
HAL Id: hal-00934264
https://hal.science/hal-00934264

Submitted on 21 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Non-destructive testing of composite plates by
holographic vibrometry

Francois Bruno, Jérôme Laurent, Claire Prada, Benjamin Lamboul, Bruno
Passilly, Michael Atlan

To cite this version:
Francois Bruno, Jérôme Laurent, Claire Prada, Benjamin Lamboul, Bruno Passilly, et al.. Non-
destructive testing of composite plates by holographic vibrometry. Journal of Applied Physics, 2014,
115 (15), pp.4. �10.1063/1.4871178�. �hal-00934264�

https://hal.science/hal-00934264
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Non-destructive testing of composite plates by holographic vibrometry
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We report on a wide-field optical monitoring method for revealing local delaminations in sandwich-
type composite plates at video-rate by holographic vibrometry. Non-contact measurements of low
frequency flexural waves is performed with time-averaged heterodyne holography. It enables nar-
rowband imaging of local out-of-plane nanometric vibration amplitudes under sinusoidal excitation,
and reveals delamination defects, which cause local resonances of flexural waves. The size of the
defect can be estimated from the first resonance frequency of the flexural wave and the mechanical
parameters of the observed layer of the composite plate.

Lamb waves, which interact with delaminations
are useful for the inspection of laminated composites
and sandwich materials [1–3]. Scanning laser Doppler
interferometric methods were introduced and used for
non-contact sensing of Lamb waves excited in a structure
[4–6]. It was shown that flaw maps can be obtained
by exploiting the local vibrational contrast between
a delaminated area and the surrounding structure
[7, 8]. Analysis methods of time-domain laser Doppler
measurements were introduced to reveal local damage
contrasts. Among them, spatial and temporal discrete
Fourier transform approaches [7, 8] and computation
of the local energy from temporal wave fields [9] have
proven their usefulness. However, scanning laser Doppler
vibrometry is a time-consuming process which hinders
high spatial resolution measurements in real-time.

Non-destructive imaging of structural integrity can
also be achieved by speckle pattern shearing interferom-
etry (shearography) [10–12], speckle interferometry [13],
and holography [14–16], which are suitable experimental
methods to reveal local delaminations, especially in
time-averaged recording conditions [10, 13–15]. In
shearing interferometry, if the image of the object is
sampled on the sensor, interference fringes correspond
to the partial derivative of the object’s out-of-plane
vibrational motion in the direction of the shear, or
isoclines. In speckle interferometry and holography, an
image of the local out-of-plane vibrational motion is
obtained; interference fringes correspond to constant
vibration amplitudes, or contour lines.

In the reported work, wide-field structural health
monitoring of locally-damaged sandwich composite
plates is performed at video rate by frequency-tunable
time-averaged holographic vibrometry. Holographic
vibrometry was previously reported to enable wide-
field surface acoustic wave monitoring in sinusoidal
regime and compared to scanning laser Doppler for
this purpose [17]. We demonstrate experimentally
that delamination defects can be observed from local
narrowband measurements of out-of-plane vibration
amplitudes in an aluminum honeycomb core sandwich
composite plate. The size of the defect is estimated from
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FIG. 1: Mach-Zehnder optical holographic interferometer.
The main laser beam is split into two channels. In the ob-
ject channel, the optical field is backscattered by the object
in vibration at the angular frequency ω, which generates two
modulation sidebands at low vibration amplitudes. In the
reference channel, the optical field is frequency-shifted by two
acousto-optic modulators. The sensor array of the camera
records the interference pattern of both optical fields beating
against each other, in time-averaging conditions. Images are
calculated with a standard holographic rendering algorithm
involving a numerical Fresnel transform [18].

the first resonance frequencies of the flexural wave.

An optical Mach-Zehnder interferometer (Fig. 1) was
developed to monitor out-of-plane vibrations. Nar-
rowband imaging is achieved with a frequency-tunable
time-averaged laser Doppler holographic imaging
scheme on a sensor array. This method enables robust
and quantitative mapping out-of-plane vibrations of
nanometric amplitudes at radiofrequencies. A high tem-
poral coherence green laser (Cobolt Samba-TFB-150,
linewidth < 1MHz, wavelength λ = 532 nm) was used
to illuminate the composite plate in wide field over ∼
20 cm × 20 cm with a total optical power of ∼ 30 mW.
This plate is excited by a piezoelectric actuator. Nar-
rowband recording of the map of out-of-plane vibration
amplitudes was enabled by holographic interferometry
in time-averaging conditions by a 20 Hz frame rate
CCD camera. In such experimental conditions, retrieval
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of nanometric amplitude oscillations is achieved. The
detection process involves both spatial and temporal
modulation of the interference pattern through off-axis
and frequency-shifting holography [19], frequency-
division multiplexing of the optical local oscillator
ensures simultaneous measurement of two modulation
sidebands at distinct beating frequencies of the recorded
interferogram. Robust imaging of out-of-plane vibra-
tion amplitudes at a given frequency is achieved by
pixel-to-pixel division of two sideband holograms [17, 20].

The composite is a symmetric sandwich, whose core
is a 2.5 cm-thick aluminum honeycomb with 3/8” cells.
The skin is a 1.1mm-thick [0 45 90 -45]s stack of
woven carbon fiber plies with epoxy resin of density
ρ = 1.7 g/cm3. Its standard mechanical properties [4],
reported in Tab. I for one woven ply are used to calculate
the dispersion relation of the first antisymmetric Lamb
mode A0 by the semi-analytical finite element (SAFE)
method [21, 22]. This dispersion relation is plotted
in Fig. 2. The composite was impacted at 1 J on
the monitoring side to provoke a local detachment of
the skin from the honeycomb, invisible to the naked
eye. In order to create steady-state Lamb waves in the
carbon/epoxy plate, a piezo-electric transducer was fixed
to the plate as shown in the bottom of Fig. 3(a). The
piezo disc (2 cm diameter) is supplied with a sinusoidal
signal whose angular frequency ω is swept. Monitoring
of resonant Lamb waves is performed by holographic
vibrometry.
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TABLE I: Stiffness tensor components Cij of the composite
material, in GPa. Plies are stacked along the out-of-plane
direction z.

To characterize the local delamination defect, we as-
sume that its geometry is circular and we show that the
modification of the boundary conditions in the carbon
fiber epoxy plate results in the creation of local reso-
nances of anti-symmetric Lamb waves at low frequencies,
which are related to the defect size. The motion of flex-
ural A0 Lamb waves in an isotropic plate is given by the
Kirchhoff–Love equation

∂2z

∂t2
+

Eh2

12ρ (1− ν2)
∇4z = 0 (1)

where z is the out-of-plane motion, ∇ is the gradient
operator, h is the thickness of the plate, E is the Young
modulus of the material, ρ its density , and ν its Poisson’s
ratio. In polar coordinates (r, θ), the harmonic solutions
of eq.1 take the form z = Z (r, θ) exp(iωt), where i is the
imaginary unit. The Rayleigh-Lamb dispersion relation
of the A0 mode in the low frequency approximation [23]
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FIG. 2: Dispersion relation of the first antisymmetric Lamb
mode (A0) in a 1.1 mm-thick carbon fiber epoxy plate. The
dots are derived from numerical resolution of the Rayleigh-
Lamb equation [23] by the SAFE method. The line corre-
sponds to the expression of the Rayleigh-Lamb equation in the
low frequency approximation for homogeneous and isotropic
plate, for which hk ≪ 1, where h is the plate’s thickness and
k is the wave vector in Eq. (2). Insert : slowness curves
calculated for Lamb modes at 17 kHz and 34.5 kHz.
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FIG. 3: Direct image of the composite plate used for the ex-
periment, illuminated with the green laser (a). Holographic
images of the out-of-plane vibration (b-f). Geometric vibra-
tion modes : (m,n) = (0, 1) at 17 kHz (c), (m,n) = (1, 1) at
27.7 kHz (d), (m,n) = (2, 1) at 34.5 kHz (e). Zone (1) corre-
sponds to the delamination region, and zone (2) is a healthy
region, 5 cm away from zone (1).
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is introduced to derive the steady-state solutions Z(r, θ)

ω =
1√
12

k2cph (2)

where k is the wave vector and cp =
√

E/ρ (1− ν2) is
the velocity of propagation of longitudinal oscillations in
the isotropic thin plate (referred to as ”plate” velocity).
In our case, this expression of cp is not valid in an
anisotropic material. Nevertheless, in the monitored
frequency range, from 10 kHz to 60 kHz, we show that
the composite can be assimilated to be a quasi-isotropic
ply for which cp can be assessed from a fitting procedure
of dispersion relationships. Slowness curves for Lamb
modes at 17 kHz and 34.5 kHz were calculated from the
values of the mechanical properties of the plate (stiffness
tensor, thickness, angles between woven plies). These
polar curves, which indicate a quasi-isotropic behavior of
the material at these frequencies, are reported in Fig. 2.
From the values of the mechanical parameters, we derive
an equivalent velocity cp = 5150m/s by fitting the
dispersion relation calculated from the SAFE method
and reported in Fig. 2 (dots), with Eq.2 (plotted as a
line).

The steady-state equation of flexural waves
(

∇2 − k2
) (

∇2 + k2
)

Z = 0 is derived from Eq. 2
and the harmonic solutions of Eq. 1. Its solutions
Zm, in a circular plate clamped at its borders, are
linear combinations of Bessel functions multiplied by an
angular function

Zm = (AmJm (kr) + CmIm (kr)) cos(mθ + φ) (3)

where Am and Cm are constants. Here, Jm are the or-
dinary Bessel functions and Im are the hyperbolic Bessel
functions of the first kind : Im(kr) = i−mJm(ikr).
For a circular plate of radius a, clamped at its edge
r = a, the boundary conditions are Z(a) = 0 and
∂rZ(a) = 0. Which provide a condition on ka for so-
lutions to be non-trivial. Using the recursive relation-
ships of the Bessel functions, this condition takes the
form Jm(ka)Im+1(ka) + Im(ka)Jm+1(ka) = 0 where the
eigenvalues ka determine the resonant frequencies ω via
Eq. (2). The resulting allowed values are labeled

γmn = kmna (4)

where m is the number of nodal diameters and n is
the number of nodal circles in the corresponding nor-
mal mode [24]. Using Eq. 2 and Eq. 4, the vibration’s
angular frequency, ωmn = 2πfmn, is related to the radius
a of the delamination defect by [25]

ωmn =
1√
12

γ2
mn

a2
cph (5)

The first three solutions γmn that will be used for the
interpretation of the experimental results satisfy [24]
γ01 =

√
10.22, γ11 =

√
21.26, and γ21 =

√
34.88.

Holographic images of the amplitude of the out-of-
plane vibration at different frequencies are shown in
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FIG. 4: Local out-of-plane vibration amplitude versus exci-
tation (and measurement) frequency ω/(2π) in the delami-
nation region of the composite plate (blue line, region (1)),
and 5 cm away from the region (red line, region (2)). Specific
resonances of the delamination region corresponding to the
spatial vibration modes (m,n) = (0, 1), (m,n) = (1, 1), and
(m,n) = (2, 1) are highlighted by arrows. The peak high-
lighted by ∗ is an alternate (m,n) = (0, 1) mode assumed to
be caused either by (i) anisotropy in the carbon epoxy plate
and/or (ii) non-circular symmetry of the delamination defect.

Fig. 3. A frequency scan of the narrowband detection
was performed from 10 kHz to 60 kHz for vibration
monitoring. The total acquisition time for each image
was 0.5 s. We assumed visually that (i) Fig. 3(c)
corresponds to the vibration mode (m,n) = (0, 1) of the
delamination defect, (ii) Fig. 3(d) corresponds to the
mode (m,n) = (1, 1), and (iii) Fig. 3(e) corresponds to
the mode (m,n) = (2, 1). Two regions, (1) and (2), were
defined in Fig. 3(b), in the delamination region and in a
typical healthy part respectively. Vibration amplitude
spectra in these two zones are compared in Fig. 4. The
observed resonance frequencies of the geometrical modes
(0,1), (1,1), and (2,1) allowed us to estimate the value
of the radius a of the damaged region, derived from Eq.
5. We obtained a01 = 12.5mm, a11 = 14.1mm, and
a21 = 16.2mm, from the known parameters h and cp.
These radius values are of the same order of magnitude.
To validate this theoretical approach of delamination
vibrations, we compared the lateral extension of the
vibrating region for the mode (m,n) = (0, 1) and mode
(m,n) = (2, 1), which exhibit a good signal-to-noise
ratio, contrary to the mode (m,n) = (1, 1) (Fig. 4). In
Figure 5, we reported images of the local out-of-plane
vibration amplitude measured, respectively on (a) and
(b), and of the simulated solutions of the steady-state
modes Z, for the eigenvalues γ01 (c) and γ21 (d),
calculated from Eq. 3. Both coefficients Am and Cm for
each mode were estimated using the boundary condition
Z(amn) = 0 and the maximum amplitude measured
on the experimental data. Figures 5 (e) and (f) show
measured profiles of the vibration amplitude against
calulated ones, for which good agreement is observed.

In conclusion, we have presented a real-time and
wide-field structural health monitoring method for
revealing delamination defects in composite plates of
sandwich type. Low frequency flexural waves were
generated in the plate with an ultrasound actuator and
non-contact vibrometric measurements were performed
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FIG. 5: Lateral extension of the vibrating region for the spa-
tial vibration modes (m,n) = (0, 1) at 17 kHz and (m,n) =
(2, 1) at 34.5 kHz. Holographic images of experimental results
(a,b). Calculated modes (c,d). Profile of the out-of-plane am-
plitude along a line (e,f); blue : experiments, red : theoretical
curve.

with time-averaged heterodyne holography with a dual
local oscillator. This scheme was used for quantitative
vibration monitoring by sampling of two optical modula-
tion sidebands within the camera bandwidth. Coupling
of flexural waves with delamination defects were ob-
served at the excitation frequency in an aluminum
honeycomb core sandwich composite plate. Vibration
spectra inside and away from the defect were measured
by sweeping the excitation and detection frequencies.
Local delaminations appeared to be the cause of the
presence of local resonances at low frequencies in a the
composite plate. The size of the defect was estimated
from the first resonance frequency of the flexural wave
and the mechanical parameters of the observed layer
of the plate. Experimental results agree well with the
reported analytical relationship between the vibration
frequency of a local delamination of the composite and
its lateral extension.
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046), région Île-de-France (C’Nano, AIMA).

[1] Z. Su, L. Ye, and Y. Lu, Journal of sound and vibration
295, 753 (2006).

[2] K. Diamanti, C. Soutis, and J. Hodgkinson, Compos-
ites Part A: Applied Science and Manufacturing 36, 189
(2005).

[3] K. Diamanti and C. Soutis, Progress in Aerospace Sci-
ences 46, 342 (2010).

[4] B. Audoin, Ultrasonics 40, 735 (2002).
[5] W. Staszewski, B. Lee, L. Mallet, and F. Scarpa, Smart

Materials and Structures 13, 251 (2004).
[6] L. Mallet, B. Lee, W. Staszewski, and F. Scarpa, Smart

Materials and Structures 13, 261 (2004).
[7] H. Sohn, D. Dutta, J. Yang, H. Park, M. DeSimio, S. Ol-

son, and E. Swenson, Composites science and technology
71, 1250 (2011).

[8] M. D. Rogge and P. Johnston, in AIP Conference Pro-
ceedings (2012), vol. 1430, p. 761.

[9] B. Lamboul, B. Passilly, J.-M. Roche, and D. Osmont, in
AIP Conference Proceedings (2013), vol. 1511, p. 1003.

[10] S. Toh, H. Shang, F. Chau, and C. Tay, Optics & Laser
Technology 23, 25 (1991).

[11] Y. Hung, Composites Part B: Engineering 30, 765
(1999).

[12] D. Francis, R. Tatam, and R. Groves, Measurement sci-
ence and technology 21, 102001 (2010).

[13] O. J. Lokberg, J. Acoust. Soc. Am. 55, 1783 (1984).
[14] R. L. Powell and K. A. Stetson, J. Opt. Soc. Am. 55,

1593 (1965).
[15] C. C. Aleksoff, Applied Optics 10, 1329 (1971).
[16] R. Erf, Holographic nondestructive testing (Academic

Press, 1974).
[17] F. Bruno, Arxiv (2013).
[18] U. Schnars and W. P. O. Juptner, Meas. Sci. Technol.

13, R85 (2002).
[19] M. Atlan and M. Gross, Journal of the Optical Society

of America A 24, 2701 (2007).
[20] N. Verrier and M. Atlan, Optics Letters 38, 739 (2013).
[21] N. Terrien, D. Osmont, D. Royer, F. Lepoutre, and
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