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Abstract

A graph G is a (Kq, k) vertex stable graph if it contains a Kq after deleting any subset

of k vertices. We give a characterization of (Kq, k) vertex stable graphs with minimum

size for q = 3, 4, 5.
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1. Introduction

For terms not defined here we refer to [1]. As usually, the order of a graph G is the

number of its vertices (it is denoted by |G|) and the size of G is the number of its edges

(it is denoted by e(G)). A complete subgraph of order q of G is called a q-clique of G.

The complete graph of order q is denoted by Kq. When a graph G contains a q-clique as

subgraph, we say “G contains a Kq”. The union of p mutually disjoint copies of Kq is

denoted by pKq. When A is a set of vertices we denote by G − A the subgraph induced

by V (G) − A.

In [6] Horwárth and G.Y Katona consider the notion of (H, k) stable graph: given

a simple graph H, an integer k and a graph G containing H as subgraph, G is a a

(H, k) stable graph whenever the deletion of any set of k edges does not lead to a H-free

graph. These authors consider (Pn, k) stable graphs and prove a conjecture stated in [5]

on the minimum size of a (P4, k) stable graph. In [2], Dudek, Szymański and Zwonek

are interested in a vertex version of this notion and introduce the (H, k) vertex stable

graphs.
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Definition 1.1. [2] Let H be a graph. A graph is a (H, k) vertex stable graph if it

contains a graph isomorphic to H after deleting any subset of k vertices. By Q(H, k) we

denote the minimum size of a (H, k) vertex stable graph. If G is (H, k) vertex stable of

size Q(H, k) we call it minimum (H, k) vertex stable.

In this paper, we are only interested by (H, k) vertex stable graphs and, since no

confusion will be possible, a (H, k) vertex stable shall be simply called a (H, k) stable

graph.

In [2], the authors give values of Q(H, k) when H is isomorphic to C3, C4 or K4 and

provide upper bounds for some other cases while in [3] the bipartite case is considered.

It must be pointed out that in some cases the value of Q(H, k) can be obtained

without the description of extremal graphs, that is (H, k) vertex stable graphs whose

size is precisely Q(H, k). In this paper we describe the extremal (H, k) stable graphs

when H is isomorphic to Kq, for q ∈ {3, 4, 5} while in [4] we describe the extremal

(Kq, k) stable graphs when k is small with respect to q.

By considering (H, k) stable graph with minimum size, it must be clear that we can

add some isolated vertices, the resulting graph remains to be a (H, k) stable graph with

minimum size. From now on, the graphs considered have no isolated vertices.

Proposition 1.2. [2] If G is a (H, k) stable graph with minimum size then every vertex

as well as every edge is contained in a subgraph isomorphic to H.

Remark 1.3. Proposition 1.2 implies, in particular, that when H ≡ Kq then the minimum

degree of a (H, k) stable graph with minimum size is at least q − 1.

Lemma 1.4. [2] Let k ≥ 1. If G is a (H, k) stable then for any vertex v G − {v} is a

(H, k − 1) stable.

Definition 1.5. Let H be a non complete graph on q + p + 1 (p ≥ 0) vertices and u be

one of its vertices. Let N be the neighbourhood of u and R = V (H) − u − N . We shall

say that H is a near complete graph (R,N,u) on q + p + 1 vertices (see Figure 1) when

• H − {u} is complete.

• dH(u) = q + ε (ε ∈ {−1, 0, 1}).
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Note that the set R is not empty since H is not complete. Hence, |R| = p − ε, and

since H is not complete we must have p ≥ 2 when dH(u) = q + 1 and p ≥ 1 when

dH(u) = q.

u
N

R

Kq+p

Figure 1: A near complete graph (R,N,u) on q + p + 1 vertices

2. Preliminary results

Proposition 2.1. Let G = (V, E) be a (Kq, k) stable graph with minimum size (q ≥ 3).

Then G has no component isomorphic to a near complete graph (R,N,u) on q + p + 1

vertices.

Proof Suppose, by contradiction, that there exists such a component H = (R,N, u) on

q + p + 1 vertices with dH(u) = q + ε (ε ∈ {−1, 0, 1}). Since G is a (Kq, k)-stable graph

with minimum size, G − {u} is not (Kq, k)-stable. There exists a set S with at most k

vertices such that S intersects every Kq of G − {u}. There exists a Kq in G − S and

clearly such a Kq contains u. Since N is a Kq+ε and N−S contains no Kq, |S∩N | ≥ ε+1

(trivial for ε = −1). If |S ∩N | ≥ ε+2 then |N −S| ≤ q− 2, and hence S intersects every

Kq containing u, a contradiction. Thus, |S ∩ N | = ε + 1 and |N − S| = q − 1. If there

exists v in R − S then (N − S) + {v} is a Kq in G− {u}, a contradiction. Thus, R ⊂ S.

Let a ∈ R and b ∈ N − S, and set S
′
= S − {a} + {b}. We have | S

′ |≤ k and G − S
′

contains no Kq, a contradiction.

�

Lemma 2.2. Let G = (V,E) be a minimum (Kq, k) (q ≥ 3 and k ≥ 1) stable graph and

let u be a vertex of degree q − 1 then one of the following statements is true
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• ∀v ∈ N(u) d(v) ≥ q + 1.

• Q(Kq, k − 1) + 3(q − 2) ≤ Q(Kq, k).

Proof Since d(u) = q − 1, {u}+ N(u) induces a complete graph on q vertices. Assume

that some vertex w ∈ N(u) has degree q + a (a = −1 or a = 0) and let v ∈ N(u) distinct

from w. Then G− v is a (Kq, k − 1) stable graph (Lemma 1.4). Since the degree of u in

G − {v} is q − 2, no edge incident with u can be contained in a Kq. We can thus delete

these q − 2 edges and the resulting graph (say G′) is still a (Kq, k − 1) stable graph.

In G′, the degree of w is now q + a − 2. Hence, no edge incident with w in G′ can be

contained in a Kq. Deleting these q + a − 2 edges from G′ leads to a graph G” which

remains to be a (Kq, k − 1) stable graph.

By deleting v, we have e(G − {v}) ≤ e(G) − (q − 1) and hence

e(G
′
) ≤ e(G) − (q − 1) − (q − 2).

We get thus

Q(Kq, k − 1) ≤ e(G
′′
) ≤ e(G) − (q − 1) − (q − 2) − (q + a − 2).

Since e(G) = Q(Kq, k), the result follows. �

Proposition 2.3. Let G = (V,E) be a minimum (Kq, 1) stable graph (q ≥ 4) then G is

isomorphic to Kq+1.

Proof Let G be a minimum (Kq, 1) stable graph. Since Kq+1 is (Kq, 1) stable, clearly

e(G) ≤
(
q+1
2

)
. We can assume that G is connected. Otherwise, each component contains

a Kq, but
(
q+1
2

)
< 2

(
q
2

)
as soon as q ≥ 4, a contradiction. Let u be a vertex of G and

Q be a subgraph of G − {u} isomorphic to Kq. Assume that there exists a vertex v

outside Q and distinct from u. Note that v can be a neighbour of u. Since d(u) ≥ q − 1

and d(v) ≥ q − 1, e(G) ≥ e(Q) + 2(q − 1) − 1 =
(
q
2

)
+ 2q − 3 =

(
q+1
2

)
+ q − 3. Thus,

e(G) > e(Kq+1), a contradiction. Hence, V (G) = V (Q)∪{u} with d(u) ≥ q−1. Since for

any edge e Kq+1 −{e} is not (Kq, 1) stable, we see that d(u) = q, that is G is isomorphic

to Kq+1. �
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Remark 2.4. It is easy to see that the minimum (K3, 1) stable graphs are 2K3 and K4.

Proposition 2.5. Let G = (V,E) be a minimum (Kq, 2) stable graph (q ≥ 4) then G is

isomorphic to Kq+2.

Proof Since Kq+2 is a (Kq, 2) stable graph, we can suppose that G has at most
(
q+2
2

)
edges. We can suppose, moreover, that G is not complete, otherwise G is obviously

reduced to Kq+2. Let u be a vertex of minimum degree (recall that the minimum degree

is at least q − 1) and let v be one of its neighbours.

Assume that dG(u) = q−1. G−{v} is a (Kq, 1) stable graph, but it is not minimum,

since none of the remaining edge incident with u can be contained in a complete graph

on q vertices. By deleting the q − 2 edges incident with u, we get thus a (Kq, 1) stable

graph.

If d(v) ≥ q + 1, this graph has at most
(
q+2
2

)
− (2q − 1) edges. Since this number of

edges must be greater than
(
q+1
2

)
by Proposition 2.3, we have

(q + 2)(q + 1) − 4q + 2 ≥ (q + 1)q

That leads to q ≤ 2, a contradiction. If d(v) ≤ q, by Lemma 2.2, we have Q(Kq, 1) +

3q − 6 ≤ Q(Kq, 2) and hence

q(q + 1) + 6q − 12 ≤ (q + 1)(q + 2)

Which gives q ≤ 3, a contradiction.

We can thus assume that the minimum degree of G is at least q. Let u and v be two

non adjacent vertices of G. Since G − {u, v} contains a Kq (say Q), let a and b be two

distinct vertices of Q. Since G−{a, b} must contain also a Kq, there is certainly a vertex

w distinct from v and u, outside Q, inducing with q−1 other vertices of G−{a, b} a Kq.

Hence G contains three vertices (u, v and w) at least in G − Q and we have:(
q + 2

2

)
≥ e(G) ≥

(
q

2

)
+ 3q − 2

Which gives q < 3, a contradiction. Hence G is complete and the proposition follows. �

Lemma 2.6. Let G be a minimum (Kq, 3) stable graph, q ≥ 5. Let u be a vertex of

minimum degree in G and suppose that dG(u) = q + l, where −1 ≤ l ≤ 1. Then for every

neighbour v of u we have dG(v) ≥ q + l + 2.
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Proof Suppose, contrary to our claim, that dG(v) ≤ q + l + 1 for a neighbour v of u.

Since, by Proposition 1.2, the edge uv is contained in a clique of order q and q ≥ 5, there

is a set A of vertices of G such that |A| = l + 2 and the vertices of the set A ∪ {u, v}

are mutually adjacent. The graph G′ = G − A is (Kq, 3 − (l + 2)) stable. We have

dG′(u) = q + l − (l + 2) = q − 2, hence also G′′ = G′ − {u} is (Kq, 1 − l) stable. But in

G′′ the degree of the vertex v is at most q− 2 and therefore G′′′ = G′′−{v} is (Kq, 1− l)

stable. Since every vertex of the set A∪ {u, v} has at least q − 3 neighbours outside this

set, we have (
q + 1 − l

2

)
≤ e(G′′′) ≤

(
q + 3

2

)
− (l + 4)(q − 3) −

(
l + 4

2

)
which contradicts q ≥ 5. �

Proposition 2.7. Let G = (V,E) be a minimum (Kq, 3) stable graph (q ≥ 5) then G is

isomorphic to Kq+3.

Proof Note first that to prove the proposition it is sufficient to prove that every vertex

of G has the degree at least q + 2.

Let u be a vertex of the minimum degree in G and suppose, contrary to our claim, that

dG(u) ≤ q + l, where −1 ≤ l ≤ 1.

Let v1, v2, ..., vl+2 be such vertices of G that the set {u, v1, v2, ..., vl+2} induce a clique

in G (such vertices exist since u is contained in a clique of order q by Proposition 1.2

and q ≥ 5). By Lemma 2.6, we have dG(vi) ≥ q + l + 2 for i = 1, 2, ..., l + 2. Set

G′ = G − {v1, v2, ..., vl+2}. The graph G′ is clearly (Kq, 1 − l) stable. Moreover, since

dG′(u) = q − 2, the graph G′′ = G′ − {u} is also (Kq, 1 − l) stable and we have(
q + 1 − l

2

)
≤ e(G′′) ≤

(
q + 3

2

)
− (l + 2)(q − 1) − (q − 2) −

(
l + 3

2

)
which contradicts q ≥ 5.

�
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3. A characterization of (K3, k) stable graph with minimum size

Dudek, Szymański and Zwonek in [2] have shown that Q(K3, k) = 3k + 3 for every

nonnegative integer k. In this section we characterize all that (K3, k) stable graphs with

minimum size.

Clearly, K3 is the unique minimum (K3, 0) stable graph, and by Remark 2.4, the

minimum (K3, 1) stable graphs are 2K3 and K4.

The following theorem characterize all graphs which are (K3, k) stable with minimum

size.

Theorem 3.1. Let G = (V, E) be a (K3, k) stable graph with minimum size. Then G is

isomorphic to pK4+qK3, where p and q are such nonnegative integers that 2p+q = k+1.

Proof By Remark 2.4, K3 is the unique minimum (K3, 0) stable graph, and the

minimum (K3, 1) stable graphs are 2K3 and K4. Clearly, the graph (k + 1)K3 is a

(K3, k) stable graph and has 3k + 3 edges. Let k0 ≥ 1 and suppose that for every k < k0

every minimum (K3, k) stable graph is a union of p copies of K4 and q copies K3 with

2p + q = k + 1.

Let G be a (K3, k0) stable graph of minimum size. Since G−{v} is (K3, k0−1) stable

for every vertex v, we have 3k0 ≤ e(G − {v}) ≤ e(G) − dG(v) ≤ 3k0 + 3 − dG(v), that is

dG(v) ≤ 3. If every vertex of G has degree equal to 2, then G is a union of k0 + 1 copies

of K3, and the theorem is proved. So we may suppose that there is a vertex v0 of degree

3. But then G − {v0} is (K3, k0 − 1) stable and e(G − {v0}) = 3ko, that is G − {v0} is

minimum (K3, k0 − 1) stable. By the induction hypothesis, G − {v0} is isomorphic to

p′K4 + q′K3, where 2p′ + q′ = k0. It is clear that all the neighbours of v0 are in the

same component of G, (otherwise one of the edges incident with v0 is not contained in

any triangle, contrary to Proposition 1.2). Now it is easy to see that G is isomorphic to

(p′ + 1)K4 + (q′ − 1)K3 and 2(p′ + 1) + (q′ − 1) = k0 + 1 (otherwise there is a set A of

cardinality k0 which is transversal of all cliques of order 3 in G). �

4. A characterization of (K4, k) stable graph with minimum size

In [2] the minimum number of edges of a (K4, k) stable graph is given.
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Theorem 4.1. [2] Let G = (V,E) be a (K4, k) stable graph with minimum size (k ≥ 1)

then

• Q(K4, 0) = 6.

• Q(K4, k) = 5k + 5 when k ≥ 1.

Proposition 4.2. Let G = (V, E) be a (K4, k) stable graph with minimum size if k ≥ 1

then G as no component isomorphic to K4.

Proof Let us consider k ≥ 2. Assume that some component H of G is isomorphic to a

K4 with the vertices of H being a, b, c, d. Then G−H has 5k − 1 edges. Since G−H is

not a (K4, k − 1) stable graph, there is a set S with at most k − 1 vertices intersecting

each K4 of G − H. Then S + {a} intersects each K4 of G while S has at most k − 1

vertices, a contradiction.

When k = 1, G must have 10 edges by Theorem 4.1. Since for each vertex v the

graph G − v contains a K4, v is joined to this K4 by 4 edges. Hence G is a K5 and the

result holds. �

Proposition 4.3. Let G = (V, E) be a (K4, k) stable graph (k ≥ 1) with minimum size

then every vertex of G has degree 3, 4 or 5.

Proof By Proposition 1.2 every vertex is contained in a K4, hence its degree is at

least 3. Assume that G has a vertex v with d(v) ≥ 6. Then, by Lemma 1.4, G − v is a

(K4, k − 1) stable graph and therefore has at least 5k edges, which is impossible since G

has exactly 5k + 5 edges, by Theorem 4.1. �

Proposition 4.4. Let G = (V, E) be a (K4, k) stable graph (k ≥ 1) with minimum size.

Let H be a component without any vertex of degree 5, then each vertex of H has degree

4.

Proof By Proposition 4.3 the vertices of G have degree 3 or 4. Assume to the contrary

that H contains some vertex v with degree 3. Let N(v) = {u1, u2, u3} be its neigh-

bourhood. By Proposition 1.2, N(v) is complete. Since H is not isomorphic to K4 by
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Proposition 4.2, assume that, without loss of generality, u1 is joined to some new vertex

w. Since u1w must be contained in a K4 by Proposition 1.2, w must be adjacent to u2

and u3. By Proposition 2.1, H is not isomorphic to a K5 minus one edge, hence there

must exist some new vertex w′ adjacent to w. Since each vertex in {u1, u2, u3, w} has

degree 4, we cannot find a K4 using the edge ww′, a contradiction with Proposition 1.2. �

Theorem 4.5. Let G = (V, E) be a (K4, k) stable graph (k ≥ 1) with minimum size

then G is isomorphic to pK5 + qK6, where p and q are such nonnegative integers that

2p + 3q = k + 1.

Proof The proof is by induction on k. By Proposition 2.3, the only minimum (K4, 1)

stable graph with minimum size is K5. Let k0 ≥ 2 and suppose that for every integer

k, such that 1 ≤ k < k0 every (K4, k) stable graph with minimum size is isomorphic to

pK5 + qK6, where p and q are nonnegative integers such that 2p + 3q = k + 1.

Let G be a (K4, k0) stable graph with minimum size. By Theorem 4.1 we have

e(G) = 5k0+5. Note that it is sufficient to prove that every component of G is isomorphic

either to K5 or to K6.

By Proposition 4.3, we have 3 ≤ dG(v) ≤ 5 for every vertex v of G. Since by

Proposition 1.2, every edge of G is contained in a K4, all the neighbours of a vertex v

are in the same component of G − {v}.

Suppose first that there is a vertex v in G such that dG(v) = 5. Then G − {v} is

(K4, k0 − 1) stable and moreover, since e(G− v) = 5k0, G−{v} is minimum (K4, k0 − 1)

stable. Hence every component of G − {v} is either isomorphic to K5 or to K6. If v is

connected in G to a K6, then the component of G which contains v is a near complete

graph, contradicting Proposition 2.1. So v is connected to a K5 and G is a union of

graphs isomorphic to K5 or K6, as desired.

Assume now that no component has a vertex of degree 5. Then, by Proposition 4.4,

each component is a 4-regular subgraph.

Let v be any vertex and let N(v) = {u1, u2, u3, u4} be its neighbourhood. Since v is

contained in a K4 by Proposition 1.2, we can suppose, without restriction of generality,

that u1u2, u1u3 and u2u3 are edges of G. Since vu4 is contained in a K4 by Proposition

1.2, u4 is adjacent to at least 2 vertices of N (say, without loss of generality, u2 and u3).
9



case 1: u1u4 ∈ E(G). Then the component containing v is a K5.

case 2: u1u4 6∈ E(G). Let w be a new vertex adjacent to u1 (this new vertex must

exist since the component of v is 4-regular). Then u1w cannot be contained in a K4, a

contradiction.

�

5. A characterization of (K5, k) stable graph with minimum size

In this section we provide the value of Q(K5, k) for k ≥ 5, as well as a description of

the corresponding minimum stable graphs.

Lemma 5.1. Let G be a (K5, k) stable graph containing a component isomorphic to Kp

with p ≥ 9. Then the graph G′ obtained from G by deleting two vertices v and v′ in this

Kp and adding a K6 is a (K5, k) stable graph such that

• if p ≥ 10, e(G′) < e(G),

• if p = 9, e(G′) = e(G).

Proof Let A be the set of vertices created by the adjunction of the new K6. Let S be

a set of vertices with |S| ≤ k in G′. If |S ∩ A| ≤ 1, G − S contains obviously a K5. If

|S ∩ A| ≥ 2 then S
′
= S − A + {v, v′} is a subset of G with at most k vertices. Hence

G − S′ contains a K5 which still exists in G
′ − S.

If p ≥ 10, at least 17 edges are deleted and 15 edges are created, thus e(G′) < e(G) .

If p = 9, 15 edges are deleted while 15 edges are created and e(G) = e(G′). �

Lemma 5.2. Let G = (V, E) be a (K5, k) stable graph with minimum size. Then G does

not contain two components isomorphic to a Kp with p ≤ 6.

Proof If we have two component (say K and L) isomorphic to a complete graph with

5 vertices then the graph G′ obtained from G by deleting these two components and

adding a complete graph on 6 vertices is still a (K5, k) stable graph. Indeed, let S′ be

any subset of V (G′) with |S′| ≤ k. If G
′ − S′ does not contain any K5 then S′ contains
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at least 2 vertices v and w of the new K6. Let S = S′ − {v, w} + {a, b}, where a ∈ K

and b ∈ L, then G − S does not contain any K5, a contradiction.

When we have a K5 and a K6, we get the same kind of contradiction when replacing

these two complete graphs with a K7 as well as when we have two K6 replaced by a K8. �

Lemma 5.3. Let G = (V, E) be a (K5, k) stable graph with minimum size which is the

vertex disjoint union of complete graphs and k ≥ 5. Then each component is a K7 or a

K8.

Proof By Lemma 5.1, we can consider that each component is a Kp with 5 ≤ p ≤ 9. By

Lemma 5.2, at most one component is a K5 or a K6. If some component is isomorphic to

a K9 then let us replace this component by a K6 and a K7. By Lemma 5.1 the resulting

graph is still a (K5, k) stable graph with minimum size. It is clear that no component

is isomorphic to a K9 now. Indeed, applying once more the operation described above

leads to a (K5, k) stable graph with minimum size having two K6, a contradiction with

Lemma 5.2.

We have thus to consider that G is the vertex disjoint union of complete graphs

isomorphic to K7 or K8 and at most one K5 or one K6. Replacing a K5 and a K7 by

one K8 leads to a (K5, k) stable graph with a number of edges less than the number of

edges of G, a contradiction. Replacing a K6 and a K8 by two K7 leads to a (K5, k) stable

graph with a number of edges less than the number of edges of G, a contradiction.

It remains to consider the case where the components are all isomorphic to a K7 with

the exception of one K6 or all isomorphic to a K8 with the exception of one K5. When

we have at least two K7 and a K6, these three complete graphs can be replaced by two

K8, the resulting graph is still a (K5, k) stable graph, but the number of edges is less

than the number of edges of G, a contradiction. When we have at least two K8 and a

K5, these three complete graphs can be replaced by three K7, the resulting graph is still

a (K5, k) stable graph, but the number of edges is less than the number of edges of G, a

contradiction.

When G is reduced to a K8 and a K5 or to a K7 and a K6 , we must have k ≤ 4,

which is impossible.
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Lemma 5.4. Let G be a (K5, k) stable graph with minimum size and maximum degree

6. Assume that some component contains a K6. Then either the component is reduced

to this K6 or to K7.

Proof Let A = {v1 . . . v6} be the set of vertices of the K6. If d(vi) = 5 for each vertex

in A the proof is complete. Assume that the vertex v1 has degree 6 and let w be its

neighbour outside V . Since v1w must be contained in a K5 by Proposition 1.2, w must

be adjacent to 3 other vertices in V (say v2, v3 and v4). In the same way, if v5 or v6 has a

neighbour outside A, this vertex must be adjacent to 4 vertices of A, which is impossible

if this vertex is distinct from w.

Let w′ 6∈ A be a neighbour of w (if any). Since ww′ must be contained in a K5 by

Proposition 1.2, w′ must have at least 3 neighbours in A, which is impossible. Hence the

component containing the K6 contains at most one vertex more (the vertex w). If w is

not adjacent to at least one of v5 or v6 (say v5) then this component is a near complete

graph (R,N,u) on 7 vertices (with u = w, N = A or N = A + {v5}, R = {v5, v6} or

R = {v5} respectively), which is impossible by Proposition 2.1. If w is adjacent to v4

and v5, the component containing the K6 is a K7 as claimed. �

ba

d e

f g

c

Figure 2: Forbidden component of a (K5, k) stable graph with minimum size.
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Lemma 5.5. Let G = (V, E) be a (K5, k) stable graph with minimum size. Then no

component of G is isomorphic to the subgraph depicted in Figure 2.

Proof Since G − {a} is not a (K5, k) stable graph, there exists a set S with |S| ≤ k

which intersects any K5 in G − {a}. If S contains one of the the vertices in {c, d, e},

then S intersects each K5 in G, which is impossible. Since {c, d, e, f, g} induces a K5,

S contains at least one vertex in {f, g}. When g ∈ S, S intersects each K5 in G, which

is impossible. Assume that f ∈ S then S′ = S − {f} + {c} intersects each K5 in G, a

contradiction since |S′| ≤ k. �

Lemma 5.6. Let G = (V,E) be a (K5, k) stable graph with minimum size. Assume that

some component contains vertices with degree 5 or 6 only. Then this component is a

complete graph with at least 5 vertices.

Proof Let H be a component containing vertices of degree 5 or 6 only. By Proposition

1.2, every edge is contained in a K5. Let U = {u1, u2, u3, u4, u5} be a set of vertices

inducing a K5 in H.

case 1 : ∃ i 1 ≤ i ≤ 5 dH(ui) = 6.

Without loss of generality we may suppose that i = 1. Let w and w′ the two neigh-

bours of u1 outside U . Since u1w must be contained in a K5, w must be adjacent to

at least two vertices in U − {u1}. Without loss of generality, assume that wu2 ∈ E(G)

and wu3 ∈ E(G). Note that w is not joined to the two vertices u4 and u5, otherwise,

H contains a K6 and H is thus isomorphic to a complete graph by Lemma 5.4. For the

same reason, w′ is not joined to all the vertices in U .

subcase 1.1 : If w or w′ has no other neighbour in U , say w, we must have ww′ ∈

E(G), w′u2 ∈ E(G) and w′u5 ∈ E(G). One of u4 or u5, say u4, is not adjacent to w′,

and there must be a vertex w′′ adjacent to u4 (dH(u4) ≥ 5), but the edge u4w
′′ cannot

be on any K5, which is impossible.

subcase 1.2 : If w has an other neighbour (say u5) in U . When w′ is not adjacent to

w, then w′ must be adjacent to precisely 3 vertices in {u2, u3, u4, u5}. If u4w
′ is an edge,

there must be an edge incident with w′ (dH(w′) ≥ 5), but this edge cannot be contained

in any K5, a contradiction. If u4w
′ is not an edge, there must be an edge incident with
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u4 and this edge cannot be contained in any K5, which is impossible. Thus, w and w′ are

adjacent and there are 2 vertices in {u2, u3, u5} adjacent to w′, say u2 and u3. But now,

there is an additionnal edge incident with u4 and this edge is u4w
′ otherwise it is not

contained in any K5. It is a routine matter to check that there is no additionnal vertex

nor edge in H. Hence H is isomorphic to the graph depicted in Figure 2, a contradiction

with Lemma 5.5.

case 2 : ∀ i 1 ≤ i ≤ 5 dH(ui) = 5.

Let w be the last neighbour of u1 outside U . Since wu1 must be contained in a K5, w

must be adjacent to u2, u3 and u4, without loss of generality. Hence, wu5 6∈ E(G) or H

is complete. Since dH(u5) = 5, let w′ 6= w be the last neighbour of u5 outside U . Then

u5w
′ is not contained in a K5, which is impossible.

�

Lemma 5.7. Q(K5, 4) = 36.

Proof Since K9 and K6+K7 are (K5, 4) stable graphs, we certainly have Q(K5, 4) ≤ 36.

Assume that some graph G with e(G) ≤ 35 is a (K5, 4) stable graph with minimum

size. Let v be a vertex with maximum degree. If d(v) ≥ 8 then G − v is a (K5, 3)

stable graph with at most 27 edges, a contradiction with Proposition 2.7. If d(v) = 7

then G − {v} is a (K5, 3) stable graph with at most 28 edges. Hence we must have

e(G−{v}) = 28 and G is a (K5, 3) stable graph with minimum size. By Proposition 2.7,

G − {v} is a K8 and G is a K9 minus one edge, a contradiction with Proposition 2.1.

We can thus assume that the maximum degree of G is at most 6. If some vertex u

has degree 4, let v be one of its neighbours. We know, by Lemma 2.6 that d(v) = 6.

By deleting v, we get a graph G − v which is a (K5, 3) stable graph. In that graph, the

edges incident with u are not contained in a K5 since the degree of u is now 3. We can

thus delete these edges and we obtain a (K5, 3) stable graph with at most 27 edges, a

contradiction with Proposition 2.7.

Hence every vertex must have a degree 5 or 6. By Lemma 5.6, the components of G

are complete graphs. It can be easily checked that the only convenient graphs are K9

and K6 + K7, a contradiction with e(G) ≤ 35. �
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Lemma 5.8. K6 + K7 and K9 are the only (K5, 4) stable graph with minimum size.

Proof By Lemma 5.7, let G be a (K5, 4) stable graph with 36 edges.

If G has a vertex of degree at least 8 then G − {v} is a (K5, 4) stable graph with

at most 28 edges. Hence G − {v} must have exactly 28 edges and d(v) = 8. Since, by

Proposition 2.7 G − {v} is a K8, G itself is a K9.

We can thus assume that the maximum degree of G is at most 7. If some vertex u

has degree 4, let v be one of its neighbours. We know, by Lemma 2.2 that d(v) ≥ 6. By

deleting v, we get a graph G − {v} which is a (K5, 3) stable graph. In that graph, the

edges incident with u are not contained in a K5 of G3 since the degree of u is now 3.

We can thus delete these edges and we obtain a (K5, 3) stable graph with 27 edges, a

contradiction with Proposition 2.7.

Hence the degree of each vertex is 5, 6 or 7.

In the following Claims Q1 and Q2 denote any two induced K5 of G.

Claim 5.8.1. |V (Q1) ∩ V (Q2)| 6= 1.

Proof Assume that |V (Q1) ∩ V (Q2)| = 1 then the vertex in the intersection must

have degree at least 8, which is impossible. �

Claim 5.8.2. Assume that Q1 and Q2 are vertex disjoint and let xy ∈ E(G) (if any)

such that x ∈ V (Q1) and y ∈ V (Q2). Then we can find a vertex x′ ∈ V (Q1) and a vertex

y′ ∈ V (Q2) such that {x, x′, y, y′} is contained in an induced K5 of G. Moreover the 5th

vertex of this K5 must be contained in Q1 + Q2.

Proof

Since G is a minimum (K5, 4) stable graph, the edge xy must be contained in a K5

(say Q). By Claim 5.8.1 Q contains at least one vertex more in Q1 (say x′) and one vertex

more in Q2 (say y′). Let a be the 5th vertex of Q and assume that a 6∈ V (Q1) ∪ V (Q2).

G − {a} is a (K5, 3) stable graph but it is not minimum since the edges between {x, x′}

and {y, y′} cannot be contained in a K5. By deleting these 4 edges in G − {a} we get

a (K5, 3) stable G′ with at most 28 edges. By Proposition 2.7, G′ is isomorphic to K8,

which is impossible. �
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Claim 5.8.3. |V (Q1) ∩ V (Q2)| 6= 2.

Proof Assume that V (Q1)∩ V (Q2) = {x, y}. Let us remark that these two vertices

have degree 7. Let {u1, u2, u3} and {v1, v2, v3} be the sets of remaining vertices of Q1

and Q2 respectively.

Assume that some edge is missing between {u1, u2, u3} and {v1, v2, v3} (say u1v1 6∈

E(G)). Then G1 = G− {u2, v2, v3} is a (K5, 1) stable graph in which the vertices x and

y are not contained in any K5. Hence G2 = G1 − {x, y} is a (K5, 1) stable graph. Since

dG(v1) ≤ 7, the degree of v1 in G2 is at most 3. Hence v1 is not contained in any K5

and G3 = G2 − {v1} is (K5, 1) stable graph.

case 1 : The edge u1u3 is not contained in a K5.

Then G4 = G3 \ {u1, u3} is a (K5, 1) stable graph. By Proposition 2.3, G4 contains

at least 15 edges. Since Q1 + Q2 contains 19 edges, we need to find two edges more.

By Claim 5.8.2 no edge can connect V (Q1) ∪ V (Q2) to G4. Whatever is the place of

these edges, G − {x, y} is a (K5, 2) stable graph, where no vertex in {u1, u2, u3} nor in

{v1, v2, v3} can be contained in a K5. Hence G − (V (Q1) ∪ V (Q2)) is a (K5, 2) stable

graph and must contains at least 21 edges by Proposition 2.5. That is G must contains

at least 40 edges, a contradiction.

case 2 : The edge u1u3 is contained in a K5.

That means that u1 and u3 have 3 neighbours outside V (Q1) ∪ V (Q2). In the same

way, we can consider that u2 has also three such neighbours (take G1 = G−{u3, v2, v3})

as well as v1, v2 and v3 by symmetry. Hence G3 contains the 19 edges of Q1 + Q2 and

18 edges connecting {u1, u2, u3} and {v1, v2, v3} to the vertices outside, a contradiction.

We can thus suppose that every vertex in {u1, u2, u3} is joined to every vertex in

{v1, v2, v3}. That means that Q1 + Q2 is a component of G and induces a K8. No

component distinct from this K8 can contain a K5, which is impossible.

�

Claim 5.8.4. Either |V (Q1) ∩ V (Q2)| 6= 3 or G is isomorphic to K7 + K6.

Proof Suppose contrary to the claim that V (Q1) ∩ V (Q2) = {x, y, z}. Let {u1, u2}

and {v1, v2} be the sets of remaining vertices of Q1 and Q2 respectively.
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Then G1 = G−{x, y, z} is a (K5, 1) stable graph in which the vertices u1, u2, v1, v2 are

not contained in any K5 by Claims 5.8.1 and 5.8.3. That means that G2 = G− (V (Q1)∪

V (Q2)) is a (K5, 1) stable graph. If w ∈ V (Q1) ∪ V (Q2) is adjacent to some vertex w
′

in G2 then a K5 using that edge forces 4 edges more between these two subgraphs, a

contradiction since G would have at least 37 edges (by Proposition 2.3 G2 has at least

15 edges).

If some edge is missing between {u1, u2} and {v1, v2} (say u1v1 6∈ E(G)), then G3 =

G − {u2, v2} is a (K5, 2) stable graph where x, y, z, u1, v1 are not contained in any K5.

The graph G3 is still (K5, 2) stable. Hence, by Proposition 2.5 G must have at least 38

edges, a contradiction.

We can thus suppose that V (Q1) ∪ V (Q2) induces a K7. The remaining part of G

is the (K5, 1) stable graph G2 described above. This graph must have exactly 15 edges.

Hence, G2 is isomorphic to K6 by Proposition 2.3. That means that G is isomorphic to

K7 + K6. �

Claim 5.8.5. Either |V (Q1) ∩ V (Q2)| 6= 4 or G is isomorphic to K7 + K6.

Proof Suppose contrary to the claim that V (Q1)∩V (Q2) = {x, y, z, t} and G is not

isomorphic to K7 +K6. Let u and v be the remaining vertices of Q1 and Q2 respectively.

Let r be a neighbour of u, if any, outside V (Q1)∪V (Q2). Let Q3 be a K5 containing

the edge ur. Then V (Q1) ∩ V (Q3) contains 4 vertices (Claims 5.8.1 and 5.8.3) but

V (Q2) ∩ V (Q3) contains 3 vertices, a contradiction.

Since d(u) ≥ 5, we must have uv ∈ E(G) (and, moreover, d(u) = d(v) = 5).

case 1 :There are neighbours of {x, y, z, t} outside V (Q1) ∪ V (Q2).

Let s be a such neighbour of x,. The edge xs being contained in a K5, this K5 must

have 4 common vertices with Q1 and 4 common vertices with Q2 (Claims 5.8.1, 5.8.3 and

5.8.4). Hence, s must be adjacent to the 4 vertices of V (Q1) ∩ V (Q2) and {x, y, z, t, s}

induces a K5 with 4 common vertices with Q1 and 4 common vertices with Q2. By the

above remark, we have us ∈ E(G) as well as vs ∈ E(G) and V (Q1) ∪ V (Q2) induces a

K7. By deleting 3 vertices of this component, the resulting graph is (K5, 1) stable with

15 edges, and hence is isomorphic to K6.

case 2 :There are no neighbours of {x, y, z, t} outside V (Q1) ∪ V (Q2).
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Hence, Q1 + Q2 is a component of G inducing a K6. By deleting 2 vertices in

this component, the resulting graph is (K5, 2) stable. Since the remaining vertices of

V (Q1) ∪ V (Q2) in this graph are not contained in any K5, we can delete them and the

(K5, 2) stable graph so obtained must have 21 edges exactly. This component is a K7 by

Proposition 2.5, a contradiction. �

To end the proof of the lemma, it is sufficient to say that any two induced K5 of G

must be disjoint by Claims 5.8.1, 5.8.3, 5.8.4 and 5.8.5. That means that each component

of G is a K5, which is impossible since G must have 36 edges.

�

Lemma 5.9. Q(K5, 5) = 42.

Proof Since K7+K7 is a (K5, 5) stable graphs, we certainly have Q(K5, 5) ≤ 42. Let G

be a (K5, 5) stable graph with minimum size and assume that e(G) ≤ 41. Let us remark

that the size of G is certainly greater than Q(K5, 4).

If G has a vertex of degree at least 6 then G−v is a (K5, 4) stable graph with at most 35

edges, a contradiction with Lemma 5.7. If G has a vertex of degree 4 then, since the degree

of every neighbour is at most 5, we must have, by Lemma 2.2, Q(K5, 5) ≥ Q(K5, 4) + 9,

a contradiction.

Hence, every vertex must have degree 5 and by Lemma 5.6, the component of G are

isomorphic to K6. It is easy to see that no such graph can exist. �

Lemma 5.10. K7 + K7 is the unique (K5, 5) stable graph with minimum size.

Proof Let G be a (K5, 5) stable graph with minimum size. By Lemma 5.9, we have

e(G) = 42.

If G has a vertex of degree at least 7 then G − v is a (K5, 4) stable graph with at

most 35 edges, a contradiction with Lemma 5.7.

If G has a vertex u of degree 4, let v be one of its neighbours. By deleting v we get

a (K5, 4) stable graph where the edges incident with the vertex u are not contained in
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any K5 since the degree of u in that graph is 3. By deleting these edges we get a (K5, 4)

stable graph with at most 35 edges, a contradiction with Lemma 5.7.

Hence every vertex has degree 5 or 6. By Lemma 5.6, the components of G are

complete. It is an easy task to see that the only convenient graph G is isomorphic to

K7 + K7, as claimed. �

Theorem 5.11. Let G = (V, E) be a (K5, k) stable graph (k ≥ 5) with minimum size

then |E(G)| = 7k + 7.

Proof By Lemma 5.9, the theorem holds for k = 5. Suppose that the property holds

for any k (5 ≤ k < k0) and let us consider a (K5, k0) stable graph G with minimum size.

Assume that G has at most 7k0 + 6 edges and let v be a vertex of maximum degree.

Since G − v is a (K5, k0 − 1) stable graph, it must have 7k0 edges, which means that

d(v) ≤ 6. Moreover, by Proposition 1.2, we certainly have d(v) ≥ 4.

Let z be a vertex of degree 4 in some component of G. If z has a neighbour v whose

degree is 6 then G− v has exactly 7k0 edges. Hence G− v is a (K5, k0 − 1) stable graph

with minimum size. Since the degree of z is 3 in G−v, any edge incident with z in G−v

is not contained in a K5, a contradiction.

If z has a neighbour v whose degree is 5 then G− v has at most 7k0 + 1 edges. G− v

is a (K5, k0 − 1) stable graph. This graph has not minimum size since the 3 remaining

edges incident with z are not contained in a K5. If we delete these 3 edges, we still have a

(K5, k0−1) stable graph, but the number of edges is at most 7k0−2, which is impossible

by the induction hypothesis.

Hence the neighbours of z have also degree 4, that means that the component con-

taining a vertex of degree 4 is a 4 regular graph containing a K5. That is, this component

is reduced to a K5.

Since each component containing only vertices of degree 5 or 6 are complete by

Lemma 5.6, we have thus that all the components of G are complete. By Lemma 5.3,

each component has 7 vertices or 8 vertices (recall that k0 ≥ 5). Assume that we have p

components isomorphic to a K7 and q isomorphic to a K8, then k0 ≤ 3p + 4q − 1 and G

has 21p+28q edges. If k0 = 3p+4q− 1, we have 21p+28q = 7k0 +7, a contradiction. If

k0 < 3p + 4q − 1 then deleting one vertex in some component leaves the graph (K5, k0)
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stable, which is impossible. �

Dudek, Szymański and Zwonek propose the following conjecture.

Conjecture 5.12. [2] For every integer q ≥ 5 there is an integer k(q) such that Q(Kq, k) =

(2q − 3)(k + 1) for k ≥ k(q).

Theorem 5.11 proves this conjecture for q = 5 with k(q) = 5.

Theorem 5.13. Let G = (V, E) be a (K5, k) stable graph (k ≥ 5) with minimum size

then

• |E(G)| = 7k + 7,

• each component is isomorphic to a complete graph with 7 or 8 vertices,

• there are p components isomorphic to K7 and q components isomorphic to K8 for

any choice of p and q with 3p + 4q = k + 1.

Proof By Theorem 5.11, the first item is true. We can check that the property of the

second item holds for k = 5 (G being the vertex disjoint union of two K7). Assume that

the property holds for any k (5 ≤ k < k0) and let us consider a (K5, k0) stable graph G

with minimum size.

If G has a vertex v of degree at least 8, then G − v has at most 7k0 − 1 edges and

cannot be a (K5, k0 − 1) stable graph, a contradiction. Thus the maximum degree of G

is at most 7.

case 1 : ∃ v ∈ V (G) dH(v) = 7.

In that case, G− v is (K5, k0 − 1) stable graph with minimum size. By the induction

hypothesis, each component of G − v is isomorphic to a complete graph with 7 or 8

vertices. Going back to G by adding the vertex v leads to join v to a whole component of

G−v, otherwise, some edge incident with v cannot be contained in a K5, a contradiction

with Proposition 1.2. The vertex v cannot be connected to 7 vertices of a K8, otherwise

we would have a near complete graph, a contradiction. Hence v is joined to the 7 vertices

of a K7 and the component of G containing v is a K8.
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case 2 : If some component of G contains vertices of degree 5 or 6 only, then, by Lemma

5.6, this component is a complete graph on at least 7 or 8 vertices (Lemma 5.3), since

k0 > 5.

case 3 : If some component of G contains a vertex v of degree 4 then, no neighbour w

of v may have a degree at least 5. Otherwise, G − w is a (K5, k0 − 1) stable graph with

at most 7k0 + 2 edges. Since the degree of v is 3 in G − w, the 3 edges incident with v

are not contained in any K5. We can thus delete these 3 edges from G − w, getting a

(K5, k0 − 1) stable graph with at most 7k0 − 1 edges, which is impossible by Theorem

5.11. Hence this component is 4−regular. That is, this component is reduced to a K5, a

contradiction with Lemma 5.3 since k0 > 5.

It is now a routine matter to check that the third item holds.

�

References

[1] J.A. Bondy and U.S.R. Murty, Graph theory, vol. 244, Springer, Series Graduate Texts in Mathe-

matics, 2008.
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