N

N

Energy levels of interacting curved nano-magnets in a
frustrated geometry: increasing accuracy when using
finite difference methods
Hanna Riahi, Frangois Montaigne, Nicolas Rougemaille, Benjamin Canals,
Daniel Lacour, Michel Hehn

» To cite this version:

Hanna Riahi, Francois Montaigne, Nicolas Rougemaille, Benjamin Canals, Daniel Lacour, et al..
Energy levels of interacting curved nano-magnets in a frustrated geometry: increasing accuracy when
using finite difference methods. Journal of Physics: Condensed Matter, 2013, 25 (29), pp.296001.
10.1088/0953-8984/25/29/296001 . hal-00934439

HAL Id: hal-00934439
https://hal.science/hal-00934439v1
Submitted on 30 Aug 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00934439v1
https://hal.archives-ouvertes.fr

Energy levels of interacting curved nano-magnets in a frustrated
geometry : increasing accuracy when using finite difference methods

H. Riahi*, F. Montaigne®, N. Rougemaille?, B. Canals®, D. Lacour' and M. Hehn'

! Institut Jean Lamour, CNRS - Université de Loregihoulevard des aiguillettes
BP 70239, F-54506 Vandoeuvre lés Nancy, France
2 Institut Néel, CNRS-UJF, BP 166, 38042 Grenoblde2ed, France

The accuracy of finite difference methods is relate the mesh choice and cell size. Concerningrtiteomagnetism
of nano-objects, we show here that discretizatssues can drastically affect the symmetry of theblem and
therefore the resulting computed properties ofckast of interacting curved nanomagnets. In thisspape detail these
effects for the multiaxe kagome lattice. Using @emmf finite difference method, we propose an aléve way of
discretizing the nanomagnet shape via a variablmemb per cell scheme. This method is shown to beiegft in
reducing discretization effects.

Recently, magnetic frustration in artificial spicei aspects are impacted by discretization effectst Fir
has been the subject of intense investigation anals the symmetry of the finite difference rectangula
micromagnetic simulations have been used tonesh differs from the symmetry of the vertex, the
compute and compare the energies of different spidiscretization of the nanomagnets along the three
configurations [1], to estimate the couplingdirections is different. Second, as the kagomeatt
coefficients between nanomagnets [2,3], to studys incommensurable with a square discretization
magnetic domain wall configurations at a vertex [4mesh, translated vertex in the kagome geometry
5] or to investigate magnetization reversal proegss will not have equivalent discretization, resultimg

[6]. It has also been shown that micromagnetidifferent computed micromagnetic configurations
aspects (non uniform magnetic configurationsleven for equivalent objects. As a result, the
brings additional complexity into the physics of translational invariance is numerically broken. IBot
monopoles that is absent in spin models and th&ffects can change significantly the computation
considerably enriches the physics of artificialresults and might change the nature of the simiilate
frustrated systems. As an example, in addition to fundamental state or the simulated reversal
fractionalized classical magnetic charge, monopolegrocesses.  Characterizing the effects of
in the artificial kagome are chiral [7]. Howevenet discretization and possibly reducing their influenc
guantitative  description  of  micromagnetic is therefore crucial when dealing with this kind of
properties raises specific difficulties from nuncati  micromagnetic simulations. In this paper, using FD
point of view, especially the choice of the meshnumerical method, we will propose to use a
used for computation and the computation methodliscretization scheme with variable magnetization
Indeed, in simulations based on a finite differenceralues to reduce the consequences of meshing
(FD) approach, i.e. the system is discretized usingithout increasing computation time.
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symmetry of the sy_stem is  not reCtangUIa_-r- Fig.1 : The 6 degenerate low-energy configurati¢i@sin / 1 out"
Therefore, beyond an inaccuracy on the calculatio or "2 out / 1 in" states) belonging to the growstdte, and 2

of the coupling coefficients or coercive fieldseth gf?;r;irt?ft:t'gge”ergy configurations violatingiceerule (*3 in”
effects of discretization can drastically impace th
results of the computation and the FD numerical

method may not be able to cover all aspects of th@/e investigate the impact of mesh size and
underlying physics. orientation at the scale of a vertex in the kagome

lattice. This is a region where three magnetic
Considering the kagome spin ice system, th@anomagnets are in close interaction through their
degeneracy of its fundamental state is related botétray fields and where the accuracy of the energy
to its rotational symmetry @ and its translational || strongly depend on the meshing. The vertex is
invariance. From numerical point of view, bothmade of 3 unconnected cobalt nanomagnets with



dimensions 500 x 100 x 10 Am The minimum FEELLGOOD software (a) and with the FD
distance between nanomagnets is set to 42 nm. TREOMMF software with two different meshes (b, c)
micromagnetic parameters chosen aravith 10 nm cell sizes. Energies are expressed in
representative  from  polycrystalline  cobalt units of J,, the coupling coefficient between first
(magnetization of 1400.2080/m and exchange of neighbours  within  the  punctual dipole
3.10" J/m, no crystalline anisotropy). With those approximation. A value of, = 1.34x10°® Joules is
parameters, magnetization lies in plane and isbtained considering the total magnetic moment of
mostly oriented along the long axis of theeach nanomagnet concentrated at the centroid and
nanomagnets. As a result, each nanomagnet has asing the vertex geometry for the distance between
Ising-like magnetic configuration. In a vertex, thedipoles. The 10 nm cell size meshing induces a non-
number of accessible multi-axes Ising-like negligible degeneracy lift of the fundamental state
configurations is 2(see fig.1), 6 degenerate low- The comparison with the FE calculation shows that
energy configurations ("2 in/ 1 out" or "2 édtin"  this splitting is induced by the meshing.
states) belonging to the ground state, and Eurthermore, the values of energy depend on the
degenerate high-energy configurations violating thenesh (difference between (b) and (c)). This is a
ice-rule ("3 in" or "3 out" states). Due to #féect consequence of the mesh induced numerical
of discretization, the three nanomagnets are nabughness at the edges of the nanomagnets. The
equivalently meshed and the degeneracy betweeamergy splitting occurs because each nanomagnet is
low-energy configurations is lifted. discretized differently, depending on its position
and relative angle to the mesh.

The energy of the configurations can also be seen a
\ \ | ! a sum of pair interactions (this is not generalbet
J,

s in the case of a micromagnetic system but still
mathematically possible for a 3 nanomagnets
systems). If discretization effects can be negtecte

a) — b) — 0 and 3 folds symmetry is conserved, the energy of a
2 4 vertex can be written as
5 g E=-{55+5§5+58) (1)

— = = where § (i=1,2,3) are the unit vectors collinear to

the magnetic moment of thh nanomagnet. The

energy of the 6 configurations that obey the ide,ru
Fig.2: Energies of the 8 different magnetic coufations at a 2 in/1 out or 1 out/2 in pseudo-spins, equaks-
vertex determined using (a) FE approach and witfieréint ; : ;
discretization schemes using FD: (b) mesh and ftitires of (:!'/2) _‘] Whlle_the energy of the 2 Conﬁguratlo_ns
symmetry not aligned, (c) one mesh direction aliyvéth one violating the ice rule, 3 in ou 3 out pseudo-spins,
direction of symmetry of the vertex. Inset : zoottte vertex core equa|s E||=(3/2)J- The extraction of J is then
to show the discretization. : : - :

straightforward since Ez+E,. The coupling

coefficient J converges toward§, as the distance
Most of the reported simulation results as well adetween nanomagnets increases. On the other hand,
the proposed method are implemented using th@r smaller gaps between nanomagnets, the
open source OOMMF 2D micromagnetic code [8],coupling coefficient is much larger than the one
which is widely used by the scientific community. given by the punctual dipole approximation.
For this study, we compared the results obtainedctually at small distances, the spatial repartitid
with this FD based code (i.e OOMMF) to resultsthe magnetization is not negligible through the
obtained with a finite elements (FE) basedchoice of the mesh and the multipolar nature of the
micromagnetic code : the FEELLGOOD softwareinteraction between nanomagnets has to be taken
[9, 10]. In order to have a reference to compaee thinto account.
FD method proposed in this paper, the FE approach
has been used to calculate energies of the vertéx the more general case, i.e. with discretization
with cell size of 4nm. Combined with the more effects, the energy of the vertex can be written as
accurate description of the nanomagnets shape, the E=-1,5$5-J,,5$5-J,,SS, (2)
calculation results are not tainted of discretaati
artefacts. Figure 2 represents the energies oBtheDue to time reversal symmetry, there are thus 4
possible configurations calculated using the FHevels of energy associated to the eight magnetic




configurations: one for the high energy state2c. As the mesh and the object shares a common
( E, :%(J12+J13+J23)) and three for the states symmetry axis, the fundamental state is split ityon
2 levels and two coupling coefficients are equal
Ji» = Ji3 for example). Even if the number of level
E?=1(-J,+J3,-J,) and E’=1(-J,-J,+J,) )- i(slzredhgced, the IOsp)litting between them is, in
The 4 energies associated to the eightverage, not reduced for a symmetric mesh.
configurations are calculated by micromagneticHowever it might be of interest for some
simulation and therefore the three couplingsimulations to reduce the number of different
coefficients can be deduced from 4 equations (apoefficients to describe the system (for the
energy constant is present in the micromagnetigetermination of coupling coefficient beyond the
simulations). The spread of the coupling valuesirst neighbour [2] for example). This reduction of
comes from the mesh chosen for the calculation. the number of coefficient is only possible for one
vertex of the kagome lattice. Indeed, as mentioned
above, due to the incommensurability between the
lattice and the mesh, the number of coefficients

obeying the ice rule (E'=1(3,-3,-J,) -

S : increases rapidly with the number of simulated

> : ! nanomagnets since translated vertices do not have

s %% | | ! to same mesh position with respect to the edges.
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S : effects requires a small enough cell size of the

S 04T ) mesh. As a consequence, the number of

£ 02} o ! nanomagnets which can be simulated is limited due

§ 0.0 ! I N ‘ X to both calculation time and memory capacities. We
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Cell (nm) will now evaluate a different approach to minimise

these discretization effects and increase the
Fig.3 : Top: first neighbour coupling as a functiohcell size and accuracy of the energy. In order to "smoothen" the
mesh in units ofgJwhen using a black and white mask to define the o . .
nanostructures. Bottom: splitting of the couplingetvbeen shape of the nanomagnets’ itis p033|ble to atéribu
nanomagnets as a function of cell size and mesiniis of § when a reduced magnetic moment to cells of the mesh
using a black and white mask to define the nancstras. In top Crossing the edges in each nanomagnet In a
and bottom, the dotted line is the result of thiewdation using the . . . . )
home made finite element FEELLGOOD software usidgia cell conventional discretization appr_oach,' Whe_n the
size. surface of a cell of the mesh is entirely in the

nanomagnet or crosses the nanomagnet edges, the

In figure 3 are summarized the valueslpfn units magnet!c mome_nt of the cell is the one of the buI_k
of J, as a function of cell size, for different choicesMadnetic material; when not, magnetic moment is

of the mesh (for each cell size, 10 different mesheZ€0- We propose to use a grey scale mask and the
have been used, except for 4nm cell size). The red €Y scale value c_>f e_ach cell is proportional e th
dotted line is the result of the calculations madeUface of the cell inside the nanostructure (F)g.

with the FE based FEELLGOOD software. For a , .

fixed cell size, a distribution of coupling The grey level is then _made_p_roporﬂonal to the
coefficients is observed. This distribution origies  M@gnetic moment carried within the pixel by
from both the asymmetry induced by theModulating the thickness of the materigigure 5 .
discretization for a given mesh and differentcOmMpares the results of the computed coupling

realizations of the mesh. Figure 3 also represenféoeﬁidents‘]” asa function of cell size_and mesh in
the splitting (maximum minus minimum energy of Units of Jo when using a black and white mask or a

the fundamental state) grey scale mask to define the nanostructures (data
' for column (a) are identical to those reported in

As expected, the decrease of the cell size allows figure 3). Using the grey scale mask, both the
better meshing of the nanomagnet and so a mof#istribution of coupling coefficients and the energ
accurate estimation of the system energy. As gPlitting are drastically reduced for a given cite.
result, both the spread of thk values and the Typically the distribution obtained for a 2 nm cell
splitting of the fundamental level are reduced.sThi Size in the black and white case is obtained for a

conclusion is robust against varying the mestp "M cell size (and consequently for a large
orientation, especially rotating the mesh withréduction of the computation time and memory

respect to the vertex. A special mesh is th@ccupation) by using the grey scale mask. This
symmetric one as illustrated in the inset of figurdVighlights the interest in using this kind of masks



the same accuracy can be obtained with les§he authors would like to thank J.-C. Toussaint for
computation time or a better accuracy can bdruitful discussions and for help with the FE

obtained with same computation time.

a)

Fig.4 : The definition of the shape of a roundedamagnet with a
square mesh (magnetic material present inside ¢kecurve, no
magnetic material outside). (a) A black and whitaskndefines the
shape of a rounded nanomagnet. When the surfacecell of the
mesh is entirely in the nanomagnet or crosses dnemagnet edges,
the magnetic moment of the cell is the one of tlk bnagnetic
material; when not, magnetic moment is zero; (bjrdy scale mask
defines the shape of a rounded nanomagnet. Thesgadyg value is
proportional to the surface of the cell inside ttaostructure and is
then made proportional to the magnetic moment & ¢ell by
modulating the thickness of the material.

In this study we have investigated the impact ef th
mesh on the energy of interacting nanomagnets. V
have shown that the choice of the mesh induces
energy splitting of the ground level of vertex anc
coupling coefficients that depends on the mesh si:
and direction. We have shown that the use of a gr¢
scale mask allows to improve the accuracy of th
energy determination and reproduces the resul

FEELLGOOD calculations. This work has been
partially supported by the Region Lorraine, the
ANR Project FRUSTRATED and the Institut
Carnot ICEEL Lorraine.
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Fig.5 : Spread of the first neighbour coupling ¢ansin units of ¢
as a function of cell size and mesh grid when usfay the
conventional black and white mask and (b) a grelescask to
define the nanomagnets. The red line is the redute calculation
using the home made finite element FEELLGOOD saféwssing a
4nm cell size.

obtained in a FE approach. This is of prime

importance in such arrays for which the energyy)
splittings between the 6 configurations satisfying

the ice rule that appear using FD are of samg
magnitude and even stronger than the energy

splitting related to the magnetostatic interactioet

lifts the degeneracy in arrays containing manys

vertices. Theoretically, the dipolar interaction

energy with the second neighbours in the kagom@]

geometry is equal to 0.137%xJdypically the spread

in energy with the best meshing using a black an

white mask with 5 nm cell size (figure 5). It iseth

crucial when dealing with energy determination ofi7]
magnetic configurations in a kagome artificial spin
system to check the origin of the calculated energy

splittings. An accurate description descriptioriref

energy level is obviously necessary to study the®!
influence of the micromagnetic aspects in the ideal

system but it is also mandatory in order to intiaElu

voluntary shape roughness or other "defects'
Indeed, artificial nanomagnets are hardly perfect
and do not exhibit full symmetries of the idealized

lattice [11].
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