Article Dans Une Revue IEEE Transactions on Parallel and Distributed Systems Année : 2012

Bounding the Impact of Unbounded Attacks in Stabilization

Résumé

Self-stabilization is a versatile approach to fault-tolerance since it permits a distributed system to recover from any transient fault that arbitrarily corrupts the contents of all memories in the system. Byzantine tolerance is an attractive feature of distributed systems that permit to cope with arbitrary malicious behaviors. Combining these two properties proved difficult: it is impossible to contain the spatial impact of Byzantine nodes in a self-stabilizing context for global tasks such as tree orientation and tree construction. We present and illustrate a new concept of Byzantine containment in stabilization. Our property, called Strong Stabilization enables to contain the impact of Byzantine nodes if they actually perform too many Byzantine actions. We derive impossibility results for strong stabilization and present strongly stabilizing protocols for tree orientation and tree construction that are optimal with respect to the number of Byzantine nodes that can be tolerated in a self-stabilizing context.

Dates et versions

hal-00934036 , version 1 (21-01-2014)

Identifiants

Citer

Swan Dubois, Toshimitsu Masuzawa, Sébastien Tixeuil. Bounding the Impact of Unbounded Attacks in Stabilization. IEEE Transactions on Parallel and Distributed Systems, 2012, 23 (3), pp.460-466. ⟨10.1109/TPDS.2011.158⟩. ⟨hal-00934036⟩
337 Consultations
0 Téléchargements

Altmetric

Partager

More