeled by sets of
A-formulae. A branch is a path from the root to a leaf. An interpretation Z wval-
idates a tableau if there exists a leaf labeled by some set S such that Z |= S. A
branch is closed if it contains L. The procedure is defined by rules of the form
Hy,...,H,
Ci|...|Cnm
children, labeled by SUCy,...,SUC,, respectively, if S contains Hy, ..., H, (up
to an instantiation of the meta-variables). The rule only applies if the branch is
open and if there is no ¢ € [1,m] such that S contains all the formule in C;.

, meaning that a leaf labeled by a set S can be expanded by m new

Overview of the Proof Procedure The proof procedure can be informally

described as follows.

- First, the usual decomposition rules of propositional logic are applied, together
with additional transitivity and paramodulation rules handling the properties
of the equality predicate. We also consider generalized decomposition rules
unfolding iterated formula (e.g., to infer ¢{i — n + 1} from /\111:(1)). In order
to handle store operations, we introduce new atoms of the form ¢ ~g s, meaning
that ¢t and s coincide on every element, except on those occurring in the set E.

- Then, we apply an inductive rule performing a case analysis on the parameter
n, considering separately the two cases n = 0 and n > 0. The rule recursively
replaces n by either 0 or n + 1, and thus lazily instantiates the parameter
with natural numbers, which enables further applications of the decomposition

rules. Of course, the addition of the induction rule makes the calculus non-
terminating, since n can be instantiated indefinitely.

- To avoid non-termination, a loop detection mechanism is added to prune infinite
branches. To get rid of such branches, we have to ensure that the depth of the
formulae occurring in the tableau is bounded, so that every infinite branch
contains a cycle, i.e., two nodes labeled by the same set of formule. It is easy
to see that the term depth and propositional depth of the formula cannot
increase, thus we only have to ensure that its index depth is bounded. To this
aim, we introduce new (satisfiability-preserving) rules allowing to get rid of all
formula containing an expression n + 2. This ensures that only terms indexed
by 0, n or n + 1 will remain in the formula before the inductive rule is applied,
hence the index depth will never be greater than 3. When trying to eliminate
formula containing an occurrence of n + 2, it turns out that it is sometimes
necessary to infer additional properties of the remaining symbols. For instance,
if the considered branch contains a formula select(t, uyt2) % select(s, uy12) then
we have to express the fact that ¢t and s disagree at some element u, 5. But
we have to express this property without explicitly referring to the term wuyo
(since our goal is to get rid of all such terms), and of course without introducing
new symbols (which would prevent termination). This cannot be done in the
initial language, thus we need to enrich the syntax by new predicates allowing
to express such properties in a convenient way. Of course, we also need to add
expansion rules encoding the axioms defining these predicates.

Enriching the Syntax We therefore enrich the syntax of the language by new
constructions. We first consider set expressions, denoting sets of individuals, and
built using the constructor U over a set of basic sets 0, {u} and 6(«), where u is a
constant or indexed constant and « an arithmetic expression. The sets () and {u}
and the constructor U are interpreted in a natural way, and 6(«) is interpreted in
any interpretation Z as the set of terms that are distinct from all expressions in
7|’£a, with lea I P U{up]” |t € Faae, k < [a]7}. Intuitively, 7Fa denotes
the set of named elements whose index is strictly lower than «.. We also consider
a predicate symbol € interpreted as usual as set membership, and a symbol ~g
stating that two arrays agree on all elements not occurring in the set denoted
by E. For instance, t ~y,,) s states that ¢ and s coincide at every element
distinct from v and v and ¢ ~(,) s states that ¢ and s coincide on every element
in 7|Ea Furthermore, we introduce a predicate =, (with a € Ty(n) U {—1}),
such that Z |= ¢ », s iff there exists an element e € §(a + 1) (in the domain
of ¢,s) such that the interpretations of ¢ and s disagree at e. The advantage
of the predicates ~p and ~, is that they allow us to express properties of
arrays without having to refer explicitly to the symbols denoting elements of
the domain of these arrays. In particular, the symbol ~g can be used to encode
store operations. More precisely, every atom of the form store(t,u,v) ~ s can
be replaced by the conjunction select(s,u) ~ v At ~(,} s, stating the fact that
s contains v at uw and coincides with ¢ at all other elements. Thanks to this
transformation (which obviously preserves satisfiability) we can assume that the
considered A-formula contains no instance of store. Finally, we add new constants

denoting all terms select(t,u) € T (n), with appropriate axioms, so that the index
of the constant denoting a term select(t,u) is the maximal index in ¢, u (note
that these special constants do not themselves occur in 7 (n)).

We are now in position to formally describe the inference rules defining the
proof procedure.

Propositional Decomposition Rules The rules (A-D), (V-D) and (L) are
the usual decomposition rules of propositional tableaux. Other decomposition
rules (similar to those in [2]) are added to handle iterated connectives.

PNY oV 0,29
(D) gy OB gy T

Vity Ny
WD) T otoary VP SEoai AL

Equality Rules The next rules encode the usual properties of the equality pred-
icate. The rule (S) encodes the substitutivity property, (~g-R;) and (~g-Ry)
encode the properties of the predicate ~g, whereas (P) allows one to replace a
term by an equal constant or indexed constant. Finally, (Ref) is a closure rule
encoding reflexivity and (C) encodes the fact that interpretations are contiguous.
To this purpose, it suffices to check that all constants of the form ug, o occur
either in X[f + 1] or in 0(8 + 2).

select(t,u) ~ w, select(s,v) ~ w' u =~ lul
!

) t#s | ugv | wew (P) o] if 6(u') =1

and either u’ € T'(n) or u does not occur in the scope of select or ~g in ¢.

’
UNE VU Mpr W

t ~g s, select(t ,u) ~ v
(~p-Ry) (', u)

(25-Rs) uzu | v~pup w wueE | t#t | select(s,u) ~v

(Ref) “7" (C) W €E | uprs €03 +2)

where E is the set of terms in X[+ 1] that are of the same sort as ugys.

~-Rules The two following rules handle the predicate ~,. The first one encodes
a form of transitivity on ~, and ~p. Indeed, if u », v and w ~g u hold, for some
set of elements ' whose indices are lower or equal to «, then we necessarily have
w 4 v. Indeed, by definition, u =, v holds if select(u,e) # select(v, e) for some
element e distinct from every non-indexed term and from every term indexed
by a natural number that is lower or equal to «. But such an element e cannot
occur in F, thus w coincides with u at e, and w ~, v necessarily holds.

U g U, W ~g u
utu | wewesv

(~-E) if @ is maximal in the node, E is a finite set.

The next rule allows one to derive expressions of the form ¢ ~,_; s. Such
an expression is derivable if there exists an element e such that seleci(t,e) #
select(s, e) and if this element is distinct from every non-indexed term and from
every term indexed by a natural number that is strictly lower than «. Thanks to
the fact that the interpretations are assumed to be contiguous, we only have to
test that e is distinct from all constants of the same sort of e that are non-indexed
or indexed by a — 1.

select(t, uq) =~ v, select(s,w) ~ w'
U EF | ug 2w | vew |t Suq 2w, v Ew

(~1)

where F is the set of terms in X[« — 1] that are of the same sort as u,.

The next rule in this section allows one to introduce expressions of the form
6(«). This is done by replacing a constant u occurring in a set E by 6(«), if u
occurs in f(«). This last condition is tested in the same way as in the previous
rule, by verifying that wu, is distinct from all constants that are non-indexed or
indexed by a — 1.

) L >2Bufu,} S
0-1 Uy € B’ | t ~EUb(a) S

where E’ is the set of terms in X[a — 1] that are of the same sort as .
The last rules in this subsection express straightforward properties of ~:

tqt1 8 t gt
D) s (P T
t g s
(~D) txps | trps ~T) g T T mgs

if 5 is the maximal index in the node, ¢, s, s’ are non-indexed constants or con-
stants indexed by an expression lower or equal to (.

€-Rules The following rules encode the definition of € and of the sets 6(«).

ue EU{v} uel
& ueE | ux~wv &by 1
u € 6(0) ueb(f+1)
€-By ———/— e-E
8 /\UeE'uiU : /\,UeE/,uf’U,’U,Go(ﬂ)

if £’ and E” denote respectively the terms in X', and X[§] that are of the same
sort as u.

Induction Rule The following rule instantiates the parameter n by considering
the two cases: n = 0 and n > 0. The later case is handled by replacing n by n+1.

]
B[0/n] [{n =0+ 1]

(Ind)

where #[0/n] denotes the set of A-formulae obtained from & by replacing n by 0,
and by replacing all iterations ITY_,¢ (with IT € {\,\/}) by ¢#{i — 0}.

Loop Detection The two following rules aim at preventing divergence, as
explained in Section 4.3. The first one simply deletes from a given node all the
A-formule containing a maximal index « (the rule applies with o« = n+2, but also
with a = 0, 1 after n has been instantiated). Of course, the rule does not preserve
satisfiability in general, but it preserves satisfiability if the considered node is
irreducible by all the previous rules, except (Ind). The intuitive justification is
that these rules extract all the relevant information from the formulae and express
it using only symbols indexed by expressions that are strictly smaller than «.

For every set of A-formulz and for every arithmetic expression «, we denote
by (S), the set of A-formula obtained from S by removing all formule containing
an index greater or equal to a.

if v is the maximal index expression in S and either « =n+ 2 or &« € N and §
contains no occurrence of n.

Note that in contrast to the other rules, S and (S), denote the labels of the
parent and child nodes (not subsets of these labels). Finally, the rule (L) closes
a node that is subsumed by another node in the proof tree:

m 2

if there exists a node N’ in the tableau, distinct from the current one labeled by
a set of formulae S’ such that S’ C S and either N’ is a leaf or N’ occurs in the
same branch as the current node

The Properties of the Calculus We denote by STABARRAY the procedure
defined by the previous inference rules. We assume that the rules are applied
with the following strategy. The rules (L), (W) and (Ind) are applied with a
strictly lower priority than the other rules. The rule (L) is applied only if (W)
does not apply, and (Ind) applies when no other rule applies.

Theorem 7. The calculus STABARRAY is:

— terminating: every tableau is finite;

— complete (w.r.t. the class of contiguous interpretations): every irreducible
open node has a contiguous model;

— sound (w.r.t. the class of contiguous interpretations): an A-formula admit-
ting a closed tableau has no contiguous model.

The number of A-formulee occurring in the tableau is at most exponential®
w.r.t. the size of the initial formula. Therefore, it is easy to check that the
complexity of STABARRAY is at most doubly exponential (since the number of
nodes in the tableau is bounded by the number of sets of formula).

5 The exponential blow-up stems from the atoms of the form ~g, where E is a set of
terms of arbitrary cardinality.

Ezample 8. We consider the following set of A-formule: {select(tat1,unt1) =
v, select(s, Uns1) = W,V P W, Uny1 P Un,bo = S, N]_gti 2{u;} tis1}. Note that this set
has no contiguous model: since un41 % Un, Un+1 must be distinct from up, un—1, .. ., uo,
and thus ¢,4+1 necessarily coincides with to (hence with s) on ua.11. We first apply the
rule (S) on the first two formulae, yielding the branches tni1 % 8, Unt1 Z Unt1 and
v ~ w. The last two branches can be closed immediately by applying the rules (Ref)
and (L), respectively. Then the rule (~-I) applies, yielding the two branches: un+1 € F
(where E is the set of terms in X[n] of the same sort as unt1) and tant1 ~a s (the
other branches can be closed immediately). We have F = {uy}, thus the rule €-E;
applies on the first branch, yielding us+1 =~ un, and the branch can be closed due to
the formula ua4+1 % ua. In the second branch, we can apply the rule (Ind). In the base
case, we get t1 o s and to ~yy,} t1, hence by (P), s ~,,} t1. Then the rule (~-E)
derives s »g s and the branch is closed by (~-_L). In the inductive case, n is replaced by
n+ 1, and the formula t,41 ™ fupy1} tnt2 is derived by (V-D). By (~g-R;), we derive
select(tny1,unt2) ~ v and thus tny1 »np1 s can be obtained as in the previous node.
Then the rule (W) applies and removes all formula containing n + 2. We get the set
of formulae: {tnt1 *ny1 $,v 2 w,to ~ s,/\’i‘=0 ti ~qu;} tiv1}(*). We apply again the
rule (Ind). The base case can be closed immediately as before. In the inductive case,
we derive the formulae tnt2 =nt2 S, tay1 ~{u,,,} tat2, hence by (~-E) and (=-I) we
get tat1 #nt2 s and tat1 #nt1 S. Then the rule (W) applies again, yielding a set of
formulae that is identical to (x). Thus the rule (L) applies, closing the whole tableau
(note that some irrelevant rule applications have been omitted for readability).

5 Applications

We provide some simple applications of the proposed procedure. The program
in pseudo-code below copies in an array B all the elements occurring in an array
A and satisfying some property p.
i+0
j+0
while i <n do
if p(A[i]) then
Blj] + Ali]
j—ji+1
end if
i+—i+1
end while
The behavior of this program can be encoded by the following A-formula. The
parameter n denotes the number of iterations and i is the iteration rank. The
indexed constants B; and j; denote the value of B and j at time i. Note that
since A is not affected and since it is always indexed by i, it is simpler to encode
it as an indexed constant rather than as an array.

jO ~0
Ni_o(—p(A;) >~ true V (Biyq = store(Bs, ji, Ai) A jiy1 = select(succ, 31)))
Nizo(p(As) =~ true V (Bit1 = Bi A jiy1 = ji))
The symbol suce denotes the successor function (suce(x) is written select(succ, x)
because all functions are encoded as arrays in our framework). By using a

straightforward typing algorithm, we can infer that A, B and j are of sorts
nat — s, nat — s’ — s and nat — s’, respectively. The constants true, 0, succ
and p are of sort bool, s’, s’ — s’ and s — bool, respectively. It is clear that
the sort s is non-cyclic. The sort s’ is cyclic, however, it is easy to check that
its interpretation is necessarily contiguous, since j is the only constant of sort
nat — s’ and since j;;1 is always obtained from j; by applying some increasing
function (thus j; is equal to ji for I > k only if j; = 5,1 = ... = jg)-

We can therefore use STABARRAY to check that all the values stored in
the final array (at ji,...,J,) satisfies the property p. It suffices to check that
the following A-formula, together with the previous axioms, is unsatisfiable:
C =~ Buyy1 A Vi_op(select(C, ji)) # true. Note that we cannot state in our
language the fact that the initial array satisfies the property p at all cells, since
the logic does not allow universal quantification.

Conversely, we can also check that all elements occurring in the initial array
and satisfying the property p occur in the final array: C' ~ Bpi1 A \/]_g(u ~
A; Ap(u) ~ true) A \;_, select(C, ji) % u

We provide another similar example. The following program interleaves in
the same array C the elements occurring in two arrays A and B.

j«0

i+0

while i <n do
Cl3] « A[4]
C[j + 1] + B[i]
j—ji+2

end while

The behavior of the program is modeled as follows.

Ni—o(Cit1 = store(store(Ci, j1, Ay), select(suce, j1), Bs))
Jo =2 0A NG Jit1 = select(succ, select(suce, j1))

We can check, for instance, that if the array A satisfies some property p, then
all pairs of consecutive cells in the final array necessarily contain an element
satisfying p:

D >~ Cyp1 A Vi_o(u > 35 V u = select(suce, j1))A
p(select(D,u)) # true A p(select(D, select(succ,u))) # true
Ni_op(A;) >~ true

6 Conclusion

We have shown that the satisfiability problem is undecidable for schemata of
formule interpreted in the theory of arrays, and we have defined a restricted
class of interpretations (called quasi-contiguous) in which satisfiability can be
decided in finite time (with a doubly exponential complexity). Future work in-
cludes the implementation of our approach. From a more theoretical point of
view, it would be interesting to provide a lower bound for the complexity of
satisfiability testing for A-formulae in quasi-contiguous interpretations (only an

upper bound is provided in the present paper). We shall also investigate whether
the presented results extend to more expressive theories, including for instance
a combination of the theory of arrays and Presburger arithmetic, possibly en-
riched with additional axioms allowing to express general properties of arrays
(e.g., to state that an array is sorted or constant on some interval). As evidenced
by the examples in Section 5, such properties can sometimes be expressed in our
language, using iterated conjunctions, but this is possible only if the considered
interval corresponds to a family of constants. Allowing some restricted form of
quantification would therefore enhance the expressive power of the language.

An obvious drawback of our approach is that the conditions on the interpreta-
tions are of a semantic nature and thus must be checked by the user. We therefore
plan to devise syntactic criteria ensuring that the conditions are satisfied (i.e.
ensuring that a satisfiable formula has a contiguous model). The examples in
Section 5 suggest that this is feasible, at least in simple cases. It would also be
interesting to characterize formally the class of programs and properties that
can be modeled in our language.

References

1. A. Abadi, A. Rabinovich, and M. Sagiv. Decidable fragments of many-sorted logic.
J. Symb. Comput., 45(2):153-172, 2010.

2. V. Aravantinos, R. Caferra, and N. Peltier. A schemata calculus for proposi-
tional logic. In TABLEAUX 09 (International Conference on Automated Reason-
ing with Analytic Tableauz and Related Methods), volume 5607 of LNCS, pages
32-46. Springer, 2009.

3. V. Aravantinos, R. Caferra, and N. Peltier. Decidability and undecidability results
for propositional schemata. Journal of Artificial Intelligence Research, 40:599-656,
2011.

4. V. Aravantinos, M. Echenim, and N. Peltier. A resolution calculus for first-order
schemata. Fundamenta Informaticae, 2013. Accepted for publication, to appear.

5. V. Aravantinos and N. Peltier. Schemata of SMT problems. In TABLEAUX 11
(International Conference on Automated Reasoning with Analytic Tableaur and
Related Methods), LNCS. Springer, 2011.

6. A. Armando, S. Ranise, and M. Rusinowitch. A rewriting approach to satisfiability
procedures. Information and Computation, 183(2):140-164, 2003.

7. P. Baumgartner, A. Fuchs, and C. Tinelli. (LIA) - Model Evolution with Linear
Integer Arithmetic Constraints. In I. Cervesato, H. Veith, and A. Voronkov, editors,
LPAR, volume 5330 of LNCS, pages 258-273. Springer, 2008.

8. A. R. Bradley and Z. Manna. The Calculus of Computation: Decision Procedures
with Applications to Verification. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2007.

9. A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays? In
E. A. Emerson and K. S. Namjoshi, editors, Proc. VMCAI-7, volume 3855 of LNCS,
pages 427-442. Springer, 2006.

10. S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Decision procedures for ex-
tensions of the theory of arrays. Annals of Mathematics and Artificial Intelligence,
50:231-254, 2007.

11. P. Habermehl, R. Iosif, and T. Vojnar. What else is decidable about integer arrays?
In R. M. Amadio, editor, FoSSaCS, volume 4962 of LNCS, pages 474-489. Springer,
2008.

