On $\left(K_{q}, k\right)$ vertex stable graphs with minimum size

J-L. Fouquet ${ }^{\text {a }}$, H. Thuillier ${ }^{\text {a }}$, J-M. Vanherpe ${ }^{\text {a }}$, A.P. Wojda ${ }^{\text {b,1 }}$
${ }^{a}$ L.I.F.O., Faculté des Sciences, B.P. 6759
Université d'Orléans, 45067 Orléans Cedex 2, FR
${ }^{b}$ Wydzial Matematyki Stosowanej Zaklad Matematyki Dyskretnej
A.G.H., Al. Mickiewicza 30, 30-059 Kraków, PL

Abstract

A graph G is a $\left(K_{q}, k\right)$ vertex stable graph if it contains a K_{q} after deleting any subset of k vertices. We give a characterization of $\left(K_{q}, k\right)$ vertex stable graphs with minimum size for $q=3,4,5$.

Keywords: Stable graphs

1. Introduction

For terms not defined here we refer to [1]. As usually, the order of a graph G is the number of its vertices (it is denoted by $|G|$) and the size of G is the number of its edges (it is denoted by $e(G)$). A complete subgraph of order q of G is called a q-clique of G. The complete graph of order q is denoted by K_{q}. When a graph G contains a q-clique as subgraph, we say " G contains a K_{q} ". The union of p mutually disjoint copies of K_{q} is denoted by $p K_{q}$. When A is a set of vertices we denote by $G-A$ the subgraph induced by $V(G)-A$.

In [6] Horwárth and G.Y Katona consider the notion of (H, k) stable graph: given a simple graph H, an integer k and a graph G containing H as subgraph, G is a a (H, k) stable graph whenever the deletion of any set of k edges does not lead to a H-free graph. These authors consider $\left(P_{n}, k\right)$ stable graphs and prove a conjecture stated in [5] on the minimum size of a $\left(P_{4}, k\right)$ stable graph. In [2], Dudek, Szymański and Zwonek are interested in a vertex version of this notion and introduce the (H, k) vertex stable graphs.

[^0]Definition 1.1. [2] Let H be a graph. A graph is a (H, k) vertex stable graph if it contains a graph isomorphic to H after deleting any subset of k vertices. By $Q(H, k)$ we denote the minimum size of a (H, k) vertex stable graph. If G is (H, k) vertex stable of size $Q(H, k)$ we call it minimum (H, k) vertex stable.

In this paper, we are only interested by (H, k) vertex stable graphs and, since no confusion will be possible, a (H, k) vertex stable shall be simply called a (H, k) stable graph.

In [2], the authors give values of $Q(H, k)$ when H is isomorphic to C_{3}, C_{4} or K_{4} and provide upper bounds for some other cases while in [3] the bipartite case is considered.

It must be pointed out that in some cases the value of $Q(H, k)$ can be obtained without the description of extremal graphs, that is (H, k) vertex stable graphs whose size is precisely $Q(H, k)$. In this paper we describe the extremal (H, k) stable graphs when H is isomorphic to K_{q}, for $q \in\{3,4,5\}$ while in [4] we describe the extremal $\left(K_{q}, k\right)$ stable graphs when k is small with respect to q.

By considering (H, k) stable graph with minimum size, it must be clear that we can add some isolated vertices, the resulting graph remains to be a (H, k) stable graph with minimum size. From now on, the graphs considered have no isolated vertices.

Proposition 1.2. [2] If G is a (H, k) stable graph with minimum size then every vertex as well as every edge is contained in a subgraph isomorphic to H.

Remark 1.3. Proposition 1.2 implies, in particular, that when $H \equiv K_{q}$ then the minimum degree of a (H, k) stable graph with minimum size is at least $q-1$.

Lemma 1.4. [2] Let $k \geq 1$. If G is $a(H, k)$ stable then for any vertex $v G-\{v\}$ is a $(H, k-1)$ stable.

Definition 1.5. Let H be a non complete graph on $q+p+1(p \geq 0)$ vertices and u be one of its vertices. Let N be the neighbourhood of u and $R=V(H)-u-N$. We shall say that H is a near complete graph (R, N, u) on $q+p+1$ vertices (see Figure 1) when

- $H-\{u\}$ is complete.
- $d_{H}(u)=q+\epsilon(\epsilon \in\{-1,0,1\})$.

Note that the set R is not empty since H is not complete. Hence, $|R|=p-\epsilon$, and since H is not complete we must have $p \geq 2$ when $d_{H}(u)=q+1$ and $p \geq 1$ when $d_{H}(u)=q$.

Figure 1: A near complete graph ($\mathrm{R}, \mathrm{N}, \mathrm{u}$) on $q+p+1$ vertices

2. Preliminary results

Proposition 2.1. Let $G=(V, E)$ be a $\left(K_{q}, k\right)$ stable graph with minimum size ($q \geq 3$). Then G has no component isomorphic to a near complete graph (R, N, u) on $q+p+1$ vertices.

Proof Suppose, by contradiction, that there exists such a component $H=(R, N, u)$ on $q+p+1$ vertices with $d_{H}(u)=q+\epsilon(\epsilon \in\{-1,0,1\})$. Since G is a $\left(K_{q}, k\right)$-stable graph with minimum size, $G-\{u\}$ is not $\left(K_{q}, k\right)$-stable. There exists a set S with at most k vertices such that S intersects every K_{q} of $G-\{u\}$. There exists a K_{q} in $G-S$ and clearly such a K_{q} contains u. Since N is a $K_{q+\epsilon}$ and $N-S$ contains no $K_{q},|S \cap N| \geq \epsilon+1$ (trivial for $\epsilon=-1$). If $|S \cap N| \geq \epsilon+2$ then $|N-S| \leq q-2$, and hence S intersects every K_{q} containing u, a contradiction. Thus, $|S \cap N|=\epsilon+1$ and $|N-S|=q-1$. If there exists v in $R-S$ then $(N-S)+\{v\}$ is a K_{q} in $G-\{u\}$, a contradiction. Thus, $R \subset S$. Let $a \in R$ and $b \in N-S$, and set $S^{\prime}=S-\{a\}+\{b\}$. We have $\left|S^{\prime}\right| \leq k$ and $G-S^{\prime}$ contains no K_{q}, a contradiction.

Lemma 2.2. Let $G=(V, E)$ be a minimum $\left(K_{q}, k\right)(q \geq 3$ and $k \geq 1)$ stable graph and let u be a vertex of degree $q-1$ then one of the following statements is true

- $\forall v \in N(u) \quad d(v) \geq q+1$.
- $Q\left(K_{q}, k-1\right)+3(q-2) \leq Q\left(K_{q}, k\right)$.

Proof Since $d(u)=q-1,\{u\}+N(u)$ induces a complete graph on q vertices. Assume that some vertex $w \in N(u)$ has degree $q+a(a=-1$ or $a=0)$ and let $v \in N(u)$ distinct from w. Then $G-v$ is a $\left(K_{q}, k-1\right)$ stable graph (Lemma 1.4). Since the degree of u in $G-\{v\}$ is $q-2$, no edge incident with u can be contained in a K_{q}. We can thus delete these $q-2$ edges and the resulting graph (say G^{\prime}) is still a ($K_{q}, k-1$) stable graph. In G^{\prime}, the degree of w is now $q+a-2$. Hence, no edge incident with w in G^{\prime} can be contained in a K_{q}. Deleting these $q+a-2$ edges from G^{\prime} leads to a graph $G^{\prime \prime}$ which remains to be a $\left(K_{q}, k-1\right)$ stable graph.

By deleting v, we have $e(G-\{v\}) \leq e(G)-(q-1)$ and hence

$$
e\left(G^{\prime}\right) \leq e(G)-(q-1)-(q-2)
$$

We get thus

$$
Q\left(K_{q}, k-1\right) \leq e\left(G^{\prime \prime}\right) \leq e(G)-(q-1)-(q-2)-(q+a-2)
$$

Since $e(G)=Q\left(K_{q}, k\right)$, the result follows.

Proposition 2.3. Let $G=(V, E)$ be a minimum $\left(K_{q}, 1\right)$ stable graph $(q \geq 4)$ then G is isomorphic to K_{q+1}.

Proof Let G be a minimum $\left(K_{q}, 1\right)$ stable graph. Since K_{q+1} is $\left(K_{q}, 1\right)$ stable, clearly $e(G) \leq\binom{ q+1}{2}$. We can assume that G is connected. Otherwise, each component contains a K_{q}, but $\binom{q+1}{2}<2\binom{q}{2}$ as soon as $q \geq 4$, a contradiction. Let u be a vertex of G and Q be a subgraph of $G-\{u\}$ isomorphic to K_{q}. Assume that there exists a vertex v outside Q and distinct from u. Note that v can be a neighbour of u. Since $d(u) \geq q-1$ and $d(v) \geq q-1, e(G) \geq e(Q)+2(q-1)-1=\binom{q}{2}+2 q-3=\binom{q+1}{2}+q-3$. Thus, $e(G)>e\left(K_{q+1}\right)$, a contradiction. Hence, $V(G)=V(Q) \cup\{u\}$ with $d(u) \geq q-1$. Since for any edge $e K_{q+1}-\{e\}$ is not $\left(K_{q}, 1\right)$ stable, we see that $d(u)=q$, that is G is isomorphic to K_{q+1}.

Remark 2.4. It is easy to see that the minimum $\left(K_{3}, 1\right)$ stable graphs are $2 K_{3}$ and K_{4}.
Proposition 2.5. Let $G=(V, E)$ be a minimum $\left(K_{q}, 2\right)$ stable graph $(q \geq 4)$ then G is isomorphic to K_{q+2}.

Proof Since K_{q+2} is a $\left(K_{q}, 2\right)$ stable graph, we can suppose that G has at most $\binom{q+2}{2}$ edges. We can suppose, moreover, that G is not complete, otherwise G is obviously reduced to K_{q+2}. Let u be a vertex of minimum degree (recall that the minimum degree is at least $q-1$) and let v be one of its neighbours.

Assume that $d_{G}(u)=q-1 . G-\{v\}$ is a $\left(K_{q}, 1\right)$ stable graph, but it is not minimum, since none of the remaining edge incident with u can be contained in a complete graph on q vertices. By deleting the $q-2$ edges incident with u, we get thus a ($K_{q}, 1$) stable graph.

If $d(v) \geq q+1$, this graph has at most $\binom{q+2}{2}-(2 q-1)$ edges. Since this number of edges must be greater than $\binom{q+1}{2}$ by Proposition 2.3 , we have

$$
(q+2)(q+1)-4 q+2 \geq(q+1) q
$$

That leads to $q \leq 2$, a contradiction. If $d(v) \leq q$, by Lemma 2.2, we have $Q\left(K_{q}, 1\right)+$ $3 q-6 \leq Q\left(K_{q}, 2\right)$ and hence

$$
q(q+1)+6 q-12 \leq(q+1)(q+2)
$$

Which gives $q \leq 3$, a contradiction.
We can thus assume that the minimum degree of G is at least q. Let u and v be two non adjacent vertices of G. Since $G-\{u, v\}$ contains a K_{q} (say Q), let a and b be two distinct vertices of Q. Since $G-\{a, b\}$ must contain also a K_{q}, there is certainly a vertex w distinct from v and u, outside Q, inducing with $q-1$ other vertices of $G-\{a, b\}$ a K_{q}. Hence G contains three vertices $(u, v$ and $w)$ at least in $G-Q$ and we have:

$$
\binom{q+2}{2} \geq e(G) \geq\binom{ q}{2}+3 q-2
$$

Which gives $q<3$, a contradiction. Hence G is complete and the proposition follows.

Lemma 2.6. Let G be a minimum $\left(K_{q}, 3\right)$ stable graph, $q \geq 5$. Let u be a vertex of minimum degree in G and suppose that $d_{G}(u)=q+l$, where $-1 \leq l \leq 1$. Then for every neighbour v of u we have $d_{G}(v) \geq q+l+2$.

Proof Suppose, contrary to our claim, that $d_{G}(v) \leq q+l+1$ for a neighbour v of u. Since, by Proposition 1.2, the edge $u v$ is contained in a clique of order q and $q \geq 5$, there is a set A of vertices of G such that $|A|=l+2$ and the vertices of the set $A \cup\{u, v\}$ are mutually adjacent. The graph $G^{\prime}=G-A$ is $\left(K_{q}, 3-(l+2)\right)$ stable. We have $d_{G^{\prime}}(u)=q+l-(l+2)=q-2$, hence also $G^{\prime \prime}=G^{\prime}-\{u\}$ is $\left(K_{q}, 1-l\right)$ stable. But in $G^{\prime \prime}$ the degree of the vertex v is at most $q-2$ and therefore $G^{\prime \prime \prime}=G^{\prime \prime}-\{v\}$ is $\left(K_{q}, 1-l\right)$ stable. Since every vertex of the set $A \cup\{u, v\}$ has at least $q-3$ neighbours outside this set, we have

$$
\binom{q+1-l}{2} \leq e\left(G^{\prime \prime \prime}\right) \leq\binom{ q+3}{2}-(l+4)(q-3)-\binom{l+4}{2}
$$

which contradicts $q \geq 5$.

Proposition 2.7. Let $G=(V, E)$ be a minimum $\left(K_{q}, 3\right)$ stable graph $(q \geq 5)$ then G is isomorphic to K_{q+3}.

Proof Note first that to prove the proposition it is sufficient to prove that every vertex of G has the degree at least $q+2$.

Let u be a vertex of the minimum degree in G and suppose, contrary to our claim, that $d_{G}(u) \leq q+l$, where $-1 \leq l \leq 1$.
Let $v_{1}, v_{2}, \ldots, v_{l+2}$ be such vertices of G that the set $\left\{u, v_{1}, v_{2}, \ldots, v_{l+2}\right\}$ induce a clique in G (such vertices exist since u is contained in a clique of order q by Proposition 1.2 and $q \geq 5$). By Lemma 2.6, we have $d_{G}\left(v_{i}\right) \geq q+l+2$ for $i=1,2, \ldots, l+2$. Set $G^{\prime}=G-\left\{v_{1}, v_{2}, \ldots, v_{l+2}\right\}$. The graph G^{\prime} is clearly $\left(K_{q}, 1-l\right)$ stable. Moreover, since $d_{G^{\prime}}(u)=q-2$, the graph $G^{\prime \prime}=G^{\prime}-\{u\}$ is also $\left(K_{q}, 1-l\right)$ stable and we have

$$
\binom{q+1-l}{2} \leq e\left(G^{\prime \prime}\right) \leq\binom{ q+3}{2}-(l+2)(q-1)-(q-2)-\binom{l+3}{2}
$$

which contradicts $q \geq 5$.

3. A characterization of $\left(K_{3}, k\right)$ stable graph with minimum size

Dudek, Szymański and Zwonek in [2] have shown that $Q\left(K_{3}, k\right)=3 k+3$ for every nonnegative integer k. In this section we characterize all that $\left(K_{3}, k\right)$ stable graphs with minimum size.

Clearly, K_{3} is the unique minimum $\left(K_{3}, 0\right)$ stable graph, and by Remark 2.4, the minimum $\left(K_{3}, 1\right)$ stable graphs are $2 K_{3}$ and K_{4}.

The following theorem characterize all graphs which are $\left(K_{3}, k\right)$ stable with minimum size.

Theorem 3.1. Let $G=(V, E)$ be a $\left(K_{3}, k\right)$ stable graph with minimum size. Then G is isomorphic to $p K_{4}+q K_{3}$, where p and q are such nonnegative integers that $2 p+q=k+1$.

Proof By Remark 2.4, K_{3} is the unique minimum $\left(K_{3}, 0\right)$ stable graph, and the minimum $\left(K_{3}, 1\right)$ stable graphs are $2 K_{3}$ and K_{4}. Clearly, the graph $(k+1) K_{3}$ is a $\left(K_{3}, k\right)$ stable graph and has $3 k+3$ edges. Let $k_{0} \geq 1$ and suppose that for every $k<k_{0}$ every minimum $\left(K_{3}, k\right)$ stable graph is a union of p copies of K_{4} and q copies K_{3} with $2 p+q=k+1$.

Let G be a $\left(K_{3}, k_{0}\right)$ stable graph of minimum size. Since $G-\{v\}$ is $\left(K_{3}, k_{0}-1\right)$ stable for every vertex v, we have $3 k_{0} \leq e(G-\{v\}) \leq e(G)-d_{G}(v) \leq 3 k_{0}+3-d_{G}(v)$, that is $d_{G}(v) \leq 3$. If every vertex of G has degree equal to 2 , then G is a union of $k_{0}+1$ copies of K_{3}, and the theorem is proved. So we may suppose that there is a vertex v_{0} of degree 3. But then $G-\left\{v_{0}\right\}$ is $\left(K_{3}, k_{0}-1\right)$ stable and $e\left(G-\left\{v_{0}\right\}\right)=3 k_{o}$, that is $G-\left\{v_{0}\right\}$ is minimum $\left(K_{3}, k_{0}-1\right)$ stable. By the induction hypothesis, $G-\left\{v_{0}\right\}$ is isomorphic to $p^{\prime} K_{4}+q^{\prime} K_{3}$, where $2 p^{\prime}+q^{\prime}=k_{0}$. It is clear that all the neighbours of v_{0} are in the same component of G, (otherwise one of the edges incident with v_{0} is not contained in any triangle, contrary to Proposition 1.2). Now it is easy to see that G is isomorphic to $\left(p^{\prime}+1\right) K_{4}+\left(q^{\prime}-1\right) K_{3}$ and $2\left(p^{\prime}+1\right)+\left(q^{\prime}-1\right)=k_{0}+1$ (otherwise there is a set A of cardinality k_{0} which is transversal of all cliques of order 3 in G).

4. A characterization of $\left(K_{4}, k\right)$ stable graph with minimum size

In [2] the minimum number of edges of a $\left(K_{4}, k\right)$ stable graph is given.

Theorem 4.1. [2] Let $G=(V, E)$ be $a\left(K_{4}, k\right)$ stable graph with minimum size $(k \geq 1)$ then

- $Q\left(K_{4}, 0\right)=6$.
- $Q\left(K_{4}, k\right)=5 k+5$ when $k \geq 1$.

Proposition 4.2. Let $G=(V, E)$ be a $\left(K_{4}, k\right)$ stable graph with minimum size if $k \geq 1$ then G as no component isomorphic to K_{4}.

Proof Let us consider $k \geq 2$. Assume that some component H of G is isomorphic to a K_{4} with the vertices of H being a, b, c, d. Then $G-H$ has $5 k-1$ edges. Since $G-H$ is not a $\left(K_{4}, k-1\right)$ stable graph, there is a set S with at most $k-1$ vertices intersecting each K_{4} of $G-H$. Then $S+\{a\}$ intersects each K_{4} of G while S has at most $k-1$ vertices, a contradiction.

When $k=1, G$ must have 10 edges by Theorem 4.1. Since for each vertex v the graph $G-v$ contains a K_{4}, v is joined to this K_{4} by 4 edges. Hence G is a K_{5} and the result holds.

Proposition 4.3. Let $G=(V, E)$ be a $\left(K_{4}, k\right)$ stable graph $(k \geq 1)$ with minimum size then every vertex of G has degree 3,4 or 5 .

Proof By Proposition 1.2 every vertex is contained in a K_{4}, hence its degree is at least 3. Assume that G has a vertex v with $d(v) \geq 6$. Then, by Lemma $1.4, G-v$ is a $\left(K_{4}, k-1\right)$ stable graph and therefore has at least $5 k$ edges, which is impossible since G has exactly $5 k+5$ edges, by Theorem 4.1.

Proposition 4.4. Let $G=(V, E)$ be a $\left(K_{4}, k\right)$ stable graph $(k \geq 1)$ with minimum size. Let H be a component without any vertex of degree 5, then each vertex of H has degree 4.

Proof By Proposition 4.3 the vertices of G have degree 3 or 4 . Assume to the contrary that H contains some vertex v with degree 3 . Let $N(v)=\left\{u_{1}, u_{2}, u_{3}\right\}$ be its neighbourhood. By Proposition 1.2, $N(v)$ is complete. Since H is not isomorphic to K_{4} by

Proposition 4.2, assume that, without loss of generality, u_{1} is joined to some new vertex w. Since $u_{1} w$ must be contained in a K_{4} by Proposition $1.2, w$ must be adjacent to u_{2} and u_{3}. By Proposition 2.1, H is not isomorphic to a K_{5} minus one edge, hence there must exist some new vertex w^{\prime} adjacent to w. Since each vertex in $\left\{u_{1}, u_{2}, u_{3}, w\right\}$ has degree 4, we cannot find a K_{4} using the edge $w w^{\prime}$, a contradiction with Proposition 1.2.

Theorem 4.5. Let $G=(V, E)$ be a $\left(K_{4}, k\right)$ stable graph $(k \geq 1)$ with minimum size then G is isomorphic to $p K_{5}+q K_{6}$, where p and q are such nonnegative integers that $2 p+3 q=k+1$.

Proof The proof is by induction on k. By Proposition 2.3, the only minimum $\left(K_{4}, 1\right)$ stable graph with minimum size is K_{5}. Let $k_{0} \geq 2$ and suppose that for every integer k, such that $1 \leq k<k_{0}$ every $\left(K_{4}, k\right)$ stable graph with minimum size is isomorphic to $p K_{5}+q K_{6}$, where p and q are nonnegative integers such that $2 p+3 q=k+1$.

Let G be a $\left(K_{4}, k_{0}\right)$ stable graph with minimum size. By Theorem 4.1 we have $e(G)=5 k_{0}+5$. Note that it is sufficient to prove that every component of G is isomorphic either to K_{5} or to K_{6}.

By Proposition 4.3, we have $3 \leq d_{G}(v) \leq 5$ for every vertex v of G. Since by Proposition 1.2, every edge of G is contained in a K_{4}, all the neighbours of a vertex v are in the same component of $G-\{v\}$.

Suppose first that there is a vertex v in G such that $d_{G}(v)=5$. Then $G-\{v\}$ is $\left(K_{4}, k_{0}-1\right)$ stable and moreover, since $e(G-v)=5 k_{0}, G-\{v\}$ is minimum $\left(K_{4}, k_{0}-1\right)$ stable. Hence every component of $G-\{v\}$ is either isomorphic to K_{5} or to K_{6}. If v is connected in G to a K_{6}, then the component of G which contains v is a near complete graph, contradicting Proposition 2.1. So v is connected to a K_{5} and G is a union of graphs isomorphic to K_{5} or K_{6}, as desired.

Assume now that no component has a vertex of degree 5. Then, by Proposition 4.4, each component is a 4-regular subgraph.

Let v be any vertex and let $N(v)=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ be its neighbourhood. Since v is contained in a K_{4} by Proposition 1.2, we can suppose, without restriction of generality, that $u_{1} u_{2}, u_{1} u_{3}$ and $u_{2} u_{3}$ are edges of G. Since $v u_{4}$ is contained in a K_{4} by Proposition $1.2, u_{4}$ is adjacent to at least 2 vertices of N (say, without loss of generality, u_{2} and u_{3}).
case 1: $u_{1} u_{4} \in E(G)$. Then the component containing v is a K_{5}.
case 2: $u_{1} u_{4} \notin E(G)$. Let w be a new vertex adjacent to u_{1} (this new vertex must exist since the component of v is 4 -regular). Then $u_{1} w$ cannot be contained in a K_{4}, a contradiction.

5. A characterization of $\left(K_{5}, k\right)$ stable graph with minimum size

In this section we provide the value of $Q\left(K_{5}, k\right)$ for $k \geq 5$, as well as a description of the corresponding minimum stable graphs.

Lemma 5.1. Let G be a $\left(K_{5}, k\right)$ stable graph containing a component isomorphic to K_{p} with $p \geq 9$. Then the graph G^{\prime} obtained from G by deleting two vertices v and v^{\prime} in this K_{p} and adding a K_{6} is a $\left(K_{5}, k\right)$ stable graph such that

- if $p \geq 10, e\left(G^{\prime}\right)<e(G)$,
- if $p=9, e\left(G^{\prime}\right)=e(G)$.

Proof Let A be the set of vertices created by the adjunction of the new K_{6}. Let S be a set of vertices with $|S| \leq k$ in G^{\prime}. If $|S \cap A| \leq 1, G-S$ contains obviously a K_{5}. If $|S \cap A| \geq 2$ then $S^{\prime}=S-A+\left\{v, v^{\prime}\right\}$ is a subset of G with at most k vertices. Hence $G-S^{\prime}$ contains a K_{5} which still exists in $G^{\prime}-S$.

If $p \geq 10$, at least 17 edges are deleted and 15 edges are created, thus $e\left(G^{\prime}\right)<e(G)$. If $p=9,15$ edges are deleted while 15 edges are created and $e(G)=e\left(G^{\prime}\right)$.

Lemma 5.2. Let $G=(V, E)$ be a $\left(K_{5}, k\right)$ stable graph with minimum size. Then G does not contain two components isomorphic to a K_{p} with $p \leq 6$.

Proof If we have two component (say K and L) isomorphic to a complete graph with 5 vertices then the graph G^{\prime} obtained from G by deleting these two components and adding a complete graph on 6 vertices is still a $\left(K_{5}, k\right)$ stable graph. Indeed, let S^{\prime} be any subset of $V\left(G^{\prime}\right)$ with $\left|S^{\prime}\right| \leq k$. If $G^{\prime}-S^{\prime}$ does not contain any K_{5} then S^{\prime} contains
at least 2 vertices v and w of the new K_{6}. Let $S=S^{\prime}-\{v, w\}+\{a, b\}$, where $a \in K$ and $b \in L$, then $G-S$ does not contain any K_{5}, a contradiction.

When we have a K_{5} and a K_{6}, we get the same kind of contradiction when replacing these two complete graphs with a K_{7} as well as when we have two K_{6} replaced by a K_{8}.

Lemma 5.3. Let $G=(V, E)$ be a $\left(K_{5}, k\right)$ stable graph with minimum size which is the vertex disjoint union of complete graphs and $k \geq 5$. Then each component is a K_{7} or a K_{8}.

Proof By Lemma 5.1, we can consider that each component is a K_{p} with $5 \leq p \leq 9$. By Lemma 5.2, at most one component is a K_{5} or a K_{6}. If some component is isomorphic to a K_{9} then let us replace this component by a K_{6} and a K_{7}. By Lemma 5.1 the resulting graph is still a $\left(K_{5}, k\right)$ stable graph with minimum size. It is clear that no component is isomorphic to a K_{9} now. Indeed, applying once more the operation described above leads to a $\left(K_{5}, k\right)$ stable graph with minimum size having two K_{6}, a contradiction with Lemma 5.2.

We have thus to consider that G is the vertex disjoint union of complete graphs isomorphic to K_{7} or K_{8} and at most one K_{5} or one K_{6}. Replacing a K_{5} and a K_{7} by one K_{8} leads to a (K_{5}, k) stable graph with a number of edges less than the number of edges of G, a contradiction. Replacing a K_{6} and a K_{8} by two K_{7} leads to a (K_{5}, k) stable graph with a number of edges less than the number of edges of G, a contradiction.

It remains to consider the case where the components are all isomorphic to a K_{7} with the exception of one K_{6} or all isomorphic to a K_{8} with the exception of one K_{5}. When we have at least two K_{7} and a K_{6}, these three complete graphs can be replaced by two K_{8}, the resulting graph is still a $\left(K_{5}, k\right)$ stable graph, but the number of edges is less than the number of edges of G, a contradiction. When we have at least two K_{8} and a K_{5}, these three complete graphs can be replaced by three K_{7}, the resulting graph is still a $\left(K_{5}, k\right)$ stable graph, but the number of edges is less than the number of edges of G, a contradiction.

When G is reduced to a K_{8} and a K_{5} or to a K_{7} and a K_{6}, we must have $k \leq 4$, which is impossible.

Lemma 5.4. Let G be $a\left(K_{5}, k\right)$ stable graph with minimum size and maximum degree 6. Assume that some component contains a K_{6}. Then either the component is reduced to this K_{6} or to K_{7}.

Proof Let $A=\left\{v_{1} \ldots v_{6}\right\}$ be the set of vertices of the K_{6}. If $d\left(v_{i}\right)=5$ for each vertex in A the proof is complete. Assume that the vertex v_{1} has degree 6 and let w be its neighbour outside V. Since $v_{1} w$ must be contained in a K_{5} by Proposition $1.2, w$ must be adjacent to 3 other vertices in V (say v_{2}, v_{3} and $\left.v_{4}\right)$. In the same way, if v_{5} or v_{6} has a neighbour outside A, this vertex must be adjacent to 4 vertices of A, which is impossible if this vertex is distinct from w.

Let $w^{\prime} \notin A$ be a neighbour of w (if any). Since $w w^{\prime}$ must be contained in a K_{5} by Proposition 1.2, w^{\prime} must have at least 3 neighbours in A, which is impossible. Hence the component containing the K_{6} contains at most one vertex more (the vertex w). If w is not adjacent to at least one of v_{5} or v_{6} (say v_{5}) then this component is a near complete graph (R,N,u) on 7 vertices (with $u=w, N=A$ or $N=A+\left\{v_{5}\right\}, R=\left\{v_{5}, v_{6}\right\}$ or $R=\left\{v_{5}\right\}$ respectively), which is impossible by Proposition 2.1. If w is adjacent to v_{4} and v_{5}, the component containing the K_{6} is a K_{7} as claimed.

Figure 2: Forbidden component of a $\left(K_{5}, k\right)$ stable graph with minimum size.

Lemma 5.5. Let $G=(V, E)$ be a $\left(K_{5}, k\right)$ stable graph with minimum size. Then no component of G is isomorphic to the subgraph depicted in Figure 2.

Proof Since $G-\{a\}$ is not a $\left(K_{5}, k\right)$ stable graph, there exists a set S with $|S| \leq k$ which intersects any K_{5} in $G-\{a\}$. If S contains one of the the vertices in $\{c, d, e\}$, then S intersects each K_{5} in G, which is impossible. Since $\{c, d, e, f, g\}$ induces a K_{5}, S contains at least one vertex in $\{f, g\}$. When $g \in S, S$ intersects each K_{5} in G, which is impossible. Assume that $f \in S$ then $S^{\prime}=S-\{f\}+\{c\}$ intersects each K_{5} in G, a contradiction since $\left|S^{\prime}\right| \leq k$.

Lemma 5.6. Let $G=(V, E)$ be a $\left(K_{5}, k\right)$ stable graph with minimum size. Assume that some component contains vertices with degree 5 or 6 only. Then this component is a complete graph with at least 5 vertices.

Proof Let H be a component containing vertices of degree 5 or 6 only. By Proposition 1.2, every edge is contained in a K_{5}. Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ be a set of vertices inducing a K_{5} in H.
case 1: $\exists \quad i \quad 1 \leq i \leq 5 \quad d_{H}\left(u_{i}\right)=6$.
Without loss of generality we may suppose that $i=1$. Let w and w^{\prime} the two neighbours of u_{1} outside U. Since $u_{1} w$ must be contained in a K_{5}, w must be adjacent to at least two vertices in $U-\left\{u_{1}\right\}$. Without loss of generality, assume that $w u_{2} \in E(G)$ and $w u_{3} \in E(G)$. Note that w is not joined to the two vertices u_{4} and u_{5}, otherwise, H contains a K_{6} and H is thus isomorphic to a complete graph by Lemma 5.4. For the same reason, w^{\prime} is not joined to all the vertices in U.
subcase 1.1 : If w or w^{\prime} has no other neighbour in U, say w, we must have $w w^{\prime} \in$ $E(G), w^{\prime} u_{2} \in E(G)$ and $w^{\prime} u_{5} \in E(G)$. One of u_{4} or u_{5}, say u_{4}, is not adjacent to w^{\prime}, and there must be a vertex $w^{\prime \prime}$ adjacent to $u_{4}\left(d_{H}\left(u_{4}\right) \geq 5\right)$, but the edge $u_{4} w^{\prime \prime}$ cannot be on any K_{5}, which is impossible.
subcase 1.2 : If w has an other neighbour (say u_{5}) in U. When w^{\prime} is not adjacent to w, then w^{\prime} must be adjacent to precisely 3 vertices in $\left\{u_{2}, u_{3}, u_{4}, u_{5}\right\}$. If $u_{4} w^{\prime}$ is an edge, there must be an edge incident with $w^{\prime}\left(d_{H}\left(w^{\prime}\right) \geq 5\right)$, but this edge cannot be contained in any K_{5}, a contradiction. If $u_{4} w^{\prime}$ is not an edge, there must be an edge incident with
u_{4} and this edge cannot be contained in any K_{5}, which is impossible. Thus, w and w^{\prime} are adjacent and there are 2 vertices in $\left\{u_{2}, u_{3}, u_{5}\right\}$ adjacent to w^{\prime}, say u_{2} and u_{3}. But now, there is an additionnal edge incident with u_{4} and this edge is $u_{4} w^{\prime}$ otherwise it is not contained in any K_{5}. It is a routine matter to check that there is no additionnal vertex nor edge in H. Hence H is isomorphic to the graph depicted in Figure 2, a contradiction with Lemma 5.5.
case 2: $\forall \quad i \quad 1 \leq i \leq 5 \quad d_{H}\left(u_{i}\right)=5$.
Let w be the last neighbour of u_{1} outside U. Since $w u_{1}$ must be contained in a K_{5}, w must be adjacent to u_{2}, u_{3} and u_{4}, without loss of generality. Hence, $w u_{5} \notin E(G)$ or H is complete. Since $d_{H}\left(u_{5}\right)=5$, let $w^{\prime} \neq w$ be the last neighbour of u_{5} outside U. Then $u_{5} w^{\prime}$ is not contained in a K_{5}, which is impossible.

Lemma 5.7. $Q\left(K_{5}, 4\right)=36$.
Proof Since K_{9} and $K_{6}+K_{7}$ are $\left(K_{5}, 4\right)$ stable graphs, we certainly have $Q\left(K_{5}, 4\right) \leq 36$.
Assume that some graph G with $e(G) \leq 35$ is a $\left(K_{5}, 4\right)$ stable graph with minimum size. Let v be a vertex with maximum degree. If $d(v) \geq 8$ then $G-v$ is a $\left(K_{5}, 3\right)$ stable graph with at most 27 edges, a contradiction with Proposition 2.7. If $d(v)=7$ then $G-\{v\}$ is a $\left(K_{5}, 3\right)$ stable graph with at most 28 edges. Hence we must have $e(G-\{v\})=28$ and G is a $\left(K_{5}, 3\right)$ stable graph with minimum size. By Proposition 2.7, $G-\{v\}$ is a K_{8} and G is a K_{9} minus one edge, a contradiction with Proposition 2.1.

We can thus assume that the maximum degree of G is at most 6 . If some vertex u has degree 4 , let v be one of its neighbours. We know, by Lemma 2.6 that $d(v)=6$. By deleting v, we get a graph $G-v$ which is a $\left(K_{5}, 3\right)$ stable graph. In that graph, the edges incident with u are not contained in a K_{5} since the degree of u is now 3 . We can thus delete these edges and we obtain a $\left(K_{5}, 3\right)$ stable graph with at most 27 edges, a contradiction with Proposition 2.7.

Hence every vertex must have a degree 5 or 6 . By Lemma 5.6 , the components of G are complete graphs. It can be easily checked that the only convenient graphs are K_{9} and $K_{6}+K_{7}$, a contradiction with $e(G) \leq 35$.

Lemma 5.8. $K_{6}+K_{7}$ and K_{9} are the only $\left(K_{5}, 4\right)$ stable graph with minimum size.
Proof By Lemma 5.7, let G be a $\left(K_{5}, 4\right)$ stable graph with 36 edges.
If G has a vertex of degree at least 8 then $G-\{v\}$ is a $\left(K_{5}, 4\right)$ stable graph with at most 28 edges. Hence $G-\{v\}$ must have exactly 28 edges and $d(v)=8$. Since, by Proposition 2.7 $G-\{v\}$ is a K_{8}, G itself is a K_{9}.

We can thus assume that the maximum degree of G is at most 7 . If some vertex u has degree 4 , let v be one of its neighbours. We know, by Lemma 2.2 that $d(v) \geq 6$. By deleting v, we get a graph $G-\{v\}$ which is a $\left(K_{5}, 3\right)$ stable graph. In that graph, the edges incident with u are not contained in a K_{5} of G_{3} since the degree of u is now 3 . We can thus delete these edges and we obtain a $\left(K_{5}, 3\right)$ stable graph with 27 edges, a contradiction with Proposition 2.7.

Hence the degree of each vertex is 5,6 or 7 .
In the following Claims Q_{1} and Q_{2} denote any two induced K_{5} of G.
Claim 5.8.1. $\left|V\left(Q_{1}\right) \cap V\left(Q_{2}\right)\right| \neq 1$.
Proof Assume that $\left|V\left(Q_{1}\right) \cap V\left(Q_{2}\right)\right|=1$ then the vertex in the intersection must have degree at least 8 , which is impossible.

Claim 5.8.2. Assume that Q_{1} and Q_{2} are vertex disjoint and let $x y \in E(G)$ (if any) such that $x \in V\left(Q_{1}\right)$ and $y \in V\left(Q_{2}\right)$. Then we can find a vertex $x^{\prime} \in V\left(Q_{1}\right)$ and a vertex $y^{\prime} \in V\left(Q_{2}\right)$ such that $\left\{x, x^{\prime}, y, y^{\prime}\right\}$ is contained in an induced K_{5} of G. Moreover the $5^{\text {th }}$ vertex of this K_{5} must be contained in $Q_{1}+Q_{2}$.

Proof

Since G is a minimum $\left(K_{5}, 4\right)$ stable graph, the edge $x y$ must be contained in a K_{5} (say Q). By Claim 5.8.1 Q contains at least one vertex more in Q_{1} (say x^{\prime}) and one vertex more in Q_{2} (say $\left.y^{\prime}\right)$. Let a be the $5^{t h}$ vertex of Q and assume that $a \notin V\left(Q_{1}\right) \cup V\left(Q_{2}\right)$. $G-\{a\}$ is a $\left(K_{5}, 3\right)$ stable graph but it is not minimum since the edges between $\left\{x, x^{\prime}\right\}$ and $\left\{y, y^{\prime}\right\}$ cannot be contained in a K_{5}. By deleting these 4 edges in $G-\{a\}$ we get a $\left(K_{5}, 3\right)$ stable G^{\prime} with at most 28 edges. By Proposition 2.7, G^{\prime} is isomorphic to K_{8}, which is impossible.

Claim 5.8.3. $\left|V\left(Q_{1}\right) \cap V\left(Q_{2}\right)\right| \neq 2$.
Proof Assume that $V\left(Q_{1}\right) \cap V\left(Q_{2}\right)=\{x, y\}$. Let us remark that these two vertices have degree 7. Let $\left\{u_{1}, u_{2}, u_{3}\right\}$ and $\left\{v_{1}, v_{2}, v_{3}\right\}$ be the sets of remaining vertices of Q_{1} and Q_{2} respectively.

Assume that some edge is missing between $\left\{u_{1}, u_{2}, u_{3}\right\}$ and $\left\{v_{1}, v_{2}, v_{3}\right\}$ (say $u_{1} v_{1} \notin$ $E(G))$. Then $G_{1}=G-\left\{u_{2}, v_{2}, v_{3}\right\}$ is a $\left(K_{5}, 1\right)$ stable graph in which the vertices x and y are not contained in any K_{5}. Hence $G_{2}=G_{1}-\{x, y\}$ is a ($K_{5}, 1$) stable graph. Since $d_{G}\left(v_{1}\right) \leq 7$, the degree of v_{1} in G_{2} is at most 3. Hence v_{1} is not contained in any K_{5} and $G_{3}=G_{2}-\left\{v_{1}\right\}$ is $\left(K_{5}, 1\right)$ stable graph.
case 1 : The edge $u_{1} u_{3}$ is not contained in a K_{5}.
Then $G_{4}=G_{3} \backslash\left\{u_{1}, u_{3}\right\}$ is a $\left(K_{5}, 1\right)$ stable graph. By Proposition 2.3, G_{4} contains at least 15 edges. Since $Q_{1}+Q_{2}$ contains 19 edges, we need to find two edges more. By Claim 5.8 .2 no edge can connect $V\left(Q_{1}\right) \cup V\left(Q_{2}\right)$ to G_{4}. Whatever is the place of these edges, $G-\{x, y\}$ is a $\left(K_{5}, 2\right)$ stable graph, where no vertex in $\left\{u_{1}, u_{2}, u_{3}\right\}$ nor in $\left\{v_{1}, v_{2}, v_{3}\right\}$ can be contained in a K_{5}. Hence $G-\left(V\left(Q_{1}\right) \cup V\left(Q_{2}\right)\right)$ is a $\left(K_{5}, 2\right)$ stable graph and must contains at least 21 edges by Proposition 2.5. That is G must contains at least 40 edges, a contradiction.
case 2: The edge $u_{1} u_{3}$ is contained in a K_{5}.
That means that u_{1} and u_{3} have 3 neighbours outside $V\left(Q_{1}\right) \cup V\left(Q_{2}\right)$. In the same way, we can consider that u_{2} has also three such neighbours (take $G_{1}=G-\left\{u_{3}, v_{2}, v_{3}\right\}$) as well as v_{1}, v_{2} and v_{3} by symmetry. Hence G_{3} contains the 19 edges of $Q_{1}+Q_{2}$ and 18 edges connecting $\left\{u_{1}, u_{2}, u_{3}\right\}$ and $\left\{v_{1}, v_{2}, v_{3}\right\}$ to the vertices outside, a contradiction.

We can thus suppose that every vertex in $\left\{u_{1}, u_{2}, u_{3}\right\}$ is joined to every vertex in $\left\{v_{1}, v_{2}, v_{3}\right\}$. That means that $Q_{1}+Q_{2}$ is a component of G and induces a K_{8}. No component distinct from this K_{8} can contain a K_{5}, which is impossible.

Claim 5.8.4. Either $\left|V\left(Q_{1}\right) \cap V\left(Q_{2}\right)\right| \neq 3$ or G is isomorphic to $K_{7}+K_{6}$.
Proof Suppose contrary to the claim that $V\left(Q_{1}\right) \cap V\left(Q_{2}\right)=\{x, y, z\}$. Let $\left\{u_{1}, u_{2}\right\}$ and $\left\{v_{1}, v_{2}\right\}$ be the sets of remaining vertices of Q_{1} and Q_{2} respectively.

Then $G_{1}=G-\{x, y, z\}$ is a $\left(K_{5}, 1\right)$ stable graph in which the vertices $u_{1}, u_{2}, v_{1}, v_{2}$ are not contained in any K_{5} by Claims 5.8.1 and 5.8.3. That means that $G_{2}=G-\left(V\left(Q_{1}\right) \cup\right.$ $\left.V\left(Q_{2}\right)\right)$ is a $\left(K_{5}, 1\right)$ stable graph. If $w \in V\left(Q_{1}\right) \cup V\left(Q_{2}\right)$ is adjacent to some vertex w^{\prime} in G_{2} then a K_{5} using that edge forces 4 edges more between these two subgraphs, a contradiction since G would have at least 37 edges (by Proposition $2.3 G_{2}$ has at least 15 edges).

If some edge is missing between $\left\{u_{1}, u_{2}\right\}$ and $\left\{v_{1}, v_{2}\right\}$ (say $u_{1} v_{1} \notin E(G)$), then $G_{3}=$ $G-\left\{u_{2}, v_{2}\right\}$ is a $\left(K_{5}, 2\right)$ stable graph where x, y, z, u_{1}, v_{1} are not contained in any K_{5}. The graph G_{3} is still $\left(K_{5}, 2\right)$ stable. Hence, by Proposition $2.5 G$ must have at least 38 edges, a contradiction.

We can thus suppose that $V\left(Q_{1}\right) \cup V\left(Q_{2}\right)$ induces a K_{7}. The remaining part of G is the $\left(K_{5}, 1\right)$ stable graph G_{2} described above. This graph must have exactly 15 edges. Hence, G_{2} is isomorphic to K_{6} by Proposition 2.3. That means that G is isomorphic to $K_{7}+K_{6}$.

Claim 5.8.5. Either $\left|V\left(Q_{1}\right) \cap V\left(Q_{2}\right)\right| \neq 4$ or G is isomorphic to $K_{7}+K_{6}$.
Proof Suppose contrary to the claim that $V\left(Q_{1}\right) \cap V\left(Q_{2}\right)=\{x, y, z, t\}$ and G is not isomorphic to $K_{7}+K_{6}$. Let u and v be the remaining vertices of Q_{1} and Q_{2} respectively.

Let r be a neighbour of u, if any, outside $V\left(Q_{1}\right) \cup V\left(Q_{2}\right)$. Let Q_{3} be a K_{5} containing the edge ur. Then $V\left(Q_{1}\right) \cap V\left(Q_{3}\right)$ contains 4 vertices (Claims 5.8.1 and 5.8.3) but $V\left(Q_{2}\right) \cap V\left(Q_{3}\right)$ contains 3 vertices, a contradiction.

Since $d(u) \geq 5$, we must have $u v \in E(G)$ (and, moreover, $d(u)=d(v)=5$).
case 1 : There are neighbours of $\{x, y, z, t\}$ outside $V\left(Q_{1}\right) \cup V\left(Q_{2}\right)$.
Let s be a such neighbour of x,. The edge $x s$ being contained in a K_{5}, this K_{5} must have 4 common vertices with Q_{1} and 4 common vertices with Q_{2} (Claims 5.8.1, 5.8.3 and 5.8.4). Hence, s must be adjacent to the 4 vertices of $V\left(Q_{1}\right) \cap V\left(Q_{2}\right)$ and $\{x, y, z, t, s\}$ induces a K_{5} with 4 common vertices with Q_{1} and 4 common vertices with Q_{2}. By the above remark, we have $u s \in E(G)$ as well as $v s \in E(G)$ and $V\left(Q_{1}\right) \cup V\left(Q_{2}\right)$ induces a K_{7}. By deleting 3 vertices of this component, the resulting graph is $\left(K_{5}, 1\right)$ stable with 15 edges, and hence is isomorphic to K_{6}.
case 2 : There are no neighbours of $\{x, y, z, t\}$ outside $V\left(Q_{1}\right) \cup V\left(Q_{2}\right)$.

Hence, $Q_{1}+Q_{2}$ is a component of G inducing a K_{6}. By deleting 2 vertices in this component, the resulting graph is $\left(K_{5}, 2\right)$ stable. Since the remaining vertices of $V\left(Q_{1}\right) \cup V\left(Q_{2}\right)$ in this graph are not contained in any K_{5}, we can delete them and the $\left(K_{5}, 2\right)$ stable graph so obtained must have 21 edges exactly. This component is a K_{7} by Proposition 2.5, a contradiction.

To end the proof of the lemma, it is sufficient to say that any two induced K_{5} of G must be disjoint by Claims 5.8.1, 5.8.3, 5.8.4 and 5.8.5. That means that each component of G is a K_{5}, which is impossible since G must have 36 edges.

Lemma 5.9. $Q\left(K_{5}, 5\right)=42$.
Proof Since $K_{7}+K_{7}$ is a $\left(K_{5}, 5\right)$ stable graphs, we certainly have $Q\left(K_{5}, 5\right) \leq 42$. Let G be a $\left(K_{5}, 5\right)$ stable graph with minimum size and assume that $e(G) \leq 41$. Let us remark that the size of G is certainly greater than $Q\left(K_{5}, 4\right)$.

If G has a vertex of degree at least 6 then $G-v$ is a $\left(K_{5}, 4\right)$ stable graph with at most 35 edges, a contradiction with Lemma 5.7. If G has a vertex of degree 4 then, since the degree of every neighbour is at most 5 , we must have, by Lemma $2.2, Q\left(K_{5}, 5\right) \geq Q\left(K_{5}, 4\right)+9$, a contradiction.

Hence, every vertex must have degree 5 and by Lemma 5.6, the component of G are isomorphic to K_{6}. It is easy to see that no such graph can exist.

Lemma 5.10. $K_{7}+K_{7}$ is the unique $\left(K_{5}, 5\right)$ stable graph with minimum size.

Proof Let G be a $\left(K_{5}, 5\right)$ stable graph with minimum size. By Lemma 5.9, we have $e(G)=42$.

If G has a vertex of degree at least 7 then $G-v$ is a $\left(K_{5}, 4\right)$ stable graph with at most 35 edges, a contradiction with Lemma 5.7.

If G has a vertex u of degree 4 , let v be one of its neighbours. By deleting v we get a $\left(K_{5}, 4\right)$ stable graph where the edges incident with the vertex u are not contained in
any K_{5} since the degree of u in that graph is 3 . By deleting these edges we get a $\left(K_{5}, 4\right)$ stable graph with at most 35 edges, a contradiction with Lemma 5.7.

Hence every vertex has degree 5 or 6 . By Lemma 5.6, the components of G are complete. It is an easy task to see that the only convenient graph G is isomorphic to $K_{7}+K_{7}$, as claimed.

Theorem 5.11. Let $G=(V, E)$ be a $\left(K_{5}, k\right)$ stable graph $(k \geq 5)$ with minimum size then $|E(G)|=7 k+7$.

Proof By Lemma 5.9, the theorem holds for $k=5$. Suppose that the property holds for any $k\left(5 \leq k<k_{0}\right)$ and let us consider a $\left(K_{5}, k_{0}\right)$ stable graph G with minimum size. Assume that G has at most $7 k_{0}+6$ edges and let v be a vertex of maximum degree. Since $G-v$ is a $\left(K_{5}, k_{0}-1\right)$ stable graph, it must have $7 k_{0}$ edges, which means that $d(v) \leq 6$. Moreover, by Proposition 1.2, we certainly have $d(v) \geq 4$.

Let z be a vertex of degree 4 in some component of G. If z has a neighbour v whose degree is 6 then $G-v$ has exactly $7 k_{0}$ edges. Hence $G-v$ is a $\left(K_{5}, k_{0}-1\right)$ stable graph with minimum size. Since the degree of z is 3 in $G-v$, any edge incident with z in $G-v$ is not contained in a K_{5}, a contradiction.

If z has a neighbour v whose degree is 5 then $G-v$ has at most $7 k_{0}+1$ edges. $G-v$ is a $\left(K_{5}, k_{0}-1\right)$ stable graph. This graph has not minimum size since the 3 remaining edges incident with z are not contained in a K_{5}. If we delete these 3 edges, we still have a $\left(K_{5}, k_{0}-1\right)$ stable graph, but the number of edges is at most $7 k_{0}-2$, which is impossible by the induction hypothesis.

Hence the neighbours of z have also degree 4, that means that the component containing a vertex of degree 4 is a 4 regular graph containing a K_{5}. That is, this component is reduced to a K_{5}.

Since each component containing only vertices of degree 5 or 6 are complete by Lemma 5.6, we have thus that all the components of G are complete. By Lemma 5.3, each component has 7 vertices or 8 vertices (recall that $k_{0} \geq 5$). Assume that we have p components isomorphic to a K_{7} and q isomorphic to a K_{8}, then $k_{0} \leq 3 p+4 q-1$ and G has $21 p+28 q$ edges. If $k_{0}=3 p+4 q-1$, we have $21 p+28 q=7 k_{0}+7$, a contradiction. If $k_{0}<3 p+4 q-1$ then deleting one vertex in some component leaves the graph $\left(K_{5}, k_{0}\right)$
stable, which is impossible.

Dudek, Szymański and Zwonek propose the following conjecture.

Conjecture 5.12. [2] For every integer $q \geq 5$ there is an integer $k(q)$ such that $Q\left(K_{q}, k\right)=$ $(2 q-3)(k+1)$ for $k \geq k(q)$.

Theorem 5.11 proves this conjecture for $q=5$ with $k(q)=5$.
Theorem 5.13. Let $G=(V, E)$ be $a\left(K_{5}, k\right)$ stable graph $(k \geq 5)$ with minimum size then

- $|E(G)|=7 k+7$,
- each component is isomorphic to a complete graph with 7 or 8 vertices,
- there are p components isomorphic to K_{7} and q components isomorphic to K_{8} for any choice of p and q with $3 p+4 q=k+1$.

Proof By Theorem 5.11, the first item is true. We can check that the property of the second item holds for $k=5$ (G being the vertex disjoint union of two K_{7}). Assume that the property holds for any $k\left(5 \leq k<k_{0}\right)$ and let us consider a (K_{5}, k_{0}) stable graph G with minimum size.

If G has a vertex v of degree at least 8 , then $G-v$ has at most $7 k_{0}-1$ edges and cannot be a $\left(K_{5}, k_{0}-1\right)$ stable graph, a contradiction. Thus the maximum degree of G is at most 7 .
case 1: $\exists \quad v \in V(G) \quad d_{H}(v)=7$.
In that case, $G-v$ is $\left(K_{5}, k_{0}-1\right)$ stable graph with minimum size. By the induction hypothesis, each component of $G-v$ is isomorphic to a complete graph with 7 or 8 vertices. Going back to G by adding the vertex v leads to join v to a whole component of $G-v$, otherwise, some edge incident with v cannot be contained in a K_{5}, a contradiction with Proposition 1.2. The vertex v cannot be connected to 7 vertices of a K_{8}, otherwise we would have a near complete graph, a contradiction. Hence v is joined to the 7 vertices of a K_{7} and the component of G containing v is a K_{8}.
case 2 : If some component of G contains vertices of degree 5 or 6 only, then, by Lemma 5.6 , this component is a complete graph on at least 7 or 8 vertices (Lemma 5.3), since $k_{0}>5$.
case 3 : If some component of G contains a vertex v of degree 4 then, no neighbour w of v may have a degree at least 5 . Otherwise, $G-w$ is a $\left(K_{5}, k_{0}-1\right)$ stable graph with at most $7 k_{0}+2$ edges. Since the degree of v is 3 in $G-w$, the 3 edges incident with v are not contained in any K_{5}. We can thus delete these 3 edges from $G-w$, getting a $\left(K_{5}, k_{0}-1\right)$ stable graph with at most $7 k_{0}-1$ edges, which is impossible by Theorem 5.11. Hence this component is 4 -regular. That is, this component is reduced to a K_{5}, a contradiction with Lemma 5.3 since $k_{0}>5$.

It is now a routine matter to check that the third item holds.

References

[1] J.A. Bondy and U.S.R. Murty, Graph theory, vol. 244, Springer, Series Graduate Texts in Mathematics, 2008.
[2] A. Dudek, A. Szymański, and M. Zwonek, (H, k) stable graphs with minimum size, Discuss. Math. Graph Theory 28 (2008), 137-149.
[3] A. Dudek and M. Zwonek, (H, k) stable bipartite graphs with minimum size, Discuss. Math. Graph Theory (2009), 573-581.
[4] J-L Fouquet, H Thuillier, J-M Vanherpe, and A.P Wojda, On $\left(K_{q}, k\right)$ stable graphs with small k, preprint.
[5] P. Frankl and G.Y. Katona, Extremal k-edge hamiltonian hypergraphs, Discrete Math. 308 (2008), 1415-1424.
[6] G.Y. Katona and I. Horváth, Extremal stable graphs, CTW, 2009, pp. 149-152.

[^0]: ${ }^{1}$ The research of APW was partially sponsored by polish Ministry of Science and Higher Education. Preprint submitted to Discrete Mathematics

