
HAL Id: hal-00933842
https://hal.science/hal-00933842

Submitted on 21 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Privacy and Nomadic Computing: A Public-Key
Cryptosystem Based on Passwords

Frederic Prost, Lydie Terras

To cite this version:
Frederic Prost, Lydie Terras. Privacy and Nomadic Computing: A Public-Key Cryptosystem Based
on Passwords. 2013. �hal-00933842�

https://hal.science/hal-00933842
https://hal.archives-ouvertes.fr






Privacy and Nomadic Computing
A Public-Key Cryptosystem Based on Passwords

Frédéric Prost1, Lydie Terras1

1 Université de Grenoble – LIG, B. P. 53 - 38041 Grenoble Cedex 9 , France
{frederic.prost,lydie.terras}@imag.fr

Keywords: Password, Public-key cryptography, Secure hashing functions, RSA, PGP

Abstract: The use of public-key cryptography is complicated in a nomadic computing era. Private keys are typically
huge numbers that are impossible to memorize or even to write down and have to be stored electronically.
Therefore a mobile user has somehow to keep its private key with him at all time (it is senseless to imagine
that the private key is dowloaded through a public network). It is neither realistic nor safe. Indeed the mobile
device must be protected, which is usually done through password mechanisms. At the end of the day all the
cryptosystem relies on this password. In this paper we propose a generic way to produce keys from a password
using secure hashing functions. We have done an implementation of a nomadic PGP as a proof of concept: the
software is a java applet, thus platform independent, providing a complete solution for mail encryption based
on public-key cryptography. In the end the user just has to remember its password, and no longer has to rely
on specific software/operating system/hardware settings.

1 INTRODUCTION

Key management is a central concern in cryp-
tosystems. Indeed, at the very core of any cryptosys-
tem used for communication (when it is used to safely
store information it is different) lies this paradox: the
receiver should be able to decrypt the message, but
can only do so with the appropriate key. Moreover
this key has to remain secret and is linked to the
key used to encrypt the message. Hence the ques-
tion: if one is able to communicate safely encryp-
tion/decryption keys why does he need a cryptosys-
tem in the first place? Instead of safely communicat-
ing the key it would be enough to safely transmit the
message. Asymetric cryptography, like RSA (Rivest
et al., 1978) or ElGamal (ElGamal, 1985), partially
solves this paradox: the key used to encrypt data is
public while the key used to decrypt remains private;
moreover the relation between the keys is such that it
is very hard (from a computational point of view) to
compute the private key having only the knowledge of
the public key (although it is easy if you have the suit-
able hints that remain private). The problem with such
cryptosystems is that private keys are typically very
big integers, typically fo a few thousand bits length,
and are therefore impossible to remember or even (al-
though it is not a good security policy) to write down
in a scrapbook.

In our era of nomadic life and because of the mul-
tiplicity of means used to connect to the internet, the
issue of how to carry your private key with you re-
mains. Historically it was stored in one’s personnal
computer which was physically secured, under lock
and key, at home or at the office. Nowadays people
use more and more different ways and tools for in-
ternet and mail access: from smartphones to worksta-
tions through access with netbooks and random com-
puters (think internet cafes, public computers in air-
port etc.).

In order to tackle with this problem we propose a
system that produces keys from passwords. The raw
idea is to have a deterministic, although non invert-
ible, algorithm that relies on secure hashing functions.
The result of the secure hashing function is used as a
pseudo-random sieve to produce the keys. The system
is implemented as a java applet and is platform inde-
pendent: one just needs a browser, and also needs to
remember its password, to generate and use a public
key cryptosystem and no longer has to store its private
keys.

We start in section 2 by a brief discussion of the
security aspects related to this idea. In section 3 we
present a method to generate keys for the RSA cryp-
tosystem. We present a proof of concept in the form of
a software that is a PGP-like software in which symet-
ric and asymetric encryption are used together, called



Nomadic PGP in section 4. The basic blocks of No-
madic PGP are the hashing function Whrilpool, RSA
for the asymetric encryption and twofish for the sy-
metric encryption. Finally we conclude in section 5.

2 SECURITY DISCUSSION

As B. Schneier strengthens it again and again in
(Schneier, 2003) all security problems/solutions are
trade-offs. In essence we propose the use of a pub-
lic key cryptosystem, in which the user may choose
an arbitrary large security parameter, in a way that is
completely determined by a password (and the length
of the key to produce). Clearly since the aim of our
system is to be able to keep the password in memory
the key space is much smaller (if the password had
the same length as the private key we would have gain
nothing) than what it could theoretically be. By con-
struction only a limited fraction of keys (regardless of
the way keys are produced)can be explored by an im-
plementation following our idea. The natural question
is: how the restriction to passwords interfere with the
strength of the original cryptosystem ? In other words
what have we lost for the benefit of being able to re-
member a very large (the size of the generated key is
unnbounded) private key ?

In order to fix ideas suppose that we are generat-
ing RSA keys of size 2048 bits (the size of the modu-
lus) from passwords using a hashing function f . The
raw idea is to produce enough blocks from the pass-
word in order to produce two primes of size 1024 by
applying f to the password (with deterministic mod-
ifications of the password for each new block) and to
multiply those two primes together (the detailed pro-
cess is given in section 3).

The factorization of a 2048 bits integer is today
out of reach: as of today the largest number factorised
was RSA-768 of length 768 bits see (Kleinjung et al.,
2010). So the easiest way to break the system is to re-
cover the password using either a brute force attack,
or some weakness of the hashing function f . If we
rely on the assumption that f is a dependable secure
hashing function (our system is completly parameter-
ized by the hashing function used so it is a fair as-
sumption) there only remains the question of the brute
force attack. At this point we can note that the attack
is more complicated than just computing a hash and
comparing it to some stored value. Indeed the pub-
lic value is computed from many hashes and is not
instantaneous. We refer the reader to section 4 for
practical results. Another important point to note is
that numbers generated this way are pseudo-random,
and uniformally distributed among numbers that are

the product of two primes otherwise the security as-
sumption on f would be wrong. In the last analysis
the strengh of the system is the same as the strength
of a secure symetric encryption algorithm using the
password as an encryption key regardless of the size
of the key generated.

From a more general point of view it seems that
we loose nothing by limiting the strength of the cryp-
tosystem to the strength of passwords. Indeed in every
day life, even if the cryptosystem used is RSA with
huge keys of length 4096 bits, then the easiest way to
break the cryptosystem is not to try to factorize this
number but to steal the private key that is stored on a
computer or on some device. Even if the private key
is encrypted it all boils down to find a password or
two (one for login and the other one to decrypt the
encrypted private key) to recover it in the vast major-
ity of the cases.

3 RSA KEY GENERATIONS
USING SECURE HASH
FUNCTIONS

In our proof of concept we have used the
Whirlpool hashing function, see (Barreto and Rijmen,
2003) for its formal definition, in order to generate
a RSA key pair (public and private). In a nutshell
(we refer to (Rivest et al., 1978) for the complete
definition of the RSA cryptosystem) we need to pro-
duce to prime numbers p,q. Then let n = pq and
φ(n) = (p−1)(q−1). We need to choose e such that
φ(n) and e are coprime and we have to compute d the
multiplicative inverse of e modulo n. The public key
is the pair e,n and the secret key is the pair d,n. In
practice e is first chosen as the 5th Fermat number (if
it doesn’t work we deterministically chose the closest
number coprime with n starting from it).

Whirlpool is a secure hashing function of the
Miyaguchi-Preneel family and is based on AES (Dae-
men and Rijmen, 1999). Whirlpool produces a digest
of size 512 bits for any message of lenght less than
2256 bits. The idea is to use the password digest as
a sieve to look for a prime number: if the digest is a
prime number it is ok otherwise we add 2 to the digest
(if it is an odd digest of course) until we find the next
prime number.

The first limitation that we have to overcome is the
fixed length of the digest which is 512 bits. In order
to look for bigger prime numbers in a deterministic
way we are going to produce as many 512 bits blocks
as necessary by applying repeatedly Whirlpool to the
password. Since we do not want to repeat the same



block again and again we add the last bit of the pre-
vious to the password to compute the next block. We
call this alogrithm WhirlpoolNBits. It is schemati-
cally presented on figure 1.

Since the RSA keys needs two prime numbers
the process has to be repeated in order to create a
second prime number. One choice is to concatenate
the password with itself as a ’second password’ sent
to WhirlpoolNbits. This method can be used as of-
ten as necessary if more pseudo-random numbers are
needed regarding the cryptosystem considered.

4 NOMADIC PGP

An applet based on this approach has been de-
signed and implemented as a proof of concept. It is
a nomadic version of PGP (Zimmermann, 1995) and
can be used for mail encryption, decryption and au-
thentication. It relies on RSA for the asymetric en-
cryption and twofish, see (Schneier et al., 1999), for
the symetric encryption. The idea of P. Zimermmann
is to combine the best of both worlds: the asymet-
ric encryption is used to encrypt a session key and the
symetric encryption (much faster) use this session key
to encrypt the message. Moreover, as in PGP, there is
a signature mechanism for Nomadic PGP.

4.1 The nomadic PGP applet

The nomadic PGP applet provides three services:

• Key generation: a public key is generated from a
password and a desired key lenght.

• Encryption of messages: with a message and a
public key as input the applet produces an en-
crypted message that can be copy/paste as the mail
to be sent. If the sender desires to sign its message
he also has to give its password as input.

• Decryption of messages: The message to be de-
crypted and the password are given as input. If an
authenticity check is need one also has to input the
public key of the sender. The decrypted message
together with the result of the authenticity check
are displayed.

The Nomadic PGP can be downloaded from
http://membres-lig.imag.fr/prost/NPGP/.

A typicaly use/case scenario is the following.
Suppose that Alice wants to send an e-mail to Bob.
Bob enters his password to generate a public key that
he publishes on his website. Alice copies this pub-
lic key and enters it with her password and the mes-
sage she wants to encrypt in the application. It re-
turns her the encrypted message. Alice copies and

pastes the result on a e-mail client and sends it to Bob.
Bob receives the e-mail, he copies and pastes the en-
crypted message in the application and enters also his
password then it returns him the decrypted message
(he can also gives the public key of Alice to check a
signed message).

We briefly explain how each service of the applet
is implemented in the following sections.

4.2 Encryption

The input for the encryption process consists in a pub-
lic key, a message and a password. The first step is
to generate the secret key as discussed in section 3.
Then, a session key is generated as follows: the con-
catenation of the password, the message and a times-
tamp are hashed into a 256 bit digest using Whirlpool.
This digest is the session key that is going to be used
by twofish to encrypt the message. The output con-
sists of three parts. The first part is the encryption
by RSA of the session key with the public key that
was given as input. The second part is the encryp-
tion by RSA of the pad size: since twofish is 128 bits
block cypher it can be necessary to pad the original
message with useless 0’s, the pad size will allow the
removal of this extra 0’s after decryption. And finally
the third part is the message encrypted with twofish
and the session key. Note that because of the times-
tamp the session key is always different even for two
mails with the same content.

The encryption process is schematically given in
figure 2.

4.3 Decryption

The input for the decryption process consists in the
password with a Nomadic PGP encrypted message.
The firt step is to generate the private key associated
with the password. This private key is used to decrpyt
the first and second parts of the message to recover
the session key and the pad size. The session key is
given and the third part of the message are given as
input to twofish, and the result of twofish is stripped
off the unnecessary 0’s thanks to the pad size.

The decryption process is given in figure 3.

4.4 Digital signature with nomadic PGP

Nomadic PGP includes a simple digital signature
mechanism. During the encryption the user has to
provide its password in order to generate its private
key. Then a digest of the message is computed using
Whirlpool and this digest is encrypted with RSA and
the private key of the sender. The encrypted digest is



Figure 1: WhirlpoolNBits algorithm

Figure 2: Encrytion process

appended to the message to be sent. On the receiv-
ing end, the message, the password of the recipient
and the public key of the sender are needed. The de-
cryption is performed as described in section 4.3. The
public key of the sender is used to decrypt the last part
of the message which is compare to the digest of the
decrypted message. If it matches then the signature is
valid.

The signature scenario is schematically depicted
in figure 4.

5 CONCLUSION

We have proposed and implemented a nomadic
PGP including a basic signature scheme. Instead of
having to deal with a private key management (where
to store the private key, how to protect it etc.), the user
has only to remember a password in order to gener-

ate its private key and to cypher/decypher messages.
Moreover, the key generation as well as the cryp-
tographic system are implemented as a java applet.
Thus Nomadic PGP is platform independant and can
be used anywhere without requiring specific software
environment. This provides a fully nomadic crypto-
graphic solution.

From a security point of view it appears that the
reduction of the strength of cryptographic systems to
the strength of a, humanly memorizable, password
is realistic. Indeed most platforms, especially mail
servers, cloud services and so on are protected by
password mechanisms and if a more complicated key
is need it is most probably going to be stored in a
place protected by a password. We think that the de-
velopment of frameworks allowing detemernistic and
non reversible generation of complicated keys (espe-
cially in the case of public cryptography and its uses
for communication and certification) is the path to fol-



Figure 3: Decryption process

Figure 4: Signature process

low in a world where nomadic behavior takes more
and more place in our every day life. An interesting
field of application would be a Voice over IP solution
based on those lines.

REFERENCES

Barreto, P. and Rijmen, V. (2003). The whirlpool hashing
function. http://www.larc.usp.br/˜pbarreto/
WhirlpoolPage.html.

Daemen, J. and Rijmen, V. (1999). Aes proposal: Ri-
jndael. AES Algorithm Submission. http://www.
cryptosoft.de/docs/Rijndael.pdf.

ElGamal, T. (1985). A public-key cryptosystem and a sig-
nature scheme based on discrete logarithm. IEEE
Transactions on Information Theory, 31(4).

Kleinjung, T., Aoki, K., Lenstra, A., Thomé, E., Bos, J.,
Gaudry, P., Kruppa, A., Montgomery, P., Osvik, D.,
Riele, H., Timofeev, A., and Zimmermann, P. (2010).
Factorization of a 768-bit rsa modulus. Cryptology
ePrint Archive, Report 2010/006. http://eprint.
iacr.org/.

Rivest, R., Shamir, A., and Adleman, L. (1978). A method
for obtaining digital signatures and public-key cryp-
tosystems. Communications of the ACM, 21(2):120–
126.

Schneier, B. (2003). Beyond Fear. Thnking Sensibly about
Security in an Uncertain World. Springer Verlag.

Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C.,
and Ferguson, N. (1999). The Twofish Encryption Al-
gorithm: A 128-Bit Block Cipher. Wiley.

Zimmermann, P. (1995). The Official PGP User’s Guide.
MIT Press.






	001cover
	02
	Prost_Terras
	03
	04

