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Dictionary Learning for Sparse Representation:

A Novel Approach
Mostafa Sadeghi, Massoud Babaie-Zadeh, Senior Member, IEEE, and Christian Jutten, Fellow, IEEE

Abstract—A dictionary learning problem is a matrix factoriza-
tion in which the goal is to factorize a training data matrix, , as

the product of a dictionary, , and a sparse coefficient matrix, ,

as follows, . Current dictionary learning algorithmsmin-
imize the representation error subject to a constraint on (usu-

ally having unit column-norms) and sparseness of . The resulting

problem is not convex with respect to the pair . In this letter,
we derive a first order series expansion formula for the factoriza-

tion, . The resulting objective function is jointly convex with

respect to and .We simply solve the resulting problem using al-
ternatingminimization and apply some of the previously suggested

algorithms onto our new problem. Simulation results on recovery

of a known dictionary and dictionary learning for natural image
patches show that our new problem considerably improves perfor-

mance with a little additional computational load.

Index Terms—Dictionary learning, K-SVD, MOD, sparse repre-

sentation.

I. INTRODUCTION

S PARSE and redundant representation modeling has been

shown to be a powerful and efficient tool for signal analysis

and processing [1]. The goal is to represent a given signal as a

linear combination of some given basis functions in such a way

that most of the representation’s coefficients be equal to zero or

have a small magnitude. More precisely, consider the signal

and the basis functions . In

this context, is called a dictionary and each of its columns

is called an atom. It is typically assumed that the dictionary is

overcomplete, i.e. . A sparse coding algorithm then seeks

the sparsest representation, , such that . This

model has received a lot of attention during the last decade, and

a lot of work has been done to theoretically and experimentally

investigate its efficiency in various signal processing areas [1].

One crucial problem in a sparse representation-based applica-

tion is how to choose the dictionary. There are many pre-speci-
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fied dictionaries, e.g. Fourier, Gabor, Discrete Cosine Transform

(DCT), and wavelet [2]. Though being simple and having fast

computations, these non-adaptive dictionaries are not able to ef-

ficiently (sparsely) represent a given class of signals.

To address this problem, dictionary learning has been widely

investigated during the last decade [2], [3]. In this approach,

a dictionary is learned from some training signals belonging to

the signal class of interest. It has been experimentally shown that

these adaptive dictionaries outperform the non-adaptive ones in

many signal processing applications, e.g. image compression

and enhancement [1], and classification tasks [4].

A dictionary learning algorithm uses a training data matrix,

, containing signals from the particular class of

signals at hand, and finds a dictionary, , in such a way that all

training signals have a sufficiently sparse representation in it.

More precisely, a typical dictionary learning algorithm solves

the following problem:

(1)

where is the Frobenius norm, and and are admis-

sible sets of the dictionary and the coefficient matrix, respec-

tively. is usually defined as the set of all dictionaries with

unit column-norms. constrains the coefficient matrix to have

sparse columns.

Note that the above problem is not convex with respect to

the pair ( ). Most dictionary learning algorithms attack

this problem by iteratively performing a two-stage procedure:

Starting with an initial dictionary, the following two stages are

repeated several times,

1) Sparse representation:

(2)

2) Dictionary update:

(3)

Stage 1 is simply an ordinary sparse coding problem, in which

the sparse representations of all training signals are computed

using the current dictionary. Many sparse coding algorithms

have been proposed that can be used to perform this stage [5].

The main difference between many dictionary learning algo-

rithms is stage 2, in which the dictionary is updated to reduce

the representation error of stage 1.

Method of Optimal Directions (MOD) [6] is one of the sim-

plest dictionary learning algorithms which firstly finds the un-

constrained minimum of and then projects
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the solution onto the set . This leads to the following closed-

form expression1:

(4)

followed by normalizing the columns of D.

K-Singular Value Decomposition (K-SVD) [7] is another

well-known algorithm, which has been very successful. In its

dictionary update stage, only one atom is updated at a time.

Moreover, while updating each atom, the non-zero entries in

the associated row vector of are also updated. This leads to a

matrix rank-1 approximation problem which is then solved via

performing an SVD operation.

In [8] the idea of fixing the support of and updating its

non-zero entries, along with atoms updating, has been extended

to a more general case in which more than one atom along with

the non-zero entries in their associated row vectors in are

updated at a time. In a similar work, [9] has derived an MOD-

like algorithm that uses this idea. More precisely, the following

problem has been proposed to be solved at stage 2 (see (3)):

(5)

where denotes the support of , i.e. the positions of its

non-zero entries. To solve this problem, [9] proposed to use al-

ternating minimization over and . Minimizing (5) over

with a fixed results in (4). Minimization of (5) over with a

fixed decouples for each column of and results in the fol-

lowing problems:

(6)

By defining , (6) leads to the following

solutions:

(7)

where consists of those columns of that have been used in

the representation of . Performing a few (e.g. 3) alternations

between (4) and (7) gives a good result [9]. We henceforth refer

to this algorithm as the Multiple Dictionary Update (MDU) al-

gorithm.

In [10] a sequential algorithm, named as Sequential General-

ization of K-means (SGK), has been proposed. This algorithm

updates atoms of the dictionary sequentially, but unlike K-SVD

and MDU, keeps the non-zero entries of the coefficient matrix

intact. As explained in [10], “though K-SVD is sequential like

K-means, it fails to simplify to K-means by destroying the struc-

ture in the sparse coefficients”. This is due to performing SVD

in K-SVD, which (unlike K-means) forces the atom-norms to

be 1 and that the resulting coefficients are not necessarily 0 or 1

[10]. These problems, however, do not exist in SGK [10].

In this letter, we derive a new method for dictionary learning.

The idea is to use a first order series expansion instead of the

term . In this way, we obtain a new objective function that

unlike the commonly used one, i.e. (1), is jointly convex with re-

spect to and . We simply solve the resulting problem using

alternating minimization.We then applyMOD,MDU, and SGK

1We have dropped the superscript of for simplicity.

onto our new problem. Experimental results on both synthetic

and real data show that using our new problem results in a con-

siderable improvement over the previous one, i.e. (1), with a

little additional computational load.

The rest of the paper is organized as follows. In Section II

we describe our proposed method in details. Then Section III

presents the results of our simulations.

II. THE PROPOSED METHOD

In this section, we derive a first order series expansion for

the matrix-valued function about a point

( ), and using it, we obtain a new dictionary learning

problem. We then apply some of the previously suggested

algorithms onto our new problem.

A. The New Problem

Let write and as follows:

(8)

where ( ) and ( ) are small in the sense of Frobe-

nius norm. We then substitute the above expressions into the

function . Doing so we derive,

(9)

Neglecting the last term, whose Frobenius norm is upper-

bounded by a small value2, we obtain the following first order

approximation for :

(10)

Now, we use the above approximation instead of in (1). We

then derive the following new dictionary learning problem:

(11)

Note that unlike (1), the objective function of the above problem

is jointly convex with respect to and .

In order for (11) to be a convex problem, in addition to

its objective function, the constraint sets have to be convex,

too. An example of such convex constraint sets would be

and . To

make sure that the approximation used in (9) remains valid,

one may add the term to the

objective function of (11).

In this paper, to solve (11), we simply use alternating mini-

mization. Moreover, at each alternation, we use the updated ver-

sions of and found at the previous alternation instead of

and . In other words, our problem becomes as follows3:

(12)

2According to the submultiplicativity property of the Frobenius norm [11],

we have .

3Note the similarity of (12) and Newton’s algorithm for minimization

(neglecting the constraints): The cost function has been approximated by a

quadratic term at the vicinity of the previous iteration.
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Fig. 1. Percentage of successful recovery versus alternation number at

dB. (a) (b) (c) .

In order to minimize (12) over , we set in the

objective function. In this way, (12) reduces to the stage 1 of

the general dictionary learning problem, i.e. (2). Thus, our al-

gorithm like most dictionary learning algorithms does not affect

the sparse representation stage and any sparse coding algorithm

can be used to perform this stage.

Stage 2, after substitution of and setting

, reduces to the following problem:

(13)

B. The New MOD, MDU, and SGK

In what follows, we apply MOD, MDU, and SGK algorithms

onto the above problem.

Solving (13) using MOD results in the following update for-

mula for , in which we have dropped the superscript of

for simplicity:

(14)

followed by normalizing the columns of .

To solve (13) using the MDU method, the dictionary update

formula is exactly (14) but the update formula for the non-zero

entries of remains4 as (7).

To apply the SGK method, problem (13) has to be solved

sequentially for each column of . To update the th column,

, the following problem has to be solved:

(15)

where is the error matrix when is

removed, and denotes the th row of . Problem (15) results

in

(16)

followed by a normalization. Note that in order to update each

atom, the updated versions of other atoms are used to compute

its associated error matrix.

III. SIMULATIONS

We compare the performance of our proposed problem and

the previous one by performing two sets of experiments. The

first experiment is the recovery of a known dictionary. The

second experiment is on real data where the goal is to learn

an overcomplete dictionary for natural image patches. For all

algorithms, Orthogonal Matching Pursuit (OMP) [12] has been

used as the sparse coding algorithm5.

Our simulations were performed in MATLAB R2010b envi-

ronment on a systemwith 2.13 GHz CPU and 2 GBRAM, under

Microsoft Windows 7 operating system. As a rough measure of

complexity, we will mention the run times of the algorithms.

A. Recovery of a Known Dictionary

Similar to [7], [10] we generated a random dictionary of size

, with zero mean and unit variance independent and iden-

tically distributed (i.i.d.) Gaussian entries, followed by a column

normalization. We then generated a collection of 1500 training

signals, each as a linear combination of different

atoms, with i.i.d. coefficients. White Gaussian noise with Signal

to Noise Ratio (SNR) levels of 10, 20, 30, and 100 dB were

added to these signals. For all algorithms, the exact value of

was given to OMP. Similar to [10], number of alternations be-

tween the two dictionary learning stages was set according to

. We applied all algorithms onto these noisy training sig-

nals, and compared the resulting recovered dictionaries to the

generating dictionary in the same way as in [7]. It should be

mentioned that as we saw in our simulations, using , the

most recent update of , in (13) instead of results in a

better performance for this experiment. So, we used this alter-

native.

4Note that we must use ’s in (7) not ’s. This is because the coefficient

matrix of “ ” has been derived in the sparse representation stage not .

5For OMP, we have used the OMP-Box v10 available at http://www.cs.tech-

nion.ac.il/~ronrubin/software.html. For the simulation performed in sec-

tion III-B we have used the complementary materials of [9] available at

http://www.ieeexplore.ieee.org.
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TABLE I

PERCENTAGE OF SUCCESSFUL RECOVERY

TABLE II

AVERAGE RUNNING TIMES (IN SECONDS). THOSE OF OUR PROPOSED

PROBLEM ARE REPORTED IN PARENTHESES

The final percentage of successful recovery (averaged over

30 trials), is shown in Table I (only the results of MOD, MDU,

and New MOD have been reported here). To see the conver-

gence behaviour of the algorithms, the successful recovery rate

versus alternation number, for dB, is shown in Fig. 1.

The average running times of the algorithms are also shown in

Table II.

With these results in mind, we conclude that our proposed

problem results in much better convergence rate with only a

little increase in the running time.

B. Dictionary Learning for Natural Image Patches

Similar to [9], we used a collection of seventeen well-known

standard images, including Barbara, Cameraman, Jetplane,

Lena, Mandril, and Peppers. A collection of 25,000,

patches from these images were extracted, 20,000 of which

were used for training and the remaining 5,000 were used to test

the reconstruction accuracy of the trained dictionary. The mean

were subtracted from all image patches. These image patches

were converted to column vectors of dimension .

Number of atoms in the dictionary was set to and

atoms were used to approximate each patch.

As in [9], the dictionary was initialized with samples from the

training signals. Root Mean Square Error (RMSE), defined as

, was used to evaluate the reconstruction

performance of the trained dictionaries.

The representation’s RMSEs versus alternation number, for

training and testing data are shown in Fig. 2. The average run-

ning times, with those of our proposed problem in parenthesise,

are as follows, MOD: 219.80 (223.68), MDU: 564.90 (577.57),

and SGK: 781.88 (794.75) seconds.

Fig. 2. RMSEs of the representations versus alternation number for training

(left) and testing (right) data.

These results again emphasize on the advantage of our new

problem over the previous one. This is very noticeable for “New

SGK” that has achieved the best performance.

IV. CONCLUSION

In this letter we introduced a new problem for dictionary

learning. Our idea is to use a first order series expansion instead

of the dictionary-coefficient matrix product. We then solved

the resulting problem using a simple alternating minimiza-

tion algorithm. We experimentally showed that our proposed

method considerably outperforms the previous one with a little

additional cost. Applying other previously suggested dictionary

learning algorithms to our proposed problem remains as our

future work.
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