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Stochastic uncertainty quantification of the eddy current in human body by using

polynomial chaos decomposition

Roman Gaignaire♣, Riccardo Scorretti♥, Ruth V. Sabariego♣ and Christophe Geuzaine♣

The finite element method can be used to compute the electromagnetic fields induced in the human body by environmental
extremely low frequency (ELF) fields. However, the electric properties of tissues are not precisely known and may vary depending on
the individual, his/her age and other physiological parameters. In this paper, we account for the uncertainties on the conductivities
of the brain tissues and spread them out to the induced fields by means of a non-intrusive approach based on the chaos Hermite
polynomial with the finite element method as a black box [1], [2]. After showing the convergence of the method, we compute the
probability to be over the thresholds define by the norms.

Index Terms— Non-intrusive methods, polynomial chaos decomposition, stochastic methods

I. INTRODUCTION

T
He uncertainty in electrical parameters, as well as the vari-

ability of the human body between different individuals,

is a major problem in numerical dosimetry. Determining the

conductivities of the human tissues is since years subject of

research [3]. Tissues are highly heterogeneous “materials”and

possibly anisotropic [4]. The properties of tissues change

rather quickly after death [5], so that measurements per-

formed in vitro on excised tissues may not be representative.

Besides for ethical reasons, most of in vivo measurements

have been performed on animals. Moreover, the age [6] and

the physiological condition [7] may also significantly alter

these properties. Obtaining data for characterising a foetus

is even harder [8]. At ELF frequencies, the measurements

are performed either by identifying an equivalent RC cir-

cuit, or by a four-point measurement. At those frequencies,

electrode polarization is (another) major source of errors.

Some tentatives have been performed [7], [9] for numeri-

cally estimating the conductivity and permittivity by modeling

tissues as porous media, with a limit success. Gabriel et

al have done a huge work [10]–[12] by collecting most of

the existing data, and building a tissue database, which is

currently the reference for dosimetric computations [13]. In

a recent work [14], new measurements have shown large

differences with respect to previously published data: the new

values of conductivities are often higher and muscle-type

tissues are found to be much less anisotropic. More recently,

several techniques based on the magnetic resonance (MR) have

been proposed. MR electric impedance tomography (MREIT)

methods are based on the detection of the shielding effect

of electrical currents on the magnetic field; these electrical

currents may be either induced by the MR device itself, by

a third external coil [15], or injected into the body through

electrodes [16]. Diffusion tensor MREIT methods are based

on the proportionality between water diffusion tensor and

electrical conductivity. These last techniques are particularly

interesting when dealing with brain [17], because the diffusion

signal in this organ is strong enough, while other MREIT

techniques are not applicable due to the high resistivity of

the skull. Moreover, this technique provides information about

the anisotropy of tissues. Using this technique, Sekino et al
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found higher conductivity values [18] than those reported by

Gabriel in [10]. All MRI based techniques share the enormous

advantage to be applicable in vivo in humans beings. In

spite of the amount of work accomplished, the dielectric

properties of human tissues are still poorly known: e.g. at

50 Hz the conductivities of the white and grey matter in [11]

and [19] span, respectively, within [0.0753 ; 0.5155] and

[0.0533 ; 0.302] S/m. Therefore, it is crucial to quantify

the effect of this uncertainty on the electromagnetic fields

computed in the human body. One could use a extremely

time-consuming Monte-Carlo (MC) simulation to statistically

characterise the induced fields (some weeks in our model).

In this paper, we use a chaos polynomial (CP) approach,

the so-called non intrusive probabilistic algorithms, which

assumes that the variances of conductivities are finite [1], [2]

and allows to completely characterise the induced field in the

probabilistic dimension with a much lower computational cost

(a few hours).

II. INCORPORATION OF STOCHASTIC UNCERTAINTY

A. Deterministic framework

The fields induced in the human body are computed by the

finite element (FE) method using a φ−a formulation. Details

of this formulation and the phantom used (Fig. 1) can be found

in [20]. We simulate the exposure to the field generated by an

infinite cable (current I = 1000A at 50Hz) placed at a few

centimeters from the left side of the head. In the literature

on protection against ELF fields, three global quantities are

generally computed for each organ from the current density

j: the (spatial) average jAvg , the maximum value jmax, and

the 99% percentile j99−perc [21]. Similar definitions exist for

the electric field e. The basic restriction of the 1998 edition

of ICNIRP’s recommendations [22] is based on jmax, while

the 2010 edition [23] focus on e99−perc. In particular, for

a 50 Hz occupational exposure the threshold values in the

central nervous system (CNS) recommended by the ICNIRP

are jmax < 10mA/m2 and e99−perc < 100mV/m.

B. Uncertainties

In this paper, we focus on the fields induced in the brain.

The conductivities of the white matter σW (ω) and of the grey

matter σG(ω) are modeled within a probabilistic framework1,

1The notation: x(ω) means that x is a random variable.
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Fig. 1. a) Mesh of whole head; b) grey matter; c) and white matter.

by assuming that they are random variables defined on a

probabilistic space Θ, F, P . Therefore jAvg , jmax, j99−perc,

eAvg , emax and e99−perc turn out to be random as well. In

particular, by using the maximum entropy principle [24] we

model (arbitrarily) σG(ω) and σW (ω) as independent random

variables, uniformly distributed:

σG(ω) ∼ U([0.0753 ; 0.5155]) (S/m) (1)

σW (ω) ∼ U([0.0533 ; 0.3020]) (S/m) (2)

C. The non intrusive approach

As the conductivities of the brain and the cerebellum are

two independant random variables of finite variance, we can

expand them as a truncated series of order pin in the bi-

dimensional Hermite polynomials of a random gaussian vector

ξ(ω) = (ξ1(ω), ξ2(ω)), known as Hermite chaos polynomials

[2]:

σG(ω) ≈

Pin
∑

i=0

σGiψi(ξ(ω)) (3)

σW (ω) ≈

Pin
∑

i=0

σWiψi(ξ(ω)) (4)

where σGi and σWi are scalar values that depend on the

probabilistic law of the conductivities, Pin = Cpin

2+pin
is

the number of bi-dimensional polynomials of order less than

pin, and ψi is the ith bi-dimensional polynomial of Hermite.

To solve the stochastic problem, we use an approach based

on a CP decomposition of both the conductivity and the

induced fields [2]. We assume the conductivities to be of finite

variance, with no assumption on the shape of the probabilistic

distribution.

The values of those induced fields –the average current

density in the brain jAvg(ω) = jAvg(ξ(ω))– are computed by

the FEM from any couple of values (σG(ξ(ω)), σW (ξ(ω))).
The average density belongs to a space that can be spanned

by the polynomials ψ(ξ(ω)) and thus written as a truncated

series to an order pout:

jAvg(ω) =

Pout
∑

m=0

jAvgmψm(ξ(ω)). (5)

To compute the value of the unknown real coefficients jAvgm,

we use the orthogonality properties of the Hermite polynomi-

als:

jAvgm =
E[jAvg(ω)ψm(ξ(ω))]

E[ψm(ξ(ω))2]
, (6)

where E[·] is the mathematical expectation. The denominator

can be computed analytically. The integral in the numerator

is computed by means of a Hermite Gauss integration scheme

with d integration points [2]:

E[jAvg(ω)ψm(ξ(ω))] ≈
d

∑

i=1

...

d
∑

j=1

wi,j(jAvg((t1, t2)i,j))ψm((t1, t2)i,j), (7)

with (t1, t2)i,j the i, j-th Gauss point and wi,j the associated

weight in the bi-dimensional Cartesian rule. The deterministic

problem must thus be computed d2 times, with the conductiv-

ity evaluated through (3) and (ξ1(ω), ξ2(ω)) = (t1,= t2)i,j ,

i, j = 1, . . . , d.

III. RESULTS AND DISCUSSION

The non intrusive method is governed by three parame-

ters: pin, pout and d; pin is linked to the precision on the

approximation made on the input random variables σG(ω)
and σW (ω), pout is the order of truncation of the studied

global quantities (jAvg , jmax, j99−perc and the corresponding

quantities for the electric field) and d is the number of

quadrature points. Herein, we have chosen pin = 16, while

pout and d vary. For the sake of conciseness, we deal with the

white and grey matter (though the method could handle other

tissues during the same computation as well).

A. Influence of the input parameters

The probabilistic density (PD) of e99−perc in the grey matter

obtained with pout = 8, pin = 16 and different values of

d is shown in Fig. 2. The curves of the PD obtained with

d = 10 and d = 16 are nearly superposed, what proofs

the convergence of the method with increasing values of

d. Concerning dispersion parameters as the mean and the

standard deviation, the convergence is reached as soon as

d ≥ 4 (mean: 0.0487V/M , standard deviation: 0.07 when

d = 2 to 0.0044 as soon as d = 6).

The PD of jmax in the white matter obtained with d = 16,

pin = 16 and different values of pout are plotted in Fig. 3.

Again, one observes that convergence is achieved as pout
increases. The value of pout has a minor influence on the

central dispersion parameters (mean and variance): the mean is

constant and equal to 13.1 mA/m, and the standard deviation

converges with pout ≥ 3 to 3.4 mA/m. It can be observed that

the support of the PD is bounded to 21mA/m for pout ≥ 4
(that is, most likely jmax < 21mA/m): conversely, pout = 2
would lead to the wrong conclusion that jmax may exceed

21mA/m with a non negligible probability.
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Fig. 2. Probabilistic density of e99−perc in the grey matter for pout = 8,
pin = 16 and d = 6 (blue), d = 10 (red), d = 16 (green).
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Fig. 3. Density of probability of jmax (A/m2) in the white matter for
d = 16, pin = 16 and pout = 2 (black), pout = 4 (red), pout = 6 (green),
pout = 8 (blue).

B. Analysis of the results

The PD of jAvg , j99−perc and jmax linked to the induced

current density in the grey matter are represented in Fig. 4

for pout = 4 and pout = 8. For pout = 6, the curves are

very close to those for pout = 8 so the method has converged.

One observes that while jAvg is always under to 10mA/m2,

this does not hold for j99−perc and Jmax, which are likely

to exceed this hazardous limit — the exact probability is

computed hereafter.

The PD of eAvg , e99−perc and emax related to the electric

field in the white matter are depicted in Fig. 5 for pout = 4
and pout = 8. The curves for pout = 4 and pout = 8 are

much more similar than in the previous case. These PDs are

more peaked than those corresponding to the current density,

i.e. they are less dispersed around their means. Moreover, the

area under these curves for ||e|| > 100mV/m equals 0 for

eAvg and e99−perc and nearly 0 for emax.
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Fig. 4. Density of probability (in A/m2) of jAvg (blue), j99−perc (red)
and jmax (green) in the grey matter (pin = 16, d = 16).
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Fig. 5. Density of probability (in V/m) of eAvg (blue), e99−perc (red) and
emax (green) in the whie matter (pin = 16, =.16).

In order to avoid health hazards, ICNIRP recommends that

in the central nervous system jmax ≤ 10mA/m2 [22] or

e99−perc ≤ 100mV/m [23]. As these global quantities are

available as a polynomial expansion like (5), we can estimate

the probability -p- that these recommendations are not fulfilled

–thus, in the case of [22], p is: P{jmax ≤ 10mA/m2}. To

this aim, a large number n of couples of independent values

following a normal variable (ξ1i, ξ2i)1≤i≤104 are sampled. The

polynomial expansion (5) is evaluated for each pair of values

and the number of occurrences (i.e. the number of pairs)

for which the basic restriction is exceeded are counted. The

probability p and the confident interval CI are estimated by

means of the central limit theorem as:

p =
Number of occurences

n
(8)

CI = z.05/2

√

p(1− p)

n
(9)

where z.05/2 is the confidence interval of 97.5% of a normal

random variable. The cost of this computation is negligible
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with regard to the coefficient evaluation via (6).

The probability that each of the global quantities exceeds the

basic restriction for the simulated exposure has been computed

with n = 105 and the obtained values are reported in Table I.

For instance, the third line in Table I reads: the probability for

emax > 100mV/m is of 80% ± 0.27% with a risk of 5%2.

According to most recent recommendations [23], the basic

TABLE I

PROBABILITY TO EXCEED THE THRESHOLD DEFINED BY THE NORMS.

Field Probability in Grey matter in white matter

eavg 0± 0 0± 0
e99−perc 0± 0 0± 0
emax 0.8± 2.7× 10−3 0.14± 2.2× 10−3

javg 0± 0 0± 0
j99−perc 0.73± 2.8× 10−3 0.16± 2.3× 10−3

jmax 1± 0 0.80± 2.5× 10−3

restriction e99−perc ≤ 100mV/m is most likely fulfilled –

it would not have been the case if we consider emax instead

of e99−perc. Concerning the 1998 recommendations [22], the

restriction jmax ≤ 10mA/m2 is clearly not fulfilled for the

grey matter (see also Fig. 4), while for the white matter the

probability for jmax to exceed 10mA/m2 is of 80%. These

probabilities decrease respectively to 73% and 16% when

dealing with j99−perc instead of jmax.

IV. CONCLUSION

The proposed recommendations for avoiding health issues

due to over-exposure to ELF radiations may require to evaluate

the induced fields in the human body by dosimetric methods.

Unfortunately, these computations are largely affected by

the uncertainty on the conductivities of human tissues. Indeed,

an arbitrary security factor 3 is considered in [23] in order to

account for “dosimetric uncertainties”.

We propose an effective method for quantifying the uncer-

tainty on some relevant quantities (notably jmax and e99−perc),

provided that a characterisation of the statistical distribution

of the conductivities is available. Our simulations suggest that

latest 2010 ICNIRP recommendations are more permissive

than those in the former edition. However, it has to be pointed

out that in our computations we use a quite pessimistic

statistical law for the conductivities, and also that other sources

of uncertainty (posture, physiognomy...) are disregarded.
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