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The accuracy of finite difference methods is related to the mesh choice and cell size. Concerning the micromagnetism 
of nano-objects, we show here that discretization issues can drastically affect the symmetry of the problem and 
therefore the resulting computed properties of lattices of interacting curved nanomagnets. In this paper, we detail these 
effects for the multiaxe kagome lattice. Using the Oommf finite difference method, we propose an alternative way of 
discretizing the nanomagnet shape via a variable moment per cell scheme. This method is shown to be efficient in 
reducing discretization effects. 
 
 
Recently, magnetic frustration in artificial spin ice 
has been the subject of intense investigation and 
micromagnetic simulations have been used to 
compute and compare the energies of different spin 
configurations [1], to estimate the coupling 
coefficients between nanomagnets [2,3], to study 
magnetic domain wall configurations at a vertex [4, 
5] or to investigate magnetization reversal processes 
[6]. It has also been shown that micromagnetic 
aspects (non uniform magnetic configurations) 
brings additional complexity into the physics of 
monopoles that is absent in spin models and that 
considerably enriches the physics of artificial 
frustrated systems. As an example, in addition to a 
fractionalized classical magnetic charge, monopoles 
in the artificial kagome are chiral [7]. However, the 
quantitative description of micromagnetic 
properties raises specific difficulties from numerical 
point of view, especially the choice of the mesh 
used for computation and the computation method. 
Indeed, in simulations based on a finite difference 
(FD) approach, i.e. the system is discretized using 
an orthorhombic mesh, the staircase shaped 
boarders linked to the meshing can significantly 
change the result of the simulation and induces 
specific effects related to the mesh and not to the 
system itself. The influence of the mesh increases 
when the system surface is curved or when the 
symmetry of the system is not rectangular. 
Therefore,  beyond an inaccuracy on the calculation 
of the coupling coefficients or coercive fields, the 
effects of discretization can drastically impact the 
results of the computation and the FD numerical 
method may not be able to cover all aspects of the 
underlying physics.  
 
Considering the kagome spin ice system, the 
degeneracy of its fundamental state is related both 
to its rotational symmetry (C3) and its translational 
invariance. From numerical point of view, both 

aspects are impacted by discretization effects. First 
as the symmetry of the finite difference rectangular 
mesh differs from the symmetry of the vertex, the 
discretization of the nanomagnets along the three 
directions is different. Second, as the kagome lattice 
is incommensurable with a square discretization 
mesh, translated vertex in the kagome geometry 
will not have equivalent discretization, resulting in 
different computed micromagnetic configurations 
even for equivalent objects. As a result, the 
translational invariance is numerically broken. Both 
effects can change significantly the computation 
results and might change the nature of the simulated 
fundamental state or the simulated reversal 
processes. Characterizing the effects of 
discretization and possibly reducing their influence 
is therefore crucial when dealing with this kind of 
micromagnetic simulations.  In this paper, using FD 
numerical method, we will propose to use a 
discretization scheme with variable magnetization 
values to reduce the consequences of meshing 
without increasing computation time.  

 
We investigate the impact of mesh size and 
orientation at the scale of a vertex in the kagome 
lattice. This is a region where three magnetic 
nanomagnets are in close interaction through their 
stray fields and where the accuracy of the energy 
will strongly depend on the meshing. The vertex is 
made of 3 unconnected cobalt nanomagnets with 

 
Fig.1 : The 6 degenerate low-energy configurations (''2 in / 1 out'' 
or ''2 out / 1 in'' states) belonging to the ground state, and 2 
degenerate high-energy configurations violating the ice-rule (''3 in'' 
or ''3 out'' states).  
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dimensions 500 × 100 × 10 nm3. The minimum 
distance between nanomagnets is set to 42 nm. The 
micromagnetic parameters chosen are 
representative from polycrystalline cobalt 
(magnetization of 1400.103 A/m and exchange of 
3.1011 J/m, no crystalline anisotropy). With those 
parameters, magnetization lies in plane and is 
mostly oriented along the long axis of the 
nanomagnets. As a result, each nanomagnet has an 
Ising-like magnetic configuration. In a vertex, the 
number of accessible multi-axes Ising-like 
configurations is 23 (see fig.1), 6 degenerate low-
energy configurations (''2 in / 1 out'' or ''2 out / 1 in'' 
states) belonging to the ground state, and 2 
degenerate high-energy configurations violating the 
ice-rule (''3 in'' or ''3 out'' states). Due to the effect 
of discretization, the three nanomagnets are not 
equivalently meshed and the degeneracy between 
low-energy configurations is lifted.  

Most of the reported simulation results as well as 
the proposed method are implemented using the 
open source OOMMF 2D micromagnetic code [8], 
which is widely used by the scientific community. 
For this study, we compared the results obtained 
with this FD based code (i.e OOMMF) to results 
obtained with a finite elements (FE) based 
micromagnetic code : the FEELLGOOD software 
[9, 10]. In order to have a reference to compare the 
FD method proposed in this paper, the FE approach 
has been used to calculate energies of the vertex 
with cell size of 4nm. Combined with the more 
accurate description of the nanomagnets shape, the 
calculation results are not tainted of discretization 
artefacts. Figure 2 represents the energies of the 8 
possible configurations calculated using the FE 

FEELLGOOD software (a) and with the FD 
OOMMF software with two different meshes (b, c) 
with 10 nm cell sizes. Energies are expressed in 
units of J0, the coupling coefficient between first 
neighbours within the punctual dipole 
approximation. A value of J0 = 1.34×10-18 Joules is 
obtained considering the total magnetic moment of 
each nanomagnet concentrated at the centroid and 
using the vertex geometry for the distance between 
dipoles. The 10 nm cell size meshing induces a non-
negligible degeneracy lift of the fundamental state. 
The comparison with the FE calculation shows that 
this splitting is induced by the meshing. 
Furthermore, the values of energy depend on the 
mesh (difference between (b) and (c)). This is a 
consequence of the mesh induced numerical 
roughness at the edges of the nanomagnets. The 
energy splitting occurs because each nanomagnet is 
discretized differently, depending on its position 
and relative angle to the mesh. 
 
The energy of the configurations can also be seen as 
a sum of pair interactions (this is not generally true 
in the case of a micromagnetic system but still 
mathematically possible for a 3 nanomagnets 
systems). If discretization effects can be neglected 
and 3 folds symmetry is conserved, the energy of a 
vertex can be written as   
 ( )323121 ... SSSSSSJE

rrrrrr
++−=                 (1) 

 
where 

iS
r

(i=1,2,3) are the unit vectors collinear to 

the magnetic moment of  the i-th nanomagnet. The 
energy of the 6 configurations that obey the ice rule, 
2 in/1 out or 1 out/2 in pseudo-spins, equals EI=-
(1/2) J while the energy of the 2 configurations 
violating the ice rule, 3 in ou 3 out pseudo-spins, 
equals EII=(3/2)J. The extraction of J is then 
straightforward since J=EII+EI. The coupling 
coefficient J converges towards J0 as the distance 
between nanomagnets increases. On the other hand, 
for smaller gaps between nanomagnets, the 
coupling coefficient is much larger than the one 
given by the punctual dipole approximation. 
Actually at small distances, the spatial repartition of 
the magnetization is not negligible through the 
choice of the mesh and the multipolar nature of the 
interaction between nanomagnets has to be taken 
into account.  
 
In the more general case, i.e. with discretization 
effects, the energy of the vertex can be written as 
 

322331132112 ...... SSJSSJSSJE
rrrrrr

−−−=       (2) 
 
Due to time reversal symmetry, there are thus 4 
levels of energy associated to the eight magnetic 
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Fig.2 :  Energies of the 8 different magnetic configurations at a 
vertex determined using (a) FE approach and with different 
discretization schemes using FD: (b) mesh and directions of 
symmetry not aligned, (c) one mesh direction aligned with one 
direction of symmetry of the vertex. Inset : zoom at the vertex core 
to show the discretization. 
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configurations: one for the high energy state 
( ( )2313122

1 JJJEII ++= ) and three for the states 

obeying the ice rule ( ( )2313122
11 JJJEI −−= , 

( )2313122
12 JJJEI −+−=  and ( )2313122

13 JJJEI +−−= ). 

The 4 energies associated to the eight 
configurations are calculated by micromagnetic 
simulation and therefore the three coupling 
coefficients can be deduced from 4 equations (an 
energy constant is present in the micromagnetic 
simulations). The spread of the coupling values 
comes from the mesh chosen for the calculation. 

 
In figure 3 are summarized the values of Jij in units 
of J0 as a function of cell size, for different choices 
of the mesh (for each cell size, 10 different meshes 
have been used, except for 4nm cell size). The red 
dotted line is the result of the calculations made 
with the FE based FEELLGOOD software. For a 
fixed cell size, a distribution of coupling 
coefficients is observed. This distribution originates 
from both the asymmetry induced by the 
discretization for a given mesh and different 
realizations of the mesh. Figure 3 also represents 
the splitting (maximum minus minimum energy of 
the fundamental state). 
 
As expected, the decrease of the cell size allows a 
better meshing of the nanomagnet and so a more 
accurate estimation of the system energy. As a 
result, both the spread of the Jij values and the 
splitting of the fundamental level are reduced. This 
conclusion is robust against varying the mesh 
orientation, especially rotating the mesh with 
respect to the vertex. A special mesh is the 
symmetric one as illustrated in the inset of figure 

2c. As the mesh and the object shares a common 
symmetry axis, the fundamental state is split in only 
2 levels and two coupling coefficients are equal 
(J12 = J13 for example). Even if the number of level 
is reduced, the splitting between them is, in 
average, not reduced for a symmetric mesh. 
However it might be of interest for some 
simulations to reduce the number of different 
coefficients to describe the system (for the 
determination of coupling coefficient beyond the 
first neighbour [2] for example). This reduction of 
the number of coefficient is only possible for one 
vertex of the kagome lattice. Indeed, as mentioned 
above, due to the incommensurability between the 
lattice and the mesh, the number of coefficients 
increases rapidly with the number of simulated 
nanomagnets since translated vertices do not have 
to same mesh position with respect to the edges. 
 
Generally, the need of minimising the discretization 
effects requires a small enough cell size of the 
mesh. As a consequence, the number of 
nanomagnets which can be simulated is limited due 
to both calculation time and memory capacities. We 
will now evaluate a different approach to minimise 
these discretization effects and increase the 
accuracy of the energy. In order to "smoothen" the 
shape of the nanomagnets, it is possible to attribute 
a reduced magnetic moment to cells of the mesh 
crossing the edges in each nanomagnet. In a 
conventional discretization approach, when the 
surface of a cell of the mesh is entirely in the 
nanomagnet or crosses the nanomagnet edges, the 
magnetic moment of the cell is the one of the bulk 
magnetic material; when not, magnetic moment is 
zero. We propose to use a grey scale mask and the 
grey scale value of each cell is proportional to the 
surface of the cell inside the nanostructure (Fig. 4).  
 
The grey level is then made proportional to the 
magnetic moment carried within the pixel by 
modulating the thickness of the material. Figure 5 
compares the results of the computed coupling 
coefficients Jij as a function of cell size and mesh in 
units of J0 when using a black and white mask or a 
grey scale mask to define the nanostructures (data 
for column (a) are identical to those reported in 
figure 3). Using the grey scale mask, both the 
distribution of coupling coefficients and the energy 
splitting are drastically reduced for a given cell size. 
Typically the distribution obtained for a 2 nm cell 
size in the black and white case is obtained for a 
5 nm cell size (and consequently for a large 
reduction of the computation time and memory 
occupation) by using the grey scale mask. This 
highlights the interest in using this kind of masks : 
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Fig.3 : Top: first neighbour coupling as a function of cell size and 
mesh in units of J0 when using a black and white mask to define the 
nanostructures. Bottom: splitting of the coupling between 
nanomagnets as a function of cell size and mesh in units of J0 when 
using a black and white mask to define the nanostructures. In top 
and bottom, the dotted line is the result of the calculation using the 
home made finite element FEELLGOOD software using a 4nm cell 
size.  
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the same accuracy can be obtained with less 
computation time or a better accuracy can be 
obtained with same computation time. 

 
In this study we have investigated the impact of the 
mesh on the energy of interacting nanomagnets. We 
have shown that the choice of the mesh induces an 
energy splitting of the ground level of vertex and 
coupling coefficients that depends on the mesh size 
and direction. We have shown that the use of a grey 
scale mask allows to improve the accuracy of the 
energy determination and reproduces the results 
obtained in a FE approach. This is of prime 
importance in such arrays for which the energy 
splittings between the 6 configurations satisfying 
the ice rule that appear using FD  are of same 
magnitude and even stronger than the energy 
splitting related to the magnetostatic interaction that 
lifts the degeneracy in arrays containing many 
vertices. Theoretically, the dipolar interaction 
energy with the second neighbours in the kagome 
geometry is equal to 0.137×J0, typically the spread 
in energy with the best meshing using a black and 
white mask with 5 nm cell size (figure 5). It is then 
crucial when dealing with energy determination of 
magnetic configurations in a kagome artificial spin 
system to check the origin of the calculated energy 
splittings. An accurate description description of the 
energy level is obviously necessary to study the 
influence of the micromagnetic aspects in the ideal 
system but it is also mandatory in order to introduce 
voluntary shape roughness or other "defects". 
Indeed, artificial nanomagnets are hardly perfect 
and do not exhibit full symmetries of the idealized 
lattice [11].   
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Fig.4 : The definition of the shape of a rounded nanomagnet with a 
square mesh (magnetic material present inside the red curve, no 
magnetic material outside). (a) A black and white mask defines the 
shape of a rounded nanomagnet. When the surface of a cell of the 
mesh is entirely in the nanomagnet or crosses the nanomagnet edges, 
the magnetic moment of the cell is the one of the bulk magnetic 
material; when not, magnetic moment is zero; (b) A grey scale mask 
defines the shape of a rounded nanomagnet. The grey scale value is 
proportional to the surface of the cell inside the nanostructure and is 
then made proportional to the magnetic moment of the cell by 
modulating the thickness of the material. 

 
Fig.5 : Spread of the first neighbour coupling constant in units of J0  
as a function of cell size and mesh grid when using (a) the 
conventional black and white mask and (b) a grey scale mask to 
define the nanomagnets. The red line is the result of the calculation 
using the home made finite element FEELLGOOD software using a 
4nm cell size. 


