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In-medium jet shape from energy collimation in parton showers:
Comparison with CMS PbPb data at 2.76 TeV
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Abstract: We present the medium-modified energy collimation in the leading-logarithmic approxima-
tion (LLA) and next-to-leading-logarithmic approximation (NLLA) of QCD. As a consequence of more
accurate kinematic considerations in the argument of the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) fragmentation functions (FFs) we find a new NLLA correction O(c) which accounts for
the scaling violation of DGLAP FFs at small x. The jet shape is derived from the energy collimation
within the same approximations and we also compare our calculations for the energy collimation with
the event generators Pythia 6 and YaJEM for the first time in this paper. The modification of jets by
the medium in both cases is implemented by altering the infrared sector using the Borghini-Wiedemann
model. The energy collimation and jet shapes qualitatively describe a clear broadening of showers in the
medium, which is further supported by YaJEM in the final comparison of the jet shape with CMS PbPb
data at center-of-mass energy 2.76 TeV. The comparison of the biased versus unbiased YaJEM jet shape
with the CMS data shows a more accurate agreement for biased showers and illustrates the importance
of an accurate simulation of the experimental jet-finding strategy.
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1 Introduction

The phenomenon of jet quenching was first established experimentally through the observed suppression
of high-pr hadrons in nucleus-nucleus (A-A) collisions at the Relativistic Heavy Ion Collider (RHIC)
and the Large Hadron Collider (LHC) [1-4]. It was then confirmed by various other measurements where
highly virtual partons produced in hard processes in a medium showed modifications to the subsequent
evolution of a QCD shower, in particular softening and broadening of the resulting hadron distribution
which leads to a reduction in the yield of leading hadrons and jets [5-9].

In the vacuum, the production of highly virtual partons following the hard inelastic scattering of two
partons from the incoming protons (2 — 2 + X) is followed by the fragmentation into a spray of
hadrons which are observed in high-energy collider experiments. The evolution of successive splittings
q(q7) — q(@)g, g — gg and g — qq (g, g and g label quark, antiquark and gluon respectively) inside the
parton shower prior to hadronization is well established and can be described by the DGLAP evolution
equations for fragmentation functions in the leading-logarithmic approximation (LLA) of QCD [10-12]
or alternatively in terms of Monte Carlo (MC) formulations such as the PYSHOW algorithm [13, 14].
In A-A collisions, partons produced in the hard inelastic scattering of two partons from nuclei (2 —
2+ X)) propagate through the hot/dense QCD media also produced in such collisions and their branching
pattern is changed by interacting with the color charges of the deconfined quark gluon plasma (QGP)
[15]. As a consequence, additional medium-induced soft gluon radiation is produced in A-A collisions,
which leads for instance to the modification of high-p7 hadroproduction [16-18]. At RHIC, the main
observables considered to probe this physics were the nuclear suppression factor of single inclusive
hadrons R 44 [19,20] and the suppression factor of hard back-to-back dihadron correlations 144 [21,22].
More recently, through the analytical developments of Refs. [23—25], it was demonstrated that medium-
induced soft gluon radiation is ruled by a condition of antiangular ordering over successive emissions
of such gluons, which oppositely to the condition of angular ordering in the vacuum (for a review see
Ref. [26]), leads to the jet broadening. However, further efforts are required in order to implement the

full description of color decoherence effects in Monte Carlo event generators.

In this paper, we aim at discussing two different observables currently relevant mainly for LHC physics:
the energy collimation and the jet shape of medium-modified showers. We use a QCD-inspired model
introduced by Borghini and Wiedemann (BW) [27] for the modification of the fragmentation functions
(FFs) by the medium where the medium evolution itself is described by a hydrodynamical evolution.
In the BW model, the DGLAP splitting functions are enhanced in the infrared sector in order to mimic
the medium-induced soft gluon radiation. In practice, the 1/z dependence of the QCD vacuum splitting
functions corresponding to the parton branchings ¢(g) — ¢(¢)g and g — gg are altered by introducing
a parameter Ny = 1 + fiied (fmeda = 0) in the form P, ,;.(z) = Ng/z + O(1), which is simple
and mostly leads to analytical results. In Ref. [28], which appeared long after [27], Nayak derived in-
medium expressions for the quark and gluon DGLAP splitting functions in nonequilibrium (nonisotropic)
QCD at leading order in a as a function of arbitrary non-equilibrium distribution functions f,(p) and
f4(P), where p'is the momentum of the hard parton. The modification to the splitting functions turns
out to be quite similar to the one introduced in the BW model [27] by some prefactor depending on

fq(P) and fy(p), which affects both the infrared and regular terms of the evolution kernels. Later on, in



Refs. [25,29], the splitting functions were modified by an overall factor which depends on the pertinent
medium parameters, such as the medium transport coefficient §. Whether these modification prefactors
are related to those found in [28] may be an interesting issue of further investigation, but this is out of
the scope of this paper. Moreover, the BW model in Ref. [27] and the calculations in Ref. [29] show
that the production of soft hadrons as described by the FFs is enhanced at small energy fraction x of the
outgoing hadrons. The same result was also found in Ref. [30], where a full resummation from large to
small z was performed in the same frame of the vacuum Albino-Khiehl-Kramer parametrization of FFs
(for a detailed review see Ref. [31]), which further motivates the use of the simple BW prescription in
the following.

We start with the quantification of the jet energy collimation and a study of the jet broadening in gluon
and quark jets in LLA. The computation of the energy collimation was first performed analytically in
the vacuum [32] and subsequently modeled in the medium [33] by means of the inclusive spectrum of
partons provided by the medium-modified solution of DGLAP FFs at large  ~ 1. For this purpose,
a high-energy jet of half opening angle O, energy E and virtuality () = FOg produced in a nucleus-
nucleus collision was considered, followed by the production of one concentric sub-jet of opening angle
O and transverse momentum k; = xE© where the bulk &/ ~ E of the jet energy is contained [32,33].
By definition, the smaller the angle © where the jet energy is concentrated, the higher the jet energy
collimation [32]. The half opening angle of the jet ©¢ should be fixed according to the jet definition
used by the experiment. The energy collimation can be then determined by maximizing the distribution
of partons D(z, E©(, FO), which dominates the hard fragmentation (x ~ 1) of the jet into a sub-jet, as
discussed in Ref. [33].

In this paper, we will provide a more accurate description of the energy collimation, which accounts for
the = dependence in the third argument of the FFs D(z,ln E©g,In x £O). The account of the shift in
In x leads to a small next-to-leading logarithmic approximation (NLLA) correction of order O(«) which
decreases the energy collimation at intermediate values of x as a consequence of the scaling violation of
DGLAP FFs [34]. Our first aim is indeed to make a comparison for the jet energy collimation between
the LLA, NLLA with Pythia 6 [13, 14] and YaJEM [35] in the medium. Such studies have been done
for the vacuum case [36], but it is far from being evident that there are no additional differences in the

medium and this issue should be further studied.

The integrated jet shape WU (©; ©) provides indeed an analogous measurement of how widely the trans-
verse energy of the jet is spread. This observable was first studied in the vacuum in [36] and generalized
to the medium throughout the calculations presented in [37] and [38] in the framework of the cone and k;
jet reconstruction algorithms. By definition, ¥(0©; ©) determines the energy fraction [z = V(0;Og)]
of a jet of half opening angle O that falls into a sub-jet of half opening angle © for a fixed jet energy
E. In our framework, we extract for the first time the angular dependence of the sub-jet energy frac-
tion from the simple prescription provided by the LLA DGLAP energy collimation z = f(E©, EO)
at fixed energy F; no other computation for this observable is known in the context of LLA DGLAP
evolution equations. Thus, the jet energy collimation is a LLA DGLAP observable; however it is not
measured in a heavy-ions collisions context, but jet shapes are. That is why, in the comparison with MC,

we do the jet shape analysis with Pythia 6 and YaJEM using the FastJet package [39,40] on the events



and compare our results with CMS pp and PbPb data for central collisions (0-10%) at 2.76 TeV [9]. The
BW prescription provides a simple test case for this, as it is analytically solvable and easily implemented
in the YaJEM code, it will be shown to capture the main physics of additional soft gluon production and

jet broadening through this observable.

Finally, for the purpose of a detailed comparison with data from the CMS experiment, the jet-shape
analysis with YaJEM is performed for both PbPb and pp collisions following the CMS analysis procedure
closely. Jets are reconstructed with the anti-kr algorithm [39, 40] with a resolution parameter R(=
©p) = 0.3. The clustering analysis is limited to charged particles with e; > 1 GeV inside the jet cone
where E.. > 100 GeV is required for a jet (i.e. Eye stands for the recovered jet energy inside the
cone) [9]. The condition e; > 1 GeV removes the soft QCD medium background which may blur the jet
fragmentation and jet-shape analysis. In order to illustrate the role of the bias caused by the jet-finding
procedure outlined above, we compare the biased jet shape (i.e. provided the CMS jet-finding conditions
are fulfilled) with an unbiased jet shape (which is a purely theoretical quantity) for both PbPb and pp
CMS data.

2 Theoretical framework

2.1 Description of the process and kinematics

In Fig. 1, we consider the production of one gluon or quark (A = g,q, Q) jet of total energy E and
opening angle ©( which fragments into a sub-jet B of energy x F and opening angle © (© < ©g), where
x is the energy fraction of A carried by B.

By definition, the virtualities of the jet A and the sub-jet B are Q = E©¢ and k| = E,0 (E, = zF)
respectively. The virtuality, also known as the hardness of the jet, determines the phase space for radiation
and hence sets the maximal transverse momentum of a parton inside the jet: £; < ). A minimal cutoff
parameter (g can be introduced k| > (g, such that the minimal angle reached by a parton inside the

cascade equals Op,i, > Qo/xEO,. Experimentally, this physical picture corresponds to the calorimetric

Figure 1: Fragmentation of a jet A of half opening angle O into a sub-jet B of half opening angle
O < 0.

measurement of the energy flux deposited within a given solid angle. From the partonic point of view, the

successive decays of partons in the cascade are ordered in & ;, or angles ©; due to the LLA kinematics



for hard parton decays (z ~ 1) or due to the QCD coherence for soft parton decays (v < 1) [32]. Hard
parton decays determine the bulk of the jet energy and are ruled by the LLA kinematics, which leads to
DGLAP evolution equations [41], while soft parton decays determine the bulk of the jet multiplicity and
are ruled by QCD coherence, which leads instead to the modified-LLA (MLLA) evolution equations [32].

The jet energy collimation is characterized by the large energy fraction x of the sub-jet where the bulk
of the jet energy inside the given cone © < O < 1 is deposited. Hence, the probability for the energy
fraction x to be deposited in a cone of aperture © is related to the DGLAP inclusive spectrum of partons
through the formula [42],

Da(x,E©g,2EO) = Y Df(x,E0),2EO), (1)
B=g,q

where the nature of partons B is not identified. In Eq. (1), the FFs Df (z, E©¢,xEO) determine the
probability that a parton A produced at large pr ~ FE' in a high-energy collision fragments into a hard
sub-jet B of transverse momentum x£©, which we write in the third argument of the FF. Qualitatively,
Eq. (1) describes the evolution of the jet A in the k| range O < k| < FOq according to the LLA k|
ordering and hence, it determines the partonic skeleton of the sub-jet B before the hadronization takes

place.

As compared to the FF for the inclusive spectrum of partons where the third argument is set to £© for
hard partons x ~ 1: Df(x, EOBy, EO) [33], the formula (1) accounts for the energy fraction x of the
sub-jet B in the FFs D (x, EQ,2E©). We cannot compute DE(z, EQy, zEO) by using DGLAP
evolution equations because of the x dependence included in the third argument, but we can instead

expand it in powers of “In z” through the exponential operator,

DE(z, E©g, zEO) = Mm*0/OMEO) B (1. EO,, FO) (2)
such that,
B
D8, Oy, 250) = DA (z, A¢) — nz 2O jvenae DA ney L 0a2), )
2m OAE
where,
2
§(BO) = ——1In 1n< o ) | AE=E(B6y) — £(BO), ay(FOy) = —— 2%
4NCﬂO AQCD 4Ncﬁ0 In (AE@O >
QCD (4)

Hence, (1) can be rewritten in the form,

as(EOo) oANBoAE aDE

Dy(z, E©y,zEO)= Z [Df(:v,A{) —Inx o OAE

B=g,q

mm] L0, )

where «; is the QCD coupling constant, /3 is the first coefficient of the QCD S function given by
Bo = 1 (5 Ne — 3Trny), with Ne = 3, Tr = 3, ny = 3 and A, (= 300 MeV) is the mass scale
of QCD. The new correction O(«;) is very small as x — 1 and can be much larger for x ~ 0.5. As

displayed in Fig. 1, the ladder Feynman diagrams leading to DGLAP evolution equations for DE (z, AE)



should be iterated from the hardest virtuality ) = E©q of the process to the lower sub-jet virtuality
k| = EO through the variable A¢ in (4). Thus, DE (x, A&) describes the distribution of partons B with
transverse momentum k; = E'© contained inside the parton A, which fixes the initial scale of the hard
process: () = E©y; i.e. the virtuality. Therefore, we can estimate D 4(z, E©¢, zEO) with the solution
of DGLAP evolution equations for the FFs DE (x, AE), which appear on the rhs of Eq. (5).

2.2 Medium-modified DGLAP evolution equations with the BW model

The DGLAP evolution equations for the splitting A[1] — B[z]C[1 — z] (where z is the energy fraction
of one parton in the splitting) in the k£, range FO < k| < FO takes the simple form [41],
as(EO)

D(x, EO© E@)—i/lﬁp( )D (f E© E@) ©6)
dn B \OEPeER) = | WP EReEE )

where P(z) is the evolution “Hamiltonian” given by the regularized splitting functions [10-12]. In order
to account for the medium-induced soft gluon radiation in heavy-ion collisions, we make use of the
QCD-inspired model proposed in Ref. [27] which leads to a simple solution of the evolution equations
at x ~ 1. In this model, the infrared parts of the splitting functions are arbitrarily enhanced by the factor
Ng = 1+ fied, Where fieq = 0 accounts for medium-induced soft gluon radiation. The medium-

modified splitting functions in 2z space are written in the form [27],

P,y(2) = 4N, [—NSJFLNS} —i—z(l—z)—Q], Pyy(2) =2T,[2* + (1 — 2)?], (7a)
Z —Z +
qu(z):20F<2N5+z—2>, qu(z):2C’F<[2NS} —1—z>, (7b)
z 1—=z n

where the [. .. ] prescription is defined as fol dz[F(x)]+g(z) = fol dxF(x)[g(x) — g(1)]. The solutions
of Eq. (6) can most conveniently be obtained in Mellin space D(j, EOg, EO) through the transformation

1
D(j, EQy, EO) = / dx 2’1 D(z, E©y, EO),
0

such that the convolution (6) yields,

d
dln E©

1
D(j, E®y, EO) = P(j)D(j, EOQy, EO), P(j) = / dz 2771 P(z). (8)
0

The advantage of the Mellin transform can be clearly seen in Eq. (8). The convolution over 2 in Eq. (6)
reduces to the product of the Mellin-transformed splitting functions P(j) and the FFs D(j, EQq, EO).
Making use of the variables introduced in (4), (8) can be more explicitly rewritten in the matrix form at

leading order LO:
DQNS (.]’ 5) qu (]) 0 0 DQNS (]a 5)
d_£ Dy (5,6) | = 0 Paq(4) qu(j) Dys(5,6) | )
Dy(5, ) 0 Pyqs) Pogli) Dy (3, €)



where D, and D,y stand, respectively, for the flavor-nonsinglet and flavor-singlet quark distributions,

ans
and P, (j) are the Mellin transforms of the LO splitting functions:

No—1 N,—1

Pogls) = —AN. |Ns (G + 1)+ Noyp = ——— = =
LN, 2y SN;(J +itD (10a)
3 3 JjP-1(E+2)
) 7 +7+2
P =Ty o0 (10b)
sa(J) TiG+HDG+2)
: (2N; = 1)(5* +J) +2
Pyg(i) = 2C — ; (10c)
qy( ) F ](]2_1)
Puo(4) C,. |[4Ns¥(j +1) + 4N, PEAL R 2 (10d)
J) = — s J sYE — ; -0 — —— .
! : v J (G +1)

This method allows for the diagonalization of the “Hamiltonian” given by the set P(j) with respect to the
“evolution-time” variable £ ~ t = In(EO). In some limits at large and small z, analytical solutions of
the equations can be found through this method [41] but for numerical computation, solving the equations
directly in x space turns out to be more efficient than inverting the Mellin transform numerically. Thus,
at large energy fraction x ~ 1, or equivalently large j > 1 (which we are interested in), the expressions
for the Mellin representation of the splitting functions (10a)-(10d) can be reduced to,

P, (j) = 4Cp N, <— Inj+ —ny> . Py (j) ~ 4N N, <— Inj+ % —’yE> , (11)

S

AN,

where the asymptotic behavior of the digamma function ¢)(j + 1) ~ In j is replaced at j > 1 [41]. The
off-diagonal matrix elements vanish in this approximation: Py, (j) = Pyq(j) = 0.

Note that the Ny In j dependence in Eq. (11) arises from the [N /(1 — z)] terms of the DGLAP splitting
functions, such that for hard partons z ~ 1, the enhanced contribution of the soft 1 — z ~ 0 component
[1/(1 — z)]4+ produces the sub-jet broadening within this approximation. Qualitatively, as a consequence
of energy conservation, if soft gluon radiation is enhanced in the region © < @' < © for a fixed jet
energy F, the sub-jet energy (B, zF) should be smaller compared to its value in the vacuum and the
energy collimation should then decrease, i.e. © should increase.

Going back to x space requires taking the inverse Mellin transform given by

D(z,A¢) = L A dj xID(j, AE), (12)

211

where the contour C' in the complex plane is parallel to the imaginary axis and lies to the right of all
singularities. Since we are interested in the large j > 1 (x ~ 1) approximation, we insert Eq. (11) into

Eq. (9). After integrating the result, we get the medium-modified distribution at large x ~ 1,

explACANL (2 — 75)AE]
[(4C4AN,A€)

Di(z, Ag) = (1 — z)~ HHACAN- AL (13)

where [ is replaced by 3/4 (n ¢ = 3)in Eq. (11). The corresponding result in the vacuum for Ny = 1 is
given in Ref. [41].



Within this approximation, the parton initiating the jet A is identical to that initiating the sub-jet B = A,
Cy = N.if Aisagluon and Cy = Cp = % if A is a quark. Indeed, the FF Dﬁ(:ﬂ, A¢) in Eq. (13)
describes the splittings ¢ — gg and ¢ — ¢qg and as constructed, it neglects the others: g — ¢g and
q — gq. Therefore, the sum over B in Eq. (5) disappears such that,

E©y) ANeBoAE 0D4

D4 (z, E©y, zEQ) = D4 (z, AE) — lnxas(zw I (z,A&) + O(a?). (14)

In a more accurate solution of this problem which could only be achieved numerically, the whole sum
of the parton branchings given by D,(z, EQg,2EO) = Di(x, EQ¢,zE®O) + Dj(z, EQ¢,zEO) for a
quark jet and D (z, EQg,2EO) = Dj(z, EQy,zEO) + Di(z, EQy,zE®) for a gluon jet, with the
full resummed contribution of the soft gluon/collinear logarithms arising from the N,/z dependence of
the splitting functions in the FO approach of DGLAP FFs [30,43].

2.3 Jet energy collimation

As discussed in Ref. [41], the distribution (13) presents a certain maximum at some angle © where the
bulk of the jet energy is concentrated. The reason for this can be understood as follows: for A¢ — 0,
or © — O, almost all of the energy is contained inside the cone © [i.e. D — 0(1 — )] and the
probability distribution Dﬁ for x # 1 should decrease. For © decreasing © > A, /E [notice that the
x dependence was reabsorbed on the pre-exponential term in Eq. (2)], the emission outside the cone ©
grows and the fragmentation probability decreases. Then, taking the first derivative over In © in Eq. (14)
leads to the NLLA (not to be confused with the MLLA) equation for ©:

In(l —z)+ N, BT ¢(4C’ANSA£)] <1 — 4N, Boe? ¢ In x@) =
B P
4C 4 NyetNePoAE xLW@O) [ln(l —z)+ . VBT 1/1(4CANSA§)}
—4C 4 Nyt Nehore lnm@w(l) (4CANAE), (15)

which is the main theoretical result of this section for medium Ny # 0 and also vacuum Ny = 0. We
invert Eq. (15) numerically in order to get the NLLA jet energy collimation ©(z, E). In Eq. (15), ¢(x)
is the digamma function and ™) (x) = %(f) is the polygamma function of the first order, which is new
in this context. Note that this is one correction; a more complete set of corrections of the same order can
be also added if, for instance, one considers the next-to-leading-order corrections [44] to the approached
splitting functions (11) in a more cumbersome approach of this problem. However, this term goes beyond
DGLAP and corresponds to the so-called scaling violation in DGLAP fragmentation functions [34]. In
our framework, this correction slightly increases the available phase space from the hardest (B, x ~ 1)
to slightly softer partons (B, x ~ 0.5) and is therefore expected to decrease the energy collimation or
increase O at intermediate x. As expected for harder partons Inx ~ 0, the above equation (15) reduces

to the simpler one [33],

P(ACANsAE) =In(1 — x) + —YE. (16)

AN,



Symbolically, the inversion of the NLLA (15) and LLA (16) can be written for quark (A = ¢, ¢) and
gluon (A = g) jets in the simple form,

04 (E@O >_'YA(1'7NS)

— = (17)
B9 Aoep
Setting In z — 0 in Eq. (15), the LLA expression for v4(z, N;) is simply written in the form [33]
NcﬁO —1 3
Ng)=1-— - In(1 — — 18
valo, N = 1= exp | ZG001 (11— )+ -~ )| 18)

where 1)~ is the inverse of the digamma function. The exponent v4(x, N) provides indeed the medium-
modified slope of the energy collimation as a function of N for a fixed value of the sub-jet energy fraction
x and can be obtained numerically from the NLLA equation (15). In Table 1, we display the values of the
NLLA and LLA slopes for z = 0.5 and x = 0.8, which are in agreement with the LLA (NLLA) DGLAP
large sub-jet energy fraction = approximation where these predictions should be tested. As x — 0, the
fixed-order (FO) approach of the LLA fails to provide any reliable result.

NLLA,LLA =05 2=08 NLLA,LLA 2=05 z=08
Yg(x,1.4) 0.37 0.26 Yg(x, 1) 0.54 0.38
Yy, 1.4) 0.67 0.50 Yq(z, 1) 0.83 0.65

Table 1: NLLA and LLA values of the slope y4(x, Ny) of the energy collimation for Ny = 1.4 (medium)
and Ng; = 1 (vacuum).

The new equation (15) cannot be rewritten like Eq. (17) but it can be solved numerically. From Table 1,
one may wonder why the NLLA (15) and LLA (16) slopes of the energy collimation are the same”.
Indeed, the coupling constant does not depend on the jet energy only, but rather on the product £© >
Aqcp through the term In ze*VeA028q (EQg) ~ Inzas(EO) in Eq. (15). As the jet energy E increases,
the sub-jet cone © decreases and as(F©) should remain roughly constant. Therefore, the NLLA and

LLA curves of the jet energy collimation should stay approximately parallel to each other asymptotically.

We can see in both cases that the nuclear suppression parameter /N, decreases the slope of the energy col-
limation, which translates into increasing the rate of the jet broadening asymptotically. In both medium
and vacuum -y, > -4, which physically means that quark jets are more collimated than gluon jets. The
same trends should be confirmed in the forthcoming analysis of the jet energy collimation with the event
generator YaJEM.

3 Comparison with YaJEM and QGP hydrodynamics

In order to gauge the impact of the approximations made in deriving the results of the preceding section,

we compare them with results for jet energy collimation obtained in a MC formulation of the in-medium

3Notice that Table 1 displays indeed 16 values for the slopes, but such numbers are identical for the NLLA and LLA energy

collimation.



jet evolution. Within such a model, the parton initiating a jet A does not have to be identical to that
initiating the sub-ject B and hence the full set of splittings g — gg and g — ¢q is available for a gluon

jet. In addition, exact energy-momentum conservation at every splitting vertex is enforced.

In vacuum, the PYSHOW algorithm [13, 14] is a well-tested numerical implementation of QCD shower
simulations. For comparison with our analytic results, we use the Borghini-Wiedemann prescription

implemented within the in-medium shower code [45].

3.1 The in-medium shower generator YaJEM

YaJEM is based on the PYSHOW algorithm, to which it reduces in the limit of no medium effects. It
simulates the evolution of a QCD shower as an iterated series of splittings of a parent into two daughter
partons a — bc where the energy of the daughters are obtained as £y, = zF, and E, = (1 — 2)E, and
the virtuality of parent and daughters is ordered as ), > @, (). The decreasing hard virtuality scale of
partons provides splitting by splitting the transverse phase space for radiation, and the perturbative QCD
evolution terminates once the parton virtuality reaches a lower value Qg = 1 GeV, at which point the

subsequent evolution is considered to be nonperturbative hadronization.

The probability distribution to split at given z is given by the same QCD splitting kernels and their
medium modification in the BW prescription, which we have used above, i.e. Eq. (7a) and Eq. (7b);
however in the explicit kinematics of the MC shower the singularities for = — 0 or z — 1 are outside of

accessible phase space and no [. .. ] regularization procedure is needed.

We will refer to the implementation of the BW prescription for in-medium showers in the following as
YaJEM+BW (note that this corresponds to the FMED scenario described in Ref. [45]). This is distinct
from the default version of the code YaJEM, YaJEM-DE, which is tested against multiple observables
at both RHIC and LHC (see e.g. Refs. [46-48]) and is based on an explicit exchange of energy and

momentum between jet and medium rather than a modification of splitting probabilities.

For a straightforward benchmark comparison with analytic results, a value of f,.q can be chosen, the
parton shower can be computed and stopped at the partonic level or evolved using the Lund model to
the hadronic level, and then clustered using the anti-k7 algorithm and properties like collimation or jet

shapes can then be extracted.

In a MC treatment of the shower evolution, using a constant value of f,.q to characterize the medium
is not needed and in fact not realistic once a comparison with data is desired. Following the procedure
in Ref. [45], the value of f,q is determined event by event by embedding the hard process into a
hydrodynamical medium [49] starting from a binary vertex which is at (xg, yo) and following an eikonal

trajectory ( through the medium evaluating the line integral

Foea = K7 dEle(C)cosh p(¢) — sinh p(€) cos ). (19

where ¢ is the local energy density of the hydrodynamical medium, p the local flow rapidity and ¢ the
angle between the flow and the direction of parton propagation. Events are then generated for a large
number of random (z, yo) sampled from the transverse overlap profile



TA(I‘O + b/2)TA(I‘0 — b/2)
Taa(b) '

where T4 is a nuclear thickness function 74 (r) = [ dzpa(r, z) obtained from the Woods-Saxon density

P(z0,y0) = (20)

pa(r, z), and all observables are averaged over a sufficiently large number of events. This leaves a single
dimensionful parameter K; characterizing the strength of the coupling between parton and medium
which is tuned to reproduce the measured nuclear suppression factor R 44 in central 200 GeV AuAu
collisions (see Ref. [45]). In practice, this procedure leads to an (fieq) =~ 0.4 which we will use in the

analytical expressions when a comparison with data is intended.

3.2 Medium-modified jet energy collimation

In this section we compare our NLLA (15) and LLA [33] predictions for the energy collimation with
YaJEM+BW. The analysis is carried out for gluon and quark jets independently and including all particles

in an event, i.e. no detector effects are simulated in this section.

We generate thousands of gluon and quark dijets (i.e. back-to-back jets) for different fixed values of the
center-of-mass energy /s taken in the range /s = 100 — 1200 GeV. By doing so, we fix the energy of
the leading initial parton to be Ey, = /s/2 for each member in the dijet. The values of Ej, are thus
not selected as in the standard procedure by sampling the initial energy (or pr) distribution of partons
provided by parton distribution functions (PDFs) [50], nuclear parton distribution functions (nPDFs) [51]
and the LO matrix elements of the partonic cross section as we do later when comparing with data.

Jets are then reconstructed by using the anti-k7 algorithm [39, 40] inside the cone radii R = 1.0, 0.3
(©g), in agreement with the hard collinear approximation where the NLLA and LLA predictions should
be tested. Reconstructed jets can be sorted by energy (Fjet,1 > FEjet,2 > .. .) event-by-event such that the
most energetic one (Ljet,1) can be randomly selected from its pair (Ejet,2) for the analysis. We purposely
use the default algorithm used by all LHC experiments. Our motivation to do so from this subsection for
the energy collimation is based on the fact that we then compare our Pyhtia 6 and YaJEM+BW results for
the jet shapes with the CMS data in Sec. 4, where jets are reconstructed with the anti-k; algorithm (see
Ref. [9]). Besides, the anti-k7 is the most robust jet reconstruction algorithm for pp and PbPb collisions
at the LHC with respect to underlying events and pileup.

The jet reconstruction radius coincides with the opening angle of the jet ©y = R and © = r with that
of the sub-jet. The cone R contains the reconstructed average energy flux (Fyoc) of the jet A and r the
energy flux of the sub-jet B (xEyc.), as illustrated in Fig.2.

The energy collimation can be then extracted from the angular distribution of the energy flux in r < R:

1 d°N 1 d°N
Nijets dedr Niets dedr
over the whole range 0 < r < R such that the fraction x of the jet energy carried by the sub-jet r < R

forr < R (© < ©g). The recovered jet energy FE\.. can be obtained by integrating

can be written in the form:

1 ", d*N R , d*N
= dee—— FEree = dee——. 21
x Erec/o dr / eededr,, /0 dr / eededr’ (21)

By fixing the energy fraction x in Eq. (21) to be large « > 0.5, we can numerically compute the sub-jet

radius r where the bulk xE... of the reconstructed jet energy is contained. If the same procedure is

10



Jet axis

Figure 2: Jet (©¢p = R) and sub-jet (© = r) cones sharing the bulk of the jet energy.

repeated for different values of the center of mass energy /s, the energy evolution of the collimation

7(Eyec) can be then displayed as a function of Fi.. for a fixed sub-jet energy fraction x.

The FastJet package [39,40] provides the invariant mass m; = , /Ejz — ]5}2 of each jet independently
from its pair if jets are sorted by the invariant mass (m; > msg > ...), where m; is the invariant mass of
the first jet and ms is the invariant mass of the second jet. The reconstructed virtuality of the jet inside
small radii R < 1 can be related to the invariant mass of the dijet M;; > m; through

Q= %R (22)

where M;; can be expressed in terms of each m;,

M2 = m? + m2 + 2E,Ey — 2F\E _m _m 23
jj = mi+my+ 200 ks 152 o0 [ oS ¢, (23)
1 2

which should be evaluated with mq # me, £y # FEs and ¢ ~ 7 for clustered back-to-back jets. Indeed,
the jet finder misses part of the initial jet energy [y, and invariant mass my;, such that, the new values
inside R are biased to smaller ones. Therefore, the reconstructed invariant mass of the dijet M;; should
be estimated as given in Eq. (23) for the biased F; and m,; obtained with FastJet. The result in Eq. (22)
can be checked to be in good agreement with the averaged one () = F,..R displayed in the Tables 2 and
3 in Secs. 3.3 and 3.4, respectively; the smaller the I values, the more important the bias and the better

the agreement in the collinear limit, provided R > Ay, / Erec. We rewrite Eq. (17) in the form,

Q _'YA($7N5) 4
rA:R< > , C4g=N.=3, Cy=Cr=, (24)

Agen 3
for the phenomenological treatment of the gluon (Cy = N.) and quark (C;, = CF) jets with 74 < R.
We choose A, = 300 MeV, the same value as in the PYSHOW showering algorithm and do not use

the Lund model for the hadronization of partons into hadrons in this section [13, 14]. The result for the
energy collimation extracted from YaJEM+BW (21) will be compared with the medium-modified NLLA

11



and LLA formulas (15). The medium modification parameter fy,qq is set to its mean value (f)meq =
0.4, obtained from averaging over the hydrodynamical model. The result of the numerical inversion of
Egs. (15) and (16) will be displayed in the form given by Eq. (24) in both cases.

3.3 Medium-modified jet energy collimation in gluon jets

In Table 2, we display gluon dijets at three different center-of-mass energies /s = 150 — 500 GeV,
which are reconstructed by using the anti-k7 algorithm [39,40] for the radii R = 1 and R = 0.3. As
described above, F\ is the recovered jet energy of the leading parton E.. = 24/s/2 inside the cone
R and @ is the jet virtuality. Note that the recovered energy of the leading parton equals the jet energy
inside R after reconstruction. We can see that gluon jets carry the energy fractions 2 ~ 4/5 and 2/3

Vs(GeV) R Eiec(GeV) Q(GeV) R Eiec (GeV) Q (GeV)

150 1.0 64.8 64.8 0.3 46.3 13.8
300 1.0 131.3 131.3 0.3 98.0 294
500 1.0 220.4 2204 0.3 168.9 50.7

Table 2: Reconstructed jet energies inside the cone radii R = 1.0 and R = 0.3.

1 1
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A S~ e— T -1 i
10 10
(=2} [=2]
. .
- = = - Energy collimation, R=1.0, <f> =0.4
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Figure 3: Energy collimation inside a gluon jet for z = 0.5 (left) and x = 0.8 (right) with R = 1.0.

of the leading parton for R = 1.0 and R = 0.3 respectively. Indeed, /s/2 is the energy of the leading
parton spread in the whole hemisphere and \/s/2 — E.. is that part of the jet energy that is lost outside
R, which should not be confused with the jet energy inside the cone shell » < ' < R. We can see
that the correlation between parton kinematics and reconstructed jet kinematics gets increasingly blurred
for small reconstruction radii. Thus, the choice R = 0.3 used by the CMS experiment provides a more

severely biased jet energy.
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In Fig.3, we display the energy collimation at # = 1.0 in gluon jets,

7’\/9(1'7]\[5)
ry =R ( AQ ) (25)

QCD

in the energy range 60 < E..(GeV) < 600 for RHIC and LHC phenomenology. We choose the energy
fractions z = 0.5, x = 0.8 and compare the NLLA prediction (15) with the LLA (16) and YaJEM+BW
(21) for (f)mea = 0.4. The disagreement between the LLA prediction and YaAJEM+BW is quite substan-
tial and mainly due to the lack of other perturbative contributions in this calculation, whereas the NLLA
prediction improves the agreement. As expected for z = 0.5, the O(«) correction in the NLLA formula
(15) proves to be larger than for x = 0.8. The shape of the energy collimation provided by the NLLA
(15) and the LLA (16) are identical but steeper than the slope of the energy collimation provided by
YaJEM+BW. Therefore, the NLLA and LLA predictions overestimate the energy collimation compared
to the YaJEM+BW prescription.

Decreasing the jet radius to the value used by the CMS experiment at 2.76 TeV PbPb collisions & = 0.3
leads to a sizable hardening of the biased jet which may provide a better comparison between the NLLA,
LLA and YaJEM+BW predictions for the jet energy collimation. The bias drives results to a generic
outcome, so differences in the comparison must disappear as the bias gets stronger. That is why, in
Fig.4 we display the same curves as in Fig. 3 for R = 0.3. We can see that the description provided by
the NLLA (21), LLA (16) and YaJEM+BW (21) calculations are in better agreement with one another
than the results displayed in Fig. 3 for R = 1.0. As expected, in the LLA, NLLA and YaJEM+BW

computations, the energy collimation is stronger as the jet energy increases.

107 10"

Energy collimation, R=0.3, <f> =0.4
med

Energy collimation, R=0.3, <f> =0.4
med

......... YaJEM+BW, x=0.5

o] =emrimimn YaJEM+BW, x=0.8

— — LLA x=05 — — LLA x=08
103 Next-to-LLA, x=0.5 10°%E Next-to-LLA, x=0.8
T i s s
0 200 400 600 0] 200 400 600
Erec Erec

Figure 4: Collimation of energy inside a gluon jet for x = 0.5 (left) and x = 0.8 (right) with R = 0.3.

As a consequence of jet quenching in high-energy heavy-ion collisions, medium-modified showers are
expected to broaden compared with vacuum showers. This effect can be quantified via the shower energy
collimation by taking the ratios g med/7g,vac With (f)med = 0.4 for the medium in the numerator and
(f)Ymea = 0 for vacuum in the denominator with the NLLA formula (15) and the YaJEM analysis (21).
The ratios are displayed in Fig. 5 for the energy fractions z = 0.5,0.8,0.9 and the jet radius R = 0.3.
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Figure 5: Medium-modified and vacuum energy collimation ratios g med/rgvac for x = 0.5 (left),
x = 0.8 (center) and = = 0.9 (right) with R = 0.3.

For z = 0.5, the NLLA formula predicts a sub-jet broadening that is twice as large (i.e. smaller energy
collimation) than that in YaJEM+BW, while for x = 0.8 — 0.9 the agreement is improved but still
different by a factor of ~ 1.5 — 1.2, reaching the best agreement for x = 0.9. Thus, as the energy
fraction x increases, the jet broadening inside the smaller cone r decreases. As expected, the NLLA
correction seems to play a more important role as x decreases. The latter can be observed in Fig. 5 as
one compares the shapes of the NLLA prediction with YaJEM+BW. The YaJEM+BW prediction tends
to flatten while the NLLA formula increases, making the vertical difference higher as the energy scale

increases.

3.4 Medium-modified jet energy collimation in quark jets

In Table 3, we display quark dijets for the same values of center-of-mass energy and . We can see that
the recovered jet energy slightly increases compared with that displayed in Table 2 for gluon jets. The

Vs(GeV) R Eiec(GeV) Q(GeV) R Eiec (GeV) Q (GeV)

150 1.0 70.0 70.0 0.3 58.5 17.6
300 1.0 141.0 141.0 0.3 100.1 30.0
500 1.0 236.0 236.0 0.3 205.9 61.5

Table 3: Reconstructed jet energies inside the cone radii R = 1.0 and R = 0.3.

energy collimation inside quark jets (17) can be rewritten in the form,

7’\/11(1'7]\[5)
r=R ( @ ) . (26)

AQCD

Accordingly, in Fig.6 and Fig.7, we display the quark jet energy collimation for the energy fractions
x = 0.5 and x = 0.8 by the sub-jet with the medium modification value (f)peq = 0.4.  As for
gluon jets, our predictions are in better agreement with YaJEM+BW for R = 0.3 than for R = 1.0.

14
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Figure 6: Collimation of energy inside a gluon jet for x = 0.5 (left) and x = 0.8 (right) with R = 1.0.

For R = 1.0, the NLLA predictions underestimate YaJEM+BW for x = 0.5 and = 0.8. However, for
R = 0.3, the disagreement is reduced as for gluon jets. Furthermore, the correction due to the shift in In x
is smaller in a quark jet compared to a gluon jet and LLLA predictions in gluon jets are in better agreement
with YaJEM+BW than in quark jets. The last statements suggest that NLLA and LLA predictions should
be in better agreement with YaAJEM+BW for much harder jets, i.e. R = 0.1 as displayed in Fig. 8.
The study of smaller jet resolutions such as & = 0.1 which further biases QCD showers, is shown to
always improve quark/gluon tagging at the LHC [52]. In Fig. 9, we display the ratios 7 med/7q,vac Of the
energy collimation in the medium and the vacuum. The results clearly show the quark jet broadening as
a consequence of jet quenching. The comparison between the NLLA and LLA predictions is worse than
for gluon jets. In Fig.10, we compare the LLLA, NLLA and Pythia 6 energy collimation in the vacuum.
The disagreement between the LLA, NLLA and Pythia 6 predictions is more pronounced in the vacuum,
which further explains the huge difference displayed by the ratios in Fig.5 and Fig.9.

In Table 4, we present the values of the slopes 4 (z, Ns) provided by YAJEM+BW ((f)meq = 1.4) and
Pythia 6. As displayed in the above figures for the energy collimation, the values are smaller than in
the NLLA and LLA calculations presented in Table 1. However, the trends shown by the variation of
va(x, Ny) as a function of = and Ny are similar (7, > ~y,). In particular, the slopes decrease as the energy
fraction decreases for a given value of Ny. For a fixed value of z, the energy collimation flattens as N

increases. We can see that our calculations and YaJEM+BW predict a much stronger energy collimation

YaJEM+BW 2z =05 2 =08 Pythia6 =05 =z=0.38
vol@,14) 017 011 .z, 1) 021 0.4
vz, 1.4) 0.24 0.17  v4(z,1) 0.29 0.20

Table 4: YaJEM+BW values of the slope y4(x, Ny) of the energy collimation for Ny = 1.4 (medium)
and Pythia 6 values for Ny = 1 (vacuum).
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Figure 7: Collimation of energy inside a quark jet for x = 0.4 (left) and x = 0.8 (right) with R = 0.3.

in quark jets than in gluon jets. Physically, this is because gluon jets have a color charge roughly twice as
large (N./CF = 9/4) than quark jets, or equivalently, gluon jet multiplicities are higher than quark jet
multiplicities by the same factor asymptotically [53]. Moreover, the first splitting dominates the jet width,
which for quark jets only has the available splitting ¢ — ¢gg where the emitted gluon is preferentially
soft and does not alter the transverse jet shape, whereas gluon jets can split into g — ¢q pairs where both
quarks tend to be equally hard, which can widen the shape substantially. In both YaJEM+BW and the
calculation, the energy collimation is hence steeper for quark jets than for gluon jets.

Equations (15) and (16) provide a simple description of the jet energy collimation under considera-
tion and cannot be in perfect agreement with the YaJEM+BW description. The last point suggests that
other perturbative contributions arising from the splittings ¢ — ¢qg and g — @ should be included in
Eq. (1) in the form D,(z, E©¢,xEO) = Di(z, EQy,xEO) + Dj(z, EQy,xE®) for quark jets and
Dy(z,EO¢,xEO) = Dj(x, EQy,2EO) + Di(x, EQ¢,zE®) for gluon jets, with the full resummed
contribution of the soft-collinear logarithms in DGLAP FFs [30,43]. Indeed, as the jet energy increases,
the contributions from the double logarithmic contributions as%% (z = E4/FE) increase asymptoti-
cally, which may explain why the difference between YaJEM+BW and the NLLA predictions gets wider
as the jet energy E increases. Moreover, the more accurate treatment of phase space in both Pythia and

YaJEM have not been taken into account in the NLLA and LLA calculations.

3.5 Hadronization effects in the energy collimation

In Fig. 11 we display the energy collimation inside gluon and quark jets in the vacuum using Pythia 6.
The role of hadronization is displayed by comparing the energy collimation for final-state hadrons and
final-state partons clustered inside the radius R = 0.3 in the energy range 50 < F,..(GeV) < 700 by
using the anti-k7 algorithm [39, 40]. The hadronic energy collimation has been labeled as “Pythia 6
and the partonic energy collimation, “Pythia 6 parton shower.” Since the hadronization is modeled to

occur outside the medium, we limited the comparison to Pythia 6 since the results would be identical for
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Figure 8: Collimation of energy inside a gluon jet for x = 0.5 (left) and x = 0.8 (right) with R = 0.1.
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Figure 9: Medium-modified and vacuum energy collimation ratios 74 med [Tqvac for z = 0.5 (left),

x = 0.8 (center) and = = 0.9 (right) with R = 0.3.

YaJEM+BW with a slightly larger normalization (see Figs. 4 and 7 for comparison) as a consequence
of the jet broadening. As we can see, the hadronization biases the partonic energy collimation for jet
energies < 400 GeV but this effect is ~ 5% at RHIC energy scales and smaller than 1% at LHC energy
scales. For jet energies > 400 GeV the role of hadronization becomes negligible and therefore irrelevant
for the study of this observable. In general hadronic showers are less collimated than a fictitious parton
shower at small energy scales.

4 Jet shape: comparison with PbPb CMS data

The integrated jet shape W(r; R) measures the fraction of the jet energy of size R contained in a sub-cone
of size r such that ¥(R; R) = 1. The differential jet shape reads [36],

dv
T¢(T, R) - T%a
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Figure 10: Collimation of energy inside a gluon jet (left) and quark jet (right) for z = 0.8 with R = 0.3
in the vacuum (Ng = 1).

where
av 1

d’N R d’N
il deel L Be= [ a' [d . 27
dr ~ Ereo / ©Cdedr” /0 " / “Cdedr’ @7

Hence, the integration of Eq. (27) leads to the expression written in Eq. (21) for the energy fraction x

used in the framework of the energy collimation, which will be identified with the integrated jet shape
hereafter: * = ¥(r; R). Our NLLA and LLA predictions for the integrated jet shape will be therefore
based on the maximal angular aperture ©® = r where the bulk of the jet energy is contained, as we
discussed in Sec. 2.1. For the first time, in this paper the jet shape is computed from the jet energy
collimation within the same NLLA and LLA schemes.

First of all, we describe how the Monte Carlo simulation from Pythia 6 and YaJEM is performed in view
of further comparison with LLA, NLLA predictions and CMS data hereafter.

For the computation of the integrated jet shapes extracted from (27), we will limit our study to charged
particles only, as in the CMS experiment [9]. The initial distribution of gluon- and quark-initiated show-
ers for the analysis is determined by the convolution of PDFs and nPDFs with the LO matrix elements
of the final cross section at the given hard factorization scale of the process. The LO matrix elements
of the partonic cross section can be computed analytically [54]. PDFs and nPDFs are provided by the
CTEQ [50] and EKS [51] families for pp and PbPb collisions in the vacuum and the medium respectively.
The analysis carried out for the jet shapes is hence different than the analysis for the energy collimation

in Secs. 3.3 and 3.4 where the center-of-mass energy of the hard parton system was fixed to a certain

value +/s.

A large number of quark and gluon dijets are randomly generated based on the perturbative QCD spec-
trum inside the energy range 200 < /s(GeV) < 600 and clustered by using the anti-k; algorithm with
R = 0.3. After clustering all charged hadrons with e > 1 GeV inside the given cone R = 0.3, jet en-
ergies .. are required to fulfill CMS trigger conditions imposed by the restriction Eyec jer > 100 GeV.
The requirement imposed by the trigger selection in the analysis will be referred to as a biased shower,
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Figure 11: Parton versus hadron energy collimation for x = 0.5 and x = 0.8 inside a gluon jet (left) and
a quark jet (right) with R = 0.3.

while that including all clustered jet energies will be referred to as an unbiased shower in the following.
Accordingly, the fraction of gluon jets in one sample is biased by the trigger condition from f7* ~ 0.4
in the unbiased case to f;*¢ ~ 0.2 in the biased case in vacuum showers; and from f;led ~ 0.3 to
f;ned ~ 0.1 in medium showers. Thus, quark jets are dominant in the analysis, particularly in the

medium. The fraction of gluon jets in a sample is used for the computation of the mixed integrated jet
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Figure 12: Jet shape for CMS pp and PbPb data with R = 0.3, compared with Pythia 6, YaJEM+BW,
the LLA formula (left panel) and NLLA formula (right panel).

shape given by the linear combination for gluon and quark jets in the form,
\Ilmixed(r; R) = fg\I’g(TE R) + (1 - fg)\I’q(TE R) (28)

for a direct comparison of the LLA (16), the NLLA (15), Pythia 6 and YaJEM+BW with CMS data.
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In YaJEM+BW, f..q is computed event by event as described in Sec. 3.1. Instead of treating quark and
gluon jets independently in this framework, it is more straightforward to mix the differential distributions
for the energy flux (27) and compare them with the mixed jet shape from Pythia and YaJEM+BW with
account of hadronization. By doing so, after averaging over a large number of events, all jets cluster to
the biased mean jet-energy value Eo. ~ 140 GeV and the mean medium parameter (f)eq ~ 0.4.

In order to compare the Pythia 6 and YaJEM+BW calculations with the LLA and NLLA gluon and quark
jet shapes, we solve the equations (15) and (16) numerically [z, = W4(r; R) and x4 = Vy(r; R)] as a
function of r in the interval 0 < r < R in the framework of LLA (NLLA) DGLAP evolution at large x,
for the first time in this paper. For the computation, we choose the mean jet-energy value F,o. = 140
GeV extracted from Pythia 6 and YaJEM+BW. Taking the same values for the fraction of gluon jets in a
sample f;*¢ ~ 0.2 in the vacuum ({f)mea = 0) and f;¢ ~ 0.1 in the medium ((f)meq = 0.4), we can

evaluate the mixed LLA and NLLA jet shapes (28) equivalently as in the Monte Carlo event generators.

In Fig. 12, we show the LLA, Pythia 6 and YaJEM+BW for (f)yeq = 0.4 jet shapes compared with pp
and PbPb CMS data in the left panel, the NLLA, Pythia 6 and YaAJEM+BW jet shapes for (f)eq = 0.4
compared with pp and PbPb CMS data in the right panel. The jet shape is displayed in the interval
0.6 <z = V(r; R) < 1inagreement with the LLA (and NLLA) DGLAP large sub-jet energy fraction x
approximation where these calculations are performed. We can see that the LLA and NLLA qualitatively
describe the features of the jet shapes in both vacuum and medium but an important disagreement persists.
Compared to the LLA calculation, the NLLA calculation approaches the data as the jet shape decreases
and particularly for more collimated sub-jets r, as expected. Translating this statement to the energy
collimation, we show the NLLA correction to widen the energy dependence of r and to increase the
difference with the LLA calculation as the sub-jet energy fraction (jet shape) decreases. Thus, although
the NLLA and LLA predictions seem to capture the main ingredients of the hard fragmentation process
in this framework, the account of all fragmentation probabilities, mainly those containing soft gluon
contributions should be taken into account in a more accurate theoretical framework. Pythia 6 provides
instead a good agreement with pp CMS data for biased jets. YAJEM+BW describes the shower medium
modifications by reproducing the jet broadening at slightly larger values of r to the right, similar to the
medium-modified NLLA and LLA jet shapes. Though the YaJEM+BW calculation does not reproduce
the data points exactly, the curve fits the systematic error bars of the CMS PbPb data. As observed, the
sub-jet broadening shown by the data is very small but in better agreement with the sub-jet broadening
shown by the Monte Carlo simulations than with that shown by the theoretical calculations with the BW

prescription.

In Fig. 13 we compare the biased (Erecjet = 100 GeV) and unbiased (all jets) cases obtained with
Pythia 6 and YaJEM+BW with pp (left panel) and PbPb (right panel) CMS data. The unbiased mean
jet energy turns out to be Ejer ~ 90 GeV after all clustered jets are considered in the analysis without
any further trigger bias. Furthermore, the evaluation of the unbiased case through Eq. (28) requires the
unbiased gluon jet fractions f7*¢ ~ 0.4 and f;ned ~ (.3 in the vacuum and in the medium respectively,
as performed here. As can be seen, the shower structure is affected by imposing a jet-energy condition

which leads to a better agreement between the biased jet shape and the data than the unbiased jet shape.

20



1 = AY .
|- - - | ’
— -~ —
- -
- i -
7 °
/ + /7

.. 08 ) "
a4 x
= = /
= =

k=] he]

Q o

X X

5 £
3- pp jet shape, R=0.3 3' N

0.6 PbPb jet shape, R=0.3
s SRS PR © L biased showers YaJEM+BW, <f> __=0.4
— — unbiased showers Pythia 6 L —— — . unbiased showers YaJEM+BW, <f> =04
(O  cMS pp (0-10%) L ° CMS PbPb (0-10%)
T PR I 1 0.4 Al
0.1 0.2 0.3 0 01 0.2 03
r r

Figure 13: Biased versus unbiased jet shape for CMS pp data (left panel) and PbPb data (right panel)
with R = 0.3.

4.1 Hadronization effects in gluon and quark jet shapes

Finally, in Fig. 14, we display the jet shape obtained with Pythia 6 for a jet energy ~ 110 GeV and
display the role of hadronization between a fictitious partonic shower and a hadronic shower. For the
hadronic shower the study includes all particles in an event. The shift due to the role of hadronization
is very small and can be cross-checked to be the same as the shift displayed for the energy collimation
at F... ~ 110 GeV in Fig. 11. However, for energy scales slower than 400 GeV, the partonic jet shape
obtained from Pythia 6 is slightly closer to the theoretical calculations. From the comparison displayed
in Fig. 11 we can conclude that for high-energy jets the shift between both curves is very small and
vanishes asymptotically. This is another part of the reason why, Pythia 6 and YaJEM+BW with account

of hadronization provide a more accurate agreement with the data.
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Figure 14: Parton versus hadron jet shape inside a gluon jet (left) and a quark jet (right) with R = 0.3.
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5 Summary

In this paper, we studied the energy collimation of gluon and quark jets produced in heavy-ion collisions
and the jet shape of hadrons produced in pp and PbPb collisions at 2.76 TeV. We extracted the LLA
and NLLA jet shapes for quark and gluon jets from the jet energy collimation in the frame of DGLAP
evolution at large z including the scaling violation of FFs for the first time in this work. More efforts
in the numerical framework are however required in order to improve our results and provide a more
accurate description which may improve the shape and normalization of both observables, as explained

in the main body of this paper.

The NLLA energy collimation seems to capture a more complete analytical description of this observ-
able than the LLA energy collimation obtained in Ref. [33], particularly in gluon jets, but a disagreement
with YaAJEM+BW and the data still persists, which is more pronounced in more biased quark showers
with smaller jet resolutions, i.e. R = 0.1. The difference between gluon and quark jets for this ob-
servable is qualitatively well described by both medium-modified NLLA and YaJEM+BW descriptions,
i.e. both provide stronger energy collimation in quark jets than in gluon jets and the NLLA description
improves the normalization for partons carrying the intermediate energy fractions x ~ 0.5. Though this
quantity cannot be directly measured for each type of jet separately, their combination would lead to
the quantification of the jet broadening at high-energy heavy-ion experiments, i.e. the NLLA formula
in the vacuum (/N = 1) and Pythia 6 predict a much faster increase of the energy collimation than the
medium-modified NLLA (N = 1.4) and YaJEM+BW calculations as the energy scale increases.

We extracted the jet shape from the analysis performed for the energy collimation and compared the
NLLA, LLA, Pythia 6 and YaJEM+BW calculations with the CMS pp and PbPb data at 2.76 TeV. The
final biased and unbiased comparison for this observable clearly shows the importance of taking all jet-
finding conditions into account in order to get as accurate results as possible in the comparison of Monte

Carlo event generators and theoretical predictions with the data.

The NLLA and LLA predictions qualitatively describe the jet shapes but fail to reproduce the right
normalization of this observable. The reasons for this disagreement are the same as those previously
presented for the energy collimation in the last paragraph of Sec. 3.4. The biased jet shape provided by
Pythia 6 is in very good agreement with pp CMS data and the medium-modified biased jet shape from
YaJEM+BW qualitatively describes the sub-jet broadening shown by PbPb CMS data for larger values
of r, although it is much weaker in CMS data than in the YaJEM+BW result. Gluon jets produce a
wider shower broadening than quark jets but they get even more suppressed by biases than quark jets,
which clearly dominate the data for Fy e jer > 100 GeV. This new example proves that biases appear to
strongly suppress the relevant physics of jet quenching we want to understand and hence, information is
lost concerning the early stage of jet evolution and its interaction with the medium in the study of this
observable; indeed, the trigger bias suppresses the range of possible medium modifications brought by

the medium-induced soft gluon radiation [55].

Of course our results for the jet shape and comparison with the data reflect the characteristics of the BW
prescription and hence should be compared and improved with calculations using other models or more

conveniently the ongoing calculations of Refs. [25,29] (for an interesting review see also Ref. [56]); a
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comparison with YaJEM-DE [57] may for instance be desirable.
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