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A graph G is a (Kq, k) stable graph (q ≥ 3) if it contains a Kq after deleting any subset of k vertices (k ≥ 0). In the paper "On (Kq; k)-stable graphs", (http://onlinelibrary.wiley.com/doi/10.1002/jgt.21705/full), to appear in Journal of Graph Theory, Żak has proved a conjecture of Dudek et al. (in "(H, k) stable graphs with minimum size", Discuss. Math. Graph Theory, 28, 2008 ) stating that for sufficiently large k the number of edges of a minimum (Kq, k) stable graph is (2q -3)(k + 1) and that such a graph is isomorphic to sK 2q-2 +tK 2q-3 where s and t are integers such that s(q -1)+t(q -2)-1 = k. We have proved in [3] that for q ≥ 5 and k ≤ q 2 + 1 the graph K q+k is the unique minimum (Kq, k) stable graph. We are interested in the (Kq, κ(q)) stable graphs of minimum size where κ(q) is the maximum value for which for every nonnegative integer k < κ(q) the only (Kq, k) stable graph of minimum size is K q+k and by determining the exact value of κ(q).

Introduction

For terms not defined here we refer to [START_REF] Bondy | Graph Theory[END_REF]. As usual, the order of a graph G is the number of its vertices and the size of G is the number of its edges (denoted by e(G)). The disjoint union of two graphs G 1 and G 2 is denoted by G 1 + G 2 . The union of p mutually disjoint copies of a graph G is denoted by pG. For any set A of vertices, we denote by G[A] the subgraph induced by A and by G -A the subgraph induced by V (G) -A. If A = {v} we write G -v for G -{v}. For any set F of edges, we denote by G -F the spanning subgraph (V (G), E(G) -F ). If F = {e} we write G -e instead of G -{e}. A complete subgraph of order q of G is called a q-clique of G. The complete graph of order q is denoted by K q . When a graph G contains a q-clique as subgraph, we say "G contains a K q ". In [START_REF] Katona | Extremal P 4 -stable graphs[END_REF] Horváth and Katona considered the notion of (H, k) edge stable graph 1 : given a simple graph H, an integer k and a graph G containing H as subgraph, G is a an (H, k) edge stable graph whenever the deletion of any set of k edges does not lead to a H-free graph. These authors consider (P n , k) edge stable graphs and prove a conjecture stated in [START_REF] Frankl | Extremal k-edge hamiltonian hypergraphs[END_REF] on the minimum size of a (P 4 , k) edge stable graph. In [START_REF] Dudek | stable graphs with minimum size(H, k)[END_REF], Dudek, Szymański and Zwonek investigated the vertex version of this notion and introduced the (H, k) stable graphs. Definition 1.1. [START_REF] Dudek | stable graphs with minimum size(H, k)[END_REF] Given an integer k ≥ 0 and a graph H without isolated vertices, a graph G containing a subgraph isomorphic to H is said to be an (H, k) stable graph if, for every subset S of k vertices, G -S contains (a subgraph isomorphic to) H. Definition 1.2. A (H, k) stable graph with minimum size is called minimum (H, k) stable graph. The size of a minimum (H, k) stable graph shall be denoted by stab (H, k).

Note that if G is an (H, k) stable graph with minimum size then the graph obtained from G by addition or deletion of some isolated vertices is also minimum (H, k) stable. Hence we shall assume that all the graphs considered in the paper have no isolated vertices. It is clear that H is the unique (H, 0) stable graph with minimum size.

In this paper we consider (K q , k) stable graphs with q ≥ 2. Since K q+k is (K q , k) stable, note that a trivial upper bound for stab(K q , k) is q+k 2 . It is an easy exercise to see that stab(K 2 , k) = k + 1 and that the matching (k + 1)K 2 is the unique minimum (K 2 , k) stable graph.

Dudek, Szymański and Zwonek have proved in [START_REF] Dudek | stable graphs with minimum size(H, k)[END_REF] that stab(K 3 , k) = 3(k + 1) for k ≥ 0 and stab(K 4 , k) = 5(k + 1) for k ≥ 1 and they have obtained an upper bound for stab(K q , k) for sufficiently large k. More precisely they have obtained the following result.

Theorem 1.3. [START_REF] Dudek | stable graphs with minimum size(H, k)[END_REF] For every q ≥ 5, there exists an integer k(q) such that for every

k ≥ k(q), stab(K q , k) ≤ (2q -3)(k + 1).
In order to obtain Theorem 1.3, the authors consider the graph

G = sK 2q-2 + (r - s)K 2q-3 with q ≥ 5, k ≥ (q -1)(q -2), r ∈ {1, • • • , k + 1}, s ∈ {0, • • • ,
r} and r(q-2)+s-1 = k and note that the number of edges of G is (2q-3)(k+1). A smaller bound for k(q) can be obtained by the following Proposition 1.4 (consequence of an old result of J.J. Sylvester [START_REF] Sylvester | Question 7382[END_REF]; see a proof at the end of Section 2), and more generally apart from k ∈ {0, • • • , q -4}, Theorem 1.6 below gives a better upper bound than q+k 2 for stab(K q , k). Proposition 1.4. Let q be an integer ≥ 4. Set

A(q) = 0≤i≤q-4 {i(q -1) + j | 0 ≤ j ≤ q -4 -i} and B(q) = {b ∈ N | 0 ≤ b ≤ (q -2)(q -3) -2} -A(q).
Let k be a nonnegative integer. There exist integers s and t such that s(q -1) + t(q -2)

-1 = k if and only if k ∈ B(q) or k ≥ k(q) = (q -3)(q -2) -1. For such a pair (s, t), G = sK 2q-2 + tK 2q-3 is (K q , k) stable and e(G) = (2q -3)(k + 1). Note that |A(q)| = (q-3)(q-2) 2 and |B(q)| = |A(q)| -1.
Lemma 1.5. Let q ≥ 4 and k ≥ 0 be integers. Then k ∈ A(q) if and only if [ k+1 q-1 , k+1 q-2 ] contains no integer. Theorem 1.6. Let q ≥ 3 and k ≥ 0 be integers. Set A(3) = B(3) = ∅, and for q ≥ 4 A(q) and B(q) are the sets defined in Proposition 1.4. For every positive integer r set

φ(r) = 1 2 q -1 + k + 1 r q -2 - k + 1 r r + 2(k + 1) . Then, stab(K q , k) is at most equal to • φ(1) = 1 2 (q + k -1)(q + k) if k ≤ q -4 (note that k is in A(q)), • M in {φ( k+1 q-1 ), φ( k+1 q-1 + 1)} if k ∈ A(q) and k ≥ q -1, • (2q -3)(k + 1) if k ∈ B(q) or k ≥ k(q) = (q -3)(q -2) -1 (note that φ(r) = (2q -3)(k + 1) for every integer r ∈ [ k+1 q-1 , k+1 q-2 ]
). We shall give a proof of Theorem 1.6 in Section 3 by considering (K q , k) stable graphs having cliques as components and having the minimum number of edges. As a consequence, if every component of a mimimum (K q , k) stable graph is complete (see Problem 1.15) then the upper bound given in Theorem 1.6 is the exact value for stab(K q , k).

In light of their results, Dudek, Szymański and Zwonek propose the following conjecture.

Conjecture 1.7. [START_REF] Dudek | stable graphs with minimum size(H, k)[END_REF] There exists an integer k(q) such that for every k ≥ k(q), stab(K q , k) = (2q -3)(k + 1).

Note that Conjecture 1.7 is true for q ∈ {3, 4}. In [START_REF] Fouquet | On (Kq, k) vertex stable graphs with minimum size[END_REF] we have proved that stab(K 5 , k) = 7(k+1) for k ≥ 5, which confirms Conjecture 1.7 for q = 5. Moreover, we have characterized (K q , k) stable graphs with minimum size for q ∈ {3, 4, 5}. The following theorem summarizes these results.

Theorem 1.8. [START_REF] Fouquet | On (Kq, k) vertex stable graphs with minimum size[END_REF] Let G be a minimum (K q , k) stable graph, with q ∈ {3, 4, 5} and k ≥ k(q) with k(3) = 0, k(4) = 1, k(5) = 5. Then G = sK 2q-2 + tK 2q-3 , for any choice of s and t such that s(q -1) + t(q -2) -1 = k. Moreover, K 5+k is the unique minimum (K 5 , k) stable graph for k ∈ {1, 2, 3}, K 9 and K 6 + K 7 are the only minimum (K 5 , 4) stable graphs.

An important fact is that Conjecture 1.7 of Dudek, Szymański and Zwonek has been recently solved by Andrzej Żak [START_REF] Żak | On (Kq; k)-stable graphs[END_REF], who has characterized also the extremal graphs.

Theorem 1.9. [START_REF] Żak | On (Kq; k)-stable graphs[END_REF] Let q ≥ 2, k ≥ 0 be nonnegative integers. Then stab(K q , k) ≥ (2q -3)(k + 1), with equality if and only if k = s(q -1) + t(q -2) -1 for some nonnegative integers s and t. In particular, stab(K

q , k) = (2q -3)(k + 1) for k ≥ (q -3)(q -2) -1. Furthermore, if G is a (K q , k) stable graph having exactly (2q -3)(k + 1) edges then G = sK 2q-2 + tK 2q-3
where s and t are nonnegative integers such that s(q -1) + t(q -2) -1 = k. Remark 1.10. Since (K q , k) stable graphs with minimum size for q ∈ {3, 4, 5, 6} have been characterized (see Theorem 1.8 for q ≤ 5 and [START_REF] Żak | On (Kq; k)-stable graphs[END_REF] for q = 6), to close the study of minimum (K q , k) stable graphs we have only to consider q ≥ 7 and k ∈ A(q) (the set defined in Proposition 1.4).

We have proved in [START_REF] Fouquet | On (Kq, k) vertex stable graphs with minimum size[END_REF] that K q+k is the unique minimum (K q , k) stable graph for q ≥ 4 and k ∈ {1, 2}, that K q+3 is the unique minimum (K q , 3) stable graph for q ≥ 5 and in [START_REF] Fouquet | On (Kq, k) stable graphs with small k[END_REF] that K q+k is the unique (K q , k) stable graph for q ≥ 6 and

k ≤ q 2 + 1. Remark that q+k 2 -(2q -3)(k + 1) = (q-k-3)(q-k-2) 2
and that this integer is positive for q ≥ 3 and k / ∈ {q -3, q -2}. Then, as a consequence of Proposition 1.4, for q ≥ 4 and for every integer k for which k ∈ B(q) -{q -3, q -2} or k ≥ (q -3)(q -2) -1 the graph K q+k is not minimum (K q , k) stable. Hence, the set {k ∈ N | K q+k is minimum (K q , k) stable} is bounded above, and we propose the following definition.

Lemma 2.3. [2] Let G be an (H, k) stable graph with k ≥ 1 and e ∈ E(G) such that G -e is not (H, k) stable. Then G is exactly (H, k) stable and G -e is exactly (H, k -1) stable.
Definition 2.4. [START_REF] Dudek | stable graphs with minimum size(H, k)[END_REF] Let G be an (H, k) stable graph. If G -e is not (H, k) stable for every edge e ∈ E(G), G is said to be minimal (H, k) stable. Remark 2.5. In [START_REF] Dudek | stable graphs with minimum size(H, k)[END_REF] 

, k 2 , ..., k r , with 0 ≤ k i ≤ k, such that i) for every i, with 1 ≤ i ≤ r, G i is exactly (H, k i ) stable, ii) r i=1 k i + (r -1) = k , G is minimal (H, k) stable if and only if for every i, 1 ≤ i ≤ r, G i is minimal (H, k i ) stable. Moreover, if G is minimum (H, k) stable then for every i, 1 ≤ i ≤ r, G i is minimum (H, k i ) stable. Proof. For each i, 1 ≤ i ≤ r,
S i the set S ∩ V (G i ). Clearly, there exists i 0 ∈ {1, • • • , r} such that |S i0 | ≤ k i0 = |T i0 |-1. Then, G i0 -S i0 contains a subgraph isomorphic to H, that is, G is exactly (H, |T | -1)
stable, and we have

r i=1 k i + (r -1) = k.
Let e be an edge of G and let G i be the component containing e.

Claim. G -e is (H, k) stable if and only if

G i -e is (H, k i ) stable. Proof. Suppose that G i -e is (H, k i ) stable. Let U be a H-transversal of G -e. Set U i = U ∩ V (G i -e) = U ∩ V (G i ) and for every j = i, U j = U ∩ V (G j ). Since (G i -e) -U i and each G j -U j , j = i, contain no subgraphs of G -e isomorphic to H, we have for every j, 1 ≤ j ≤ r, |U j | ≥ k j + 1. Then, |U | = r j=1 |U j | ≥ k + 1.
Hence, for every set S of k vertices (G -e) -S contains a subgraph isomorphic to H, that is, G -e is (H, k) stable. Conversely, suppose that G i -e is not (H, k i ) stable. Let T i be a H-transversal of (G i -e) -T i having k i vertices. For every j = i let T j be a H-transversal of G j having k j + 1 vertices. The set T = ∪ r j=1 T j has k vertices and is a H-transversal of G -e, that is, G -e is not (H, k) stable. Thus, G is minimal (H, k) stable if and only if for every i,

1 ≤ i ≤ r, G i is minimal (H, k i ) stable.
Note that, by replacing a minimal (H, k i ) stable component G i by any minimal (H, k i ) stable graph G i (connected or not), we obtain again a minimal (H, k) stable graph. Thus, if G is minimum (H, k) stable then for every i,

1 ≤ i ≤ r, G i is minimum (H, k i ) stable. Remark 2.9. Let r be an integer ≥ 2, k 1 , • • • , k r be r non negative integers and k = r i=1 k i + (r -1). If for every i, 1 ≤ i ≤ r, G i is a minimum (H, k i ) stable graph then the disjoint union G 1 + G 2 + • • • + G r
may not be a minimum (H, k) stable graph. For example, K q is minimum (K q , 0) stable, 2K q and K q+1 are minimal (K q , 1) stable, but for q ≥ 4 since e(2K q ) > e(K q+1 ), the graph 2K q is not minimum (K q , 1) stable.

Given relatively prime positive integers a 1 , • • • , a n , let us consider the integers that can be expressed as a sum

k 1 a 1 + k 2 a 2 + • • • + k n a n , where k 1 , k 2 , • • • , k n are nonnegative integers.
Any such integer is said to be representable. Recall that the Frobenius Problem is the following: find the largest non-representable integer (called the Frobenius number and denoted by g(a 1 , ..., a n )). If n = 2, the Frobenius number is given by the formula g(a 1 , a 2 ) = a 1 a 2 -a 1 -a 2 . This formula was discovered by J. J. Sylvester in 1884 [START_REF] Sylvester | Question 7382[END_REF] who also demonstrated that there are a total of N (a 1 , a 2 ) = (a1-1)(a2-1) 2 non-representable integers. For the particular case a 2 = a 1 -1 one obtains explicitely the set of non-representable integers.

Lemma 2.10. [START_REF] Sylvester | Question 7382[END_REF] Let a be an integer ≥ 3 and the function α

: N × N -→ N such that α(s, t) = sa + t(a -1). Set A = 0≤i≤a-3 {ia + j | 1 ≤ j ≤ a -2 -i}.
Every b ∈ N -A is representable (that is there exists a pair {s, t} of nonnegative integers such that b = sa+t(a-1)), and every b in A is not representable. Moreover, every representable b has a unique representation sa+t(a-1) such that 0 ≤ t ≤ a-1.

We shall give a proof of Lemma 2.10 for completeness.

Proof of Lemma 2.10 Note that M ax(

A) = (a -1)(a -2) -1, |A| = (a-1)(a-2) 2
and for s ≥ 0 and t ≥ 1, α(s, t) = α(s + 1, t -1) -1. Consider the infinite matrix {α(s, t)} s≥0, t≥0 . For any t ≥ 0 the values of the diagonal {α(i, t-i) | 0 ≤ i ≤ t} are the consecutive integers {t(a-1)+i | 0 ≤ i ≤ t}. For s ≥ 0, the values of the (partial) diagonal {α(s

+ i, a -i -1) | 0 ≤ i ≤ a -1} are the consecutive integers sa + (a -1) 2 , sa + (a -1) 2 + 1, • • • , sa + a(a -1).
Since α(0, a -1) = α(a -2, 0) + 1 and for every s ≥ 0 α(s + a -1, 0) + 1 = α(s + 1, a -1) = sa + a(a -1) + 1, every integer b ≥ (a -2)(a -1) appears in

{α(i, a -2 -i) | 0 ≤ i ≤ a -2} ∪ ( s≥0 {α(s + i, a -i -1) | 0 ≤ i ≤ a -1}. Let B = 0≤i≤a-3 {α(j, i -j) | 0 ≤ j ≤ i} = 0≤i≤a-3 {i(a -1) + j | 0 ≤ j ≤ i}.
Clearly |B| = |A|. It is easy to check that A and B are disjoint sets and that A ∪ B = {0, 1, • • • , (a -2)(a -1) -1}. Thus, every b ∈ A is not representable and for every integer b ∈ N -A there exists a unique pair (s, t) with s ≥ 0 and 0 ≤ t ≤ a -1 such that b = sa + t(a -1).

Remark 2.11. It is easy to see that every representable b < a(a -1) has a unique representation. For a representable b ≥ a(a-1), since we can choose values of t ≥ a, it is possible that b = α(s, t) = α(s , t ) for distinct pairs (s, t) and (s , t ). Indeed, if s ≥ a -1 then for every positive integer r ≤ s a-1 , α(s, t) = α(s -r(a -1), ra + t)).

Proof of Proposition 1.4

Let us apply Lemma 2.10 to a = q -1 and b = k + 1. B(q) is the set of integers k ≤ (q -3)(q -2) -3 such that k + 1 is representable as s(q -1) + t(q -2). More precisely

B(q) = 1≤i≤q-4 {i(q -2) + j -1 | 0 ≤ j ≤ i}.
It is easy to see that the set of integers k such that k + 1 is not representable as s(q -1) + t(q -2) is

A(q) = 0≤i≤q-4 {i(q -1) + j | 0 ≤ j ≤ q -4 -i}.
A minimum K q -transversal of G = sK 2q-2 + tK 2q-3 contains exactly s(q -1) + t(q -2) = k + 1 vertices, that is G is (K q , k) stable, and it is easy to check that e(G) = (2q -3)(k + 1).

Proof of Lemma 1.5

If there exist integers s and t such that s(q-1)+t(q-2) = k+1 then k+1 q-1 = s+t-t q-1 and k+1 q-2 = s + t + s q-2 , and hence

r = s + t ∈ [ k+1 q-1 , k+1 q-2 ]. Conversely, let r ∈ [ k+1 q-1 , k+1 q-2 ]. Then, q -2 ≤ k+1 r ≤ q -1. If k + 1 = r(q -1) then we are done. If k+1 q-1 < r then q -2 = k+1 r
is the quotient in the division of k + 1 by r. Hence, if s denotes the remainder then k + 1 = r(q -2) + s = s(q -1) + (r -s)(q -2). We conclude by applying Proposition 1.4.

Minimum (K q , k) stable graphs

In this section we are interested in (K q , k) stable graphs with minimum size (q ≥ 3). Recall that stab(K q , k) = Min{e(G) | G is (K q , k) stable}.

3.1. Some known results. We give here some known results about this topic. By Remark 2.5 and Lemma 2.6 we have: Properties 3.1. [START_REF] Dudek | stable graphs with minimum size(H, k)[END_REF] A minimal (K q , k) stable graphs G has the following properties:

P 1 ) G is exactly (K q , k) stable. P 2 ) For every edge e, G -e is exactly (K q , k -1) stable. P 3 ) For every vertex v, G -v is exactly (K q , k -1) stable. P 4 ) Every vertex of G belongs to some q-clique of G. P 5 ) Every edge of G belongs to some q-clique of G.

Remark 3.2. For any two integers q ≥ 3 and k ≥ 1, K q+k is minimal (K q , k) stable.

Proposition 3.3. [4] K 5 is the unique minimum (K 4 , 1) stable graph, K 6 is the unique minimum (K 4 , 2) stable graph and for every integer q ≥ 5 and every integer k ∈ {1, 2, 3}, K q+k is the unique minimum (K q , k) stable graph.

Dudek et al. [2] defined the family

A (Kq,k) r with k ≥ 0, q ≥ 3, 1 ≤ r ≤ k + 1 as the family of graphs consisting of r complete graphs K ij with i 1 ≥ • • • ≥ i r ≥ q satisfying the condition r i=1 (i j -q)+(r -1) = k and they proved that every graph in A (Kq,k) r is minimal (K q , k) stable. We observe that if a (K q , k) stable graph G is a disjoint union of r ≥ 1 cliques K ij , 1 ≤ j ≤ r, then by Theorem 2.8, G ∈ A (Kq,k) r . They defined a graph G ∈ A (Kq,k) r
as a balanced union if |i j -i l | ∈ {0, 1} for every j and l in {1, 2, • • • , r} and they proved that given q, k and r there is exactly one balanced union

B (Kq,k) r in A (Kq,k) r
, and that B (Kq,k) r has the minimum number of edges among the graphs in A (Kq,k) r . In [START_REF] Dudek | stable graphs with minimum size(H, k)[END_REF] the following lemma has been given. We give its proof for completeness. Lemma 3.4. [START_REF] Dudek | stable graphs with minimum size(H, k)[END_REF] Let G 0 be a (K q , k 0 ) stable graph (k 0 ≥ 0) which has the minimum size among all graphs beeing a disjoint union of r cliques (r ≥ 1) G j ≡ K q+kj with 1 ≤ j ≤ r, k j ≥ 0. There exist nonnegative integers s and k such that 0 ≤ s ≤ r -1,

G 0 = sK q+k+1 + (r -s)K q+k with r(k + 1) + s = k 0 + 1 and e(G 0 ) = 1 2r (r(q -1) + k 0 + 1 -s) (r(q -2) + k 0 + 1 + s) .
Proof. Suppose, without loss of generality, that k 1 ≥ k 2 ≥ • • • ≥ k r and that there exist two components G i and G j with i < j such that k i -k j ≥ 2. By substituting G i ≡ K q+ki-1 for G i and G j ≡ K q+kj +1 for G j , we obtain a new (K q , k) stable graph G 0 such that e(G 0 ) = e(G 0 ) -(k i -k j -1) < e(G 0 ), which is a contradiction. Thus, for any i and any j, 0 ≤ |k i -k j | ≤ 1. Hence, either for any i and any j k i and k j have the same value k and we have G 0 = rK q+k with k ≥ 0, or there exist distinct k i and k j and we have

G 0 = sK q+k+1 + (r -s)K q+k with k ≥ 0 and 0 ≤ s ≤ r -1. Hence, a minimum K q -transversal of G 0 has k 0 + 1 = s(k + 2) + (r -s)(k + 1) = s + r(k + 1) vertices. Note that r divides k 0 + 1 -s. We have 2e(G 0 ) = s(q + k + 1)(q + k) + (r -s)(q + k)(q + k -1). Since k + 1 = k0+1-s r
, we obtain e(G 0 ) = 1 2r (r(q -1) + k 0 + 1 -s)(r(q -2) + k 0 + 1 + s).

Remark 3.5. In Lemma 3.4 the integers q, k 0 and r are given. Given q and k 0 , in order to obtain an upper bound for stab(K q , k 0 ) we will determine the values of r for which e(G 0 (r)) = 1 2r (r(q -1)

+ k 0 + 1 -s)(r(q -2) + k 0 + 1 + s)) is minimum.
We note that if every component of a minimum (K q , k 0 ) stable graph is complete then the minimum value of e(G 0 (r)) is exactly stab(K q , k 0 ).

3.2. Proof of Theorem 1.6. First we give a technical lemma used for proving Theorem 1.6.

Lemma 3.6. Let a and b be positive integers and for x > 0 consider the real-to-real function . We note that if r is a positive integer then f (r) is a positive integer. Now we will find the minimum value of f (r) when r is a positive integer.

f (x) = 1 2 a + 1 + b x a - b x x + 2b . Then, f is continuous on ]0, +∞[, nonincreasing on ]0, b a+1 ], constant on [ b a+1 , b a ] and nondecreasing on [ b a , +∞[. Moreover M in{f (r) | r ∈ N -{0}} is equal to • f (1) = 1 2 (a + b + 1)(a + b) if [ b a+1 , b a ] contains no integer and b < a, • M in {f ( b a+1 ), f ( b a+1 +1)} if [ b a+1 , b a ] contains no

Case 1: [

b a+1 , b a ] ∩ N = ∅. Note that 0 < b a -b a+1 < 1 (that is 0 < b < a(a + 1) ), 0 ≤ b a+1 ≤ a and b a+1 < b a+1 < b a < b a = b a+1 + 1. Case 1.1: b < a. Since b a = 1 and f (r) is non decreasing on [ b a , +∞[, the minimum value is f (1) = 1 2 (a + b + 1)(a + b). Case 1.2: b ≥ a. Since b / ∈ {a, a + 1}, we have b > a + 1 and 1 ≤ b a+1 ≤ a ; hence the minimum value is M in f b a + 1 , f b a + 1 + 1 .
Let β be the remainder of the division of b by a + 1. In order to obtain the value f ( b a+1 ) we must know the integer

p 1 ≥ a + 1 such that b p1+1 < b a+1 ≤ b p1 . Since b a+1 = b-β a+1 , we have p 1 = b(a+1) b-β
, and hence

f b a + 1 = 1 2 (a + 1 + p 1 ) (a -p 1 ) b -β a + 1 + 2b .
In the same way we obtain Proof of Theorem 1.6. In order to avoid confusion between "k" of the statement of Theorem 1.6 and "k" appearing in the proof of Lemma 3.4, let us replace "k" by "k 0 " in the statement of Theorem 1.6. Consider the (K q , k 0 ) stable graph G 0 defined in Lemma 3.4 and see Remark 3.5. We have G 0 = sK q+k+1 + (r -s)K q+k with r(k + 1) + s = k 0 + 1 and e(G 0 ) = 1 2r (r(q -1) + k 0 + 1 -s)(r(q -2) + k 0 + 1 + s). Since k + 1 is the quotient of k 0 + 1 divided by r and s is the remainder, we have s = k 0 + 1 -r k0+1 r . Hence, e(G 0 (r)) = 1 2 q -1 + k 0 + 1 r q -2 -k 0 + 1 r r + 2(k 0 + 1) .

f b a + 1 + 1 = 1 2 (a + 1 + p 2 ) (a -p 2 ) b + a + 1 -β a + 1 + 2b with p 2 = b(a+1) b+a+1-β .
Set a = q -2, b = k 0 + 1 and apply Lemma 3.6 and Lemma 1.5.

3.3. Minimum (K q , k) stable graph for small k. In the following, if no confusion is possible, we simply denote the integer κ(q) by κ.

Lemma 3.7. Suppose that q ≥ 4. If κ is even then stab(K q , κ -1) < e(2K q+ κ 2 -1 ) and stab(K q , κ) ≤ e(K q+ κ 2 + K q+ κ 2 -1 ) . If κ is odd then stab(K q , κ-1) < e(K q+ κ-1 2 +K q+ κ-3

2

) and stab(K q , κ) ≤ e(2K q+ κ-1 2 ) .

Proof. Recall that, by definition of κ, K q+κ-1 is the only minimum (K q , κ -1) stable. If κ is even then 2K q+ κ 2 -1 is exactly (K q , κ -1) stable and K q+ κ 2 + K q+ κ 2 -1 is exactly (K q , κ) stable. If κ is odd then K q+ κ-1

2

+ K q+ κ-3 2 is exactly (K q , κ -1) stable and 2K q+ κ-1 2 is exactly (K q , κ) stable. Lemma 3.8. Let q ≥ 3 and p ≥ 0 be two integers. Then, e(K q+2p ) < e(K q+p + K q+p-1 ) if and only if p 2 + p < 1 2 (q -1)(q -2) and e(K q+2p ) = e(K q+p + K q+p-1 ) if and only if p 0 = 1 2 ( 1 + 2(q -1)(q -2) -1) is an integer and p = p 0 . e(K q+2p+1 ) < e(2K q+p ) if and only if (p + 1) 2 < 1 2 (q -1)(q -2) and e(K q+2p+1 ) = e(2K q+p ) if and only if p 1 = 1 2 ( 2(q -1)(q -2) -1) is an integer and p = p 1 .

Proof. It is easy to check that e(K q+2p ) -e(K q+p + K q+p-1 ) = p 2 + p -1 2 (q -1)(q -2) and e(K q+2p+1 ) -e(2K q+p ) = (p + 1) 2 -1 2 (q -1)(q -2). These polynomials of degree 2 in p have positive roots p 0 = 1 2 ( 1 + 2(q -1)(q -2) -1) and p 1 = 1 2 ( 2(q -1)(q -2) -1) respectively.

Proof of Theorem 1.13. If κ = 2p then, by Lemma 3.7, stab(K q , κ -1) < e(2K q+ κ 2 -1 ). Since κ -1 = 2(p -1) + 1, by Lemma 3.8, p 2 < 1 2 (q -1)(q -2), that is, κ < 2(q -1)(q -2).

1 2

 1 integer and b > a+1, • (2a + 1)b if [ b a+1 , b a ] contains at least one integer r (and is equal to f (r) for every such r). Proof. For x > b we have b x = 0 and f (x) = 1 2 (a + 1)(ax + 2b). For every integer p ≥ 1 and for every x ∈ ] b p+1 , b p ] we have b x = p, and hence f (x) = (a + 1 + p)((a -p)x + 2b). It is easy to see that the function f is continuous on ]0, +∞[, nonincreasing on ]0, b a+1 ], constant on [ b a+1 , b a ] and nondecreasing on [ b a , +∞[. The minimum value for f (x) (with x positive real number) is the integer (2a + 1)b and is reached for every real number x in [ b a+1 , b a ]

Case 2 :

 2 [ b a+1 , b a ] ∩ N = ∅. For any integer r such that b a+1 ≤ r ≤ b a f (r) is equal to the minimum value (2a + 1)b.

  "minimal (H, k) stable graphs" are called "strong (H, k) stable graphs" by the authors. Note that an (H, k) stable graph G is minimal (H, k) stable if and only if for every e ∈ E(G) the graph G -e is exactly (H, k -1) stable. Moreover, a minimal (H, k) stable graph is exactly (H, k) stable. If there exists an edge e of an (H, k) stable graph G such that there are no subgraph isomorphic to H containing e then G -e is an (H, k) stable graph. Hence, we have the following. Every edge of a minimal (H, k) stable graph is contained in a subgraph isomorphic to H. Consequently, every vertex of a minimal (H, k) stable graph is also contained in a subgraph isomorphic to H. Remark 2.7. Clearly, every minimum (H, k) stable graph is minimal (H, k) stable. One may ask what happens for components of an (H, k) stable graph. The following theorem gives us an answer when H is connected. We shall say that a graph containing no subgraph isomorphic to H is (H, -1) stable.

	Lemma 2.6. [2]

Theorem 2.8. Let H be a connected graph containing at least 2 vertices, let G be an exactly (H, k) stable graph, and let G 1 , G 2 , ..., G r , with r ≥ 1, be its components. Then, there exist integers k 1

Wojda was partially supported by polish Ministry of Science and Higher Education.

Definition 1.11. For every integer q ≥ 4, we denote by κ(q) the greatest integer such that for 1 ≤ k < κ(q) the only minimum (K q , k) stable graph is K q+k .

We will focuse our attention on determining the exact value of κ(q). In two previous papers we have proved the following. Theorem 1.12. [START_REF] Fouquet | On (Kq, k) stable graphs with small k[END_REF][START_REF] Fouquet | On (Kq, k) vertex stable graphs with minimum size[END_REF] κ(3) = 1, κ(4) = 3, κ(5) = 4 and for q ≥ 6 κ(q) > q 2 + 1. In this paper we give an upper bound for the value of κ(q). Theorem 1.13. For every q ≥ 4, if κ(q) is even then κ(q) < 2(q -1)(q -2) and if κ(q) is odd then κ(q) < 1 + 2(q -1)(q -2)

We prove that these upper bounds are reached for values of q such that there exists a minimum (K q , κ(q)) stable disconnected graph (note that it is the case for q = 4 and q = 5).

Theorem 1.14. Let q ≥ 4 and suppose that there exists a disconnected minimum

2 (q -1)(q -2) ≤ ρ(q) 2 + ρ(q) then κ(q) = 2ρ(q). Proofs of Theorems 1.13 and 1.14 shall be given in subsection 3.3.

Remark that, by definition of κ(q) and by Theorem 1.9, for every integer k in

every component of any minimum (K q , k) stable graph is complete, but we do not know if it is true for k in { l ∈ N | l ≥ κ(q) and l ∈ A(q)} (where A(q) and B(q) are the sets defined in Proposition 1.4).

If there is no minimum disconnected (K q , κ(q)) stable graph then, by definition of κ(q), there exists a connected minimum (K q , κ(q)) stable graph G q which is not complete. We think that it never happens, so we propose the following problem.

Problem 1.15. Is it true that if G is a minimum (K q , k) stable graph then every component of G is complete?

If the answer is positive then Theorem 1.14 gives the exact value of κ(q) for every q ≥ 4.

General results

Lemma 2.1. [START_REF] Dudek | stable graphs with minimum size(H, k)[END_REF] Let G be an If κ = 2p + 1 then by Lemma 3.7, stab(K q , κ -1) < e(K q+ κ-1

).

Since κ -1 = 2p, by Lemma 3.8, p < 1 2 ( 1 + 2(q -1)(q -2) -1), that is, κ < 1 + 2(q -1)(q -2). Theorem 3.9. Let q ≥ 4 and suppose that there exists a minimum (K q , κ) stable graph G 0 which is disconnected. Then G 0 is isomorphic to

Hence, e(K q+kr+kr-1+1 ) < e(K q+kr ) + e(K q+kr-1 ) and the graph

and by Lemma 3.4 the theorem follows.

Note that Theorem 3.9 implies that there exists at most one disconnected minimum (K q , κ) stable graph and this graph, if it exists, is

Proof of Theorem 1.14. By Lemma 3.7 and Theorem 3.9, if κ is odd then

) ≤ e(K q+κ ) (note that, by Lemma 3.8, it may be possible that e(2K q+ κ-1 2 ) = e(K q+κ ) for some values of q), if κ is even then

) ≤ e(K q+κ ) (note that, by Lemma 3.8, it may be possible that e(K q+ κ 2 + K q+ κ 2 -1 ) = e(K q+κ ) for some values of q). For κ = 2p + 1 we have 1 2

(q + 2p)(q + 2p -1) < (q + p -1) 2 < (q + p)(q + p -1) ≤ 1 2 (q + 2p + 1)(q + 2p) .

This implies that

For κ = 2p we have 1 2 (q +2p-1)(q +2p-2) < (q +p-1)(q +p-2) < (q +p-1) 2 ≤ 1 2 (q +2p)(q +2p-1) .

This implies that (B) p 2 < 1 2 (q -1)(q -2) ≤ p 2 + p .

Combining (A) and (B) yields

This implies that 1 2 (q -1)(q -2) -1 ≤ p < 1 2 (q -1)(q -2) .

Hence, p = ρ(q) = 1 2 (q -1)(q -2) -1. By inequalities (A) and (B), position of 1 2 (q -1)(q -2) in comparison to ρ(q) 2 +ρ(q) determines the parity of κ. Hence, if 1 2 (q -1)(q -2) > ρ(q) 2 + ρ(q) then κ = 2ρ(q) + 1 = 2

If there is no minimum disconnected (K q , κ(q)) stable graph then, by definition of κ(q), there exists a connected minimum (K q , κ(q)) stable graph G q distinct from a clique. Note that if such a graph exists then e(G q ) < M in{e(K q+κ ), e(K q+ κ 2 + K q+ κ 2 -1 )} if κ = κ(q) is even or e(G q ) < M in{e(K q+κ ), e(2K q+ κ-1

2

)} if κ = κ(q) is odd .

A positive answer to Problem 1.15 states that there is no such graph G q .