
HAL Id: hal-00933896
https://hal.science/hal-00933896v1

Submitted on 28 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Resolution Calculus for First-order Schemata
Vincent Aravantinos, Mnacho Echenim, Nicolas Peltier

To cite this version:
Vincent Aravantinos, Mnacho Echenim, Nicolas Peltier. A Resolution Calculus for First-order
Schemata. Fundamenta Informaticae, 2013, 125 (2), pp.101-133. �10.3233/FI-2013-855�. �hal-
00933896�

https://hal.science/hal-00933896v1
https://hal.archives-ouvertes.fr

Fundamenta Informaticae 1–33 1

IOS Press

A resolution calculus for first-order schemata∗

Vincent Aravantinos
LIG/CNRS

Vincent.Aravantinos@imag.fr

Mnacho Echenim
LIG/Grenoble INP-Ensimag

Mnacho.Echenim@imag.fr

Nicolas Peltier
LIG/CNRS

Nicolas.Peltier@imag.fr

Abstract. We devise a resolution calculus that tests the satisfiability of infinite families of clause
sets, called clause set schemata. For schemata of propositional clause sets, we prove that this cal-
culus is sound, refutationally complete, and terminating. The calculus is extended to first-order
clauses, for which termination is lost, since the satisfiability problem is not semi-decidable for non-
propositional schemata. The expressive power of the considered logic is strictly greater than the one
considered in our previous work.

Keywords: Propositional logic, first-order logic, schemata, resolution calculus

1. Introduction

Many problems in mathematics or in formal verification can be specified as schemata of formulæ, corre-
sponding to infinite sequences of structurally similar formulæ in some base language (e.g. propositional

Address for correspondence: LIG, 220, rue de la Chimie 38400 Saint Martin d’Hères, France
∗This work has been partly funded by the project ASAP of the French Agence Nationale de la Recherche (ANR-09-BLAN-
0407-01).

2 V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata

logic). Such schemata are parameterized by a natural number n and are usually defined by induction on
n; in fact, the signature itself may depend on n. A typical example is the family of formulæ:

p0 ∧
n∧
i=0

(pi ⇒ pi+1) ∧ ¬pn+1

and this schema is obviously unsatisfiable for all values of n ∈ N. Another example is:

(p⇔ (¬p⇔ (· · · (¬p⇔ (p⇔ (· · ·)) · · ·))))

which formally corresponds to the following formula φn defined by induction:

φ0 ≡ true

φn+1 ≡ p⇔ (¬p⇔ φn)

It is straightforward to verify that φn is equivalent to true if n is even and to false if n is odd.
Examples of applications include the formal verification of inductively-defined hardware [15], since

parameterized circuits can be easily described by schemata of propositional formulæ. Another applica-
tion is the automated verification of code fragments containing loops (the parameter then encodes the
number of iterations). Similarly, some inductive proofs in mathematics may be modeled as schemata of
proofs in first-order logic, the parameter being in this case the natural number on which the induction is
based (see [8] for an example of application of this technique). In such cases, schemata can be more nat-
ural and readable than an explicit induction, even though the underlying mechanism is still an induction.
This is especially important in work like [8] where the authors use the cut-elimination method CERES
to analyze Furstenberg’s topological proof of the infinity of primes. While existing SAT-solvers can be
used to reason on any particular instance of these formulæ, proving that a property holds for every value
of the parameter obviously requires much more sophisticated reasoning techniques, using some form of
mathematical induction and invariant generation.

Proof procedures already exist to test the validity of propositional schemata [6]. The satisfiability
problem, which consists in deciding whether there is a value of the parameter n for which the schema
is satisfiable, is actually undecidable in general (it is obviously semi-decidable), but decision procedures
can be defined for various subclasses, namely for regular [3], regularly nested [4] or bound-linear [6]
schemata. The present paper describes a new decision procedure, that is based on the resolution calculus
[21, 19, 10]. The proposed calculus is sound, refutationally complete and terminating. Its main advantage
is that, unlike the procedure proposed in [3] and [4], its extension to first-order clauses is straightforward
(see Section 8) although in this case termination and even refutational completeness can no longer be
ensured. If restricted to propositional logic, the considered class of schemata is similar, but more general,
than the class of regular schemata introduced in [3]. It is not comparable to the other known decidable
classes (note that regularly nested and bound-linear schemata may be transformed into regular ones at
the cost of an exponential blow-up, see [6] for details).

Families of (propositional) formulæ may be expressed using a first-order syntax. For instance the
first schema above can be denoted as follows:

∃n p0 ∧ ∀i (i ≥ 0 ∧ i ≤ n ∧ pi ⇒ ps(i)) ∧ ¬ps(n)

V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata 3

where the symbol s denotes the successor function. However, it should be noted that the formula is
unsatisfiable only if n is interpreted as a natural number, and s as the standard successor function. The
formula is clearly satisfiable on other domains (for instance one can take n = 1, s(0) = 0, s(1) = 1,
p0 = true, and p1 = false). The usual resolution calculus therefore fails to prove the unsatisfiability
of the previous schema. Testing the satisfiability of a formula in a fixed domain (such as N) is a very
complex problem from a theoretical point of view. Due to well-known theoretical limitations, no refu-
tationally complete proof procedure can possibly exist: the problem is not semi-decidable. Approaches
designed to test the satisfiability in fixed domains include the integration of linear arithmetic into the
superposition calculus [9], which is considered in [22, 18, 1] ([11] describes a general approach for hier-
archic reasoning). In [17], a superposition-based calculus is proposed for reasoning on formulæ in which
the domain of interpretation of some constants (or existential variables) is fixed. These calculi are in
some sense the starting point of our work. However, they are not complete in general, in the sense that
no contradiction can be derived in finite time for some unsatisfiable clause sets (this is due to the fact that
linear arithmetic is not compact), and they do not terminate on the class of problems that we consider.
Note that completeness results exist for such calculi but they do not apply to our case.

We first show that propositional schemata can be encoded as sets of clauses in which some constant
symbols (the parameters) denote natural numbers and must be interpreted as elements of N. The inductive
rules defining the indexed formulæ are also encoded as clauses. Then we define a resolution calculus
operating on such sets of clauses. In this context, an application of the resolution rule can be interpreted
either as a resolution inference in the usual sense or as an unfolding of an inductive definition. The
resolution calculus does not terminate in general, even if the clause set is unsatisfiable (i.e. the calculus
is not complete, although a very weak form of completeness can be stated). However we define a loop
detection rule that is able to ensure both completeness and termination by automatically bounding the
value of the parameter. This is done by generating so-called pruning clauses that are of the form n < k,
where n is the parameter and k is a natural number. Once such a pruning clause is generated, the problem
becomes essentially equivalent to a propositional one. In general, the pruning clauses are not logical
consequences of the axioms, but they can be safely added into the clause set while retaining satisfiability.

The language we consider is of course weaker than those in [18, 1, 17] but on the other hand this
approach ensures termination and refutational completeness for schemata of propositional clause sets.
Although loop detection techniques and termination results already exist for the calculus in [17] (see
also [16]), strong restrictions are imposed on the syntax of the formulæ (e.g. they must be Horn), which
are not in general fulfilled by the formulæ we consider in the present paper, even in the propositional
case. Thus the techniques previously used to ensure termination are too weak for our purpose.

The rest of the paper is structured as follows. In Section 2, we define the syntax and semantics of the
considered logic. In Section 3 we define the resolution calculus and establish a weak form of refutational
completeness, then some additional syntactic restrictions are imposed on the clause sets in Section 4. In
Section 5, we provide some hints on the expressive power of the obtained language and show how to
encode schemata of propositional formulæ. Sections 6 and 7 are the core of our work: in Section 6 a
loop detection technique is presented and, in Section 7, the termination and refutational completeness
of the resulting calculus is proved. Section 8 extends the calculus to first-order clauses (this is done as
usual by lifting), although in this case refutational completeness does not hold (the satisfiability problem
is not semi-decidable for schemata of first-order clause sets). Section 9 briefly concludes our work and
identifies some lines of future research.

4 V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata

2. Preliminaries

For clarity and simplicity, we first restrict ourselves to schemata of propositional clause sets. The calculus
will later be extended to first-order clauses (see Section 8). Informally, the syntax and semantics of our
logic are almost identical to those of a very simple subclass of clausal logic, except that we consider a
particular set of constant symbols, called parameters, that must be interpreted as natural numbers. Every
predicate symbol is monadic and the only function symbols on the natural numbers are 0, s (s stands for
the successor function).

Let Ω be a set of unary predicate symbols, or (indexed) propositional variables, and let P and V
be two disjoint sets of variables. The elements in P are the parameters, and those in V are the index
variables. Throughout this paper, parameters are denoted by n,m and index variables by x, y, z. The
letters i, j, k, l will be used as meta-variables to represent natural numbers.

The set of (arithmetic) terms T is the least set satisfying V ⊆ T , 0 ∈ T and t ∈ T ⇒ s(t) ∈ T .
Note that T does not contain any occurrence of a parameter. A term is ground if and only if it is of the
form si(0) (with i ∈ N), in which case it may be viewed as a natural number and simply denoted by i.
The set of ground terms is denoted by N.

An atom is either of the form n ≈ t where n ∈ P and t ∈ T , or of the form pt where p ∈ Ω and
t ∈ T ; the atom is ground if t is ground. Atoms of the form n ≈ t are called equational atoms and those
of the form pt are called indexed atoms. Note that parameters only occur in equational atoms. A literal is
either an atom (positive literal) or the negation of an atom (negative literal). A clause is a finite multiset
(written as a disjunction) of literals and the empty clause is denoted by �. An equational literal (resp.
indexed literal) is a literal whose atom is an equational atom (resp. an indexed atom). We denote by Ceq

(resp. C idx) the multiset of equational literals (resp. indexed literals) in C. If S is a set of clauses then
Sidx denotes the set of clauses {C idx | C ∈ S}. A clause C is purely equational if and only if C idx = ∅
and parameter-free if and only if Ceq = ∅.

For every expression (term, atom, literal or clause) e, var(e) denotes the set of index variables occur-
ring in e. The depth of an expression is defined as usual:

• depth(0)
def
= 0, depth(s(t))

def
= 1 + depth(t), depth(x)

def
= 0 if x ∈ V;

• depth(¬pt)
def
= depth(pt)

def
= depth(t), depth(n 6≈ t) def

= depth(n ≈ t) def
= depth(t);

• depth(l1 ∨ . . . ∨ lk)
def
= maxi∈[1,k] depth(li), by convention depth(�)

def
= 0.

A substitution σ is a function mapping every index variable x to a term xσ ∈ T (in particular, a
parameter cannot be substituted for and a variable cannot be mapped to a parameter either). The domain
dom(σ) of σ is the set of index variables x such that xσ 6= x. For every expression e, eσ denotes the
expression obtained from e by replacing every variable x by xσ. A substitution σ is ground if and only
if for every x ∈ dom(σ), xσ is ground. A renaming is an injective substitution σ such that xσ ∈ V for
every x ∈ dom(σ). A substitution σ is flat if for every x ∈ V , xσ ∈ V ∪ {0}. It is a unifier of t1, . . . , tn
if and only if t1σ = . . . = tnσ. As is well known, any unifiable set of terms has a most general unifier
(unique up to a renaming), denoted by mgu(t1, . . . , tn). Note that in our simple case, all terms are of the
form si(t) where t ∈ {0} ∪ V . Thus any unifier of si(t) and sj(s) where t, s ∈ {0} ∪ V , if it exists, is
either empty or of one of the forms t 7→ sj−i(s) (if t ∈ V and j ≥ i) or s 7→ si−j(t) (if s ∈ V , t 6= s and
j < i).

V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata 5

Definition 2.1. (Schematic interpretations)
An s-interpretation I is a function mapping

• every parameter to a ground term in T (i.e. a natural number) and

• every ground indexed atom to a truth value true or false.

An s-interpretation I validates:

• a ground atom n ≈ t if and only if I(n) = t;

• a ground atom pt if and only if I(pt) = true;

• a ground literal ¬a if and only if I does not validate a;

• a ground clause C if and only if I validates at least one literal in C;

• a non-ground clause C if and only if for every ground substitution σ of domain var(C), I validates
Cσ;

• a set of clauses S if and only if it validates every clause in S.

By definition, an s-interpretation I validates a clause n 6≈ si(x) if and only if I(n) < i. Thus the
notation n < i can be used as a shorthand for the clause n 6≈ si(x). We write I |=s S if and only if I
validates S (in which case I is called an s-model of S). If S, S′ are two sets of clauses, we write S |=s S

′

if and only if for every s-interpretation I , we have I |=s S ⇒ I |=s S
′. A clause or set of clauses S is

s-satisfiable if and only if S has an s-model and s-valid if and only if every s-interpretation is an s-model
of S.

Notice that according to this definition, any set of purely equational clauses is equivalent to a linear
arithmetic formula.

Remark 2.2. The notion of an s-interpretation slightly differs from (and is more restrictive than) the
standard notion of a first-order interpretation because parameters are interpreted as natural numbers and
not on an arbitrary domain. For instance, the clause set {n 6≈ 0, n 6≈ s(x)}, which is obviously satisfiable
in the usual sense, is s-unsatisfiable, since the value of the parameter n must be either 0 or a term of the
form s(x). Similarly, 0 and s are interpreted as free constructors (i.e. as the usual functions on N), thus
for instance the clause set {n ≈ 0, n ≈ s(0)} is s-unsatisfiable, although it is satisfiable in the usual
sense. Note that by definition, any clause of the form n 6≈ u ∨ n 6≈ v ∨ C, where u and v are not
unifiable, is s-valid. For instance, n 6≈ s(x) ∨ n 6≈ x holds in any s-interpretation, since n cannot be
equal to both s(t) and t for any t ∈ T .

This makes all the usual proof procedures incomplete (though still sound): for instance it is clear
that the empty clause cannot be derived from the previous clause sets by the standard resolution or
superposition calculus. In the following, we always refer to our new definitions of interpretations and
models, unless otherwise specified. In particular, the properties of our calculus (i.e. soundness and
completeness) are meant w.r.t. our particular semantics. Of course, if the considered formula contains
no occurrence of n (i.e. no equational atom) then the notion of an s-interpretation coincides with the
usual one, and in this case the obtained language is equivalent to a subclass of monadic first-order logic
(the predicate symbols have only one argument and the set of function symbols is {0, s}). If, moreover,

6 V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata

the formula contains no occurrence of 0 or s, then it is easy to check that it is equivalent to a purely
propositional formula (in this case the indices are irrelevant).

Notice also that if the considered formula is purely equational (i.e. contains no propositional variable)
then it is equivalent to a linear arithmetic formula, or, more simply, to an equational formula interpreted
on the term algebra. This entails the following proposition.

Proposition 2.3. The satisfiability problem is decidable for finite purely equational clause sets.

Proof: By definition of the semantics, a purely equational clause set {C1, . . . , Ck} is equivalent to the
formula

∧k
i=1 ∀~xiCi where ~xi is the set of index variables in Ci. The only symbols occurring in this

formula besides the variables in ~xi) are 0, s, ≈, 6≈ and the parameters. Since 0 and s are interpreted
as free constructors, {C1, . . . , Ck} is s-satisfiable if and only if the formula ∃~n.

∧k
i=1 ∀~xiCi holds in

the free term algebra, where ~n is the set of parameters in C1, . . . , Ck. The satisfiability problem is well
known to be decidable for such formulæ (by using, e.g., the algorithm in [12], or any decision procedure
for linear arithmetic [20, 13]). ut

3. The calculus

3.1. Definition

Given two terms u and v, we write u C v if and only if v = si(u) for some i > 0 (0 and s(x) are
incomparable). This strict ordering is extended into an ordering on index atoms as follows: pu C qv if
and only if uC v.

We assume that a total strict ordering ≺ is given on the elements of Ω. The ordering ≺ is extended
into a strict ordering on atoms as follows: a ≺ a′ if and only if either aC a′ or there exists a term u such
that a = pu, a′ = qu and p ≺ q. By definition, equational atoms are not comparable. Note that ≺ is
stable under substitution, i.e. a ≺ a′ ⇒ aσ ≺ a′σ, for every substitution σ. The orderings C and ≺ are
extended to index literals by ignoring negation symbols and to clauses by the multiset extension.

Let sel be a selection function mapping every clause C to a possibly empty set of selected index
literals inC. We assume that sel satisfies the following conditions: for every clauseC such thatC idx 6= ∅,
either sel(C) is a nonempty set of C-maximal negative literals or sel(C) is the set of all ≺-maximal
literals in C idx. In particular, since by definition sel(C) ⊆ C idx, equational literals are never selected,
thus sel(C) = ∅ if C idx = ∅.

For instance, consider the clause

C : n 6≈ s(s(x)) ∨ ¬px ∨ ¬ps(x) ∨ qs(x) ∨ rs(x)

and assume that p ≺ q ≺ r. Then ps(x), qs(x) and rs(x) are C-maximal, and rs(x) is ≺-maximal. The set
of selected literals sel(C) can contain the literals ¬ps(x) or rs(x) (but not both) but neither ¬px nor qs(x).

The resolution calculus is defined, as usual, by the rules depicted in Figure 1 (we externalize factor-
ization for technical convenience). Note that the negative factorization rule will actually be useless in the
rest of the paper. We present it for the sake of uniformity. We denote by Res(S) the set of clauses that
can be deduced from (pairwise index variable disjoint renamings of) clauses in S by resolution or fac-
torization in one step. A derivation from a clause set S is a sequence of clauses C1, . . . , Ck such that for

V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata 7

Resolution
pu ∨ C ¬pv ∨D

(C ∨ D)σ

where:
σ = mgu(u, v), and puσ and ¬pvσ are selected in (pu ∨ C)σ and (pv ∨D)σ

Factorization
pu ∨ pv ∨ C
(pu ∨ C)σ

¬pu ∨ ¬pv ∨ C
(¬pu ∨ C)σ

where:
σ = mgu(u, v), puσ is selected in (pu∨pv∨C)σ and ¬puσ is selected in (¬pu∨¬pv∨C)σ.

Figure 1. The resolution calculus

every i ∈ [1, k], Ci ∈ S ∪Res({C1, . . . , Ci−1}). We write S ` C if and only if there exists a derivation
C1, . . . , Cn from S such that C = Cn. A derivation of a set of clauses S′ is a derivation containing every
clause in S′. For example ¬ps(0),¬px ∨ ps(x),¬p0 is a derivation of {¬p0} from {¬ps(0),¬px ∨ ps(x)}.

A clause C is redundant w.r.t. a clause set S, written C v S, if and only if for every ground substitu-
tion σ of domain var(C), there exist D1, . . . , Dk ∈ S and σ1, . . . , σk such that D1σ1, . . . , Dkσk |=s Cσ
and D1σ1, . . . , Dkσk � Cσ. If S is a clause set, we write S v S′ if and only if every clause in S is
redundant w.r.t. S′. A clause set S is saturated if and only ifRes(S) v S.

The following notion of a refutation differs from the usual one, indeed since no rule can be applied
on the equational part of the clauses, these literals cannot be eliminated:

Definition 3.1. A refutation of S is a derivation from S of a finite s-unsatisfiable set of purely equational
clauses.

The satisfiability of such a set can be tested by Proposition 2.3.

3.2. Basic properties of the calculus

It is straightforward to check that the above rules are sound, i.e., that the conclusions are logical conse-
quences of the premises.

Proposition 3.2. Let S be a set of clauses. Then S |=s Res(S).

We prove a weak form of refutational completeness. A first step towards this proof is to notice that
the calculus is complete for parameter-free clause sets:

Proposition 3.3. Let S be a saturated set of parameter-free clauses. If S is s-unsatisfiable then � ∈ S.

Proof: It is enough to observe that, when the clauses under consideration contain no equational literals,
this calculus coincides with the ordinary resolution calculus. ut

Theorem 3.4. Let S be a saturated set of clauses. If S is s-unsatisfiable then there exists a (possibly
infinite) set of purely equational clauses S′ ⊆ S that is s-unsatisfiable.

8 V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata

Proof: Let I be an s-interpretation, let Sg be the set of ground instances of the clauses in S. Consider
the set of ground clauses SI obtained from Sg by:

• deleting every clause containing an equational literal that is true in I ,

• removing all equational literals in the remaining clauses.

By construction, SI contains no equational literal, hence no parameter, and if SI admits a model J , then
obviously the s-interpretationK that coincides with I on all parameters and with J on all ground indexed
atoms is an s-model of S. Thus, by hypothesis, SI must be unsatisfiable. We verify that SI is saturated
in order to use Proposition 3.3.

By hypothesis, S is saturated. Since the notion of saturatedness only depends on ground instances and
since resolution of ground clauses generates only ground clauses, it is clear that Sg is also saturated. Let
pu∨C and ¬pu∨D be two clauses in SI on which the resolution rule applies. By definition, Sg contains
two clauses pu∨C∨C ′ and ¬pu∨D∨D′, where C ′, D′ are purely equational clauses that are false in I .
Since Sg is saturated, there existm clauses E1, . . . , Em ∈ Sg such thatE1, . . . , Em |=s C∨D∨C ′∨D′
and E1, . . . , Em � C ∨ D ∨ C ′ ∨ D′. Assume w.l.o.g. that there exists a k ∈ [0,m] such that for
every i ∈ [1, k], I |=s E

eq
i and for every i ∈ [k + 1,m], I 6|=s E

eq
i (in other words, the k clauses

such that I |=s E
eq
i are assumed to be at the beginning of the sequence E1, . . . , Em). By construction,

Eidx
k+1, . . . , E

idx
m ∈ SI , we show that Eidx

k+1, . . . , E
idx
m |=s C ∨D and Eidx

k+1, . . . , E
idx
m � C ∨D.

Let J be an s-interpretation satisfying Eidx
k+1, . . . , E

idx
m , and consider the s-interpretation J ′ defined

as follows: J ′(n)
def
= I(n) for every ground term n and J ′(pt)

def
= J(pt) for every ground atom pt. By

construction, J ′ |=s E
eq
i , for every i ∈ [1, k], and J ′ |=s E

idx
i , for every i ∈ [k + 1,m]. Therefore

J ′ |=s E1, . . . , Em, and J ′ |=s C ∨D∨C ′ ∨D′. But by hypothesis I 6|=s C
′ ∨D′, hence, J |=s C ∨D.

Therefore, we have Eidx
k+1, . . . , E

idx
m |=s C ∨D. Since E1, . . . , Em � C ∨D ∨ C ′ ∨D′ and since index

literals and equational literals are not comparable, necessarily, Eidx
k+1, . . . , E

idx
m � C ∨D. Consequently,

C ∨D is redundant in SI . The proof that any factor of a clause in SI is redundant is similar.
This proves that Res(SI) v SI and hence that SI is saturated. By Proposition 3.3, we deduce that

� ∈ SI , which means that S contains a purely equational clause CI that is false in I . We then take for
S′ the set of all such CI ’s for every s-interpretation I: S′ is indeed s-unsatisfiable and included in S. ut

In the case where S′ is finite, Proposition 2.3 can be used to test its satisfiability. However, Theorem
3.4 does not imply semi-decidability because S′ may well be infinite.

Example 3.5. Consider the set S = {n 6≈ x ∨ px, py ∨ ¬ps(y),¬p0}, which formalizes the following
statements:

• pn holds,

• if pi+1 holds, then so does pi,

• p0 does not hold.

V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata 9

It is clear that S is s-unsatisfiable. Yet, this cannot be detected in finite time by the calculus, which
generates an infinite set of purely equational clauses of the form n 6≈ si(0):

1 n 6≈ x ∨ px (given)
2 py ∨ ¬ps(y) (given)
3 ¬p0 (given)
4 n 6≈ s(y) ∨ py (resolution 1, 2, x 7→ s(y))
4′ n 6≈ s(y′) ∨ py′ (renaming, 4)
5 n 6≈ 0 (resolution 1, 3, x 7→ 0)
6 n 6≈ s(0) (resolution 4, 3, y 7→ 0)
7 n 6≈ s(s(y)) ∨ py (resolution 4′, 2, y′ 7→ s(y))
8 n 6≈ s(s(0)) (resolution 7, 3, y 7→ 0)

. . .

This set of clauses is clearly s-unsatisfiable, but every finite subset of it is s-satisfiable.

A natural way of verifying that this set is s-unsatisfiable would be to realize that clauses 1 and 2
generate clause 4, which states that pn−1 holds, and this clause is identical to clause 1, up to a shift of
parameter n. By iteration, it is possible to generate any clause of the form n 6≈ sk(x) ∨ px for k ∈ N,
stating that pn−k holds. Then the infinite descent principle implies that p0 must also hold, a contradiction.
It turns out that the detection of such a loop between clauses 1 and 4 implies that it is not necessary to
consider an arbitrary value for n, and that it can safely be assumed that n < 3. Indeed, it can be shown
that any s-interpretation mapping n to an integer greater than 3 can be transformed into another one
mapping n to a strictly smaller integer, such that both s-interpretations agree on the truth value of S. The
translation into clausal form of this remark yields the purely equational clause n 6≈ s(s(s(x))), and the
calculus can be used to prove that S ∪ {n 6≈ s(s(s(x)))} is s-unsatisfiable in finite time. Indeed, we
have shown that the calculus generates the following set of clauses: {n 6≈ 0, n 6≈ s(0), n 6≈ s(s(0))}
(meaning that n must be distinct from 0, 1 and 2). If one adds to this set the clause n 6≈ s(s(s(x))) (i.e.
n < 3), one gets an s-unsatisfiable set of purely equational clauses. The unsatisfiability of this set can
be tested by using existing decision procedures for linear arithmetic.

In what follows, we generalize this observation to introduce a rule that will permit to prune infinite
derivations and thus obtain a refutationally complete calculus for schematic clauses. After restricting the
form of the clauses under consideration, which in particular can only admit a single parameter n, we
define a loop-detection rule that is based on so-called levels of sets of clauses. We show that once such a
loop has been detected, a pruning clause representing an upper-bound constraint on the parameter n can
safely be added to the considered set of clauses, and termination will be ensured, provided a fair strategy
is applied for the calculus.

4. A restriction of the language

In order to conveniently exploit the properties of the calculus, we restrict ourselves to a particular class of
clause sets. The clauses in this class have a simple structure that will be used to achieve refutational com-

10 V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata

pleteness, and, as shown in Section 5, no loss of expressiveness is entailed for our purpose. Informally
the restrictions we impose to the sets of clauses are the following:

• The equational part of the clauses must be negative.

• The non-equational part of any clause is of a limited depth (0 or 1).

• The clauses contain at most one index variable and clauses containing a variable cannot contain
any ground term (i.e. no occurrence of constant symbol 0). For instance, the clauses px ∨ py and
px ∨ q0 do not satisfy these restrictions.

Formally, this particular class is based on so-called t-clauses:

Definition 4.1. Let t ∈ {0} ∪ V . A clause C is a t-clause if and only if every indexed atom occurring in
it is of the form psi(t) for some i ∈ N.

Proposition 4.2.

1. If C is a t-clause, with t ∈ V ∪ {0} and σ is flat then Cσ is a tσ-clause.

2. If C,D are t-clauses then C ∨D is a t-clause.

Definition 4.3. A clause C is normalized if and only if there exists a term t ∈ V ∪ {0} such that the
following conditions hold:

• Ceq is either empty or of the form n 6≈ sk(t) with k ≥ 0.

• C idx is a t-clause of depth 0 or 1.

• If t = 0 then depth(C idx) = 0.

In particular, these conditions ensure that the indices occurring in the clause set are of the form 0, x
or s(x), where x is a variable. The last condition dismisses clauses such as n 6≈ 0 ∨ ps(0), because ps(0)

is a 0-clause of depth 1.
A set of clauses S is normalized if and only if the two following conditions hold:

• S contains at most one parameter (always denoted by n in what follows).

• Every clause in S is normalized.

Example 4.4. The clauses px∨¬ps(x), n 6≈ s(s(x))∨px and n 6≈ 0∨q0 are normalized, but n 6≈ 0∨ps(0),
n 6≈ s(x) ∨ ¬p0 ∨ qx and ps(s(x)) are not. The clause n 6≈ 0 ∨ ps(0) indeed falsifies the third condition
because ps(0) is of depth 1, and the other clauses falsify the second condition: there is no term t such that
n 6≈ s(x) ∨ ¬p0 ∨ qx is a t-clause, and ps(s(x)) is an x-clause of depth 2. The set of clauses in Example
3.5 is normalized.

V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata 11

Remark 4.5. If S is normalized, then it is easy to check that the purely equational clauses contained in
S must be of the form n 6≈ sk(t), where t is either 0 or a variable. Thus any such clause is equivalent
to n 6≈ k or n < k. Therefore, deciding whether a finite set of purely equational clauses contained in
S is s-unsatisfiable or not is much easier than solving general Presburger formulæ: it suffices to detect
whether there exists a natural number k such that S contains a clause of the form n 6≈ sk(x), and for
every i ∈ [0, k − 1], a clause of the form n 6≈ si(0).

The following proposition is a direct consequence of the definitions of the ordering≺ and of normal-
ized clauses.

Proposition 4.6. Every normalized non-tautological clause C contains at most one ≺-maximal index
literal l. If the index of l is a variable, then depth(C idx) = 0.

Proposition 4.7. If the Factorization rule can be applied to a normalized clause, then this application is
trivial, i.e., it consists in removing a duplicate literal.

Proof: Assume the Factorization rule can be applied to a normalized clause pu ∨ pv ∨ C ′ (the proof is
identical if it is applied to a clause ¬pu ∨ ¬pv ∨ C ′). By definition, u and v are either both ground or
both of the form si(x) and sj(x) for some variable x. In both cases, u and v are unifiable if and only if
u = v, in which case their mgu is empty. Therefore, the rule simply removes a duplicate literal. ut

We introduce the notion of level which is a measure on normalized clauses. As we shall see, the level
of normalized clauses cannot decrease with inferences.

Definition 4.8. The level of a normalized clause is an element of N ∪ {⊥}, defined as follows:

• If Ceq = � then level(C)
def
= ⊥.

• If Ceq 6= � then level(C)
def
= depth(Ceq)− depth(C idx) + 1.

If i ∈ N ∪ {⊥}, then S|i denotes the set of clauses in S of level i. If I is a subset of N ∪ {⊥}, then S|I
denotes the set of clauses whose levels are in I .

In other words, a normalized clause of level ⊥ is parameter-free, and a normalized clause of level j ∈ N
is of the form n 6≈ sj+ε−1(t) ∨ C, where C is a t-clause of depth ε.

Example 4.9. The levels of n 6≈ s(0) ∨ p0, n 6≈ s(s(x)) ∨ ps(x) and n 6≈ s(x) ∨ px are all equal to 2.
For any parameter-free and normalized clause C, the level of n 6≈ 0 ∨ C is 1, that of n 6≈ s(0) ∨ C is 2,
etc., since C necessarily has depth 0 in this case. The level of n 6≈ s(s(x)) ∨ px is 3, and so is the level
of its instance n 6≈ s(s(s(y))) ∨ ps(y); the level of n 6= s(s(x)) ∨ ps(x) is 2.

Example 4.10. We give the level of each clause occurring in the partial derivation of Example 3.5:

1. level(n 6≈ x ∨ px) = 1 2. level(py ∨ ¬ps(y)) = ⊥
3. level(¬p0) = ⊥ 4. level(n 6≈ s(y) ∨ py) = 2

5. level(n 6≈ s(y′) ∨ py′) = 2 6. level(n 6≈ 0) = 1

7. level(n 6≈ s(0)) = 2 8. level(n 6≈ s(s(y)) ∨ py) = 3

9. level(n 6≈ s(s(0))) = 3

12 V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata

Intuitively, a clause of level ⊥ expresses either some universal property such as ∀x¬px ∨ ps(x) or a
ground property, e.g. p0, ps(0), i.e., in general, a property that is independent of a parameter n. A clause
of a level distinct from ⊥ is of the form n 6≈ sk(t) ∨ C where the only indices occurring in C are t or
s(t). Such a clause can be viewed as an implication: n ≈ sk(t) ⇒ C. If t = 0 then the clause states
a ground property that must be true when n is equal to k. If t is a variable, then the clause expresses a
property for t = n− k, in case n− k exists. This can be read as n ≥ k ⇒ C{t 7→ n− k}.

We order the levels in N∪{⊥} by using the usual ordering on natural numbers and by assuming that
⊥ < i for every i ∈ N. Thus if i is a natural number then the interval [⊥, i] (resp. [⊥, i[) denotes the set
{⊥} ∪ [0, i] (resp. {⊥} ∪ [0, i[).

Definition 4.11. A set of clauses is k-normalized if it is normalized and the level of every clause in S is
in [⊥, k].

Proposition 4.12. For every k ∈ N∪ {⊥}, the number of normalized clauses of level k on a given finite
signature Ω is at most 24|Ω|+1, up to a renaming and up to the duplication of literals.

Proof: This is an immediate consequence of the fact that any normalized clause of level k is of the form
n 6≈ sk−ε+1(t)∨C or C, where C is a t-clause of depth ε ∈ {0, 1}, thus every literal in C is of the form
pt, ¬pt, ps(t) or ¬ps(t), for some p ∈ Ω. Since t ∈ {0} ∪ V , we have the result. ut

The following lemma states that the class of normalized clauses is preserved by the inference rules.

Lemma 4.13. If S is a set of normalized non-valid clauses then any non-valid clause in Res(S) is also
normalized (modulo the factoring of the equational literals).

Proof: Proposition 4.7 proves this is the case for the Factorization rule. Let C be a non-valid clause
deduced from two normalized clauses D1 and D2 by resolution. We assume as usual that the variables
are renamed apart so that D1 and D2 share no variables. By definition, Didx

1 and Didx
2 are of the form

pu1 ∨D′1 and ¬pu2 ∨D′2 where u1 and u2 are unifiable; furthermore, since S is normalized, there exist
terms t1 and t2 such that Didx

1 is a t1-clause and Didx
2 a t2-clause. For i = 1, 2, let D′′i

def
= Deq

i ; by
hypothesis, D′′i is either empty or of the form n 6≈ ski(ti). Thus C is of the form (D′1∨D′2∨D′′1 ∨D′′2)σ,
where σ = mgu(u1, u2). By definition, any atom occurring in D′i is of the form qti or qs(ti), hence ui is
either ti or s(ti), and σ must be of one of the following forms: ∅, {t1 7→ t2}, {t2 7→ t1}, {t2 7→ s(t1)}
(when t2 ∈ V and t1 ∈ V ∪ {0}), {t1 7→ s(t2)} (when t1 ∈ V and t2 ∈ V ∪ {0}).

If σ is empty or of the form t2 7→ t1 or t1 7→ t2, then t1σ = t2σ
1. Since σ is flat, by Proposition 4.2

(1), D′iσ is a tiσ-clause, and by Proposition 4.2 (2), D′1σ ∨ D′2σ is a t1σ-clause. Assume that D′′1 and
D′′2 are not empty. Then D′′i must be of the form n 6≈ ski(ti). If k1 6= k2, then C contains the disjunction
n 6≈ sk1(t1σ)∨n 6≈ sk2(t2σ). Since t1σ = t2σ and k1 6= k2, sk1(t1σ) and sk2(t2σ) are not unifiable and
C is valid. Since we assumed C is not valid, (D′′1 ∨D′′2)σ is either empty or of the form n 6≈ sk1(t1σ),
thus C is normalized (modulo factoring, since this literal may occur twice in C).

Assume that σ is {t2 7→ s(t1)}, the proof is similar if σ is {t1 7→ s(t2)}. If D′2σ contains an
atom of the form qs(t2) then by definition of the ordering, pt2 C qs(t2) and by definition of the selection
function, the literal ¬pt2 cannot be selected, which is impossible. Hence every atom in D′2σ is of the

1Note that if σ is empty then u1, u2 are ground thus, since D1, D2 are normalized, we must have u1 = u2 = t1 = t2 = 0.

V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata 13

form qt2σ = qs(t1), and is therefore a t1-clause. It is clear that D′1σ is a t1-clause, since σ is the identity
on D′1. Thus, by Proposition 4.2 (2), D′1σ ∨ D′2σ is also a t1-clause. Assume that D′′1 and D′′2 are not
empty and that k1 6= k2 + 1. Then C contains the disjunction n 6≈ sk1(t1σ) ∨ n 6≈ sk2(t2σ). Since
t2σ = s(t1) and k1 6= k2 + 1, sk1(t1σ) and sk2(t2σ) are not unifiable, hence C is valid. Since C was
assumed not to be valid, (D′′1 ∨D′′2)σ is either empty or of the form n 6≈ sk2+1(t1) and C is normalized
(modulo factoring). ut

We also relate the level of any clause to that of its parents: intuitively, the levels of the clauses
generated by the calculus can never decrease. This is obvious for the Factorization rule which removes
duplicate literals (see Proposition 4.7), the following lemma proves the result for the resolution rule.

Lemma 4.14. Let S be a set of normalized clauses. Let C be a non-valid clause of level j ∈ N in
Res(S), deduced from parent clausesD1,D2 in S of levels k1, k2 ∈ N∪{⊥} respectively. The following
conditions hold:

• k1, k2 ∈ {⊥, j, j − 1}.

• If C is ground then k1, k2 ∈ {⊥, j}.

• If k1 6= ⊥ and k2 6= ⊥ then k1 = k2.

• (k1, k2) 6= (⊥,⊥).

Proof: The last item is immediate since the rules cannot create new equational literals and C is of
level j 6= ⊥ by hypothesis. By definition, there exists a term t ∈ V ∪ {0} such that C is of the form
n 6≈ sj−1+ε(t) ∨ C ′ where C ′ is a t-clause of depth ε (recall that j 6= ⊥ by hypothesis). Thus, Di

is either parameter-free or of the form n 6≈ ski−1+εi(ti) ∨ D′i where D′i is a ti-clause of depth εi, and
sj−1+ε(t) = ski−1+εi(ti)σ, where σ is the mgu of two terms u1 and u2 occurring in selected literals in
D1 and D2 respectively.

The terms u1 and u2 are of the form 0, xi or s(xi) where xi is a variable. Several cases are distin-
guished according to the form of σ.

• If σ is empty, then u1 = u2 = 0. In this case, D1, D2 are ground, hence C is also ground.
Furthermore, if Di is not parameter-free then j − 1 + ε = ki − 1 + εi. By the definition of closed
normalized clauses, ε = εi = 0, hence j = ki. Therefore, if k1, k2 6= ⊥ then we must have
k1 = k2.

• If σ is of the form x1 7→ x2, x2 7→ x1, x1 7→ 0 or x2 7→ 0, then Didx
1 and Didx

2 must be of the same
depth. Assume that ki 6= ⊥. Since σ is flat, j− 1 + ε = ki− 1 + εi, thus ki = j+ ε− εi. If ε = 0
then ki ∈ {j, j − 1}. If ε = 1 then, by definition, C ′ is of depth 1. Since every literal in C ′ occurs
either in D′1σ or in D′2σ, one of them, say D′1σ, is of depth 1 (and D′2σ is of depth 0 or 1). But σ
is flat, therefore, in this case, D′1 is also of depth 1 and we have εi = ε = 1. Therefore, ki = j.
Thus, in all cases, k1, k2 ∈ {⊥, j, j − 1}, and if k1, k2 6= ⊥ then k1 = k2.

If C is ground, then either u1 = 0 or u2 = 0, hence ε1 = ε2 = 0. But, since C is ground, ε = 0,
hence k1, k2 ∈ {⊥, j}.

14 V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata

• If σ is of the form x1 7→ s(x2), then u1 = x1 and u2 = s(x2). In this case C is not ground.
Assume that k1 6= ⊥. Then j − 1 + ε = k1 − 1 + (ε1 + 1), thus k1 = j + ε− ε1 − 1. But since
u1 is maximal, necessarily ε1 = 0, which implies that k1 = j + ε − 1 ∈ {j − 1, j}. If k2 6= ⊥
then j − 1 + ε = k2− 1 + ε2, thus k2 = j + ε− ε2. Furthermore, since u2 = s(x2) occurs in D2,
necessarily ε2 = 1 and k2 = j + ε− 1 ∈ {j − 1, j}.

• The case where σ is of the form x2 7→ s(x1) is symmetrical.
ut

5. Expressive power

Although the class of normalized clause sets is strongly restricted from a syntactic point of view, it is
actually quite expressive. This section is devoted to showing how literals that are outside the class can
be encoded into normalized clause sets.

5.1. Encoding a translation on indices

We first consider atoms of the form psk(x), where k ≥ 2. Such atoms are encoded by new predicate
symbols pkx, with the intended meaning pkx ⇔ psk(x). The following axioms ensure that pkx has the
intended s-interpretation:

Ak
def
= {plx ⇔ pl−1

s(x), p
0
x ⇔ px | 0 < l ≤ k}

where x ⇔ y is an abbreviation for {¬x ∨ y, x ∨ ¬y}. Note that Ak is finite and normalized. The
following result is proved by a straightforward induction on l:

Proposition 5.1. For every l ∈ [0, k], Ak |=s p
l
x ⇔ psl(x).

Example 5.2. The s-unsatisfiable clause set:

{¬evenx ∨ evens(s(x)), even(0),¬oddx ∨ odds(s(x)), odds(0), n 6≈ x ∨ ¬evenx, n 6≈ x ∨ ¬oddx}

is not normalized, since it contains non-equational atoms of depth 2. According to our previous transfor-
mation algorithm, it would be encoded as the following normalized set of clauses:

¬evenx ∨ even1
s(x) ¬even1

x ∨ evens(x) even1
x ∨ ¬evens(x)

¬oddx ∨ odd1
s(x) ¬odd1

x ∨ odds(x) odd1
x ∨ ¬odds(x)

even(0) odd1(0) n 6≈ x ∨ ¬evenx
n 6≈ x ∨ ¬oddx

V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata 15

5.2. Encoding inequalities and equalities

The formula x+l > ε·n+k (with l, k ∈ N, ε ∈ {0, 1}) is encoded by a predicate ql,ε,kx , whose semantics
are defined by the following axioms A′l′,k′ :

1 ql,ε,kx ⇔ q0,ε,k
sl(x)

2 q0,ε,k+1
s(x) ⇔ q0,ε,k

x

3 ¬q0,ε,k
0 4 q0,0,0

s(x)

5 n 6≈ x ∨ q0,1,0
s(x) 6 n 6≈ x ∨ ¬q0,1,0

x

7 q0,1,0
s(x) ∨ ¬q

0,1,0
x

where l ∈ [0, l′], k ∈ [0, k′] and ε ∈ {0, 1}.
Again, A′l′,k′ is finite. It is not normalized due to the index sl(x) in the first axiom, but the transfor-

mation of Section 5.1 yields an equivalent normalized formulation.

Proposition 5.3. Let I |=s A′l′,k′ . For every (l, ε, k) ∈ [0, l′] × {0, 1} × [0, k′], we have I |=s q
l,ε,k
x ⇔

x+ l > ε · n+ k.

Proof: Assume that l = k = 0. If ε = 0 then the s-interpretation of ql,ε,k is fixed by the third and
fourth axioms and we have indeed q0,0,0

s(x) (i.e. s(x) > 0) and ¬q0,0,0
0 (i.e. 0 6> 0). If ε = 1, then the

s-interpretation of ql,ε,k is fixed by the fifth and sixth axioms that state that we have q0,1,0
s(x) if x = n (i.e.

s(n) > n) and ¬q0,1,0
x if x = n (i.e. n 6> n). Furthermore, the last axiom ensures that q0,1,0

s(x) holds if

q0,1,0
x holds. Since q0,1,0

s(n) holds, this implies that q0,1,0
s(s(n)),q

0,1,0
s(s(s(n))), . . . hold, and since ¬q0,1,0

n does not

hold, this implies that q0,1,0
n−1 ,q0,1,0

n−2 , . . . do not hold. Thus q0,1,0
x is true if and only if x ≥ s(n).

By using the second and third axioms we can show by a straightforward induction on x that q0,ε,k
x is

equivalent to q0,ε,k−x
0 if x < k and to false otherwise.

Then the first axiom states that ql,ε,kx is equivalent to q0,ε,k
x+l . ut

The formula x+ l ≤ ε.n+ k can be easily encoded as x+ l + 1 6> ε.n+ k. Then x+ l ≈ ε.n+ l
can be written as x+ l + 1 ≥ ε.n+ l ∧ x+ l ≤ ε.n+ l + 1.

Example 5.4. The formula x ≤ n⇒ px can be encoded as the following normalized set:

q0,1,0
x ∨ px ¬q0,1,0

0 n 6≈ x ∨ q0,1,0
s(x)

n 6≈ x ∨ ¬q0,1,0
x q0,1,0

s(x) ∨ ¬q
0,1,0
x

The atom q0,1,0
x holds if and only if x > n.

5.3. Encoding schemata with several parameters

The restriction to one parameter entails no loss of generality. Indeed, let S be a clause set with k
parameters n1, . . . , nk. We introduce a new parameter n (which encodes the max of the ni’s). The

16 V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata

formula x > nl is encoded using an atom rlx, axiomatized by the following set of clauses A′′:

¬rlx ∨ rls(x)

¬rl0
n 6≈ x ∨ rls(x)

where l ∈ [1, k].
The clause ¬rlx ∨ rls(x) encodes the fact that x > nl ⇒ s(x) > nl. The clause ¬rl0 states that the

formula (0 > nl) does not hold (i.e. that we have 0 ≤ nl) and the clause n 6≈ x ∨ rls(x) states that
s(n) > nl (since n = max{nl | l ∈ [1, k]}). Notice that the resulting formula is normalized.

Proposition 5.5. If I |=s A′′ then for every l ∈ [1, k] there is exactly one natural number nl such that
I |=s r

l
x if and only if x > nl. Furthermore, nl ≤ I(n).

Proof: Let nl be the least natural number such that I |=s r
l
s(nl)

. Such an nl exists and must be lower or
equal to I(n), since rls(n) holds (by the third axiom). By minimality of nl, rlnl

can only hold if nl = 0,
which is impossible since I |=s ¬rl0 (by the second axiom). Then by using the first axiom we show that
I |=s r

l
x for every x > nl and that I |=s ¬rlx for every x ≤ nl. ut

Then the formula x ≈ nl is written x+ 1 > nl ∧ x 6> nl.

Example 5.6. The formula pm ∧¬pk (meaning that there is a natural number such that p is true and one
for which it is false) is written as follows (n is a new parameter denoting the max of m and k).

¬rmx ∨ rms(x) ¬rm0 n 6≈ x ∨ rms(x)

¬rkx ∨ rks(x) ¬rk0 n 6≈ x ∨ rks(x)

rmx ∨ ¬rms(x) ∨ px rkx ∨ ¬rks(x) ∨ ¬px

For instance, rkx holds if and only if x > k, thus the last clause states that if x 6> k and s(x) > k (i.e. if
x = k) then ¬px holds. It is thus equivalent to ¬pk.

5.4. Inductive definitions

Now, consider an inductive definition: φ0 ≡ B and φk+1 ≡ I(k) if k ≥ 0 where B and I denotes
formulæ and where I(k) contains atoms of the form pk or ps(k) or inductively defined formulæ ψk (with
possibly φ = ψ). This definition can be easily expressed in our formalism by considering every such
formula φ as a predicate symbol:

φ0 ⇔ B

φs(x) ⇔ I(x)

One gets a 1-normalized clause set by translation into clausal form. More complex inductive definition
may be encoded in the same way. In particular, formulæ of the form

∨b
i=a φi (where b − a ≥ 0) are

easily encoded by an atom ψb−a+1 to be interpreted as
∨b−a+1
x=1 φx−1+a defined as follows:

ψ0 ⇔ false

V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata 17

ψx+1 ⇔ φx−1+a ∨ ψx
After translation into clausal normal form and after encoding the index translation (i.e. after encoding

the atom φx−1+a by using only indices of depth 1) as explained in Section 5.1, one gets a normalized
clause set.

Example 5.7. The formula
∨n
i=0 pi ∧

∧n
i=1 ¬pi can be encoded as follows:

n 6≈ x ∨ qs(x) n 6≈ x ∨ rx ¬q0

¬qs(x) ∨ px ∨ qx qs(x) ∨ ¬px qs(x) ∨ ¬qx
¬rs(x) ∨ ¬px ¬rs(x) ∨ rx ¬rs(x) ∨ px ∨ ¬rx

5.5. Regular schemata

Using the previous transformations it is easy to prove that every regular schema (in the sense of [6])
can be encoded into a normalized clause set, i.e. that for every regular schema φ one can construct a
normalized clause set S such that φ and S are equi-s-satisfiable in a strong sense: every s-model of S is
also a model of φ and every s-model of φ can be extended into a model of S. Furthermore, the size of S
is linear w.r.t. that of φ (if natural numbers are encoded as unary terms in the original schema2 and if a
structural-preserving transformation is used to compute clausal forms).

Furthermore, normalized clause sets allow one to express properties that cannot be stated as regular
schemata, for instance the formula

∧∞
x=0 px is easily expressed by the normalized clause set {px} but it

is not a regular schema (due to the unbounded conjunction).

6. Loop detection

In this section we extend the calculus proposed in Section 3 by defining a loop detection rule that is
capable of pruning infinite derivations. To help the reader grasp the following definitions and lemmata,
we first provide an informal high-level description of the rule. Let S be a clause set. The set of clauses
S′ = {C | S ` C} generated from S can be partitioned into an infinite sequence of clause sets S′|⊥,
S′|1, . . . , S′|k,. . . , where for every k ∈ N ∪ {⊥}, S′|k contains exactly the clauses of level k in S′

(see Definition 4.8). Due to ordering restrictions, the resolution rule cannot increase the depth of the
non-equational part of the clause, which is therefore bounded (this depth is at most 1). Consequently,
there are only finitely many distinct clauses, up to a shift of parameter n. For instance, n 6≈ x ∨ px and
n 6≈ s(s(x)) ∨ px are identical, up to the shift n 7→ n − 2. Thus, there must exist, by the pigeonhole
principle, two natural numbers i and j > 0 such that the set of clauses generated at level i is equivalent
to the set of clauses generated at level i+ j, up to a shift on the parameter n. If, moreover, the considered
clause sets are saturated, this implies that the clause sets of the next levels i+ 1 and i+ j+ 1 will be also
equivalent, yielding a cycle in the derivation. We will show that, under some particular conditions, the
existence of such a cycle in the derivation permits to deduce an upper-bound on the value of the parameter
n: if S is s-satisfiable then it has a model I such that I(n) < i+ j. The intuition is that if a model I such
that I(n) > i + j exists, then it is possible to obtain another model J such that J(n) = I(n) − j, by

2Otherwise a schema as simple as p10 . . . 0︸ ︷︷ ︸
k times

could not be encoded in linear size.

18 V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata

applying the translation n 7→ n− j on I . This implies that the constraint n < i+ j (written n 6≈ si+j(x)
in clausal form) can be safely added to S′. It is then clear that every clause of a level strictly greater
than i+ j is redundant w.r.t. n < i+ j, since n 6≈ si+j(t) ∨ C is obviously subsumed by n 6≈ si+j(x).
Consequently, once the pruning clause n < i+ j has been generated, only finitely many non-redundant
clauses can be deduced.

We now formalize those intuitive ideas. We begin by slightly restricting the notion of redundancy
(see Definition 4.8 for the meaning of S|I):

Definition 6.1. A clause C is level-redundant w.r.t. a set of clauses S (written C vl S) if and only
if for every ground substitution σ of domain var(C) there exist clauses C1, . . . , Cm in S and ground
substitutions θ1, . . . , θm such that:

• If C is not ground then neither are C1, . . . , Cm.

• The clauses in C1, . . . , Cm are either of level ⊥ or of the same level as C.

• C1θ1, . . . , Cmθm |=s Cσ and C1θ1, . . . , Cmθm � Cσ.

If S′ is a set of clauses, then we write S′ vl S if and only if ∀C ∈ S′, C vl S. For every i ∈
N ∪ {+∞,⊥}, a set of clauses S is saturated up to level i if and only ifRes(S|[⊥,i[) vl S.

For instance, px is redundant w.r.t. {p0, ps(x)} (because, since the signature only contains the symbols
0 and s, every instance of px is either an instance of p0 or an instance of ps(x)) but not level-redundant
(since p0 is ground and px is not). Notice that p0 and ps(x) are also both redundant and level-redundant
w.r.t. {px}. The clause n 6≈ s(x)∨px∨ps(x) is redundant w.r.t. {n 6≈ s(x)∨px} but not level-redundant
since level(n 6≈ s(x) ∨ px ∨ ps(x)) = 1 and level(n 6≈ s(x) ∨ px) = 2.

As we shall see, ground clauses will be dismissed when applying the loop detection rule (see Defi-
nition 6.9 and also Condition 3 in Lemma 6.6). Thus we avoid using them to delete non-ground clauses
(first item in Definition 6.1). The following property is an immediate consequence of Definition 6.1:

Proposition 6.2. If C is a clause of level i that is level-redundant w.r.t. a set of clauses S, then S|i ∪
S|⊥ |=s C.

Definition 6.3. If S is a set of clauses and i is a natural number, shift(S, j) denotes the set of clauses of
the form n 6≈ si+j(x) ∨ C, where x ∈ V and n 6≈ si(x) ∨ C ∈ S.

Example 6.4. Consider the clause set

S = {n 6≈ s(s(x)) ∨ ¬px ∨ ps(x), n 6≈ s(x) ∨ qx, n 6≈ 0 ∨ p0,¬rx}

We have for example:

shift(S, 0) = {n 6≈ s(s(x)) ∨ ¬px ∨ ps(x), n 6≈ s(x) ∨ qx},
shift(S, 1) = {n 6≈ s(s(s(x))) ∨ ¬px ∨ ps(x), n 6≈ s(s(x)) ∨ qx},
shift(S, 2) = {n 6≈ s(s(s(s(x)))) ∨ ¬px ∨ ps(x), n 6≈ s(s(s(x))) ∨ qx}.

Note that ¬rx or n 6≈ 0 ∨ px cannot occur in shift(S, j) because they contain no literal of the form
n 6≈ si(x), where x ∈ V .

V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata 19

Lemma 6.6 will set the foundations for the definition of the loop detection rule. This lemma applies
when we detect that the clauses of a certain level i in S are logically entailed by those of a level i+j > i,
up to a shift on parameter n. This means that any s-model of S|i+j is also a model of S|i, up to the shift
n 7→ n − j. If we assume3 that S|i |=s S|[i,∞[, this entails that any s-model of S|i+j is also a model
of S|[i,∞[up to the shift n 7→ n − j. For any model I of S such that I(n) ≥ i + j, it is thus possible
to construct an s-interpretation J such that J(n) = I(n) − j < I(n), and which coincides with I for
S|[i,∞[. Then, if we assume further that S is saturated up to level i and does not contain the empty clause,
it is possible to show that this s-interpretation can be extended into an s-model of S. Thus, satisfiability
is preserved when the value of n is constrained to be strictly lower than i + j. As explained earlier,
adding this assertion to S makes every clause of a level greater than i+ j redundant since it is subsumed
by n < i+ j.

Definition 6.5. Given a parameter n and an integer l, we write n < l as a shorthand for the clause
n 6≈ sl(x) and call such a clause a pruning clause.

Given a set of clauses S, a pruning clause C is compatible with S if S is s-satisfiable exactly when
S ∪ {C} is.

Lemma 6.6. Let S be a set of normalized clauses of parameter n and assume i, j are natural numbers
satisfying the following conditions:

1. S is saturated up to level i.

2. S|i ∪ S|⊥ |=s S|[i,∞[.

3. S|i contains no ground clause.

4. j 6= 0.

5. S|⊥ ∪ S|i+j |=s shift(S|i, j).

Then n < i+ j is compatible with S.

Proof: Let I be an s-interpretation satisfying S. W.l.o.g. we assume that the valuation of n in I is
minimal (w.r.t. the usual ordering on natural numbers), i.e. for every s-interpretation J such that J(n) <
I(n), we have J 6|=s S. Suppose that I 6|=s n < i+j, i.e., that I(n) ≥ i+j (which implies that I(n) > 0
since j 6= 0 by assumption). We construct an s-interpretation J as follows:

• J(n)
def
= I(n) − j. By Condition 4, this implies that J(n) < I(n) thus by hypothesis on the

minimality of the valuation of n in I , J 6|=s S.

• The value of the ground atoms pk (for k ∈ N) is defined by induction on the ordering ≺:

– If k ≤ I(n)− i− j + 1 then J(pk)
def
= I(pk).

3As we shall see, this is the case in practice, since, by Lemma 4.14, all the clauses in S|[i,∞[are generated from those in S|i, if
i is greater than the level of the initial clauses.

20 V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata

– If k > I(n) − i − j + 1, then assume, by induction, that J(qk′) is defined for every atom
qk′ such that qk′ ≺ pk. We set the value of J(pk) to true if and only if S|[⊥,i[contains a
clause that admits a ground instance of the form pk ∨ C, such that all equational atoms in C
are false in J and for all indexed atoms q in C, q ≺ pk, and J 6|=s C (this last condition is
similar to the model construction method used for proving the refutational completeness of
the resolution calculus, see for instance [10]).

Since S|i∪S|⊥ |=s S|[i,∞[by Condition 2, and since S = S|[⊥,i]∪S|[i,∞[by definition, necessarily,
S|[⊥,i] |=s S. We show that J |=s S|[⊥,i], thus contradicting the fact that J 6|=s S. Let D be a clause
in S|[⊥,i] and θ be a ground substitution such that J 6|=s Dθ. By definition, θ is either empty (if D is
ground) or of the form x 7→ sk(0), where x is the unique variable in D.

First assume thatD is of level i, i.e., thatD ∈ S|i. By Condition 5, S|⊥∪S|i+j |=s shift(S|i, j), and
since S|⊥ ∪ S|i+j ⊆ S and I |=s S, this implies that I |=s shift(S|i, j). By definition, D is of the form
n 6≈ si−1+ε(t)∨D′, whereD′ is a t-clause of depth ε. ButD is not ground by Condition 3, thus tmust be
a variable x. This implies that shift(S|i, j) contains the clause n 6≈ si−1+ε+j(x)∨D′, which is true in I .
Since J 6|=s Dθ by hypothesis, necessarily J(n) = i−1+ε+k, and I(n) = J(n)+j = i−1+ε+k+j.
By hypothesis I |=s (n 6≈ si−1+ε+j(x) ∨D′)θ, therefore, I |=s D

′θ. The indices occurring in D′ are
either x or s(x), thus the indices occurring inD′θ are either k or k+1. Furthermore, D is of depth ε = 1
if an index k + 1 occurs in D′θ, and otherwise, ε = 0. Hence, the maximal index that can occur in D′θ
is I(n)− i− j+ 1. By definition, I and J coincide on the atoms pl such that l ≤ I(n)− i− j+ 1. Thus
J |=s D

′θ, which implies that J |=s Dθ, a contradiction.
Now assume that D ∈ S|[⊥,i[. W.l.o.g. we assume that Dθ is the least instance w.r.t. ≺ of a clause

in S|[⊥,i[such that J 6|=s Dθ. Note that D cannot be the empty clause since otherwise S would be
s-unsatisfiable. If D is purely equational then D must be of the form n 6≈ sl(t) for some l < i and
t ∈ V ∪ {0}, because D ∈ S|[0,i[and D is normalized. Then D is equivalent either to n < l (if t ∈ V)
or to n 6= l (if t = 0). In the first case, we have I 6|=s D, which is impossible since I is an s-model of S
and D ∈ S|[⊥,i] ⊆ S. In the second case, since l < i and J(n) = I(n) − j ≥ i we deduce J |=s D, a
contradiction since we assumed J 6|=s D.

We thus assume D contains at least one index literal, and denote by lu the maximal index literal in
D (which is unique by Proposition 4.6). D is of the form lu ∨D′ ∨D′′, where D′ is parameter-free, D′′

is purely equational (any of them could be empty), and for all literals l ∈ D′θ, l � luθ. By definition of
the ordering ≺, this implies that the index of every literal l ∈ D′θ is less or equal to uθ.

We distinguish two cases depending on the value of uθ.

• If uθ ≤ I(n) − i − j + 1, then every index in D′θ is also less or equal to I(n) − i − j + 1. By
construction of J , this implies that I and J coincide on (lu ∨D′)θ. Thus, if I satisfies (lu ∨D′)θ,
then so does J , and this case is impossible, since J 6|=s Dθ. Hence, I 6|=s (lu ∨ D′)θ, so that
necessarily, I |=s D

′′θ. By hypothesis, D is a normalized t-clause in S|[0,i[that is not valid
in J , hence D′′ must be of the form n 6≈ sm(t), where t ∈ V ∪ {0}, and if ε stands for the
depth of lu ∨ D′, then level(D) = m − ε + 1 < i. Since J 6|=s D

′′θ, either J(n) = m (if
t = 0), or J(n) = m + k (if t = x); but the first case is impossible because I(n) ≥ i + j
by hypothesis and J(n) = I(n) − j > i > m by construction. Thus, J(n) = m + k, so that
k = J(n)−m > J(n)− i. Since u is either x or s(x), we deduce that uθ is either k or k + 1. In
the latter case, uθ > J(n) − i + 1. In the former case, lu ∨ D′ is of depth 0 by Proposition 4.6,

V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata 21

and level(D) = m+ 1 < i so that uθ = k = J(n)−m > J(n)− i+ 1. Therefore, in every case,
uθ > J(n)− i+ 1 ≥ I(n)− j − i+ 1 which contradicts our assumption.

• Now assume that uθ > I(n) − i − j + 1. Since Dθ is the minimal instance of a clause in S|[⊥,i[
that is false in J and since S is saturated up to level i, we may assume that D′θ ≺ luθ. Indeed,
every literal in D′θ must be smaller or equal to luθ, and if luθ occurs in D′θ then the factorization
rule applied to D would generate a clause with a strictly smaller instance that is false in J (notice
that this new clause is actually equivalent to D, thus it must be an element of S|[⊥,i]: it cannot be
redundant, since in this case D would be also redundant). Literal lu cannot be positive because
if this were the case, D would be of the form pu ∨ D′ ∨ D′′ and by construction, puθ would be
interpreted to true in J and Dθ would be true in J . Therefore, lu is a negative literal ¬pu and
J(puθ) = true. Thus, by construction, S|[⊥,i[contains a clause of the form E = pv ∨ E′ ∨ E′′
where E′ is parameter-free and E′′ is purely equational, and there exists a substitution θ′ such that
vθ′ = uθ and ∀l ∈ E′, lθ′ ≺ pvθ′ , and J 6|=s (E′ ∨ E′′)θ′.
The resolution rule applied toD and E generates a clause of the form F = (E′∨E′′∨D′∨D′′)σ,
where σ is the mgu of u and v. An instance of this clause is F ′ = E′′θ′ ∨ D′′θ ∨ E′θ′ ∨ D′θ,
which is strictly smaller than Dθ and is false in J . Since S is saturated up to level i, F is level-
redundant in S, hence there exist clauses C1, . . . , Cm ∈ S and substitutions σ1, . . . , σm such that
C1σ1, . . . , Cmσm � F ′ and C1σ1, . . . , Cmσm |=s F

′. By Lemma 4.14, F is of level at most
i, hence so are C1, . . . , Cm. For all j = 1, . . . ,m, if Cj is of level i, then J |=s Cjσj by the
first case above (i.e. the case D ∈ S|i), and if the level of Cj is strictly less than i, then since
Cjσj � F ′ ≺ Dθ, the minimality condition on Dθ entails again that J |=s Cjσj . Therefore, in
all cases, J |=s F

′, which is impossible. ut

In practice, Lemma 6.6 by itself is not sufficient to define a suitable loop detection rule, indeed,
Condition 2 is difficult to check and Condition 3 is too restrictive. We now exhibit sufficient conditions
guaranteeing the existence of a loop in a derivation. The first one tackles Condition 2. It turns out that
this condition is always satisfied if we assume that S is generated by resolution from a set of clauses
whose levels are lower than i.

Definition 6.7. A set of clauses S is k-reducible if and only if there exists a k-normalized (see Definition
4.11) set of clauses S′ such that for every clause C ∈ S there exists a derivation C1, . . . , Cn from S′

such that Cn = C and C1, . . . , Cn are level-redundant w.r.t. S.

Intuitively, this condition states that the clauses in S are not arbitrary: they must be obtained by applying
inference rules from a clause set whose level is bounded (by k). In particular, the set of all clauses
obtained by resolution from a k-normalized set of clauses is obviously k-reducible: it suffices to take for
S′ the initial set of clauses.

Lemma 6.8. Let S be a k-reducible set of normalized clauses. For every i ≥ k, S|i ∪ S|⊥ |=s S|i+1;
hence S|i ∪ S|⊥ |=s S|[i,∞[.

Proof: Since S is k-reducible, there exists a k-normalized set of clauses S′ such that every clause C in
S of level i + 1 is derivable from S′, and every clause in the derivation is level-redundant w.r.t. S. We
prove by induction on the length of the derivation that for every clause C ′ of level i+ 1 occurring in this

22 V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata

derivation, S|i ∪ S|⊥ |=s C
′. Since S′ is k-normalized and C ′ is of level i + 1 > k, the length of the

derivation is greater than 0. We assume C ′ is deduced by resolution from level-redundant parent clauses
D1, D2, the case where C ′ is generated by the factorization rule is similar. By Lemma 4.14, D1 and
D2 can be of levels ⊥, i or i + 1. If D1 is of level ⊥ or i, then S|i ∪ S|⊥ |=s D1 by Proposition 6.2.
Otherwise by the induction hypothesis, S|i∪S|⊥ |=s D1. The same property holds forD2; consequently,
the parents of C ′ are logical consequences of S|i ∪ S|⊥, hence S|i ∪ S|⊥ |=s C

′.
Since S|i ∪ S|⊥ |=s S|i+1, we also have S|i ∪ S|⊥ |=s S|i+1 ∪ S|⊥, and a straightforward induction

proves that for all j ≥ i, S|i ∪ S|⊥ |=s S|j . Since S|[i,∞[
def
=

⋃
j≥i S|j , the second part of the lemma also

holds. ut

We now show how ground clauses can basically be discarded altogether to ensure that Condition 3
of Lemma 6.6 holds.

Definition 6.9. For all i > 0, we denote by S|?i the set of non-ground clauses of level i in S.

Note that, by definition of a normalized clause, every ground clause of S|i has the form n 6≈ si−1(0)∨C
where C contains only literals of index 0.

Lemma 6.10. Let S be a k-reducible set of normalized clauses. If i > k, then S|?i ∪ S|⊥ |=s S|i.

Proof: Let C ∈ S|i. Since S is k-reducible, by definition there exists a derivation of C from a set
of k-normalized clauses, and every clause in this derivation is level-redundant w.r.t. S. We prove by
induction on the length of the derivation that for every clause C ′ of level i occurring in the derivation,
S|?i ∪ S|⊥ |=s C

′ (taking C ′ = C then enables to conclude). This is obvious if C ′ is not ground. If C ′ is
ground, then since i > k, the length of the derivation is greater than 0. We assume C ′ was deduced from
two clauses D1 and D2 by resolution (the case where C ′ was deduced by factorization is similar), and by
Lemma 4.14, D1 and D2 are of level i or ⊥. By the induction hypothesis, S|?i ∪ S|⊥ |=s D1, D2 |=s C

′.
ut

Proposition 6.11. Let S be a set of clauses and let C be a clause of a level i, such that C vl S. If C is
not ground then C vl S|⊥ ∪ S|?i .

Proof: By definition there exist m clauses C1, . . . , Cm in S, of levels ⊥ or i such that for every
ground substitution σ there exist m ground substitutions θ1, . . . , θm such that Cθ1, . . . , Cθm |=s Cσ
and C1θ1, . . . , Cmθm � Cσ. Furthermore, since C is not ground, by the definition of level-redundancy,
C1, . . . , Cm are not ground. For i = 1, . . . ,m, if Ci is of level⊥ then it occurs in S|⊥ and if it is of level
i, then, since it is not ground, it occurs in S|?i . Thus C1, . . . , Cm ∈ S|⊥ ∪ S|?i and C vl S|⊥ ∪ S|?i . ut

Thanks to the results above, we can define a set of pruning clauses, all of which are compatible with
the considered set of clauses.

Definition 6.12. Let S be a k-reducible set of clauses. We denote by Pr(S) the set of pruning clauses
of the form n < i+ j such that:

1. j 6= 0 and i > k.

V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata 23

2. S is saturated up to level i.

3. S|?i+j = shift(S|?i , j) (up to a renaming of variables).

Theorem 6.13. Let S be a k-reducible set of normalized clauses. Any clause in Pr(S) is compatible
with S.

Proof: Let i, j be natural numbers satisfying the conditions of Definition 6.12. It is clear that if S∪{n <
i+ j} is s-satisfiable then so is S, we now prove the other implication and assume that S is s-satisfiable.
Let T = S|[⊥,i[∪

⋃
l≥i S|?l . By definition, T |l = S|l if l < i, and T |l = S|?l if l ≥ i. Furthermore, since

S is k-reducible, so is T which is also normalized, and by Lemma 6.10, S is equivalent to T . Hence it
suffices to show that T ∪{n < i+ j} is s-satisfiable. We prove that T satisfies the application conditions
of Lemma 6.6.

1. T is saturated up to level i. Let C be a clause deduced from clauses in T |[⊥,i[= S|[⊥,i[. Since S
is saturated up to level i, C is level-redundant with respect to S, i.e., C vl S. If the level of C is
strictly less than i, then we deduce that C vl S|[⊥,i[, hence C vl T . Otherwise, by Lemma 4.14,
C cannot be ground, thus C vl S|⊥ ∪ S|?i by Proposition 6.11.

2. T |i ∪ T |⊥ |=s T |[i,∞[. This is a direct application of Lemma 6.8.

3. T |i contains no ground clause. This is obviously the case by definition of S|?i .

4. j 6= 0. This is the case by hypothesis.

5. T |⊥ ∪ T |i+j |=s shift(T |i, j). By hypothesis, S|?i+j = shift(S|?i , j) and by construction, S|⊥ ∪
S|?i+j = T |⊥∪T |i+j . Thus T |⊥∪T |i+j |=s shift(S|?i , j). Since S|?i = T |i, we have shift(S|?i , j) =
shift(T |i, j), hence the result. ut

Note that Conditions 2 and 3 in Definition 6.12 can be tested in polynomial time w.r.t. the size of the
clause sets. Theorem 6.13 only applies to k-reducible clause sets. However, this is not really restrictive
because, as we shall see, any clause set generated from a finite set of normalized clauses S′ by the
resolution calculus must be k-reducible, where k is the maximal level of the clauses in S′ (see Lemma
7.3 for details).

Example 6.14. Consider the clause set S = {1, . . . , 8} in Example 3.5 (generated from the formula
pn ∧ (∀x ps(x) ⇒ px) ∧ ¬p0):

1 n 6≈ x ∨ px (level 1)
2 py ∨ ¬ps(y) (level ⊥)
3 ¬p0 (level ⊥)
4 n 6≈ s(y) ∨ py (resolution, 1,2) (level 2)
5 n 6≈ 0 (resolution, 1,3) (level 1)
6 n 6≈ s(0) (resolution, 4,3) (level 2)
7 n 6≈ s(s(y)) ∨ py (resolution, 2,4) (level 3)
8 n 6≈ s(s(0)) (resolution, 7,3) (level 3)

24 V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata

The initial clauses 1, 2, 3 are of level ⊥, 0 or 1, thus S is 1-reducible. Let i = 2 and j = 1, then
S|?i = {n 6≈ s(y) ∨ py} and S|?i+j = {n 6≈ s(s(y)) ∨ py} (clauses 6 and 8 are dismissed since they are
ground, according to Definition 6.9). Thus shift(S|?i , j) = {n 6≈ s(s(y)) ∨ py} = S|?i+j , and Condition
3 of Definition 6.12 trivially holds. Furthermore, it is straightforward to check that S is saturated up to
level i.

Hence the pruning clause n 6≈ s(s(s(x))), i.e. n < 3, occurs in Pr(S), hence can be added to S.
Together with clauses 5, 6 and 8, we obtain a finite and purely equational clause set, whose unsatisfiability
can be tested by standard algorithms. In this particular case, the obtained clause set is: {n 6≈ 0, n 6≈
s(0), n 6≈ s(s(0)), n 6≈ s(s(s(x)))}, which is equivalent to n 6≈ 0 ∧ n 6≈ 1 ∧ n 6≈ 2 ∧ n < 3. Therefore
the initial clause set is s-unsatisfiable.

Example 6.15. Consider the following schema:

p0 ∧
n∧
x=0

(px ⇒ qx) ∧
n∧
x=0

(qx ⇔ ¬qs(x)) ∧ ¬qn ∧ ¬qs(n)

This schema can be encoded by the following clause set (see Section 5 for details):

1 p0 (level ⊥)
2 ¬px ∨ qx (level ⊥)
3 ¬qx ∨ ¬qs(x) (level ⊥)
4 qx ∨ qs(x) (level ⊥)
5 n 6≈ x ∨ ¬qx (level 1)
6 n 6≈ x ∨ ¬qs(x) (level 0)

We apply the calculus (assuming that p ≺ q):

7 q0 (resolution 1,2) (level ⊥)
8 n 6≈ 0 (resolution 7, 5) (level 1)
9 n 6≈ s(x) ∨ qx (resolution 5,4) (level 2)
10 ¬ps(x) ∨ ¬qx (resolution 2, 3) (level ⊥)
11 n 6≈ s(s(x)) ∨ ¬qx (resolution 9, 3) (level 3)
12 n 6≈ s(s(0)) (resolution 11, 7) (level 3)
13 n 6≈ s(s(s(x))) ∨ qx (resolution 11, 4) (level 4)
14 n 6≈ x ∨ qx (resolution 4, 6) (level 1)
15 n 6≈ s(x) ∨ ¬qx (resolution 3, 14) (level 2)
16 n 6≈ s(0) (resolution 7, 15) (level 2)
17 n 6≈ s(s(x)) ∨ qx (resolution 4, 15) (level 3)
18 n 6≈ s(s(s(x))) ∨ ¬qx (resolution 17, 3) (level 4)
19 n 6≈ s(s(s(0))) (resolution 18, 7) (level 4)

Let i = 2, j = 2, and let S′ = {1–18}. S′ is saturated up to level 2. We have S′|?2 = {9, 15},
S′|?4 = {13, 18}, thus shift(S|?2, 2) = S|?4. The pruning rule applies and generates: n 6≈ s(s(s(s(x))))

V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata 25

i.e. n < 4. Together with clauses 8, 10, 12 and 19, this yields a finite, purely equational, s-unsatisfiable,
clause set.

7. Termination

In this section we define a pruning rule based on Theorem 6.13 and we show that the addition of this rule
makes the calculus terminating, provided the rules are applied in a fair way.

The notion of level-redundancy is useful only to apply the pruning rule (Condition 2 in Definition
6.12 requires the clause set to be partially saturated up to level-redundancy). Once a pruning clause has
been generated, the more general and standard notion of redundancy can be used instead. This yields the
following:

Definition 7.1. A clause C is deletable in a clause set S if and only if C is level-redundant in S or if C
is redundant in S and S contains a pruning clause.

In order to take deletable clauses into account, we define derivations as sequences of clause sets:

Definition 7.2. A pruning derivation from a clause set S is a (possibly infinite) sequence of clause sets
(Si)i∈I , with I = [0, n] or I = N, such that S0 = S and for every i ∈ I \ {0}, one of the following
conditions holds:

• Si = Si−1 ∪ {C}, where C ∈ Res(Si−1) (deduction step).

• Si = Si−1 ∪ {C}, where C ∈ Pr(Si−1) (pruning step).

• Si = Si−1 \ {C}, where C is deletable in Si−1 \ {C} (deletion step).

We write S `p C if there exists a pruning derivation S1, . . . , Sn from S such that C ∈ Sn. The limit
of a pruning derivation is the set of clauses S∞ defined by: S∞

def
=

⋃
i∈I Si.

In practice identifying all level-redundant or redundant clauses is unfeasible, thus only the clauses
that are valid or subsumed are deleted. This fact has been taken into account for the termination proof –
actually the only form of redundancy testing that is needed is the deletion of valid clauses and subsump-
tion by pruning clauses, which is sufficient to ensure that the level of the generated clause is bounded.

A derivation (Si)i∈I is non-redundant if and only if the deletion steps are applied with the highest
priority and if the deduction and pruning step are applied only if C is not deletable in Si−1. It is
fair if and only if for every level l there exists an i ∈ I such that all the clauses deducible from Si|[⊥,l]
are deletable in Si (this may be enforced, for instance, by applying the inference rules with the highest
priority on clauses of lower levels).

Lemma 7.3. Let (Si)i∈I be a pruning derivation from a k-normalized clause set, and assume the Si’s
(i ∈ I) contain no pruning clause. Then for every i ∈ I , Si is k-reducible.

Proof: By definition every clause C in Si can be deduced from clauses in S. Thus there exists a deriva-
tion C1, . . . , Cn from S such that Cn = C. By definition, for every clause Cj (1 ≤ j ≤ n), either
Cj ∈ Si, or Cj was deleted by a previous deletion step. In both cases Cj must be level-redundant with
respect to Si (note that it is necessarily level-redundant and not just redundant, because the Si’s contain
no pruning clause). ut

26 V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata

Proposition 7.4. If C is redundant (resp. level-redundant) w.r.t. S then any clause D redundant (resp.
level-redundant) w.r.t. S ∪ {C} is also redundant (resp. level-redundant) w.r.t. S.

Proof: Let σ be a ground substitution of domain var(D). Since D is redundant w.r.t. S∪{C} there exist
n clauses D1, . . . , Dn ∈ S∪{C} and n substitutions σ1, . . . , σn such that D1σ1, . . . , Dnσn |=s Cσ and
D1σ1, . . . , Dnσn ≤ Cσ. Moreover, if D is level-redundant in S∪{C}, then the D1, . . . , Dn are of level
⊥ or of the same level as D.

Let i ∈ [1, n]. We define a set of ground clauses Ei as follows. If Di ∈ S then Ei
def
= {Diσi}.

Otherwise, by definition we must have Di = C, thus there exist m clauses C1, . . . , Cm ∈ S and m
substitutions θ1, . . . , θm such that C1σ1, . . . , Cmθm |=s Diσi and C1θ1, . . . , Cmθm ≤ Diσi ≤ Cσ.
Moreover, if C is level-redundant, then the C1, . . . , Cm are of level ⊥ or of the same level as C. We
define Ei

def
= {C1θ1, . . . , Cmθm}.

By construction, the clauses in
⋃n
i=1Ei are ground instances of clauses in S, that are smaller than

Cσ. Moreover, we have
⋃n
i=1Ei |=s

⋃n
i=1{Diσ} |=s Cσ and if C and D are level-redundant in S and

S ∪ {C} respectively, then every clause in
⋃n
i=1Ei is of level ⊥ or of the same level as C. ut

Corollary 7.5. Let (Sj)j∈I be a fair, non-redundant pruning derivation. If C is deletable in Sj for some
j ∈ I , then C is deletable in every set Si such that i ∈ I, i ≥ j.

Proof: The proof is by induction on i−j. It is obvious if i = j. If i > j, then by the induction hypothesis
C is deletable in Si−1. Assume that Si−1 contains no pruning clause. Then C is level-redundant w.r.t.
Si−1, by definition of a deletable clause. All the clauses occurring in Si−1 but not in Si must be deletable
in Si−1, hence level-redundant w.r.t. Si−1. By Proposition 7.4, C is level-redundant w.r.t. Si, hence C is
deletable in Si.

Assume that Si−1 contains a pruning clause n 6≈ sk(x). Then C is redundant w.r.t. Si−1. All the
clauses occurring in Si−1 but not in Si must be deletable in Si−1, hence redundant w.r.t. Si−1. By
Proposition 7.4, C is redundant w.r.t. Si. If Si contains a pruning clause then the proof is completed,
since C is deletable in Si. Otherwise, by definition, a deletion step must be applied on n 6≈ sk(x), thus
this clause is redundant w.r.t. Si−1. Then Si−1 containsm clausesD1, . . . , Dm (distinct from n 6≈ sk(x))
and m substitutions θj such that, in particular, Djθj � n 6≈ sk(t), where t is any ground term of size
greater than any term occurring in Dj . By definition of the ordering (since equational literals are not
comparable) we must have Djθj = � or Djθj = n 6≈ sk(x). If � ∈ Si then C is level-redundant in Si
hence the proof is completed. Otherwise, since t does not occur in Dj , Dj cannot be ground, hence Dj

must be of the form n 6≈ sl′(x), hence must be a pruning clause, which contradicts our assumption. ut

Proposition 7.6. Let (Sj)j∈I be a non-redundant pruning derivation from a finite set of clauses. If I is
infinite then so is S∞.

Proof: If S∞ is finite and I is infinite, there exists i ∈ I such that no “new” clauses are generated after
step i, i.e. such that for every clause C ∈ S∞, C occurs in Sj for some j ≤ i. Then C must be deletable
in Sj , and by Corollary 7.5 every clause C ∈ S∞ must be deletable in every set Sk for k ≥ i. But
then, since the derivation is non-redundant, no deduction and pruning can occur after step i (since the
addition of deletable clauses is forbidden). Since the initial clause set is finite, there can be only finitely
many deletion steps. Thus, I must be finite. ut

V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata 27

Proposition 7.7. Consider a non-redundant pruning derivation (Si)i∈I from a finite clause set.

1. If there exists an i ∈ I such that Si contains a pruning clause n 6≈ sl(x), then any clause of a level
at least l is deletable in Si.

2. If S∞ contains a pruning clause, then I is finite.

Proof: We prove successively the two items.

1. Item 1 is a consequence of the fact that any normalized clause of level k ≥ l is of the form
n 6≈ sk+1−ε(x) ∨D′, where ε ∈ {0, 1}, and such a clause is obviously deletable.

2. If S∞ contains a pruning clause n 6≈ sl(x), then n 6≈ sl(x) occurs in Si for some i ∈ I and by Item
1 all clauses of level greater than l+ 1 are deletable in Si. By Corollary 7.5, these clauses are also
deletable in every clause set Sj for j ≥ i. Then, since (Sj)j∈I is non-redundant, the deduction

and pruning steps after i cannot add any clause of a level greater than l + 1 by Item 1, and since
there are only finitely many clauses of level at most l (up to renaming), Item 2 holds. ut

Theorem 7.8. If (Sj)j∈I is a fair, non-redundant pruning derivation from a finite and k-normalized
clause set, then I is finite.

Proof: Assume I is not finite, then S∞ cannot contain �, and by Proposition 7.7 (2), S∞ cannot contain
any pruning clause either. Thus, by Lemma 7.3, Sj is k-reducible for every j ∈ I . By Proposition
7.6, S∞ is infinite (since I is infinite), and by Proposition 4.12, S∞ must contain clauses of arbitrary
levels, and this implies that for all levels i ∈ N, there exists a derivation step γ(i) such that every clause
generated after this step is of a level strictly greater than i.

Still by Proposition 4.12, there are at most M = 24|Ω|+1 clauses of any given level, up to a renaming
and the duplication of literals; there are therefore at most 2M distinct normalized clause sets of the same
level. We consider the integer l = 2M + k + 1 and the set of clauses Sγ(l) in the derivation, after which
all generated clauses are of a level strictly greater than l. For all m ≤ l, let S′m = {C idx | C ∈ Sγ(l)|m};
by the pigeonhole principle, there exist i, j ∈ N such that k < i ≤ l, j 6= 0 and S′i = S′i+j . This implies
that Sγ(l)|?i+j = shift(Sγ(l)|?i , j).

Since the derivation is fair by hypothesis and no clause of level i or i + 1 can be generated after
step γ(l), the set Sγ(l) is saturated up to level i. Therefore, the conditions of Theorem 6.13 hold, and
the clause n < i + j occurs in Pr(Sγ(l)). It is also generable from all subsequent clause sets in the
derivation, thus by the fairness hypothesis, the pruning step is applied at some point in the derivation,
hence S∞ contains a pruning clause, which contradicts our initial assumption. ut

From the previous termination proof, it is easy to obtain an upper bound on the time complexity
of the algorithm. At most 224|Ω|+1

clause sets of size at most 24|Ω|+1 can be generated, thus since the
rules can be applied in polynomial time w.r.t. the size of the clause set, the algorithm is at most doubly
exponential. This is worse than the complexity of the tableaux-based proof procedure described in [2]
which is only simply exponential, in the case –which is the most analogous to the present paper– where
the index variable can only be increased by 1 (the propositional schemata considered in [2] possibly
contain indices of the form i + k, where k can be strictly greater than 1; in the case in which k is not
bounded by the size of the formula, the complexity of the procedure is then also doubly exponential).
Intuitively, this is due to the fact that the nodes in the tableaux are labeled by sets of literals, instead of
sets of clauses.

28 V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata

8. Extension to first-order logic without equality

Let Σ be a set of function symbols distinct from 0 and s, let V1 be a set of first-order variables disjoint
from V and let Ω1 be a set of predicate symbols. Each symbol f in Σ∪Ω1 is mapped to a unique natural
number, called the arity of f .

The set of first-order terms is built as usual on the signature Σ and on the set of variables V1. A
first-order clause is simply a clause, except that propositional variables are not elements of P anymore
but have the form p(t1, . . . , tn), where p is a predicate symbol of arity n and t1, . . . , tn are first-order
terms. For example¬p(a, f(u))s(x)∨p(f(v), b)x is a first-order clause. Note that p cannot be the equality
predicate≈, that has a special meaning, namely equality between parameters and natural numbers. Since
we use the resolution calculus in this paper, the usual semantic equality between standard terms must be
encoded by adding equality axioms.

A first-order substitution is a mapping from V1 to the set of first-order terms. As usual, the applica-
bility of a substitution σ can be extended to any expression e and the image of e is denoted by eσ. The
notions of domain, ground substitution, unifier etc. are defined as in Section 2.

Note that the sets of first-order terms and index terms are disjoint: for instance, p(y)x is a first-order
clause but p(x)x or p(0)x are not.

We denote by C↓ the set of clauses of the form Cσ where σ is a ground first-order substitution whose
domain contains all the first-order variables in C (index variables are not instantiated). We also define
S↓ def

=
⋃
C∈S C↓. The notion of the level of a first-order clause is a straightforward extension of the one

for propositional clauses; in particular, the depths of the first-order terms occurring in a clause C are not
taken into account when computing level(C). The notation shift(S, i) is defined in the same way.

Proposition 8.1. For any first-order clause set S, (S|l)↓ = (S↓)|l.

Proof: This is immediate since if a clause C is of level l then obviously any instance Cσ of C (where
σ is a first-order substitution) is also of level l: indeed, the level of a clause C does not depend on the
propositional variables, but only on the equational part of C and on the indices occurring in C, which by
definition are not affected by σ. ut

The following fact is straightforward, since the shift operation does not affect non-equational literals:

Proposition 8.2. For any first-order clause set S and for any i ∈ N, (shift(S, i))↓ = shift((S↓), i).

The semantics of sets of first-order clauses are defined in a usual way, by interpreting a set S as the
set of its ground instances (thus clause sets are interpreted on the Herbrand domain). This definition is
obviously not restrictive, since it is well-known that any satisfiable set of first-order clause has a Herbrand
model. It is clear that S↓ can be considered as a set of propositional clauses: we can just take for the set
of propositional variables Ω the set of all ground atoms p(t1, . . . , tn). Then for any s-interpretation I we
define: I |=s S if and only if I |=s S↓.

As usual, we assume the selection function sel is extended to first-order clauses in such a way that for
every clause l∨C and for every substitution θ, if a literal lθ is selected in (l∨C)θ then l is also selected
in l ∨ C. The inference rules for first-order clauses are depicted in Figure 2. We denote by Res(S) the
set of clauses C that are deducible from S in one step. Note that the rules coincide with those of Figure
1 if the clauses are ground, which explains why we use the same notationRes(S).

V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata 29

Resolution
p(~t)u ∨ C ¬p(~s)v ∨D

(C ∨ D)σθ

where:
σ = mgu(u, v), θ = mgu(~t, ~s) and p(~t)uσθ and ¬p(~s)vσθ are selected in (p(~t)u ∨ C)σθ

and (¬p(~s)v ∨D)σθ

Factorization
p(~t)u ∨ p(~s)v ∨ C

(p(~t)u ∨ C)σθ

¬p(~t)u ∨ ¬p(~s)v ∨ C
(¬p(~t)u ∨ C)σθ

where:
σ = mgu(u, v), θ = mgu(~t, ~s) and p(~t)uσθ is selected in (p(~t)u ∨ p(~s)v ∨ C)σθ

or ¬p(~t)uσθ is selected in (¬p(~t)u ∨ ¬p(~s)v ∨ C)σθ.

Figure 2. The resolution calculus (first-order clauses)

The notions of redundancy and level-redundancy can be extended to first-order clauses: C is redun-
dant (resp. level-redundant) w.r.t. S if and only if every clause inC↓ is redundant (resp. level-redundant)
w.r.t. S↓. The ordering ≺ on the elements of Ω (i.e. on the set of ground atoms p(t1, . . . , tn)) can be
chosen arbitrarily and it is extended to indexed propositions (i.e. to atoms of the form p(t1, . . . , tn)i)
as in Section 3. The notion of saturation up to a certain level is the same as in the propositional case.
Then Pr(S) is defined as in Definition 6.12 and the notion of a pruning derivation can be extended as
well. The following proposition relates as usual this “lifted” calculus to its ground version (including the
pruning rule):

Lemma 8.3. Let S be a normalized set of first-order clauses.

• Res(S↓) = (Res(S))↓.

• If C ∈ Pr(S) then C ∈ Pr(S↓).

Proof: The first item is standard (see for instance [19]) hence the proof is omitted. For the second item,
consider a pruning clause of the form n < i + j such that S, i and j satisfy the conditions of Definition
6.12. Then, by Condition 2 in Definition 6.12, S is saturated up to level i, i.e., Res(S|[⊥,i[) vl S,
thus Res(S|[⊥,i[)↓ vl S↓. By the first item we get Res((S|[⊥,i[)↓) vl S↓, and by Proposition 8.1,
Res((S↓)|[⊥,i[) vl S↓, which means that S↓ is saturated up to level i. Furthermore, by Condition 3
of Definition 6.12, S|?i+j = shift(S|?i , j), thus S|?i+j↓ = shift(S|?i , j)↓. By Proposition 8.2, we deduce
S|?i+j↓ = shift(S|?i ↓, j) and by Proposition 8.1, S↓|?i+j = shift(S↓|?i , j). Thus S↓, i and j satisfy the
conditions of Definition 6.12, and n < i+ j ∈ Pr(S↓). ut

As in the propositional case, we write S `p C if there exists a pruning derivation S1, . . . , Sn from S
such that C ∈ Sn.

Proposition 8.4. For all sets of normalized first-order clauses S, if S `p C then for every clause D ∈
C↓, we have S↓ `p D. Furthermore, if S↓ `p D then there exists a clause C such that S `p C and
D ∈ C↓.

30 V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata

Proof: This follows from Lemma 8.3 by an immediate induction on the length of the derivation. ut

Theorem 8.5. For any set of normalized first-order clauses S, S is s-unsatisfiable if and only if there
exists a (possibly infinite) s-unsatisfiable set of purely equational clauses S′ such that for all C ∈ S′,
S `p C.

Proof: Assume S is s-unsatisfiable. Then so is S↓ and by Theorem 3.4, there exists an s-unsatisfiable set
of purely equational clauses S′ ⊆ S↓ such that for all D ∈ S′, S↓ `p D. By Proposition 8.4, for every
clause D ∈ S′ there exists a clause C such that S ` C and D ∈ C↓. Since D is purely equational, so
is C, hence C↓ = {C} (since C contains no non equational literal, it contains no first-order variables).
Thus S `p C.

Conversely, assume that there exists an s-unsatisfiable set of purely equational clauses S′ such that
for all C ∈ S′, S `p C. Then since C↓ = {C} we have by Proposition 8.4: S↓ `p C. By Proposition
3.2 and Theorem 3.4 (stating the soundness of the resolution and pruning rules for propositional clauses),
S↓ is s-unsatisfiable. Hence S is also s-unsatisfiable. ut

As already mentioned, Theorem 8.5 does not entail semi-decidability because S′ may be infinite. Of
course, termination cannot be ensured for first-order clauses even if S is s-unsatisfiable and Theorem 7.8
does not hold for first-order clauses, since there may be infinitely many clauses of a given level.

Example 8.6. Let S be the following clause set:

1 p(y, z, cons(y, v))s(x) ∨ ¬p(z, y, v)x 2 p(y, z, nil)0

3 q(cons(u, y), v)0 ∨ ¬q(y, v)x 4 q(cons(u, nil), u)s(x) ∨ ¬rx
5 evens(x) ∨ evenx 6 ¬evens(x) ∨ ¬evenx
7 even0 8 n 6≈ x ∨ ¬evenx
9 n 6≈ x ∨ ¬p(a, b, u)x ∨ ¬q(u, a)x 10 r0

The symbols a, b are constant symbols, y, z, u, v are first-order variables; p(y, z, u)x holds if u is a
list of length x of the form y, z, y, z, y, . . . and q(u, v)x holds if u is a list of length x whose last element
is v. The atom rx holds if x is 0. Clauses 8 and 9 state that n is odd and that there is no list u satisfying
both p(a, b, u)n and q(u, a)n, which obviously contradicts the previous axioms. rn holds if and only if
n = 0. The calculus yields:

V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata 31

11 n 6≈ 0 (res, 7, 8)
12 n 6≈ s(x) ∨ evenx (res, 5, 8)
13 n 6≈ s(x) ∨ ¬p(b, a, v)x ∨ ¬q(cons(u, v), a)s(x) (res, 9, 1)
14 n 6≈ s(x) ∨ ¬p(b, a, nil)x ∨ ¬rx (res, 13, 4)
15 n 6≈ s(x) ∨ ¬rx (res, 14, 2)
16 n 6≈ s(0) (res, 15, 1)
17 n 6≈ s(x) ∨ ¬p(b, a, v)x ∨ ¬q(v, a)x (res, 13, 3)
18 n 6≈ s(s(x)) ∨ ¬evenx (res, 12, 6)
19 n 6≈ s(s(x)) ∨ ¬p(a, b, v)x ∨ ¬q(cons(u, v), a)s(x) (res, 17, 1)
20 n 6≈ s(s(x)) ∨ ¬p(a, b, nil)x ∨ ¬rx (res, 19,4)
21 n 6≈ s(s(x)) ∨ ¬rx (res, 20, 2)
22 n 6≈ s(s(0)) (res, 21, 10)
23 n 6≈ s(s(x)) ∨ ¬p(a, b, v)x ∨ ¬q(v, a)x (res, 19, 3)
24 n 6≈ s(s(s(x))) ∨ evenx (res, 18, 5)
25 n 6≈ s(s(s(x))) ∨ ¬p(b, a, v)x ∨ ¬q(cons(u, v), a)x (res, 23, 1)

26 n 6≈ s(s(s(x))) ∨ ¬p(b, a, nil)x ∨ ¬rx (res, 25, 4)
27 n 6≈ s(s(s(x))) ∨ ¬p(b, a, v)x ∨ ¬q(v, a)x (res, 25, 3)
28 n 6≈ s(s(s(0))) ∨ ¬rx (res, 26, 2)
29 n 6≈ s(s(s(0))) (res, 28, 10)

At this point the pruning rule is applied (with i = 2 and j = 2), yielding the clause n < 4. With the
clauses 11, 16, 22, 29, this proves the unsatisfiability of the original clause set.

9. Conclusion

We have devised a resolution-based proof procedure capable of handling sets of propositional or first-
order clauses indexed by natural numbers, which can be used to encode schemata of formulæ. In the
propositional case, this procedure has been proven to be sound, refutationally complete and terminating.
In the first-order case, the procedure is only sound: the satisfiability problem is not even semi-decidable.

Future work includes the implementation of the calculus and experimental comparison with the
tableau-based prover described in [5] for propositional schemata. In Section 7, we have shown that
the complexity of the resolution-based procedure is at most doubly exponential w.r.t. the size of the
initial clause set, but we do not know whether this bound is tight or not. The tableaux-based procedure
of [3] is “only” simply exponential, but this does not necessarily imply that the resolution calculus will
be less efficient in practice. From a theoretical point of view, the extension to the equality case should
also be considered (using the superposition calculus [9]).

A very natural direction of research is to extend the termination results of Section 7 to subclasses
of first-order clauses. This may be done by restricting ourselves to syntactic subclasses for which the
resolution calculus terminates (see, e.g., [14] for numerous examples of such classes). However, this is

32 V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata

not as straightforward as one may think because termination is usually ensured thanks to some specific
ordering restriction strategy. In general, there is no guarantee that these ordering restrictions will be
compatible with the ones already considered in the present paper, which impose that the literals are
ordered according to their indices. For instance, a seemingly natural idea is to extend the present work
to schemata of ground clause sets with equality by using the superposition calculus instead of resolution.
This would allow one to handle for instance clauses such as ai ≈ bi or ai ≈ f(bi), where a, b denote
indexed constant symbols. As is well-known, the superposition calculus always terminates on (non-
indexed) ground clauses. However, if indexed clauses are considered, termination cannot be ensured,
due to the fact that a term indexed by i + 1 must be always greater than a term indexed by i, even if the
latter is actually less complex according to the usual ordering: for example the set {p(ai), ai+1 ≈ f(ai)}
entails an infinite number of distinct clauses, of the form p(fk(ai)) (k ∈ N), obtained by repeatedly
replacing ai+1 by f(ai). Note that these clauses are all of the same level. Thus the results in the
present paper do not extend to ground clauses with equality. Actually the satisfiability problem turns out
to be undecidable for schemata of ground clause sets with equality [7]. Similarly, our calculus does not
terminate on the rather simple clause set {¬px(f(y))∨ps(x)(y), n 6≈ x∨¬px(a)}, although it is monadic
and obviously satisfiable, since the ordering conditions impose to resolve on the literal ps(x)(y) (which
normally would be avoided by standard resolution strategies).

Another direction of research is to refine the loop detection rule in order to get rid of the saturation
condition, which is difficult to enforce for sets of first-order clauses. This may be done by analyzing
more precisely the search space in order to identify cycles in the proof tree. Rather than considering
the clause set as a whole, one would then focus on the specific clauses that are relevant for proving the
considered property. This line of research is currently under investigation.

References

[1] Althaus, E., Kruglov, E., Weidenbach, C.: Superposition Modulo Linear Arithmetic SUP(LA), FroCoS 2009
(S. Ghilardi, R. Sebastiani, Eds.), 5749, Springer, 2009.

[2] Aravantinos, V., Caferra, R., Peltier, N.: A DPLL Proof Procedure for Propositional Iterated Schemata,
Workshop “Structures and Deduction 2009” (ESSLI), 2009.

[3] Aravantinos, V., Caferra, R., Peltier, N.: A Schemata Calculus For Propositional Logic, TABLEAUX 09
(International Conference on Automated Reasoning with Analytic Tableaux and Related Methods), 5607,
Springer, 2009.

[4] Aravantinos, V., Caferra, R., Peltier, N.: A Decidable Class of Nested Iterated Schemata, IJCAR 2010
(International Joint Conference on Automated Reasoning), LNCS, Springer, 2010.

[5] Aravantinos, V., Caferra, R., Peltier, N.: RegSTAB: a SAT-Solver for Propositional Schemata, IJCAR 2010
(International Joint Conference on Automated Reasoning), LNCS, Springer, 2010.

[6] Aravantinos, V., Caferra, R., Peltier, N.: Decidability and Undecidability Results for Propositional Schemata,
Journal of Artificial Intelligence Research, 40, 2011, 599–656.

[7] Aravantinos, V., Peltier, N.: Schemata of SMT problems, TABLEAUX 11 (International Conference on
Automated Reasoning with Analytic Tableaux and Related Methods), LNCS, Springer, 2011.

[8] Baaz, M., Hetzl, S., Leitsch, A., Richter, C., Spohr, H.: CERES: An analysis of Fürstenberg’s proof of the
infinity of primes, Theor. Comput. Sci., 403(2-3), 2008, 160–175.

V. Aravantinos, M. Echenim, N. Peltier / A resolution calculus for first-order schemata 33

[9] Bachmair, L., Ganzinger, H.: Rewrite-based Equational Theorem Proving with Selection and Simplification,
Journal of Logic and Computation, 3(4), 1994, 217–247.

[10] Bachmair, L., Ganzinger, H.: Resolution Theorem Proving, in: Handbook of Automated Reasoning (J. A.
Robinson, A. Voronkov, Eds.), Elsevier and MIT Press, 2001, 19–99.

[11] Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational Theorem Proving for Hierachic First-Order Theo-
ries, Appl. Algebra Eng. Commun. Comput., 5, 1994, 193–212.

[12] Comon, H., Lescanne, P.: Equational Problems and Disunification, Journal of Symbolic Computation, 7,
1989, 371–475.

[13] Cooper, D.: Theorem Proving in Arithmetic without Multiplication, in: Machine Intelligence 7 (B. Meltzer,
D. Michie, Eds.), chapter 5, Edinburgh University Press, 1972, 91–99.

[14] Fermüller, C., Leitsch, A., Tammet, T., Zamov, N.: Resolution Methods for the Decision Problem, LNAI
679, Springer, 1993.

[15] Gupta, A., Fisher, A. L.: Parametric Circuit Representation Using Inductive Boolean Functions, CAV
(C. Courcoubetis, Ed.), 697, Springer, 1993, ISBN 3-540-56922-7.

[16] Horbach, M., Weidenbach, C.: Deciding the Inductive Validity of FOR ALL THERE EXISTS * Queries,
CSL (E. Grädel, R. Kahle, Eds.), 5771, Springer, 2009, ISBN 978-3-642-04026-9.

[17] Horbach, M., Weidenbach, C.: Superposition for fixed domains, ACM Trans. Comput. Logic, 11(4), 2010,
1–35, ISSN 1529-3785.

[18] Korovin, K., Voronkov, A.: Integrating Linear Arithmetic into Superposition Calculus, CSL 2007 (J. Duparc,
T. A. Henzinger, Eds.), 4646, Springer, 2007.

[19] Leitsch, A.: The resolution calculus, Springer. Texts in Theoretical Computer Science, 1997.

[20] Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchen
die Addition als einzige Operation hervortritt, Comptes Rendus du I congrés de Mathématiciens des Pays
Slaves, 1929.

[21] Robinson, J. A.: A machine-oriented logic based on the resolution principle, J. Assoc. Comput. Mach., 12,
1965, 23–41.

[22] Waldmann, U.: Superposition and Chaining for Totally Ordered Divisible Abelian Groups, IJCAR, 2001.

