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Summary

A valuation of a local domain (R,m) is the datum of a valuation ring (Rν ,mν)
of the fraction field K of R, containing R. We say that the valuation is centered
in m if (R,m) is dominated by (Rν ,mν) (i.e., mν ∩ R = m). The valuation is
rational if the corresponding residue fields extension is trivial. This text deals
mostly with the local uniformization of a class of valuations of equicharacteristic
noetherian excellent local domains with an algebraically closed residue field.
The focus is on local uniformization of rational valuations. The problem of
local uniformization of a valuation is to show the existence of a regular local
ring R′ essentially of finite type over R and dominated by Rν . Embedded
local uniformization requires in addition that R′ should be obtained as strict
transform of R in a birational morphism, essentially of finite type, of regular
local rings S → S′ having respectively R and R′ as quotients.

When the residue field k of R is algebraically closed rational valuations,
which correspond to the k-rational points of the Riemann-Zariski manifold of
valuations centered in R, concentrate the difficulty of local uniformization.

Given an equicharacteristic complete noetherian local ring R with alge-
braically closed residue field k, we first present a combinatorial proof of embedded
local uniformization for rational valuations of R whose associated graded ring
grνR with respect to the filtration defined by the valuation is a finitely generated
k-algebra. The main idea here is that some of the birational toric maps which
provide embedded pseudo-resolutions for the affine toric variety corresponding
to grνR also provide local uniformizations for ν on R. These valuations are
necessarily Abhyankar (for rational valuations this means that the value group
is Zr with r = dimR).
In a second part we show that conversely, given an excellent noetherian equichar-
acteristic local domain R with algebraically closed residue field, if the rational
valuation ν of R is Abhyankar, there are local domains R′ which are essentially
of finite type over R and dominated by Rν (ν-modifications of R) such that
the semigroup of values of ν on R′ is finitely generated, and therefore so is the
k-algebra grνR

′. Combining the two results and using the fact that Abhyankar
valuations behave well under completion gives a proof of local uniformization
for rational Abhyankar valuations and, by a specialization argument, for all Ab-
hyankar valuations. This result is closely related to the work of Knaf-Kühlmann
proving a field-theoretic version of local uniformization for Abhyankar valuations
of algebraic function fields, as well as to the work of M. Temkin on inseparable
local uniformization, which in particular proves local uniformization for Ab-
hyankar valuations of algebraic function fields and also uses toroidal methods.
A consequence in valuation theory is that for the excellent local domains we
study, it is equivalent for a rational valuation to be Abhyankar and to be quasi
monomial, a fact which was first shown to be true by Dale Cutkosky for rank one
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valuations of algebraic function fields assuming embedded resolution of singular-
ities. In any characteristic and for arbitrary Abhyankar valuations of algebraic
function fields separable over the base field, it is a consequence of the more
recent work of Knaf-Kühlmann mentioned above.

As by-products we obtain results on the defectlessness of rational Abhyankar
valuations of the field k((x1, . . . , xr)) and a description of the valuation ring of
a rational Abhyankar valuation as an inductive limit indexed by N of birational
toric maps of regular local rings. This is used to prove an analogue for rational
Abhyankar valuations on the rings of hypersurfaces of Abhyankar’s irreducibility
criterion for plane curves. We also give a characterization of the semigroups
of rational Abhyankar valuations of hypersurfaces which generalizes the plane
branch case.

Two sections propose comments on the use of key polynomials in the proof
and in the study of Artin-Schreier extensions. In the conclusion we place the
result in the perspective of toric embedded local resolution of singularities after
an appropriate re-embedding.

0 Introduction

After [76], this is the second stage of an attempt to prove that every singularity
(X, 0) over an algebraically closed field can be embedded in an affine space
AN (k) over that field in such a way that there exist a system of coordinates,
making AN (k) a toric variety such that the intersection of X with the torus
is dense in X , and a toric proper and birational map of non singular toric
varieties Z → AN (k) such that the strict transform of (X, 0) is non singular
and transversal to the toric boundary.
The first purpose of this paper is to realize a part of the program for local
uniformization of valuations of excellent equicharacteristic local rings with an
algebraically closed residue field proposed in [76], in the special case of a com-
plete local domain (R,m) and a valuation whose semigroup of values is finitely
generated .

The main point is that the formal space corresponding to the local ring
can be embedded in an affine space over the residue field k = R/m in such a
way that its strict transform under a single toric birational modification of the
ambient space is non singular at the point picked by the valuation. This is the
”local uniformization” avatar, in the special case considered here, of the ”toric
embedded resolution” problem just mentioned and explained in [77], [78]. It
has recently been solved for projective varieties, assuming embedded resolution
of singularities, by Jenia Tevelev (see [80] and the conclusion of this paper).

Let us fix a valuation ν with ring Rν on a noetherian equicharacteristic local
domain (R,m), and assume that it is centered in m.
Set kν = Rν/mν and recall Abhyankar’s inequality r(ν) + trkkν ≤ dimR, where
r(ν) is the rational rank of the totally ordered abelian group Φ of values of the
valuation ν, and trkkν is the transcendence degree of the residue fields extension,
also called the dimension of the valuation (see [81], Théorème 9.2). We say that
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our valuation is rational if kν = k. We then have r(ν) ≤ dimR. Abhyankar
valuations are defined as those for which Abhyankar’s inequality is an equality
and it is known (see loc.cit.) that this implies Φ ∼= Zr(ν). In the case where
R is a k-algebra with residue field k the rationality condition means that the
centers of ν in all birational models proper over SpecR are closed points which
are rational over k, hence the name. A rational valuation on R is Abhyankar
when Φ ∼= ZdimR.
Denote by Γ = ν(R \ {0}) ⊂ Φ≥0 = Φ+∪{0} the semigroup of values of ν on R.
The semigroup Γ is well ordered since R is noetherian and so we can denote by
Γ = 〈(γi)i∈I〉 its minimal set of generators, indexed by an ordinal I ≤ ωh where
h is the real (or Archimedean) rank, of the valuation, also called its height (see
[76], corollary 3.10).

If we agree that ν(0) = +∞, an element larger than any element of Φ, for
any subring R ⊆ Rν , noetherian or not, the valuation ν defines a filtration of
R by the ideals Pφ(R) = {x ∈ R|ν(x) ≥ φ},P+

φ (R) = {x ∈ R|ν(x) > φ} and an
associated graded ring

grνR =
⊕

φ∈Φ≥0

Pφ(R)/P+
φ (R).

Note that Pφ(R) = R if φ /∈ Φ+ and that the sum on the right is actually
indexed by Γ. If Γ is well ordered, the ideal P+

φ (R) is equal to Pφ+(R), where

φ+ = min{ψ ∈ Γ|ψ > φ} is the successor of φ in Γ.
It is shown in ([76], 2.3) that even without the assumption of rationality

there a faithfully flat specialization of the ring R to grνR.
If the valuation is rational, each non zero homogeneous component of the k-
algebra grνR is a one-dimensional vector space over k and the algebra is gen-
erated by elements ξi whose degrees γi generate the semigroup Γ (see [76], §4).
In particular it is finitely generated if and only if the semigroup Γ is. Thus
(see loc.cit), when the valuation is rational this graded ring is the quotient of a
polynomial algebra (possibly in infinitely many variables) k[(Ui)i∈I ] by a prime

binomial ideal (Um
ℓ

−λmℓnℓUn
ℓ

)ℓ∈L, and is isomorphic to the semigroup algebra
over k of the value semigroup Γ.
Assuming again that R is noetherian, by a theorem of Piltant (see [76], propo-
sition 3.1) for zero dimensional valuations the Krull dimension of the ring grνR,
which is not necessarily noetherian, is equal to r(ν). Thus, for zero dimensional
valuations we have the inequality dimgrνR ≤ dimR and among them Abhyankar
valuations are characterized1by the equality dimgrνR = dimR.

The constants λℓ which appear in the binomial equations reflect the fact
that the incarnation of SpecgrνR in the affine space with coordinates (Ui)i∈I is
isomorphic to the closure of the orbit of a point under the action of the torus k∗r,
but there is no canonical choice of the point, just as there is no canonical choice
of a system of generators of the k-algebra grνR. Once a system of generators
is fixed, these constants have a geometric interpretation in terms of coordinates

1A typical example where strict inequality holds is due to Zariski and analyzed from the
viewpoint of this paper in [76], Example 4.20.
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in an affine chart of the point picked by the valuation in a toric modification of
our ring (see [76], remark 5.12).

According to ([76], 4.3), grνR contains finitely generated k-algebras of the

form GF = k[(Ui)i∈F ]/(Um
ℓ

− λmℓnℓUn
ℓ

)ℓ∈L(F ) where Um represents a mono-
mial in the Ui and λmn ∈ k∗. These algebras correspond to affine toric varieties
and in addition they are endowed with a weight on the variables Ui given by
w(Ui) = ν(ξi) = γi, where ξi is any element of R whose image in the associated

graded ring is Ui. This weight makes all the binomial equations Um
ℓ

−λmℓnℓUn
ℓ

homogeneous.
For sufficiently large finite sets F as above the representatives ξi of the ξi for

i ∈ F generate the maximal ideal of R and so correspond to an affine embedding
X ⊂ AN(F )(k) of the formal space corresponding to R in the space in which the
affine toric variety SpecGF is naturally embedded. Assume that R is complete.
A basic idea in [76] is that when the field k is algebraically closed, for suitably
large sets F some of the birational toric maps Z → AN(F )(k) producing as in
[33] and ([76], 6.2) an embedded resolution of the toric variety SpecGF , when
applied to X , will induce a local uniformization of the valuation ν of R.

In particular, if the semigroup Γ itself is finitely generated, some of the toric
maps resolving the singularities of the affine toric variety corresponding to grνR
should induce, when applied to generators (ξi)i∈F of the maximal ideal of R
whose initial forms generate grνR, a local uniformization of ν. This is what
is proved in the first part of this paper, with the modification that the toric
maps we find only induce pseudo-resolutions (defined just before proposition
2.3 below) of the affine toric variety..

Taking as in [76] the point of view that R is a deformation of its associated
graded ring grνR, we start from the fact that the affine variety defined by a

prime ideal generated by binomials um
ℓ

− λℓu
nℓ

of k[(Ui)i∈F ], with constants
λℓ ∈ k∗, is a toric variety and therefore has, over any algebraically closed field
k, toric embedded resolutions of singularities described in [33] from an intrinsic
and general viewpoint and in ([76], 6.2) from the equational viewpoint, which is
more adapted here since we deform equations. Given a weight on the polynomial
or power series ring which is compatible with the binomials, we define a class
of deformations of such affine toric varieties and their formal completions at
the origin, which is determined by equidimensionality of the fibers and weight
conditions. These deformations have the property that the monomial order
induced by the weight determines a unique valuation on the ring R of the general
fiber of the deformation. Then, some of the toric (pseudo-)resolutions of the
affine toric varieties extend to local uniformizations of this valuation. It is
shown in section 4 that any complete equicharacteristic local ring with a rational
valuation such that the associated graded ring is a finitely generated algebra can
be obtained in this way. The idea underlying [76] is that every rational valuation
of a complete noetherian equicharacteristic local domain can be obtained by
overweight deformation from a weighted affine toric variety (possibly of infinite
embedding dimension).
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It is a general principle in singularity theory that adding to equations terms
of ”higher weight” tends to preserve geometric features at the origin of the
zero set of these equations. Here we deal with the behavior of strict transforms
under toric modifications and it is a combinatorial problem on exponents, which
is somewhat more complicated when the weights take value in a totally ordered
group of rank > 1.

In a second part we show that when R is complete with an algebraically
closed residue field the condition that the value semigroup of the rational val-
uation ν on a ν-modification2 of R is finitely generated is equivalent to the
valuation being Abhyankar. Here the key ingredients are the equational version
of the smoothness over SpecZ of the torus of the toric variety SpecZ[tΓ], and
the version of key polynomials provided for Abhyankar valuations by the valu-
ative Cohen theorem of section 3. The first ingredient allows us to find, after
a suitable birational ν-modification (R,m) → (R′,m′) of our original ring, an
injection of complete local rings k[[x′1, . . . , x

′
r]] ⊂ R̂′m′

which is finite, and such
that the extension of the value groups of their fraction fields is tame, in the
usual sense that its index is not divisible by the characteristic of the residue
field. It may be very different from the injection corresponding to r elements
of a well chosen minimal set of generators of the maximal ideal of R̂′m′

, as one
sees in remark 6.19. This puts us in position to build key polynomials thanks to
the valuative Cohen theorem, and we use them to produce a contradiction from
the assumption that the semigroup of our Abhyankar valuation is not finitely
generated. The proof also shows that the fraction fields extension corresponding
to the finite tame injection has to be separable.

The good behavior of Abhyankar valuations under completion (see subsec-
tion 6.2) allows us to deduce the same result of finite generation after a ν-
modification for an excellent equicharacteristic local domain R, and finally to
obtain local uniformization of rational Abhyankar valuations, using the result of
the first part. By a specialization argument, the local uniformization of rational
Abhyankar valuations of R implies the local uniformization of all Abhyankar
valuations of R.

Three sections illustrate the use of the valuative Cohen theorem in the study
of the Ostrowski defect of valued field extensions, the construction of key poly-
nomials, and the Artin-Schreier example.

1 Weighted affine toric varieties

Let k be a field and Φ a totally ordered abelian group of finite rational rank r.

Definition 1.1. 1) A weight on the rings k[U1, . . . , UN ] or k[[U1, . . . , UN ]] is an
homomorphism of groups b : ZN → Φ which is induced by an homomorphism of
semigroups NN → Φ≥0. It defines a weight on monomials by w(Um) = b(m) and

2This means the ring obtained by localizing a birational modification essentially of finite
type (which we may assume to be a blowing-up) of SpecR at the point picked by the valuation
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an additive total preorder (or monomial preorder) by Um ≤ Un ↔ b(m) ≤ b(n).
We shall often write also w(m) instead of b(m) for w(Um).
2) In this text we shall assume that the weight is non trivial, which means that
the homomorphism is not zero. The set {w(Ui)}1≤i≤N is well ordered since it is
finite, and by a result of B.H. Neumann (see [61]) the subsemigroup of Φ+ that
it generates is also well ordered. The weight of a series is the least weight of its
terms.

Remark 1.2. A weight on k[U1, . . . , UN ] or k[[U1, . . . , UN ]] determines a monomial
valuation by

νw(P ) = w(P ) = minm∈E(P )w(Um) when P = Σm∈E(P )cmUm, cm ∈ k∗.

Provided that w(Ui) > 0 for i = 1, . . . , N , the valuation is rational. and conversely a
monomial rational valuation on such a ring endowed with a coordinate system deter-
mines a weight with w(Ui) > 0 for all i.

This rather general situation can be reduced to a more familiar one thanks
to the following result:

Proposition 1.3. (see [76], proposition 4.12)3 Let Φ+ be the positive semigroup
of a totally ordered abelian group of finite rational rank r. Choose r rationally
independent elements in Φ+ and let Nr

(0) ⊂ Φ≥0 be the free subsemigroup they

generate. Then Φ≥0 is the union of a family (Nr
(h))h∈N, of nested free subsemi-

groups of rank r:

Nr
(0) ⊂ · · · ⊂ Nr

(h) ⊂ Nr
(h+1) ⊂ · · · ⊂ Φ≥0,

the inclusions being semigroup maps.

As explained in loc.cit., this result and the algorithmic aspect of its proof
can be viewed as an extension of the Jacobi-Perron algorithm for approximating
directions of vectors in RN by directions of integral vectors.

Since the image b(NN ) of the weight map is a finitely generated subsemi-
group of Φ≥0 it is contained in some free subsemigroup Nr

(h) ⊂ Φ≥0 and the
subgroup of Φ which this image generates is finitely generated and free of rank
r′ ≤ r, totally ordered by the order of Φ. Renaming r′ into r we may and will as-
sume in the sequel that Φ = Zr with a total order and that the map b : ZN → Zr

is surjective.
Of course we do not need proposition 1.3 to obtain this, since by construction

the image of the map b is finitely generated and torsion-free. The placement of
the semigroup b(NN ) in the sequence of the Nr

(h) will be useful later.

3In [76], 4.3, it is implicit that the family has a smallest element, the semigroup generated
by the chosen rationally independent elements, and that the nested sequence is indexed by
N. It is made explicit here. Since [76] was published, I have learnt that a version (without
the nestedness and the algorithmic aspect) of this result is due to George A. Elliott; see
[21]. Hagen Knaf and Franz-Viktor Kühlmann have remarked (see [49], Lemma 15.4 and
[46], Lemma 4.2 and the lines above it) that Theorem 1 in Zariski’s paper [87] can also be
interpreted as a result of the same nature for groups of rank one. A version of Elliott’s result
also appears in the more recent paper ([79], Appendix) of M. Temkin.
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Recall the following corollary of proposition 1.3; here a term is the product of
a monomial by a nonzero constant:

Corollary 1.4. (see [76], proposition 4.15) Let Rν be the valuation ring of a
valuation with value group Φ, of finite rational rank r. Choose r homogeneous

elements x
(0)
1 , . . . , x

(0)
r ∈ grνRν whose valuations are rationally independent.

The graded algebra grνRν is the union of a nested family of polynomial algebras
in r variables over kν = Rν/mν with maps between them sending each variable
to a term:

kν [x
(0)
1 , . . . , x(0)r ] ⊂ . . . ⊂ kν [x

(h)
1 , . . . , x(h)r ] ⊂ kν [x

(h+1)
1 , . . . , x(h+1)

r ] ⊂ . . . ⊂ grνRν .

These subalgebras are the semigroup algebras of nested free subsemigroups
of the non negative part Φ≥0 of Φ.

As was observed in [76], 4.3, this corollary can be viewed as a graded version
of local uniformization: a finitely generated graded kν-subalgebra of grνRν is
contained in a polynomial (i.e., graded regular) subalgebra.

Remark 1.5. In the case which will interest us most here, the group Φ is Z
r and then

there exists an integer h0 such that for h ≥ h0 the maps N
r
(h) ⊂ Z

r are unimodular,
since the indices of the images in Φ of the groups Z

r
(h) decrease as h increases and

must eventually become one. Of course if we can take the r rationally independent
elements to be a basis of Z

r we have h0 = 0.
In the language of corollary 1.4 unimodularity means the corresponding inclusions

of polynomial rings are, up to a homothety on each variable x
(h)
k , birational toric maps.

We now recall some facts which can be found in [74] and [19]. Denoting by
ei the i-th basis vector of ZN and setting γi = b(ei) ∈ Zr, we may consider
the semigroup Γ generated by γ1, . . . , γN and the toric variety X0 = Speck[tΓ]
where k[tΓ] is the semigroup algebra with coefficients in k. It is the closure of
the orbit of the point (1, 1, . . . , 1) ∈ AN (k) under the action of the torus k∗r

determined by (t, z1, . . . , zN ) 7→ (tγ1z1, . . . , t
γN zN) with t = (t1, . . . , tr) ∈ k∗r

and tγj = t
γj1
1 ...t

γjr
r

Denoting by L the lattice which is the kernel of b, we may choose a system
of generators (mℓ − nℓ)ℓ∈L for L, where mℓ and −nℓ are respectively the non
negative and negative part of the vector mℓ−nℓ so that the entries of mℓ and nℓ

are non negative, and which is such that the ideal F0 of k[U1, . . . , UN ] generated

by the (Um
ℓ

− Un
ℓ

)ℓ∈L is a prime binomial ideal defining the embedding X0 ⊂
AN (k).
We note that the vectors mℓ−nℓ do not in general constitute a minimal system
of generators of L. (See [19], corollary 2.3.)

In this way a surjective weight map b : ZN → Zr determines an affine toric
variety corresponding to the affine semigroup Γ = b(NN). This is what we call
a weighted affine toric variety. If k is algebraically closed, any reduced and
irreducible affine toric variety in AN (k) can be obtained in this way; its prime
binomial ideal corresponds to a system of generators of the saturated lattice
L ⊂ ZN (see [19], Theorem 2.1) and so to a surjective map b : ZN → Zr = ZN/L

8



and it suffices to choose a total monomial order on Zr such that b(NN ) ⊆ Zr≥0

to obtain a weight.
Thus, the datum of a weight is equivalent to the datum of a total monomial
preorder on ZN such that NN ⊆ ZN≥0, the lattice L appearing at the lattice of
elements preorder-equivalent to 0.
The Krull dimension of k[tΓ] is equal to r; it is the dimension of X0.

2 Overweight deformations of prime binomial

ideals

Let w be a weight on a polynomial or power series ring over a field k, with values
in the positive part Φ≥0 of a totally ordered group Φ of finite rational rank.

Let us consider the power series case and the ring S = k[[u1, . . . , uN ]]. Con-
sider the filtration of S indexed by Φ+ and determined by the ideals Qφ of
elements of weight ≥ φ, where the weight of a series is the minimum weight of
a monomial appearing in it. Defining similarly Q+

φ as the ideal of elements of
weight > φ, the graded ring associated to this filtration is the polynomial ring

⊕

φ∈Φ≥0

Qφ/Q
+
φ = k[U1, . . . , UN ],

with Ui = inwui, graded by degUi = w(ui).

Definition 2.1. Given a weight w as above, a (finite dimensional) overweight

deformation4 is the datum of a prime binomial ideal (um
ℓ

−λℓu
nℓ

)1≤ℓ≤s, λℓ ∈ k∗,
of S = k[[u1, . . . , uN ]] such that the vectors mℓ − nℓ ∈ ZN generate the lattice
of relations between the γi = w(ui), and of series

(OD)

F1 = um
1

− λ1u
n1

+ Σw(p)>w(m1)c
(1)
p up

F2 = um
2

− λ2u
n2

+ Σw(p)>w(m2)c
(2)
p up

.....

Fℓ = um
ℓ

− λℓu
nℓ

+ Σw(p)>w(mℓ)c
(ℓ)
p up

.....

Fs = um
s

− λsu
ns

+ Σw(p)>w(ms)c
(s)
p up

in k[[u1, . . . , uN ]] such that, with respect to the monomial order determined by
w, they form a standard basis for the ideal which they generate: their initial
forms generate the ideal of initial forms of elements of that ideal.

Here we have written w(p) for w(up) and the coefficients c
(ℓ)
p are in k.

Let us denote by X the formal subspace of AN (k) defined by the ideal
F = (F1, . . . , Fs).

4As far as I know, overweight (and underweight) deformations of binomial ideals were
considered for the first time by Henry Pinkham in his PhD thesis [63] under the name of
deformations of negative (resp. positive) weight with respect to a natural action of the mul-
tiplicative group k∗ on the basis of a miniversal deformation of a monomial curve.
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Remark 2.2. A prime binomial ideal F0 in k[u1, . . . , uN ] remains prime after exten-
sion to k[[u1, . . . , uN ]] because the completion of k[u1, . . . , uN ]/F0 is the completion of
the local ring of the toric variety at the point picked by the weight, which is the origin
(closed orbit). This completion is an integral domain because its associated graded ring
with respect to the filtration determined by the weight is an integral domain, the ring
of the affine toric variety. See also [30], Lemma 1.

Recall from ([76], 6.2) and [33] that the difference between a pseudo-resolution
and a resolution of singularities is that the pseudo-resolution is not required to
induce an isomorphism outside of the singular locus.

Proposition 2.3. a) Assuming that w(ui) > 0 for i = 1, . . . , N , an overweight
deformation determines a rational valuation ν of the ring R = S/(F1, . . . , Fs)
with value group Φ, and the associated graded ring of R is

grνR = k[U1, . . . , UN ]/(Um
1

− λ1U
n1

, . . . , Um
s

− λsU
ns

).

The associated graded map associated to the surjective map π : S → R, the
filtration by weight on S and the filtration associated to the valuation ν on R,
is the surjective map

grwπ : grwS = k[U1, . . . , UN ] → k[U1, . . . , UN ]/(Um1

−λ1U
n1

, . . . , Ums

−λsU
ns

) = grνR.

b) Assuming that k is algebraically closed, there exist birational toric maps
π(Σ): Z(Σ) → AN (k) which are embedded pseudo-resolutions of the irreducible
affine binomial variety SpecgrνR and such that the strict transform by π(Σ) of
X ⊂ AN (k) is regular and transversal to the toric boundary at the point picked
by ν.

Before entering the proof, let us point out the:

Corollary 2.4. The ring R = S/F determined by an overweight deformation
of a prime binomial ideal is an integral domain of the same dimension as the
toric variety corresponding to the binomial ideal. In particular, the valuation ν
is Abhyankar: the rational rank of its value group is equal to the dimension of
R.

Proof. Proof of a) and comments:
Let us consider the group of rank one Φ1 which is a quotient of Φ by its largest
non trivial convex subgroup. By composition the weight w gives rise to a weight
w1 with values in the rank one group Φ1. Let us denote by p1 the ideal of
elements of S whose w1 weight is > 0. If the preimages in S of an element
x have unbounded weights, there is a sequence of such pre-images whose w1

weights tend to infinity, say x̃i ∈ Qφ1(i) with φ1(i) tending to infinity with i in
Φ1. Since the intersection

⋂

φ1∈Φ1+
Qφ1 is zero and S/F is a complete noetherian

local ring, by Chevalley’s theorem (see [76], section 5, and [5], Chap. IV, §2,
No. 5, Cor.4), we have a sequence of integers T (φ1) tending to infinity with φ1
and such that Qφ1(i) ⊂ F + m̃T (φ1(i)) for all i, where m̃ is the maximal ideal of
S. Therefore the images in R of the elements of the sequence x̃i tend to 0 in
the m-adic topology which contradicts the fact that they are all equal to x 6= 0.
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Therefore the inverse images in S of a non zero element of R have bounded
weight.

Let now ν(x) be the smallest element of the set

{φ ∈ Φ|w(x̃) ≤ φ if x̃ mod.F = x}.

This minimum exists since the weights of the elements of the noetherian ring
S form a well ordered subset of Φ, and we have just proved that this set is not
empty.

Let us prove by induction on the rank of Φ that given x ∈ R there exists a
pre-image x̃ ∈ S such that w(x̃) = ν(x): assume that the rank of Φ is one; then
the number of elements of Φ+ that are less than ν(x) is finite and therefore so
is the number of the weights of elements of S that are ≤ ν(x). So the maximum
weight of those whose image in R is x is attained and then it has to be equal to
ν(x). If the rank of Φ is > 1, let Φh−1 be the quotient of Φ by its smallest non
zero convex subgroup. Let wh−1 be the corresponding weight. By induction we
may assume that there exists an element x̃ ∈ S whose weight is the image of
ν(x) in Φh−1. Let w(x̃) ∈ Φ be the weight of this element. Again the number
of weights of elements of S that are between w(x̃) and ν(x) is finite since they
have the same image in Φh−1 (see the proof of Lemma 3 of [89], Appendix 3, or
[76], proposition 3.17), so the maximum is attained and then must be equal to
ν(x).

This map x 7→ ν(x) clearly satisfies the inequalities ν(x + y) ≥ min(ν(x), ν(y))
and ν(xy) ≥ ν(x) + ν(y). Thus, we have defined an order function on R. To
prove that it is a valuation is to prove that the second inequality is an equality,
and we argue as follows:
The order function ν determines a filtration of R by ideals just as a valuation
does, and the associated graded ring is an integral domain if and only if the
order function is a valuation. By construction the associated graded ring grνR
of R with respect to this filtration is a quotient of the associated graded ring
k[U1, . . . , UN ] of S with respect to the weight filtration. Indeed if we denote by
Qφ the ideal of elements of weight ≥ φ in S, we see that by definition of ν it
maps onto the ideal of elements of R which are of order ≥ φ.

The ideal F0 defining the quotient is the ideal of k[U1, . . . , UN ] generated by
the initial forms of the elements of F with respect to the weight filtration of S.

Since by hypothesis this initial ideal is generated by the binomials Um
ℓ

−λℓU
nℓ

,
the graded algebra grνR is equal to k[U1, . . . , UN ]/F0. It is therefore an integral
domain, which shows that the order function ν is actually a valuation. �

Remarks 2.5. 1. This applies in particular to the trivial overweight deformation:
a positive weight which is such that the binomials correspond to generators of
the relations between the w(ui) induces a rational valuation on the ring of the
associated toric variety.

2. This proof does not use the fact that S is noetherian, but only the fact that R is
and that the semigroup generated by the weights of the variables is well ordered.
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So corollary 2.4 holds also in that case. We shall use this below in the proof of
proposition 6.11. We will also need the following, which does not use the fact
that S is noetherian either:

Proposition 2.6. With the notations of proposition 2.3, given x ∈ R and a
preimage x̃ ∈ S of x, the equality ν(x) = w(x̃) holds if and only if inwx̃ /∈ F0 =
Kergrwπ.

Proof. We have w(x̃) < ν(x) if and only if there exists x̂ ∈ S with x̃ − x̂ ∈ F
and w(x̂) > w(x̃). But then by construction inw(x̃ − x̂) = inw(x̃) has to be in
the binomial ideal F0 = inwF . Conversely, if inwx̃ ∈ F0, it is the initial form of
an element x̃− x̂ ∈ F with w(x̂) > w(x̃). �

Example 2.7. Consider the binomial ideal generated by u22 − u31, u
2
3 − u51u2 in

S = k[[u1, u2, u3]] with w(u1) = 4, w(u2) = 6, w(u3) = 13, and the overweight
deformation F1 = u22 − u31 − u3, F2 = u23 − u51u2. The image in S/(F1, F2) of
the element u22 − u31 has a representative u22 − u31 ∈ S of weight 12 and another
one, u3 ∈ S which is of weight 13 and gives the maximum since its initial form
is not in the binomial ideal.

Definition 2.8. In the situation of proposition 2.3, we shall say that the

pair (R, ν) is an overweight deformation of the ring k[[u1, . . . , uN ]]/((um
ℓ

−

λℓu
nℓ

)1≤ℓ≤s) equipped with the weight induced by w. By abuse of language we
shall also say that it is an overweight deformation of its associated graded ring
grνR, of which the previous one is the completion.

Remarks 2.9. 1. In Theorem 3.12 below, we shall use the concept of overweight
deformation in a wider context, where we may have weights on infinitely many
variables, and deform infinitely many binomial equations generating a prime
ideal by adding to each one a series of terms of strictly greater weight in such a
way that the w-initial ideal of the ideal generated by the deformed equations is
equal to the original binomial ideal.

2. The notion of overweight deformation5 extends to any system of equations that
are homogeneous with respect to the given weight. Whenever the ideal they gen-
erate is prime, the procedure above produces a valuation of the quotient ring of
the power series ring by the ideal created by overweight deformation. This valu-
ation is not rational in general. In this text we concentrate on the extension of
a resolution of singularities and therefore make an appropriate assumption on
the homogeneous ideal.

Proof of b) and comments:
We want to find a regular Σ fan subdividing ŘN

+ , compatible with the hyper-
planes Hℓ, and a cone σ ∈ Σ such that the strict transform of each Fℓ by the
corresponding monomial map π∗(σ) : k[[u1, . . . , uN ]] → k[[y1, . . . , yN ]] is a de-
formation of the strict transform of its initial form at the point of the strict

5I have just learnt that a similar definition of an order function on a quotient is used
independently by Ebeling and Gusein-Zade in [18] for the purpose of computing Poincaré
series.
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transform X ′ of our formal space X determined by the valuation. As we shall
see, this will ensure the nonsingularity of X ′ at that point.

The idea to prove b) is very simple to explain in the case where the value group
Φ (or the order on Zr) is of rank one and we consider the case of a single
equation

F = um − λun +
∑

w(p)>w(m)

cpu
p.

Let
E′ = 〈{p− n/cp 6= 0},m− n〉 ⊂ RN ,

where as above 〈a, b, ...〉 denotes the cone generated by a, b, .... Since there may
be infinitely many exponents p, the smallest closed convex cone containing E′

may not be rational. However, the power series ring being noetherian, there
exist finitely many exponents (pf − n)f∈F as above, with F finite, such that E′

is contained in the rational cone E generated by m−n, the vectors (pf −n)f∈F
and the basis vectors of RN . This cone is strictly convex because all its elements
have a strictly positive weight except the positive multiples of m− n.
Since the order is of rank one, we can fix an ordered embedding of Zr in Ř
and define6 the weight vector w = (w(u1), . . . , w(uN )) ∈ ŘN . The weight of a
monomial um is then the evaluation, or scalar product, 〈w,m〉.

Given a regular cone σ = 〈a1, . . . , aN 〉 ⊂ ŘN
≥0, set Z(σ) = Speck[σ̌ ∩M ].

The map Z(σ) → AN (k) corresponding to the inclusion k[RN
≥0∩M ] ⊂ k[σ̌∩M ]

is monomial and birational, and we write it as:

ui 7−→ y
a1i
1 . . . y

aNi
N , 1 ≤ i ≤ N,

where the yj are generators of the polynomial algebra k[σ̌ ∩M ] and the matrix
with column vectors ak corresponds to the expression of the basis vectors of RN

in the basis given by the generating vectors of the cone σ̌.
More precisely:
To the regular fan Σ with support ŘN

≥0 corresponds a proper and birational

toric map of non singular toric varieties π(Σ): Z(Σ) → AN (k) . To each cone
of maximal dimension σ = 〈a1, . . . , aN 〉 corresponds a chart Z(σ) of Z(Σ) which
is isomorphic to AN (k). If we choose adapted coordinates y1, . . . , yN in that
chart, the restriction

π(σ) : Z(σ) → AN (k)

is described by monomials as above and so for each monomial um we have

um 7−→ y
〈a1,m〉
1 · · · y

〈aN ,m〉
N ,

where 〈ai,m〉 =
∑N

j=1 a
i
jmj .

6The dual is there to conform to toric tradition.
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Remarking that the monomial map tells us that we have the equality of vectors

w =

N
∑

i=1

w(yi)a
i,

we see that the center of the valuation ν of S determined by the weight w is
in Z(σ) if and only if the weights w(yi), which are uniquely determined by the
monomial map since the aj form a basis, are all ≥ 0, which is equivalent to the
condition that w ∈ σ.

The vector w is in the hyperplane H of ŘN dual to the vector m− n; this
implies that the weight w(yi) is > 0 only if 〈ai,m − n〉 = 0. It also implies in
view of our overweight hypothesis that w lies in the interior of the intersection
with H of the convex dual Ě of E, which is of dimension N as we saw above.
The intersection Ě∩H is of dimension N−1 because the only vector space which
can be contained in the cone E+R(m−n) = 〈{p−n/cp 6= 0},m−n, n−m〉 is
R(m− n). By convex duality, this means that Ě ∩H , which is the convex dual
of E + R(m− n) cannot be contained in a linear subspace smaller that H .
Recall that a fan Σ is said to be compatible with a rational convex cone C ⊂ ŘN

if the intersection of any cone σ ∈ Σ with C is a face of σ (which may be {0}
or σ). So if Σ is a regular subdivision of ŘN

≥0 which is compatible with H and

Ě it will contain a regular cone σ of dimension N whose intersection with H is
of dimension N − 1, which contains w and is contained in Ě.

As a first step, let us examine the transforms in the charts Z(σ) correspond-
ing to cones σ = 〈a1, . . . , aN〉 which contain w and are compatible with Ě and
H .

• We may assume that a1, . . . , at are those among the aj which lie in the
hyperplane H . Because our fan is compatible with H, the convex cone σ
has to be entirely on one side of H, so that all the other 〈aj ,m − n〉 are
of the same sign, say 〈aj ,m− n〉 > 0. We have then

um − λun 7−→ y
〈a1,n〉
1 · · · y

〈aN ,n〉
N (y

〈at+1,m−n〉
t+1 · · · y

〈aN ,m−n〉
N − λ).

• By compatibility with Ě and since it contains w the cone σ is contained
in Ě ⊆ Ě′ so that all 〈ai, p− n〉 are ≥ 0. After perhaps re-subdividing σ
and choosing a smaller regular cone containing w and whose intersection
with H does not meet the boundary of Ě, we have that the 〈ai, p−n〉 are
> 0 at least for those i such that ai ∈ H .

In the corresponding chart Z(σ) the transform of our equation F by the mono-
mial map can then be written:

y
〈a1,n〉
1 . . . y

〈aN ,n〉
N

(

y
〈at+1,m−n〉
1 . . . y

〈aN ,m−n〉
N − λ+

∑

p

cpy
〈a1,p−n〉
1 . . . y

〈aN ,p−n〉
N

)

.

Since
∑N
i=1〈a

i, p − n〉w(yi) = 〈w, p − n〉, this shows that the strict transform
F ′ of F by the monomial map Z(σ) → AN (k), which is the quantity between
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parenthesis, is an overweight deformation of the strict transform, of weight zero,
of the initial part of F .

This implies the result we seek since the hypersurface defined by the initial
part of F ′ is non singular because λ 6= 0 and the 〈ai,m−n〉 which are 6= 0 cannot
be all divisible by the characteristic of k. The reason7 is that the 〈ai,m−n〉 must
generate the group Z since the ai form a basis of ŽN and m− n is a primitive
vector of ZN because, by our assumptions, the field k is algebraically closed and
the ideal generated by um− λun is prime (see [19], Theorem 2.1, c)). So m− n
generates a (one dimensional) lattice of relations, the kernel of a linear map
ZN → ZN−1. In short, the vector of ZN with coordinates 〈ai,m− n〉 must be

primitive, and this is equivalent to saying that y
〈at+1,m−n〉
t+1 · · · y

〈aN ,m−n〉
N −λ = 0

is non singular, whatever the characteristic of k is. Then, the hypersurface
F ′ = 0 itself, being an overweight deformation of its initial part, has to be non
singular at the point picked by the valuation.

In the charts we consider, not only does the valuation have a center since w ∈
σ, but also the strict transform of our hypersurface by the map Z(σ) → AN (k)
meets the toric boundary (= the complement of the torus) because some of the
vectors ai are in H . The other charts are of no import as far as smoothness of
the strict transform at the point picked by the valuation is concerned.

The charts where the strict transform intersects the maximal number of
components of the toric boundary are obtained by choosing the regular cone
σ ∈ Σ in such a way that its intersection with the hyperplane H is of maximal
dimension N −1, which means that N −1 of the vectors ai are in H . The N −1
corresponding coordinates yi will be of positive value and provide a system of
local coordinates for the strict transform of our hypersurface at the point picked
by the valuation. In fact, if aN is the vector which is not in H , according to what
we saw above we must have 〈aN ,m− n〉 = 1 and our local equation becomes

F ′ = yN − λ+
∑

w(p)>w(n)

cpy
〈a1,p−n〉
1 . . . y

〈aN ,p−n〉
N .

Since the weight of yN is zero and since this is an overweight deformation, we
see immediately that F ′ is a power series in y1, . . . , yN−1 and wN = yN −λ and
the hypersurface F ′ = 0 is non singular and transversal to the toric boundary
at the point y1 = · · · = yN−1 = 0, yN = λ, with local coordinates y1, . . . , yN−1.
This point is the point picked by the valuation because on F ′ = 0 the valuation
of yN − λ has to be positive.

Finally, we know by the classical resolution theorem for normal toric varieties
(see [52], Chap. III or [22], Chap. VI) that since Ě is a rational convex cone
and H a rational hyperplane, there always exist regular subdivisions of RN

≥0

compatible with both.

The proof of b) in the general case follows the same general line: consider the
system of hyperplanes Hℓ = Hmℓ−nℓ of ŘN dual to the vectors mℓ − nℓ and

7The generalization of this to prime binomial ideals (see [76], Lemma 6.3 and the proof of
proposition 6.4 below) will play an important role in what follows.
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remember from ([76], 6.2)-or see below- that if Σ is a regular fan subdividing the
first quadrant of ŘN and compatible with all the Hℓ, then the strict transform
by the toric modification π(Σ): Z(Σ) → AN (k) of AN (k) determined by Σ
of the toric variety X0 corresponding to the binomial ideal is non-singular and
transversal to the toric boundary. In other words, the toric modification Z(Σ) →
AN (k) gives an embedded pseudo-resolution of singularities of the toric variety
X0. If the fan Σ contains the regular faces of the weight cone ŘN

≥0 ∩W with

W =
⋂s
ℓ=1Hℓ, the pseudo-resolution is a resolution. Remember also that the

charts of Z where the strict transform of X0 meets the toric boundary are those
corresponding to cones σ = 〈a1, . . . , aN〉 which meet the weight cone outside of
the origin, i.e., at least one of the ai is in W .

Furthermore, if the intersection of σ with W is d-dimensional, then the equa-
tions of the strict transform depend on exactly N−d variables, say yd+1, . . . , yN
and in view of their binomial nature their only solutions in the charts Z(σ) are
given by yd+j = cd+j ∈ k∗.

We are going to show that one can choose regular fans refining such a fan
Σ so that the corresponding toric modification resolves the strict transform of
X at the point picked by the valuation ν. The problem is to generalize the
weight vector and the convex set Ě which we used in the simple case above to
determine which regular fans would be adapted to the overweight deformation
and to show the existence of such fans.

Let us examine how overweight deformations behave with respect to toric
modifications.
Let w be a weight on the variables u1, . . . , uN with values in a well ordered
subsemigroup of the positive semigroup Φ+ of a totally ordered group Φ of
finite rational rank. Let us say that a regular cone σ = 〈a1, . . . , aN 〉 ⊂ ŘN is
w-centering if the monomial valuation on k(u1, . . . , uN) determined by w has a
center8 in k[σ̌ ∩M ]. This means that in the monomial map determined by σ as
written above, we have that the w(yi) are ≥ 0.
We remark that since the matrix of the aji is unimodular, the weights of the yj
are in Φ and uniquely determined by the w(ui).
If the weight w is of rank one and we identify its value group Φ with a subgroup
of R, we can consider the vector w = (w(u1), . . . , w(uN )) ∈ ŘN

≥0. Then the
positivity of the w(yj) is equivalent to the fact that w is in σ as we have already
noted; a regular convex cone σ is w-centering if and only if it contains the vector
w.

If the rank h of Φ is greater than one, we consider the sequence of convex
subgroups, with the convention that Ψ0 = Φ:

(0) = Ψh ⊂ Ψh−1 ⊂ . . .Ψ1 ⊂ Φ,

8As I found recently, if we consider the additive preorder determined on the group M of
Laurent monomials in u1, . . . , uN by the weight w, this notion is related to what G. Ewald
and M. Ishida define in [23] as the domination of σ by that preorder: their definition of
domination chooses in a given toric variety the smallest torus-invariant affine open set in
which the ”center” of the preorder is visible as an orbit. See also [34].
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and we notice that since Φ has no torsion and we are interested only in inequal-
ities we can work in the divisible hull Φ⊗ZQ of Φ with the natural extension of
the ordering on Φ and use the fact that it is the lexicographic product of groups
of rank one:

Φ ⊗Z Q = Ξ1 × . . .× Ξh

with Ψj ⊗Z Q = {0} × · · · × {0} × Ξj+1 × . . .× Ξh.

Let us denote by rj the rational rank of the group Ξj .
Now let us choose an ordered embedding of Φ ⊗Z Q in (Rh)lex. For each

j, 1 ≤ j ≤ h, we can define a vector w(j) ∈ ŘN ; it is the vector whose
coordinates are the projections in Ξj of the w(ui), 1 ≤ i ≤ N , viewed as real
numbers through the chosen embedding.

Lemma 2.10. Given N elements w1, . . . , wN of R, the rational rank of the
subgroup of R generated by the wi is equal to the dimension of the smallest vector
subspace 〈w〉Q of RN defined over Q containing the vector w = (w1, . . . , wN ).

Proof. Let L be the kernel of the Z-linear map b : ZN → R sending the i-th
basis vector to wi. The image of the map b is the subgroup generated by the
wi and by construction the rank of L is number of independent Z-linear forms
vanishing on the vector w, which is the codimension of 〈w〉Q in RN . �

Lemma 2.11. The vectors w(j), 1 ≤ j ≤ h, of ŘN are linearly independent.

Proof. Consider the Z-linear map B : (ZN )h → Rh which is the product for

1 ≤ k ≤ h of the h maps bk : ZN → R sending the basis vector e
(k)
i of RN to

w(k)i for 1 ≤ i ≤ N . Since each Ξk ⊂ R is generated by the w(k)i, 1 ≤ i ≤ N
the subgroup Φ = Ξ1 × · · · × Ξh ⊂ Rh is the image of this map.

The kernel of B is the lattice M in (ZN )h which is the product of the kernels
of the maps bk.

The rank of the lattice M is N − r1 + · · · +N − rh = hN − (r1 + · · · + rh).
Remembering that for each k, 1 ≤ k ≤ h at least one of the elements w(ui)
has a non zero image w(k)i in Ξk, we see that the images by the map B of

the N vectors Fi = (e
(1)
i , . . . e

(h)
i ), 1 ≤ i ≤ N, of (ZN )h generate the R-vector

space Rh. If there was a linear relation
∑h
k=1 skw(k) = 0, each image B(Fi) =

(w(1)i, . . . ,w(h)i) would lie in the hyperplane
∑h

k=1 skyk = 0 of Rh. This
contradiction ends the proof. �

For each j, 1 ≤ j ≤ h, let us denote by Sj the smallest vector subspace of
ŘN defined over Q and containing the w(k), 1 ≤ k ≤ j.
Notice that all the vector spaces Sj meet the first quadrant ŘN

≥0 outside of the
origin since w(1) is in it. By the properties of the lexicographic order, the vector
space Sh meets the interior of ŘN

≥0, so that we have dim(Sh ∩RN
>0) = dimSh.

Lemma 2.12. a) For each j, 1 ≤ j ≤ h the dimension of the vector space Sj
is

∑j
k=1 rj .
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b) Let Σ be a regular fan with support ŘN
≥0 which is compatible with the vector

spaces Sj. There exist N -dimensional cones σ of Σ such that w(1) ∈ σ and for
all j the face σ ∩ Sj of σ is a cone of maximal dimension in Sj.
c) For such cones σ, for each j the number of support hyperplanes of σ which
contain Sj−1 ∩ σ but do not contain w(j) is equal to rj .

Proof. Assertion a) follows directly from Lemmas 2.10 and 2.11.
To prove b) it suffices to remark that since Σ is compatible with the Sj , for each
j the intersection Sj ∩ Σ is a fan of Sj ∩ ŘN

≥0, which is of the same dimension

as Sj as we saw above. Since the support of Σ is ŘN
≥0 this intersection must

contain cones of the maximal dimension, which are faces of cones of Σ. These
cones have the required property.
Assertion c) is a reformulation of b). �

Assume that σ is a regular convex cone of dimension N belonging to a
regular fan with support RN

≥0 which is compatible with the rational vector
spaces Sj, 1 ≤ j ≤ h. Assume that w(1) ∈ σ. Let us denote by (Ls)1≤s≤N the
hyperplanes bounding σ. For each j there is a largest subset I(j) ⊂ {1, . . . , N}
such that Sj ⊆

⋂

s∈I(j) Ls. By convention we set I(0) = {1, . . . , N}.

Let us denote by L≥0
s the closed half space of RN determined by Ls which

contains σ.

Lemma 2.13. In this situation, the N -dimensional regular convex cone σ is
w-centering if and only if the following holds:
For each j, 0 ≤ j ≤ h− 1, we have w(j + 1) ∈

⋂

s∈I(j) L
≥0
s .

Proof. Since σ is regular, the determinant of its generating vectors is ±1. Ac-
cording to the description (∗) of the monomial map associated to σ, the weights
of the ui uniquely determine the weights of the yi in Φ since the determinant is
6= 0. Now writing that w(yi) is ≥ 0 in the lexicographic product Ξ1 × . . .× Ξh
reduces exactly to the expression given in the lemma. We observe that the pro-
jections in Ξk of the valuations of the (yi)1≤i≤N are the barycentric coordinates
of the vector w(k) with respect to the generators of σ. If all the barycentric
coordinates of w(1) are positive, then all the w(yi) are also positive and σ is
w-centering. If some of these barycentric coordinates are zero, it means that
w(1) is in a face of σ whose linear span is the intersection of the Ls for s ∈ I(1),
by the definition of I(1). Then, in order for the corresponding w(yj) to be non-
negative in Rh, it is necessary that the corresponding barycentric coordinates
of w(2) are ≥ 0, which is equivalent to the inclusion w(2) ∈

⋂

s∈I(1) L
≥0
s , and

so on. The proof of the converse statement is obtained in the same way. �

Remarks 2.14. 1. If the group Φ is of rank one, the condition is simply that the
vector w(1) is in σ, as we have noted above.

2. The argument uses only the fact that σ is simplicial and N-dimensional.

Lemma 2.15. Keep the notations introduced before Lemma 2.10.
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Let w(1),w(2), . . . ,w(h) be rationally independent vectors in an r-dimensional
rational vector subspace W ⊂ RN , all lying in W ∩RN

≥0. Let σ0 ⊂ RN
≥0 be an

N -dimensional regular cone of a fan Σ supported in RN
≥0 which is compatible

with W and the vector spaces Sj defined above and containing w(1). Assume

that
∑h
i=1 ri = r and that σ0 ∩W is of dimension r. Then there exists a regular

N -dimensional cone σ ⊂ RN
≥0 of Σ satisfying the conditions of Lemma 2.13 and

whose intersection with W is of dimension r.

Proof. let (Ls)s∈I , I = {1, . . . , N} be the collection of the supporting hyper-
planes of σ0. By construction there is a largest subset I(1) ⊂ I such that
S1 =

⋂

s∈I(1) Ls. In view of Lemma 2.12, c) and the compatibility of Σ with

S1, it is of cardinality N − r1. By Lemma 2.11 we know that w(2) is not in
⋂

s∈I(1) Ls. Let us denote by I(2) ⊂ I(1) the set {s ∈ I(1)|w(2) ∈ Ls}. For each

s ∈ I(1) \ I(2), which is of cardinality r2 by Lemma 2.12, c), we denote by L≥0
s

the closed half space determined by Ls which contains w(2). Again by Lemma
2.11 we know that w(3) /∈

⋂

s∈I(2) Ls so we can define a subset I(3) ⊂ I(2)

by the condition that w(2) ∈
⋂

s∈I(3) Ls and a closed half space L≥0
s for each

s ∈ I(2) \ I(3), and so on.
In the end we have built a sequence of subsets

{1, . . . , N} ⊃ I(1) ⊃ I(2) ⊃ · · · ⊃ I(h)

such that St =
⋂

s∈I(t) Ls and we have determined half spaces L≥0
s correspond-

ing to all the hyperplanes Ls for s ∈ {1, . . . , N} \ I(h) in such a way that each
w(k) is always in the half space L≥0

s if Ls vanishes on w(k − 1). According to

Lemma 2.12, c), at step i we define ri half-spaces. Since
∑h

i=1 ri = r, the set I(h)
is the set of those hyperplanes Ls which contain W . Thus

⋂

s∈{1,...,N}\I(h) L
≥0
s

is a rational cone which is the intersection of d half spaces in RN . If now we
define for s ∈ I(h) the half-space L≥0

s as the one containing σ, we see that
σ′ =

⋂

s∈{1,...,N} L
≥0
s is a rational regular cone which satisfies the conditions of

Lemma 2.13; by construction it satisfies the positivity conditions with respect to
the w(k), and its intersection with W is the intersection with RN

≥0 of the r half-

spaces (L≥0
s ∩W )s∈{1,...,N}\I(h) of W and is therefore a regular r-dimensional

cone of the fan Σ ∩W . �

Remark 2.16. In the case where h = 1 the cone σ is equal to σ0 but if h > 1 and we
transform σ0 into the first quadrant by a unimodular transformation, then σ becomes
a possibly different quadrant.

Proposition 2.17. Keeping the same notations, let Σ be a regular fan with
support ŘN

≥0. Assume that it is compatible with the Sj and the Hℓ. Then there
is a cone σ of dimension N of Σ which is w-centering and whose intersection
with W is of dimension r.

Proof. Let σ0 be a cone of Σ containing w(1) and whose intersection with W
is of dimension d. Piltant’s theorem tells us that the dimension d of the toric
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variety defined by the initial binomial ideal, which is also the dimension of the
vector space W , is equal to the rational rank of the group Φ:

r1 + · · · + rh = rat.rk.Φ = r.

It suffices now to apply Lemma 2.15. �

Given an overweight deformation as in (OD) above, let us define for each ℓ

indexing the binomial um
ℓ

− λℓu
nℓ

the following cones in RN :

E
(1)
ℓ (j) = 〈{p− nℓ/|w(up−n

ℓ

) ∈ Ψj \ Ψj+1|c
(ℓ)
p 6= 0, },mℓ − nℓ〉

E
(2)
ℓ (j) = 〈{p−mℓ/|w(up−m

ℓ

) ∈ Ψj \ Ψj+1|c
(ℓ)
p 6= 0, }, nℓ −mℓ〉

Lemma 2.18. For all ℓ and 0 ≤ j ≤ h−1 the cone E
(1)
ℓ (j) (respectively E

(2)
ℓ (j))

is contained in a strictly convex polyhedral rational cone whose elements satisfy
〈w(k), q〉 = 0 for 1 ≤ k ≤ j − 1 and 〈w(j), q〉 ≥ 0, with 〈w(j), q〉 = 0 if and
only if q is on the half-line generated by mℓ − nℓ (respectively nℓ −mℓ).

Proof. Since the ring k[[u1, . . . , uN ]] is noetherian, for each ℓ the ideal generated
by the monomials up appearing in the ℓ-th series is generated by finitely many

of them, say up
ℓ
1 , . . . up

ℓ
sℓ . In view of the convexity of the subgroups Ψj the cones

E
(1)
ℓ (j) and E

(2)
ℓ (j) are contained respectively in the convex cone generated by

mℓ − nℓ and the pℓk − nℓ + RN
≥0 and in the convex cone generated by nℓ −mℓ

and the pℓk − mℓ + RN
≥0 (for 1 ≤ k ≤ sℓ). These cones are rational since the

pℓk are finite in number and they are strictly convex since they can be defined
using strict inequalities and thus cannot contain a vector subspace. The second
part of the statement follows from the definition of the vectors w(k). �

Since what we want in the end is to find regular convex cones contained

in the convex duals Ě
(i)
ℓ (j) of the cones E

(i)
ℓ (j), we may in view of this lemma

assume that the cones E
(i)
ℓ (j) themselves are polyhedral rational strictly convex

cones, which we shall do henceforth.

Lemma 2.19. Still denoting by Hℓ the hyperplane of ŘN dual to mℓ − nℓ and
by W the intersection of the Hℓ, for each j and each ℓ we have :

• The cones Ě
(1)
ℓ (j) and Ě

(2)
ℓ (j) are N -dimensional, and their intersection

Ě
(1)
ℓ (j) ∩ Ě

(2)
ℓ (j) is equal to Ě

(1)
ℓ (j) ∩Hℓ = Ě

(2)
ℓ (j) ∩Hℓ.

• For i = 1, 2 the dimension of Ě
(i)
ℓ (j) ∩Hℓ is N − 1.

• The interior in Hℓ of Ě
(1)
ℓ (j) ∩ Ě

(2)
ℓ (j) is contained in the interior of

Ě
(1)
ℓ (j)

⋃

Ě
(2)
ℓ (j).

• For each k the cone Rw(1) + · · ·+Rw(k− 1) +R≥0w(k) is contained in

Ě
(1)
ℓ (k)

⋂

Ě
(2)
ℓ (k) and meets its relative interior in Hℓ.
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• The same statements are true if one replaces each Ě
(i)
ℓ (k) by

⋂

ℓ Ě
(i)
ℓ (k)

and Hℓ by W .

Proof. The dimensionality statement is nothing but the fact that the E
(i)
ℓ (j)

are strictly convex. An element a ∈ ŘN which is in Ě
(1)
ℓ (j) ∩ Ě

(2)
ℓ (j) has to be

both ≥ 0 and ≤ 0 on mℓ − nℓ, so it is in Hℓ. Since p− nℓ = p−mℓ + mℓ − nℓ

an element of Hℓ which is ≥ 0 on E
(1)
ℓ (j) is ≥ 0 on E

(2)
ℓ (j) and conversely.

The second statement follows by convex duality from Lemma 2.18 which implies

that R〈mℓ − nℓ〉 is the largest vector space contained in E
(i)
ℓ (j) + R〈mℓ − nℓ〉.

The third statement is true because we join two convex cones along a common
face of codimension 1; the boundary of the union does not meet the interior of
the face.
The fourth statement also follows by convex duality from Lemma 2.18 if one
observes that convex duality, which reverses inclusions, transforms intersection
into Minkowski sum. Furthermore, if we add to a vector aw(k) with a > 0 a
vector ǫb with b ∈ Hℓ, for |ǫ| small enough the vector aw(k) + ǫb will still take
positive values on the pℓk − nℓ, where the pℓk are defined in the proof of Lemma

2.18, and therefore will belong to Ě
(1)
ℓ (k) ∩ Ě

(2)
ℓ (k).

Finally, the same arguments apply to W . �

Proposition 2.20. Given an overweight deformation as in (OD), there exist
regular fans Σ with support ŘN

≥0 compatible with the hyperplanes Hℓ, the vector

spaces Sj and all the cones Ě
(c)
ℓ (k), c = 1, 2, k = 1, . . . , h.

There exist such fans which contain w-centering regular cones σ = 〈a1, . . . , aN 〉

contained for all ℓ and k in one of the two cones Ě
(c)
ℓ (k) c = 1, 2 and such

that none of the vectors ai which are in Hℓ is in the boundary. For such a
cone we have 〈ai, p − mℓ〉 > 0 if 〈ai, nℓ − mℓ〉 ≥ 0 (resp. 〈ai, p − nℓ〉 > 0 if
〈ai,mℓ − nℓ〉 ≥ 0) for all monomials p with w(p) > w(mℓ) = w(nℓ) appearing
in the overweight deformation.

proof : By the resolution theorem for normal toric varieties (see [52], Chap.
III or [22], Chap. VI) we know that there exist regular fans Σ with support

ŘN
≥0 compatible with the Hℓ, the Sj and the Ě

(c)
ℓ (k), all of which determine

rational cones in ŘN
≥0. According to Lemma 2.17 such fans contain w-centering

cones. Let us show that such a cone is contained in every Ě
(1)
ℓ (k)

⋃

Ě
(2)
ℓ (k).

In view of the compatibility, it suffices to show that σ meets the interior of

Ě
(1)
ℓ (k)

⋃

Ě
(2)
ℓ (k). To prove that, in view of Lemma 2.19 it is enough to check

that σ meets the interior of Ě
(1)
ℓ (k) ∩Hℓ in Hℓ.

We see that by construction the cone σ contains points of the cone Rw(1) +

· · ·+Rw(k−1)+R≥0w(k) which are in the interior of Ě
(1)
ℓ (k)∩W in W . Thus

the cone σ meets the interior of each Ě
(1)
ℓ (k)∩Ě

(2)
ℓ (k) and by compatibility of T

with the Ě
(c)
ℓ (k) it is contained in the union Ě

(1)
ℓ (k)

⋃

Ě
(2)
ℓ (k). By compatibility

with the Hℓ the cone σ has to be entirely on one side of Hℓ, which means that

it must be in Ě
(1)
ℓ (k) or Ě

(2)
ℓ (k). But this is decided for each ℓ by the fact that
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one generating vector of σ is on one side of Hℓ. Since σ meets the interior of

each Ě
(1)
ℓ (k) ∩ Ě

(2)
ℓ (k), after perhaps refining the fan into another regular fan

we may assume that none of the vectors ai which are in Hℓ is in the boundary

of Ě
(1)
ℓ (k)

⋃

Ě
(2)
ℓ (k).

If we write σ = 〈a1, . . . , aN 〉 we see that it has the property that whenever
for a given ℓ we have that 〈ai,mℓ−nℓ〉 is > 0 for some i then for all j, 1 ≤ j ≤ N
we have 〈aj ,mℓ − nℓ〉 ≥ 0, and if aj ∈ W we have 〈aj , p − nℓ〉 > 0 for all p
appearing in the ℓ-th equation, and if 〈ai, nℓ −mℓ〉 is > 0 for some i, then for
all j we have 〈aj , nℓ−mℓ〉 ≥ 0 and if aj ∈W we have 〈aj , p−mℓ〉 > 0 for those
p. For each given ℓ there has to be an index i for which 〈ai,mℓ − nℓ〉 6= 0. �

Let us now finish the proof of proposition 2.3. Take a regular fan T with sup-

port ŘN
≥0 and compatible with the Hℓ, the Sj and the Ě

(i)
ℓ i = 1, 2 (and so

depending on the deformation), and a w-centering cone σ = 〈a1, . . . , aN 〉 of that
fan as above. Let us write the transforms of the equations F1, . . . , Fs, with the

convention that y〈a,m〉 = y
〈a1,m〉
1 . . . y

〈aN ,m〉
N .

F̃1 = y〈a,m
1〉 − λ1y

〈a,n1〉 + Σw(p)>w(m1)c
(1)
p y〈a,p〉

F̃2 = y〈a,m
2〉 − λ2y

〈a,n2〉 + Σw(p)>w(m2)c
(2)
p y〈a,p〉

.....

F̃ℓ = y〈a,m
ℓ〉 − λℓy

〈a,nℓ〉 + Σw(p)>w(mℓ)c
(ℓ)
p y〈a,p〉

.....

F̃s = y〈a,m
s〉 − λsy

〈a,ns〉 + Σw(p)>w(ms)c
(s)
p y〈a,p〉

Thanks to the properties of our cone σ we may factor out of each F̃ℓ either

y〈a,m
ℓ〉 or y〈a,n

ℓ〉. This leaves us with a deformation of the strict transform
of the toric variety, which is regular in the chart corresponding to σ. More
precisely, if for convenience of notation we rearrange the binomials in such a
way that all 〈ai,mℓ − nℓ〉 are ≥ 0, by writing nℓ − λ−1

ℓ mℓ if 〈ak,mℓ − nℓ〉 < 0
we can write after the corresponding change of notations

F̃1 = y〈a,n
1〉
(

y〈a,m
1−n1〉 − λ1 + Σw(p−n1)>0c

(1)
p y〈a,p−n

1〉
)

F̃2 = y〈a,n
2〉
(

y〈a,m
2−n2〉 − λ2 + Σw(p−n2)>0c

(2)
p y〈a,p−n

2〉
)

.....

F̃ℓ = y〈a,n
ℓ〉
(

y〈a,m
ℓ−nℓ〉 − λℓ + Σw(p−nℓ)>0c

(ℓ)
p y〈a,p−n

ℓ〉
)

.....

F̃s = y〈a,n
s〉
(

y〈a,m
s−ns〉 − λs + Σw(p−ns)>0c

(s)
p y〈a,p−n

s〉
)

.

Since our binomial ideal is prime and k is algebraically closed, by [19],
Theorem 2.1, c), we know that the lattice L which is the kernel of the map
b : ZN → Zr associated to our affine toric variety is saturated. The vectors
mℓ − nℓ are primitive as generators of a saturated lattice. By the argument we
saw above in the case of a single equation, each of the ”strict transform” series

F ′
ℓ = y−〈a,nℓ〉F̃ℓ = y〈a,m

ℓ−nℓ〉 − λℓ + Σw(p−nℓ)>0c
(ℓ)
p y〈a,p−n

ℓ〉, 1 ≤ ℓ ≤ s
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defines a non singular hypersurface transversal to the toric boundary at the point
picked by the valuation. Taken together, they define an overweight deformation
of an irreducible binomial variety X ′

0 corresponding to a prime binomial ideal
generated by binomials of weight zero. In fact, by theorem 2.1 of [19], the strict
transform X ′

0 of X0 is a reduced complete intersection, and its equations are the
strict transforms of binomials corresponding to N−r generators of the lattice L.
Let us recall the proof of its non singularity at the point picked by the valuation,
following proposition 6.2 of [76]:
According to loc.cit., Lemma 6.3 (see also the proof of proposition 6.4 below),
since the lattice L is saturated the (N − r) × (N − r) minors of the matrix
(〈aj ,mℓ − nℓ〉); 1 ≤ j ≤ N, 1 ≤ ℓ ≤ s are not all zero and have no common
factor. Up to renumbering the equations corresponding to the N − r generators
of L are are Fs−N+r+1, . . . , Fs. All the (N − r) × (N − r) minors mentioned
above are linear combinations of those corresponding to the last N−r equations.
Therefore, some of the the (N−r)×(N−r) minors of the matrix A = (〈aj ,mℓ−
nℓ〉; 1 ≤ j ≤ N, s−N + r + 1 ≤ ℓ ≤ s) are not divisible by the characteristic
of the base field. Moreover, the r variables yi corresponding to indices i such
that ai ∈

⋂

ℓHℓ are the only ones with positive weight. We can number them
y1, . . . , yr.
For the same reason as in the case of one equation, the point picked by the
valuation is the unique solution of the system of equations

y〈a,m
s−N+r+1−ns−N+r+1〉 − λs−N+r+1 = . . . = y〈a,m

s−ns〉 − λs = 0
y1 = · · · = yr = 0

The first set of equations does not involve the variables y1, . . . , yr. The intersc-
tion point is unique because it is the transversal intersection in the chart Z(σ) of
a stratum of codimension r of the toric boundary with an r-dimensional orbit of
the torus action corresponding to the saturated lattice L, a torus action which
is trivial on the affine space with coordinates yN−r+1, . . . , yN .
The non vanishing of the image in the base field of one of the (N − r)× (N − r)
minors of A implies the non vanishing at the point picked by the valuation of
the corresponding jacobian minor of the equations defining X ′

0 (see [76], 6.2).
This in turn shows that X ′

0 is non singular at the point picked by the valuation
and is transversal to the toric boundary at this point. Since the strict transform
X ′ of X is an overweight deformation of X ′

0 this non singularity extends to it as
the consideration of the same jacobian minor for the deformed equations shows.
Indeed, the jacobian minor of the deformed equations has the nonzero jacobian
minor of binomials as its initial form, and therefore cannot vanish when the
coordinates yj with w(yj) > 0 vanish. The reader may also look at a closely
related argument in the proof of proposition 6.4 below, and the paragraphs
following it, especially the remark 6.6 and equation (Jac), using the fact that
the variables Uk in equation (Jac) correspond in our situation to the yi such
that ai /∈

⋂

ℓHℓ, so that w(yi) = 0.
Consider the dual b̌ : Žr → ŽN of the surjective map b : ZN → Zr obtained

from the map NN → Zr describing the generators of the semigroup Γ. The
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image of the transform of the injection b̌ by the map ŽN → ŽN corresponding
to the transpose of the unimodular matrix of the vectors a1, . . . , aN is generated
by the r vectors vi = (ν(y1)i, . . . , ν(yN )i). Therefore the valuations of the yi
such that ν(yi) 6= 0 must be rationally independent. This end the proof of
proposition 2.20 and therefore of proposition 2.3. �

And with the last paragraph we have also proved:

Proposition 2.21. At the point of the strict transform X ′ of X picked by the
valuation ν, the r variables yi such that 〈ai,mℓ − nℓ〉 = 0 for 1 ≤ ℓ ≤ L form a
system of local coordinates and their valuations are rationally independent. �

Remark 2.22. We know from [19] that the intersection of an affine toric subvariety
of AN(k) with the ambient torus is a complete intersection and from [12] that its ideal
in k[U1, . . . , UN ] in general does not even contain a regular sequence of binomials of
length equal to its codimension. In the proof we have just given, the strict transform
of our toric variety, in the chart containing the center of the valuation, is the product
with an r-dimensional affine space of its intersection with the torus of an invariant
N − r- dimensional affine space, and this intersection is the center of the valuation,
which can be defined by the strict transforms of N − r binomials as we saw above.

3 The valuative Cohen Theorem

If one gives it its full strength, in our equicharacteristic framework the classi-
cal Cohen structure theorem (see [6]) can be deemed to present any complete
noetherian local ring R as the ring of a formal subspace of an affine space over
its residue field, and also to allow the encoding by equations of the specialization
of this formal subspace to its tangent cone, which lives in an affine space of the
same dimension.

The purpose of the valuative Cohen theorem is to provide an analogous
affine embedding (possibly in an infinite-dimensional space) of the formal space
(X, 0) corresponding to R such that (X, 0) can be specialized, within that affine
ambient space, to its generalized tangent cone corresponding to grνR, even
though this algebra may not be finitely generated. The specialization can then
be encoded by a (possibly infinite) system of equations corresponding to an
overweight deformation of a prime binomial ideal. This is a necessary step if
one wants to use (partial) toric embedded pseudo-resolutions of the toric variety
SpecgrνR to obtain local uniformizations of ν on R.
For the convenience of the reader, we revisit the statement, referring to [76], §5,
especially 5.3, for other developments, in particular the equational description
of the faithfully flat specialization of R to (the completion of) grνR.

Given a field k and a totally ordered abelian group Φ, the Hahn ring of Φ+

with coefficients in k is the k-vector space of all formal power series
∑

φ∈Φ+∪{0} cφt
φ

with cφ ∈ k and exponents in Φ+ ∪ {0} which satisfy the condition that the set
{φ ∈ Φ+|cφ 6= 0} is well ordered. This condition implies that we can multiply
two such series, and this multiplication gives our k-vector space the structure of
a k-algebra, which we denote by k[[tΦ+ ]]. It is an interesting completion of the
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semigroup algebra k[tΦ+ ] with coefficients in k, which plays a significant role in
valuation theory; it is the valuation ring of a maximal valued field k[[tΦ]] à la
Krull ([48]).

Consider the semigroup Γ of values taken on a noetherian local domain R by
a valuation with value group Φ whose ring dominates R. Since the semigroup
Γ is well ordered, the ring of series with coefficients in k and exponents in Γ is
a subalgebra k[[tΓ]] ⊂ k[[tΦ+ ]].

Let (ui)i∈I be variables indexed by the elements of the minimal system of
generators (γi)i∈I of the semigroup Γ. Give each ui the weight w(ui) = γi
and let us consider the set of power series

∑

e∈E deu
e where (ue)e∈E is any

set of monomials in the variables ui and de ∈ k. By a theorem of Campillo-
Galindo (see [11], §2), the semigroup Γ being well ordered is combinatorially
finite, which means that for any φ ∈ Γ the number of different ways of writing
φ as a sum of elements of Γ is finite. This is equivalent to the fact that the
set of exponents e such that w(ue) = φ is finite: for any given series the map
w : E → Γ, e 7→ w(ue) has finite fibers. Each of these fibers is a finite set of
monomials in variables indexed by a totally ordered set, and so can be given the
lexicographical order and order-embedded into an interval 1 ≤ i ≤ n of N. This
defines an injection of the set E into Γ ×N equipped with the lexicographical
order and thus induces a total order on E, for which it is well ordered. When
E is the set of all monomials, this gives a total monomial order.

Just as for k[[tΓ]], the combinatorial finiteness implies that this set of series is

a k-algebra, which we denote by ̂k[(ui)i∈I ]. Since the weights of the elements of a
series form a well ordered set and only a finite number of terms of the series have

minimum weight, the associated graded ring of ̂k[(ui)i∈I ] with respect to the

filtration by weights is the polynomial ring k[(Ui)i∈I ]. The k-algebra ̂k[(ui)i∈I ]
is endowed with a topology coming from the same filtration, for which it is
complete in a sense we shall see below. The combinatorial finiteness also implies
that we can rearrange the terms of a series, for example9 (using the notations
introduced in the proof of b) of proposition 2.3) in order to write it

∑

ADAu
A

where each monomial uA involves only variables of weight belonging to Φ \ Ψ1

and the DA belong to ̂k[(ui){i|γi∈Ψ1}]. The subalgebra k[(ui)i∈I ] ⊂ ̂k[(ui)i∈I ]
corresponds to series indexed by a finite set, and it is dense for this topology in
the scalewise sense of [76].

The application ui 7→ tγi defines a continuous and surjective map of topo-
logical k-algebras

̂k[(ui)i∈I ] −→ k[[tΓ]], (N)

which we can think of as corresponding to the natural affine embedding of
the ”formal toric variety” (possibly of infinite embedding dimension) associated
to the semigroup Γ and its ordering (which determines the minimal system of

generators γi). Its kernel is the closure of the prime binomial ideal (um
ℓ

−un
ℓ

)ℓ∈L
encoding the relations between the generators of Γ. The associated graded map

9This makes the link with the construction of [76].
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is the usual presentation k[(Ui)i∈I ] −→ k[tΓ], Ui 7→ tγi , of the semigroup algebra.
We can call the surjection (N) the canonical presentation of the Hahn ring of Γ

over k and call the ring ̂k[(ui)i∈I ] the scalewise w-completion (or just scalewise
completion when there is no ambiguity) of the polynomial ring. Here the term
scalewise refers to the transfinite character of the series rather that to their
mode of construction.
For a sum of elements of ̂k[(ui)i∈I ] to belong to that ring, it is necessary and
sufficient that each monomial ua appears finitely many times (if at all) in the
sum.

Proposition 3.1. Let Γ = 〈(γi)i∈I〉 be the semigroup of values taken on a
noetherian local domain R by a valuation. The scalewise completion S =
̂k[(ui)i∈I ] of the corresponding polynomial ring with respect to the weight w(ui) =

γi is a formally smooth k-algebra.

Proof. This follows from ([6], §7, No. 7, Prop. 7), applied to k0 = k and A = S.
Since there is no relation between the variables ui, the graded ring grmS is
equal to k[(inmui)i∈I ], which is the symmetric algebra over k of m/m2, and the
second condition of the proposition is satisfied because Ωk0/k0 = (0). �

A (closed) ball in ̂k[(ui)i∈I ] equipped with the weight w is a subset of the
form B(x, γ) = {y|w(y − x) ≥ γ}. Following F-V. Kühlmann in ([50], §1),

with the ultrametric10 u(x, y) = w(y − x), we say that ̂k[(ui)i∈I ] is spherically
complete with respect to the weight w if every nested sequence of non empty
balls has a non-empty intersection. As in loc.cit., it is convenient to denote by
B(x, y) the smallest closed ball B(x,w(y−x)) with center x containing y, which
is also the smallest closed ball containing x and y.

The following result will enable us, in sequels to this paper, to use various forms
of the implicit function theorem, and in particular those due to F.-V. Kühlmann
in [50].

Theorem 3.2. The ring ̂k[(ui)i∈I ] is spherically complete with respect to the
ultrametric u(x, y) = w(y − x).

Proof. Let B(xι, yι), ι ∈ H , be a nested sequence of balls indexed by a well
ordered set H . We denote by 1 the smallest element of the set H , by ι + 1 the
successor of ι. The inclusions B(xι+1, yι+1) ⊆ B(xι, yι) mean that w(xι+1 −
xι) ≥ w(yι − xι) and w(yι+1 − xι+1) ≥ w(yι − xι). Since I is well ordered, by
choosing an appropriate subset we may assume that the inclusions are strict
without changing the intersection. The ordinal H is thus order-embedded in Γ
because the radii of the balls must decrease (w(yι+1 − xι+1) > w(yι − xι)), and
we may assume that the xι and yι are chosen in such a way that xι+1 ∈ B(xι, yι)
and yι /∈ B(xι+1, yι+1). Then we have the inequalities w(xι+1−xι) ≥ w(yι−xι)
and w(yι − xι+1) < w(yι+1 − xι+1). From this we deduce that w(yι+1 − yι) =

10This is an abuse of language, adapted to general valuation theory. Assuming that the
valuation is of rank one, the ultrametric in the usual sense is of course e−u(x,y).
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w(yι−xι+1). The inclusion xι+1 ∈ B(xι, yι), gives us w(yι−xι+1) ≥ w(yι−xι).
Finally we have

w(yι+1 − xι+1) > w(yι+1 − yι) ≥ w(yι − xι).

These inequalities imply that w(yι+1 − yι) increases strictly with ι. Thus, if the

rank of Φ is one, the sum y = y1 +
∑

ι≥1(yι+1 − yι) is an element of ̂k[(ui)i∈I ]
and we have y ∈ B(xι, yι) for all ι ∈ I since y − yι =

∑

κ≥ι(yκ+1 − yκ).
Here we have used the fact that for the sum to make sense it suffices that the
set of elements of a given weight which appear in it should be finite, and this is
true because the ordinal of Γ in this case is ω (see [76], proposition 3.9).

For higher ranks, we must avoid the possibility that infinitely many of the
yι+1 − yι have some terms in common.

Let us write yι =
∑

e d
(ι)
e ue for each ι ∈ H and define ỹι =

∑

e|w(e)≤w(yι+1−yι)
d
(ι)
e ue.

We have by construction w(ỹι+1− ỹι) = w(yι+1−yι) and w(ỹι−yι) > w(yι+1−
yι) ≥ w(yι − xι), and therefore w(ỹι − xι) = w(yι − xι). Moreover, we have
w(ỹι − xι+1) = w(ỹι − yι + yι − xι+1) = w(yι − xι+1) < w(yι+1 − xι+1) in
view of the inequalities we have just seen. So we have B(xι, ỹι) = B(xι, yι)
and ỹι /∈ B(xι+1, yι+1). In our description of the balls we can replace each
yι by ỹι. By construction ỹι+1 − ỹι does not contain any term of weight
> w(yι+2−yι+1) = w(ỹι+2− ỹι+1) or of weight < w(ỹι+1− ỹι), so that the terms
of ỹι+1−ỹι which can appear also in ỹι+2−ỹι+1 are those of weightw(ỹι+2−ỹι+1),
which are finite in number, and they cannot appear in ỹι′+1 − ỹι′ for ι′ > ι+ 1.
The (possibly transfinite) sum y = ỹ1 +

∑

ι∈H(ỹι+1 − ỹι) is an element of

̂k[(ui)i∈I ] which is in the intersection of all the balls since for each ι ∈ H we
have y − ỹι =

∑

κ≥ι(ỹκ+1 − ỹκ). �

Remarks 3.3. 1. A pseudo-convergent sequence11 of elements of ̂k[(ui)i∈I ] is a
sequence (yτ )τ∈T indexed by a well ordered set T without last element, which
satisfies the condition that whenever τ < τ ′ < τ” we have w(yτ ′ −yτ ) < w(yτ”−
yτ ′) and an element y is said to be a pseudo-limit of this pseudo-convergent
sequence if w(yτ ′ − yτ ) ≤ w(y − yτ ) for τ, τ ′ ∈ T, τ < τ ′. One observes that if
(yτ ) is pseudo-convergent, for each τ ∈ T the weight w(yτ ′ − yτ ) is independent
of τ ′ > τ and can be denoted by wτ . The balls B(yτ , wτ ) then form a strictly
nested sequence of balls and their intersection is the set of pseudo-limits of the
sequence. In particular, in our ring every pseudo-convergent sequence has a
pseudo-limit. For example, assume that our value group Φ has rank > 1 and
let Ψj be a non trivial convex subgroup. Denote by T ⊂ I the set of indices
i ∈ I such that γi ∈ Ψj and assume that it has no last element. Then the sum
y =

∑

i∈T ui is a pseudo-limit of the pseudo-convergent sequence yτ =
∑

i≤τ ui,
but if we now take any series z of terms involving the variables uk such that
γk /∈ Ψj, then y+z is another pseudo-limit. If we assume that Ψj is of rank one
and consider the sequence ỹτ =

∑

i≤τ (ui + z) it is still pseudo-convergent and
certainly cannot have a limit in our ring but it still has

∑

i∈T ui as a pseudo-
limit.

11They are also known as pseudo-Cauchy sequences. This concept is due to Ostrowski; see
[67], [70].
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2. If we consider, for 0 ≤ s ≤ h − 1, the ideal Ps of elements if ̂k[(ui)i∈I ]
whose weight does not belong to the convex subgroup Ψs of Φ, the quotient

map ̂k[(ui)i∈I ] → ̂k[(ui)i∈I ]/Ps induces an isomorphism from the k-subalgebras
̂k[(ui)i|γi∈Ψs

] associated to the semigroup generated by the γi which are in Ψs

onto the image ̂k[(ui)i∈I ]/Ps.

The rank one case of the valuative Cohen Theorem: Let us assume
that ν is a rational valuation of rank one on the complete equicharacteristic
noetherian local domain R and pick a field of representatives k ⊂ R. Since the
valuation is of rank one, we may fix an ordered embedding Γ ⊂ R. If the set
of generators of the semigroup Γ is finite, and the variables ui correspond to
a minimal set of generators as above, the scalewise completion of k[u1, . . . , uN ]
with respect to the weight coincides with the usual completion as we shall see
below in remark 3.14. If we choose representatives ξi ∈ R of the generators
of the k-algebra grνR, they must generate the maximal ideal of R since R is
complete for the ν-adic topology as well as for the m-adic ([76], proposition
5.10). The map ui 7→ ξi then induces a continuous surjection of topological
k-algebras k[[u1, . . . , uN ]] → R whose associated graded map is the surjection
k[U1, . . . , UN ] → grνR.

If the set of generators is infinite, the semigroup Γ is of ordinal ω (see [76],
proposition 3.9) and cofinal in R+ since it has no accumulation point in R
(see [15], Theorem 3.2). Since

⋂

φ∈Γ Pφ(R) = (0), by Chevalley’s theorem there
exists an application β : Γ → N, whose value tends to infinity with γ and such
that Pγ(R) ⊂ mβ(γ). In particular, for each i ∈ I, we can write ξi ∈ mβ(γi).

Given an infinite series
∑

e∈E deu
e ∈ ̂k[(ui)i∈I ], we order its terms as ex-

plained above, and their weights must increase indefinitely since there are only
finitely many terms of a given weight.
The image in R of a monomial ue of weight γ is the monomial ξe of valuation
γ in R, which is contained in mβ(γ).

This shows that the sum
∑

e∈E deξ
e must converge in R since it is complete

for the m-adic topology. Thus, the application ui 7→ ξi extends to a continuous

map ̂k[(ui)i∈I ] → R of topological k-algebras. Let us show that it is surjective.
Given x ∈ R, its initial form in grνR is a term da0ξ

a0
with da0 ∈ k∗. Let x1 =

x− da0ξ
a0 ∈ R; we have ν(x − x1) > ν(x) and applying the same treatment to

x1 and continuing in this manner we build a series
∑∞

k=0 dakξ
ak which converges

to x in the ν-adic topology and therefore, again by Chevalley’s Theorem, in the
m-adic topology (see also [76], proposition 5.10), and is the image of an element
∑∞
k=0 daku

ak ∈ ̂k[(ui)i∈I ].

So we have a continuous surjection of topological k-algebras ̂k[(ui)i∈I ] → R
whose associated graded map is the surjection k[(Ui)i∈I ] → grνR. Topological
generators of the kernel are then overweight deformations (see remark 2.9) of
binomials generating the kernel of the associated graded map. This is the nature
of the valuative Cohen Theorem.

Remark 3.4. Taking a finite system of generators of the maximal ideal of R, say
ξ = (ξi1 , . . . , ξin), by Chevalley’s theorem we can for each ξi choose a power series
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expression ξi =
∑

a
(i)
e ξe of order ≥ β(γi). The convergence of the series

∑

e∈E deξ
e

comes from substituting for each ξi with i /∈ {i1, . . . , in} the chosen expression.

Before we deal with rational valuations of arbitrary rank we need some prelim-
inaries, contained in the next subsection.

3.1 More on the structure of grνR in the case where R is

complete

Recall the notations of section 3: Let Φ be a group of height (or rank) h associ-
ated to a valuation of a complete local domain R centered at the maximal ideal
m of R; set k = R/m. Let

(0) = Ψh ⊂ Ψh−1 ⊂ · · · ⊂ Ψ1 ⊂ Ψ0 = Φ

be the sequence of isolated subgroups of Φ (including the trivial ones) and let

(0) ⊆ p1 ⊆ p2 . . . ⊆ ph−1 ⊆ ph = m

be the corresponding sequence of the centers in R of the valuations with which
ν is composed, with pi = {x ∈ R|ν(x) /∈ Ψi}. Let Γ be the semigroup of ν
on R and set Γi = Γ ∩ Ψi. Considering the valuation ν′ of height h − 1 with
center ph−1 with which ν is composed, we have seen in subsection 3.3 of [76]
that we could identify grνRh−1, where Rh−1 = R/ph−1 and ν is the residual
valuation induced by ν, with the subalgebra

⊕

ψ∈Ψh−1+∪{0}(grνR)ψ of grνR.

The generators of this subalgebra are the (Ui)i∈I1 , where I1 ⊂ I, is the set of
indices of the Ui whose degree lies in Ψh−1. Then we have:

Proposition 3.5. Assume that R is a complete equicharacteristic noetherian
local domain. If R ⊂ Rν ⊂ Rν′ , where Rν dominates the local ring R without
residual extension and ν′ is of height one less than ν. Fix a set of elements
(ξi ∈ R)i∈I whose initial forms generate the k-algebra grνR. The map of Rh−1-
algebras

Rh−1[(ui)i∈I\I1 ] → grν′R, ui 7→ inν′ξi

is surjective.

Proof. : Let us first recall that if we denote by λ : Φ → Φh−1 = Φ/Ψh−1 the
natural map, the valuation ν′ is defined as λ ◦ ν. If we denote by Pφh−1

the
ideal {x/ν′(x) ≥ φh−1}, for all φ ∈ λ−1(φh−1) we have the inclusions

P+
φh−1

⊆ Pφ ⊆ Pφh−1
,

and these Pφ induce a filtration P(φh−1) on the quotient Pφh−1
/P+

φh−1
which is

a finitely generated R/p1-module.
We need the following Lemma:
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Lemma 3.6. In the situation of the proposition, given a set of representatives
ξi ∈ R of the generators of grνR, setting p = ph−1 = mν′ ∩ R, for each φh−1 ∈
Φh−1 the R/p-module Pφh−1

/P+
φh−1

is generated by finitely many monomials in
the inν′ξi.

Proof. Let e1, . . . , es be a minimal set of generators for the finitely generated
R/p-module Pφh−1

/P+
φh−1

. Up to reordering, we may assume that their orders

for the P(φh−1) filtration, which we denote by ν(ei) since they coincide with the
ν valuation of a representative in R, satisfy ν(e1) ≤ · · · ≤ ν(es). We may further
assume that for each i the initial form inνei for the P(φh−1)-filtration of ei is
not the initial form of a linear combination of the ej for j < i, and in particular
that ν(e1) < · · · < ν(es). Indeed, if inνei does not satisfy the condition, there

are µ
(1)
ℓ ∈ R/p, 1 ≤ ℓ ≤ i − 1, such that ν(ei −

∑i−1
ℓ=1 µ

(1)
ℓ eℓ) > ν(ei), and we

replace ei by ei −
∑i−1

k=1 µ
(1)
k ek. If we have to continue indefinitely, we build a

sequence of elements
∑t

k=1

∑i−1
ℓ=1 µ

(k)
ℓ eℓ of elements of Pφh−1

/P+
φh−1

which is a

Cauchy sequence for the P(φh−1) filtration, such that the ν value of the ei −
∑t
k=1

∑i−1
ℓ=1 µ

(k)
ℓ eℓ increases indefinitely with t. Since R is complete, so is R/p,

and since the valuation ν is of rank one, the sequence of the
∑t
k=1

∑i−1
ℓ=1 µ

(k)
ℓ eℓ

converges thanks to Chevalley’s theorem (see [76], section 5, and [5], Chap. IV,
§2, No. 5, Cor.4) to an element of the submodule of Pφh−1

/P+
φh−1

generated
by the ej, j < i which is closed since it is finitely generated, and this shows
that ei belongs to the submodule generated by the ej , j < i and gives us a
contradiction with the minimality of our set of generators. So after replacing ei
with some ei−

∑t
k=1

∑i−1
ℓ=1 µ

(k)
ℓ eℓ, we may assume that its P(φh−1)-initial form

is not the initial form of a linear combination of the ej for j < i.
In view of Lemma 3.16 of [76], up to multiplication by an element of k∗ the

initial forms of the ei with respect to the P(φh−1) filtration are monomials ξ
αi

in the initial forms ξi ∈ grνR of the ξi. We now prove that the inν′ξαi also
generate the module. We can write

e1 = inν′ξα1 +

s
∑

j=1

λ
(1)
j ej,

with λ
(1)
j ∈ R/p. The element 1 − λ

(1)
1 is a unit in R/p since otherwise the

P(φh−1) initial form of e1 cannot be ξ
α1

. Now if we write

e2 = inν′ξα2 +

s
∑

j=1

λ
(2)
j ej,

we see that ν(λ
(2)
1 ) > 0 because otherwise the right hand side has P(φ1) order

ν(e1) which we have excluded, Moreover, we must have ν(λ
(2)
1 e1) ≥ ν(e2) and

equality is impossible because otherwise the inP(φ1)
initial form of e2 would be

a multiple of ξ
α1

which we have also excluded. This implies that 1 − λ
(2)
2 is
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invertible. We continue like this and finally we see that the elements inν′ξαi are
expressed in terms of the ei by a matrix whose diagonal entries are invertible in
R/p and all entries below the diagonal are in the maximal ideal of R/p. �

The proposition follows directly from the Lemma. �

Definition 3.7. We define a finite partition of the index set I by defining It to
be the set of indices in I such that γi lies in Ψh−t \ Ψh−t+1.

Let us define a filtration ofRh−1[(ui)i∈I\I1 ] by Qφ = {
∑

α aαu
α|ν(

∑

α aαξ
α) ≥

φ}, and keep the P(φ) filtration on grν′R. Passing to the associated graded rings
recovers a weaker result (see [76], proposition 4.8, corollary 4.9) which does not
needs the completeness assumption:

Corollary 3.8. the natural map

grνRh−1[(Ui)i∈I\I1 ] → grνR

mapping Ui to the generator ξi is surjective and its kernel is generated by the
images in grνRh−1[(Ui)i∈I\I1 ] of those binomials Un−λmnU

n ∈ k[(Ui)i∈I ] which
involve at least one variable Ui with i ∈ I\I1. Applying this result successively to
the quotients of R by the prime ideals ph−2, ph−3, . . . , p1 and the corresponding
residual valuations, we find in particular that if ν1 is the valuation of height
one with which ν is composed, setting R = R/p1, equipped with the residual
valuation ν, we have a similar presentation

grνR[(Ui)i∈Ih ] → grνR.

Remarks 3.9. 1. This statement complements §3.3 of [76].

2. In the statement of the corollary, if a binomial contains a variable Ui with i ∈
I \ I1 it must contain at least two, otherwise the weight of that variable would
have to be in Ψ1 and hence in I1.

3. The fact that the R/p-module Pφh−1
/P+

φh−1
is generated by finitely many mono-

mials in the inν′ξi does not imply that its associated graded module with respect
to the P(φh−1)-filtration is a finitely generated module over grνR. There are
counterexamples in [15].

Using Lemma 3.6 we can prove a stronger result than corollary 3.8, which is
the key to the valuative Cohen theorem in higher rank:

Proposition 3.10. Fix a set of representatives (ξi)i∈I , ξi ∈ R, of the gener-
ators of grνR. Let νs be the valuation taking values in Φs = Φ/Ψs with which
ν is composed. For each φs ∈ Φs the R/ps-module Pφs

(R)/P+
φs

(R) is generated
by finitely many initial forms of monomials in the elements ξi.

Proof. Lemma 3.6 gives the result for s = h − 1. Let us assume the result is
true for s ≥ k and prove that it holds for s = k − 1. Let λk denote the natural
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surjection Φk → Φk−1 and let φk−1 be an element of Φk−1. For all elements
φk ∈ λ−1

k (φk−1) we have inclusions

P+
φk−1

⊂ P+
φk

⊂ Pφk
⊂ Pφk−1

,

where the indices indicate the valuation to which the valuation ideals are at-
tached. For φk ∈ λ−1

k (φk−1) this induces a filtration P(φk−1) of the quotient
Pφk−1

/P+
φk−1

indexed by elements of the rank one group Ψk−1/Ψk. This filtra-

tion may be finite if the centers in R of νk and νk−1 coincide (see [76], Section 3.3
and proposition 3.17). The associated gradedR/pk-module

⊕

φk∈λ
−1
k

(φk−1)
Pφk

/P+
φk

is a sum of components of grνkR.
If (eℓ)1≤ℓ≤t is a system of generators of the finitely generatedR/pk−1-module

Pφk−1
/P+

φk−1
, each has an initial form with respect to the P(φk−1) filtration

which is, by our inductive assumption, a linear combination
∑

u a
(ℓ)
u inνkξ

u with

coefficients a
(ℓ)
u ∈ R/pk. If we take representatives a

(ℓ)
u ∈ R/pk−1 of the a

(ℓ)
u ,

we see that νk(eℓ −
∑

u a
(ℓ)
u inνk−1

ξu) > νk(eℓ). If we apply the same procedure

again to eℓ −
∑

u a
(ℓ)
u inνk−1

ξu and iterate, we build a series of elements that
are combinations of inνk−1

ξu and whose terms have increasing νk value. In
view of Chevalley’s theorem (see [76], Section 5, and [5], Chap. IV, §2, No. 5,
Cor.4), this series converges to eℓ because R/pk−1 is a complete local ring and
Pφk−1

/P+
φk−1

is a finitely generated module. Each eℓ being a combination of

inνk−1
ξu, the R/pk−1-module Pφk−1

/P+
φk−1

is generated by such ”monomials”,
and since it is finitely generated, it is generated by finitely many of them. �

Remark 3.11. We could have used this argument in the proof of Lemma 3.6, but
the approach used there may be useful in a subsequent work.

3.2 Statement and proof

We keep the notations introduced in subsection 3.1, use remark 2.9 and still
assume that ν is a rational valuation of R.

Theorem 3.12. (Valuative Cohen theorem; compare with [76], 5.29) Assuming
that the local noetherian equicharacteristic domain R is complete, and fixing a
field of representatives k ⊂ R, there exist choices of representatives ξi ∈ R of
the ξi such that the surjective map of k-algebras k[(Ui)i∈I ] → grνR, Ui 7→ ξi, is

the associated graded map of a continuous surjective map ̂k[(ui)i∈I ] → R, ui 7→
ξi, of topological k-algebras, with respect to the weight and valuation filtrations
respectively. The kernel of this map is generated up to closure by overweight
deformations of binomials generating the kernel of k[(Ui)i∈I ] → grνR.

Proof. We need the:

Lemma 3.13. A finite set (ξj)j∈F of the elements ξi generate the maximal
ideal of R. We can choose the representatives ξi of the ξi in such a way that
if ν(ξi) ∈ Ψk then it has an expression in terms of the (ξj)j∈F which does not
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involve any term whose valuation is not in Ψk. If we assume that the image of
ξi in R/pk belongs to a high power of the maximal ideal, we may choose ξi so
that it belongs to the same power of the maximal ideal of R.

Proof. By descending induction on the index k of convex subgroups, using the
fact that the initial form in grνR of a generator ξi whose value is in Ψk depends
only upon its image in R/pk, by corollary 3.8. We can take a representative of
ξi in R/pk and write it as a series in the images in R/pk of (ξj)j∈F , and take
as representative of ξi in R the same expression in terms of the (ξj)j∈F . �

In what follows we start from an initial choice of the ξi done in this way. How-
ever, this is not sufficient to ensure that the ξi belong to powers of the maximal
ideal which increase with i. In order to achieve this, we have to improve our
choice of representatives thanks to Chevalley’s theorem, as follows:

Let (γi)i∈I be the minimal set of generators of the semigroup Γ of ν on R,
and (ξi)i∈I a minimal set of generators of the k-algebra grνR, giving rise to
a surjective map of k-algebras k[(Ui)i∈I ] → grνR. After definition 3.7, the
polynomial algebra k[(Ui)i∈I ] can be written k[(Ui)i∈I1 ][(Ui)i∈I2 ]....[(Ui)i∈Ih ].

In a similar manner, since the subsemigroups of Γ are well ordered and so

combinatorially finite, the series in ̂k[(ui)i∈I ] can be reorganized according to

the decomposition of I induced by the subgroups Ψk: a series in ̂k[(ui)i∈
⋃

s
k=1 Ik

]

can be written
∑

ADAu
A with DA ∈ ̂k[(ui)i∈

⋃s−1
k=1 Ik

] and uA involving only

variables with indices in Is.

The weight w gives rise to a monomial valuation on ̂k[(ui)i∈I ] with associated
graded ring k[(Ui)i∈I ]. The centers of the valuations with which it is composed
are the ideals qt generated by (ui){i|γi /∈Ψt}.

We inductively build a map of k-algebras ̂k[(ui)i∈I ] → R as follows:
From what we saw in the rank one case, we have a continuous surjective map

πh−1 : ̂k[(ui)i∈I1 ] → R/ph−1 mapping ui to the image of ξi in R/ph−1. The

image of a series z ∈ ̂k[(ui)i∈I1 ] converges because the images of monomials of
high weight belong to high powers of the maximal ideal of R/ph−1 and so can be
represented by series of high order in the images in R/ph−1 of a finite number of
generators (ξj)j∈F of the maximal ideal of R. Since by corollary 3.8 the initial
forms of elements of R (or R/ph−2) whose valuation is in Ψh−1 depend only on
the images of those elements in R/ph−1, as we lift to R or R/ph−2 the same
series in the (ξj)j∈F or their images we obtain representatives in R or R/ph−2

of the (ξi)i∈I1 which still belong to high powers of the maximal ideal of R or
R/ph−2 (cf. Lemma 3.13). Let us now seek representatives of the ξi for i ∈ I2.
Let us denote by λ : Ψh−2 → Ψh−2/Ψh−1 the canonical map and by νh−2 the
corresponding valuation on R/ph−2. The residual valuation induced by ν on
R/ph−2 is denoted by νh−2.

We choose representatives in R/ph−2 of the ξi for i ∈ I1, which as we saw
are series of increasing order in the images in R/ph−2 of a finite number of
generators (ξj)j∈F of the maximal ideal of R. Then we consider the smallest
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non zero element, say φ′h−1, of λ(Γ ∩ Ψh−2). By proposition 3.10 we know

that given φh−1 ∈ Ψh−2/Ψh−1, the R/ph−1-module Pφh−1
/P+

φh−1
attached to

the valuation νh−2 of R/ph−2 is generated by the initial forms of finitely many
monomials in our initial set of representatives in R/ph−2 of the (ξi)i∈I1

⋃
I2 .

We do not change the representatives of those finitely many elements and
then the initial forms of all the other ξs whose valuation has image φ′h−1 must

be of the form inνh−2
ξs = inP(φ′

h−1)
(
∑n

t=1B
(s)

Et
(ξi)inνh−2

ξEt), where P(φ′h−1) is

the filtration of Pφ′
h−1

/P+
φ′
h−1

induced by νh−2, the inνh−2
ξEt are the finitely

many generating monomials and with B
(s)

Et
(ξi) ∈ R/ph−1 belonging to powers of

the maximal ideal which tend to infinity with the valuation of ξs by Chevalley’s

theorem. Again we can lift the B
(s)

Et
(ξi) as a series B

(s)
Et

(ξi) in R/ph−2 with the

same property and choose as representative for ξs the element
∑n
t=1B

(s)
Et

(ξi)ξ
Et ,

which belongs to higher and higher powers of the maximal ideal as s increases.
We then repeat the same operation with the successor of φ′h−1 in λ(Γ ∩ Ψh−2)
and so on. At each step, we have finitely monomials in the ξi whose initial forms
generate the corresponding Pφh−1

/P+
φh−1

and we keep the initial choice for the
finitely many representatives which are used in these monomials and have not
been chosen in the previous steps. As the values in λ(Γ ∩ Ψh−2) increase the
elements ξs must belong to higher and higher symbolic powers of ph−1/ph−2 by
proposition 5.3 of [76] and thus to higher and higher powers of the maximal
ideal by a result of Zariski (see [76], proposition 5.8). Using this we see that we
can choose representatives ξi ∈ R/ph−2 such that in any simple infinite sequence
with increasing valuations the elements belong to powers of the maximal ideal
tending to infinity, whether the valuations of the members that sequence have
ultimately a constant image in λ(Γ∩Ψh−2) or not. Writing the representatives
as series in the images of the (ξj)j∈F , we can lift them to R or R/ph−3.
Continuing in this manner we can choose representatives in R/ph−3 of the ξi
for i ∈ I3 with the same property, and so on. At each step we use proposition
3.10, Chevalley’s theorem and Zariski’s theorem on the symbolic powers.

Let us now assume that we have chosen representatives ξi as above.

Assume that we have built a map ̂k[(ui)i∈
⋃s−1

k=1 Ik
] → R which induces a sur-

jection ̂k[(ui)i∈
⋃s−1

k=1 Ik
] → R/ph−s+1 and take a series

∑

ADAu
A, with DA ∈

̂k[(ui)i∈
⋃s−1

k=1 Ik
] and uA involving only variables with weight in Is. We want

to show that the series
∑

ADA(ξ)ξA, where DA(ξ) is the image in R of DA,
converges in R.

Let us first consider the case where s = h, the last one in the induction. Let
us denote by ν1 the valuation of rank one with which ν is composed, with values
in Φ1 = Φ/Ψ1. We denote by w1(A) the image in Φ1 of the weight of DAu

A.
By our inductive assumption, the DA(ξ) exist in R.
If for every φ1 ∈ Φ+

1 there are at most finitely many terms DA(ξ)ξA whose
ν1 value is φ1, either the sum

∑

ADA(ξ)ξA is finite, or the ν1 values of the
terms DA(ξ)ξA increase indefinitely, the series converges for the ν1 valuation,
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and therefore the sum exists in R, which is complete for the ν1-adic valuation
(see [76], §5). If such is not the case, let φ1 ∈ Φ1 be the least value for which
there are infinitely many terms of the series whose ν1-value is φ1. As the value
of DA(ξ)ξA increases, at least one of three things must happen: the value of
DA(ξ) increases and so it must belong to increasing powers of the maximal ideal,
or the value of |A| increases, with the same consequence, or the indices of the
ξi appearing in ξA increase, and in view of our choice of representatives, again
they belong to increasing powers of the maximal ideal. Therefore, the series
∑

w1(A)=φ1
DA(ξ)ξA converges in R to an element Σφ1 .

The sum
∑

w1(A)<φ1
DAu

A is well defined by our induction hypothesis and the

choice of φ1. So we have just shown that the image of the sum
∑

w1(A)≤φ1
DAu

A

is well defined in R.
Now we repeat the argument with the successor of φ1 in the image of Γ in Φ/Ψ1,
and continuing in this manner we build a series

∑

w1(A)<φ1
DA(ξ)ξA + Σφ1 +

Σφ2 + · · · of elements of R indexed by the elements of the image of Γ in the rank
one group Φ/Ψ1 and where by construction the partial sum up to the index φk
coincides with the image of

∑

w(A)≤φk
DAu

a.
Either the series is a finite sum or the ν1 valuations of the images in R of its
terms must tend to infinity in the image of Γ in the rank one group Φ1 and so
its image converges for the ν-adic topology and therefore, by corollary 5.9 of
[76] it converges for the m-adic topology of R as well. By construction its sum
is the image of our original series.

Let us now go back to our induction, and apply this result to ̂k[(ui)i∈
⋃

s
k=1 Ik

]

and R/ph−s. It tells us that we can define a map ̂k[(ui)i∈
⋃

s
k=1 Ik

] → R/ph−s
where the image of an element of the first ring is the sum of a series made of
terms in the images of the ui, which converges in the m/ph−s-adic topology.
Lifting these terms to R defines a series which converges in the m-adic topology

and defines a map ̂k[(ui)i∈
⋃

s
k=1 Ik

] → R. By induction we have now defined our
map

π : ̂k[(ui)i∈I ] → R.

Let is prove that it is surjective. Given x ∈ R we follow exactly the same
procedure as we did in the rank one case. The difference is that now it gives
us a transfinite series since the steps of the procedure are indexed by Γ. This

series determines an element of ̂k[(ui)i∈I ]. By what we have just seen this series
converges to x′ ∈ R. If x − x′ 6= 0, its initial form is part of the series, which
gives a contradiction. So the series converges to x, which proves the surjectivity.
By proposition 2.6 if G is a non zero element of the kernel F of π, its initial
form belongs to the binomial ideal which is the kernel of grwπ. Set, with a slight
abuse of notation, G1 = G− inwG and iterate this process. We represent G as
the sum of a series of homogeneous elements of increasing weight, whose images

in grw
̂k[(ui)i∈I ] belong to Kergrwπ. This shows that if we take elements of F

whose initial forms generate the initial ideal Kergrwπ, the closure of the ideal F̃
which they generate is F . The initial ideal of F is, by construction, equal to the
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initial ideal of F̃ . We could also invoke the faithful flatness of the specialization
of R to grνR (see [76], proposition 2.3 and proposition 5.38). �

Remarks 3.14. 1. The argument given in the proof shows that when the set I

is finite, the scalewise completion ̂k[(ui)i∈I ] of the polynomial ring k[(ui)i∈I ]
coincides with the usual power series ring k[[(ui)i∈I ]]. The point is again that if
there are finitely many variables, in order for the weight to increase in a sequence
of monomials, the degrees of the monomials must increase. To sum up:

• If the valuation ν is of rank one or if the semigroup Γ is finitely generated,
any choice of representatives ξi ∈ R of the generators ξi of grνR will be suitable
for the valuative Cohen theorem.

2. If ν has rank > 1, some choices of the representatives ξi can lead to sums

of ̂k[(ui)i∈I ] having no image in R by the map ui → ξi. The problem comes
from infinite sets of representatives having value in some Pφi

with φi ∈ Φ/Ψi,
but containing an uncontrollable ”tail” with value in P+

φi
. For example if the

valuation has rank two, we consider the sum
∑

i∈I1
ui, and the corresponding

ξi are all of the form ξ′i + η with inνξ
′
i = inνξi, the ξ′i belonging to higher and

higher powers of the maximal ideal, and ν(η) ∈ Φ \Ψ1.

3. The nature of the proof suggests that it can be extended to the non-equicharacteristic
case.

4. By construction, we have surjective maps ̂k[(ui)i∈
⋃

s
k=1

Ik ] → R/ph−s. Their
kernel is generated up to closure by the generators (up to closure) of the kernel of

the map π : ̂k[(ui)i∈I ] → R from which one has removed all the terms containing
a variable ui with i /∈ ⋃s

k=1 Ik.

Example 3.15. We revisit examples 3.19 and 5.27 of [76]. Let R be a complete
noetherian equicharacteristic local domain with residue field k, and we fix a field
of representatives k ⊂ R. Let f ∈ R generate a non trivial prime ideal, and
let us choose a rational valuation ν on R/fR with value group Ψ1. We can
define a valuation µ on R with value group Z⊕Ψ1 ordered lexicographically, as
follows: µ(x) = (ℓ, ν(f−ℓx mod.fR)), where ℓ is the unique integer such that
x ∈ f ℓR \ f ℓ+1R. Then, by direct inspection or by invoking loc.cit., we have
the equality grµR = grν(R/fR)[F ], where F = inµf . Let us choose elements
ξi ∈ R such that their images in R/fR have ν-initial forms which generate the
k-algebra grν(R/fR) and for which we can apply the valuative Cohen theorem.
Let us take variables ui corresponding to the ξi and a variable v corresponding

to f . Given a series in the ui and v in the ring ̂k[(ui)i∈I , v], we can write it
∑

ADA(u)vA. By Theorem 3.12 the DA(u) have images in R, which we shall
write DA(ξ, f), and then the series

∑

ADA(ξ, f)fA converges in R.

To prove that the map ̂k[(ui)i∈I , v] → R so defined is surjective it suffices to
prove that any element af ℓ, with a /∈ fR, is in its image. The µ-initial form of

a is the same as the ν-initial form of its image mod.fR. It is a term c
(ℓ)
1 ξ

e1
,

with c
(ℓ)
1 ∈ k∗. We consider a1 = a− c

(ℓ)
1 ξe1 , note that µ(a1) > µ(a) and iterate

this procedure, obtaining a (possibly transfinite) series
∑

j c
(ℓ)
j ξej ∈ R, whose

image in R/fR converges to the image of a.

36



So we have (a −
∑

j c
(ℓ)
j ξej )f ℓ ∈ f ℓ+1R. Let ℓ + k, with k ≥ 1, be the f -adic

value of this element and let us write it a(ℓ+k)f ℓ+k, with a(ℓ+k) /∈ fR. We repeat

the procedure, building a series
∑

j c
(ℓ+k)
j ξej whose image in R/fR converges to

the image of a(ℓ+k), and continue in this manner. In this way we create a series
∑∞
t=ℓ(

∑

j c
(t)
j ξej )f t which converges to af ℓ in R since

⋂∞
t=ℓ f

tR = (0) and is

the image of the series
∑∞

t=ℓ(
∑

j c
(t)
j uej )vt ∈ ̂k[(ui)i∈I , v].

4 Valued complete noetherian local domains as

overweight deformations

Let us now go back to the notations of the introduction; let R be a complete
equicharacteristic noetherian local ring and ν a rational valuation of R with
value group Φ. We assume that the residue field k of R is algebraically closed
and choose once and for all a field of representatives k ⊂ R. We follow the
notations of [76].
Let us assume that the semigroup Γ attached to (R, ν) is finitely generated. Let
γ1, . . . , γN be a set of generators of Γ and let ξ1, . . . , ξN be elements of R with
ν(ξi) = γi (see remark 3.14. 1)). Their images ξi in grνR generate it as a
k-algebra. The kernel of the surjective map of graded k-algebras

k[U1, . . . , UN ] → grνR

determined by Ui 7→ ξi is a prime binomial ideal F0 (see [76], corollary 4.3).
By proposition 5.49 and corollary 5.52 of [76], or the valuative Cohen Theorem
of the previous section, since R is complete and in view of remark 3.14, this
presentation of grνR lifts to a continuous surjection of k-algebras

k[[u1, . . . , uN ]] → R, ui 7→ ξi

whose kernel is generated by an overweight deformation of the binomial ideal
F0 for the weight determined by w(ui) = ν(ξi) = γi, and which is such that the
valuation ν is the valuation determined by this weight. This is summarized as
follows:

Proposition 4.1. Let R be a complete equicharacteristic noetherian local do-
main and let ν be a rational valuation on R. Assume that the semigroup
ν(R \ {0}) is finitely generated. Then (R, ν) is an overweight deformation of its
associated graded ring grνR.

Remarks 4.2. 1. We have seen the converse of this proposition in proposition
2.3, a).

2. Since we assume that R is complete, as a consequence of the valuative Cohen
Theorem, a system (ξi)i∈I of elements of the maximal ideal of R such that their
initial forms inνξi generate the k-algebra grνR is a system of generators for the
maximal ideal of R. The valuations of the ξi being positive, the weights of the
variables ui are all > 0.
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Theorem 4.3. Let R be a complete equicharacteristic noetherian local ring with
algebraically closed residue field k and let ν be a rational valuation on R. Assume
that the associated graded ring grνR is finitely generated as a k-algebra and let
(ξi)1≤i≤N be elements of the maximal ideal of R whose initial forms generate
grνR. Let us denote by X the formal subspace of AN (k) corresponding to the
surjection k[[u1, . . . , uN ]] → R determined by ui 7→ ξi. There exist regular fans
Σ with support RN

≥0 such that the strict transform X ′ of X by the birational

toric map Z(Σ) → AN (k) is non singular and transversal to the toric boundary
at the point picked by ν.

Proof. This is just the translation of proposition 2.3, b) using proposition 4.1.
�

5 Some results on semigroups

In the rest of this paper, by affine semigroup we mean a subsemigroup of a
finitely generated free abelian group.

5.1 On the finite generation of affine semigroups

Proposition 5.1. Given an extension Γ ⊂ Γ′ of affine semigroups, assume that
there exist a system of generators (δj)j∈J of Γ′, an integer d and element γ ∈ Γ
such that γ + dδj ∈ Γ for all j ∈ J . If Γ is finitely generated, so is Γ′.

Proof. : By Dickson’s Lemma12, the monoideal of Γ generated by the γ + dδj
is finitely generated, say by (γ + dδji)1≤i≤f . Thus for any δj we can write

γ + dδj = a
(j)
1 (γ + dδj1) + · · · + a

(j)
f (γ + dδjf ) + ǫ(j) with ǫ(j) ∈ Γ, a

(j)
i ∈ N and

some a
(j)
i 6= 0. This shows that dδj is in the subsemigroup Γ̃ of Γ′ generated by

Γ and the (dδji)1≤i≤f . Replacing Γ by the finitely generated semigroup Γ̃ ⊂ Γ′

we are reduced to the case where γ = 0. In that case we have the inclusions
dΓ ⊂ dΓ′ ⊂ Γ ⊂ Γ′ and it suffices to prove that dΓ′ is finitely generated. Let
us denote by M (resp. M ′) the group generated by Γ (resp. Γ′). By our
assumption we have dM ′ ⊂ M and if we denote by σ̌ the cone generated by
Γ in MR = M ′

R, it is also the closed cone generated by Γ′ or dΓ′. We can
add to dΓ finitely many elements of dΓ′ so that the resulting subsemigroup
Γ̃1 ⊂ dΓ′ generates the same group dM ′. By the existence of a conductor for
finitely generated affine semigroups, (see Theorem 1.4 of [45])13 , there exists
an element κ ∈ Γ̃1 such that κ+ σ̌ ∩ dM ′ ⊂ Γ̃1, and in particular κ+ dΓ′ ⊂ Γ̃1.
We can repeat with Γ̃1 and dΓ′, now taking d = 1 and γ = κ in the hypothesis

12Or the fact that the semigroup ring Z[tΓ] is a noetherian ring and the ideal generated by
the elements tγ+dδj is finitely generated.

13Or the fact that given a finitely generated affine semigroup Γ generating a free abelian
group M and a rational convex cone σ̌ in MR, the semigroup algebra k[tσ̌∩M ] is the integral
closure of k[tΓ] in k[tM ] and a finitely generated graded k[tΓ]-module, so that there exist
homogeneous elements tκ ∈ k[tΓ] such that tκk[tσ̌∩M ] ⊂ k[tΓ].
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of the lemma, the argument used at the beginning, to prove that dΓ′, and hence
Γ′, is finitely generated. �

Corollary 5.2. An affine semigroup Γ containing a finitely generated subsemi-
group which generates the same cone is finitely generated.

Proof. As in the proof of the proposition, we can add to the subsemigroup
finitely many elements of Γ to obtain a finitely generated subsemigroup Γ1 ⊂ Γ
which generates the same group M and the same cone σ̌ as Γ. By the existence
of a conductor, there is an element κ ∈ Γ1 such that κ+ Γ ⊂ κ + σ̌ ∩M ⊂ Γ1

and we can apply the proposition. �

This corollary, which is perhaps well known, can be seen as a natural gen-
eralization to higher dimensions of the following classical result due to Dickson
(see [66] and [28]):

Corollary 5.3. Any subsemigroup Γ of N is finitely generated.

Proof. Any non zero element of Γ generates the same cone as Γ. �

5.2 Special extensions of groups

The next result, which we will use later, is also known is special cases. For the
classical case see [26], Lemma 1-1 and the references therein. One finds rather
general formulations in Lemma 3.1 of [44] and in Lemma 2.1 of [58].
An element i in a well ordered set I has a predecessor i− 1 ∈ I if i is the least
element of I which is > i− 1. In the well ordered set N2 with the lexicographic
order, the element (1, 0) has no predecessor.

Proposition 5.4. Let Φ0 be a commutative torsion free group. Let (δi)i∈I be a
family, indexed by an ordinal I, of elements of a torsion free commutative group
Φ containing Φ0 as a subgroup, and assume that for each i ∈ I there exists an
integer ni ∈ N, ni ≥ 1, such that niδi belongs to the subgroup Φ−

i generated
by Φ0 and the elements δj , j < i. Assume also that for each i ∈ I the set
E(i) = {k ∈ I, k ≤ i, nk > 1} is finite. Then for each element φ of the subgroup
Φi generated by Φ0 and the elements δj , j ≤ i, there exists a presentation:

φ = φ0 +
∑

k∈E(i)

tkδk, φ0 ∈ Φ0, tk ∈ N, 0 ≤ tk ≤ nk − 1.

If we assume that each ni is the smallest integer such that niδi ∈ Φ−
i , the

presentation is unique.

Proof. Let us denote by 1 the smallest element of I and set Φ−
1 = Φ0. If n1 = 1,

then Φ1 = Φ0 and the result is true. Assume that n1 > 1 and let φ be an
element of Φ1; we can write φ = φ′0 + t′δ1 with φ′0 ∈ Φ0 and t′ ∈ Z. Divide t′ by
n1 in the following sense: write t′ = cn1 + t, c ∈ Z, t ∈ N, 0 ≤ t ≤ n1 − 1. We
can rewrite φ = φ′0 + cn1δ1 + tδ1 which has the required form since n1δ1 ∈ Φ0.
Now we proceed by induction. If ni = 1 and if i has a predecessor i − 1 in I,
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by induction there is nothing to prove since Φi = Φ−
i = Φi−1. If ni = 1 and i

has no predecessor, the set {j ∈ I, j < i} is infinite and by our hypothesis there
is a largest element j in it such that nj > 1. Then Φi = Φj and we apply the
induction to Φj . If ni > 1, each element of Φi can be written as φ−i + tiδi with
φ−i ∈ Φ−

i , 0 ≤ ti ≤ ni− 1, and we apply the induction hypothesis to Φ−
i , which

again is equal to Φi−1 if i has a predecessor i− 1 or to some Φj with j < i and
nj > 1 if not.
The uniqueness under the minimality hypothesis follows from the fact that at
each passage from Φi to Φ−

i in the construction of the presentation a non zero
difference of two presentations would produce a smaller factor than ni. �

6 Valuations with finitely generated semigroup

and

Abhyankar valuations

Let R be a complete noetherian equicharacteristic local ring with an alge-
braically closed residue field, endowed with a rational valuation ν. Assume
that the semigroup ν(R \ {0}) is finitely generated. Then by Theorem 4.1 the
ring R is an overweight deformation of its associated graded ring, and in partic-
ular they have the same dimension. By a result of Piltant (see [76], proposition
3.1), the dimension of grνR is the rational rank of ν, so that the valuation ν
has to be Abhyankar. A slightly different argument was given in corollary 2.4.
Note that the semigroup of an Abhyankar valuation may be finitely generated
with a rational rank < dimR, but then the valuation is not rational.

The purpose of this section is to prove, in the situation studied here, a form
of converse: if the rational valuation ν of the complete equicharacteristic local
domain R is Abhyankar, then after replacing R by the completion of a toric
ν-modification of R, its semigroup becomes finitely generated. We know of no
example where the semigroup of R itself is not finitely generated.

6.1 Composition of Abhyankar valuations

Recall that a valuation ν on a local domain R is said to be zero dimensional if R
is dominated by the valuation ring of ν and the residual extension is algebraic.
Rational valuations are zero dimensional.

Proposition 6.1. Given a noetherian catenary local domain R and an Ab-
hyankar valuation ν of R, let ν′ be a valuation with which ν is composed and
p′ ⊂ R its center. The valuation ν′ induces a zero dimensional Abhyankar
valuation of Rp′ and ν induces an Abhyankar residual valuation of R/p′. Con-
versely, the composition of two Abhyankar valuations of a noetherian catenary
local domain is Abhyankar, and it is zero dimensional if both valuations are.

Proof. k be the residue field of R and kν the residue field of the ring Rν of ν. Let
Ψ′ be the convex subgroup of Φ corresponding to ν′. Since the residual valuation
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induced by ν on the quotient R/p′ has Ψ′ as value group, by Abhyankar’s
inequality we have trkkν + rat.rk.Ψ′ ≤ dimR/p′. Since R is catenary and ν is
Abhyankar, using Abhyankar’s inequality for ν′ on Rp′ this gives

trkkν+rat.rk.Ψ′ ≤ dimR−dimRp′ ≤ rat.rk.Φ+trkkν−rat.rk.Φ/Ψ′−trRp′/p
′Rp′

Rν′/mν′ ,

which implies that all inequalities must be equalities and trRp′/p
′Rp′

Rν′/mν′ =

0. This shows that ν′ is a zero dimensional Abhyankar valuation of Rp′ . The
residual valuation of ν in R/p′ is zero dimensional if ν is, and the first equality
above shows that it is Abhyankar. The converse follows from a similar dimension
count. �

6.2 Extension of Abhyankar valuations to the completion

Given a rational valuation of a local domain R, let us consider the inductive
system of local birational ν-extensions of R, that is, local rings R′ containing R,
essentially of finite type over R and dominated by Rν ; it is a tree in the sense
of [37], to which we refer for details.

The next proposition proves a (very) special case of Conjecture 9.1 of [37],
to which we refer for basic facts concerning extensions of a valuation on an
excellent local domain R to a quotient of its formal completion R̂m by an ideal
H such that H ∩ R = (0). In particular, to such an extension is associated a
sequence of convex subgroups

(0) = Ψ̂2h+1 ⊂ Ψ̂2h ⊂ · · · ⊂ Ψ̂2ℓ+1 ⊂ Ψ̂2ℓ ⊂ · · · ⊂ Ψ̂1 ⊂ Ψ̂0 = Φ̂.

where h is the rank of the valuation ν and Φ̂ is the value group of the extended
valuation ν̂−. The study of extension of valuations to the completion is relatively
straightforward in the rank one case, and was already known to Zariski at least
in special cases as explained before proposition 5.19 in [76]. It is dealt with in
[37] and also appears as Lemma 3.9 in [42] in the special case of regular local
k-algebras essentially of finite type and quasi monomial valuations.

Proposition 6.2. Let ν be a rational Abhyankar valuation of an excellent
equicharacteristic local domain R. There exist birational ν-extensions R → R′

in the inductive system, or tree, defined above, such that for any birational ν-
extension R′ → R” the valuation ν|R” extends uniquely to a valuation ν̂− of

a quotient of R̂”
m”

by a minimal prime ideal determined by ν, with the same

semigroup of values. The minimal prime is equal to H” =
⋂

φ∈Φ+
Pφ(R”)R̂”

m”
.

Proof. According to §5 of [37], a valuation ν of rank one centered at the maximal
ideal of R extend uniquely to a valuation of R̂m/H with the same semigroup
of values, where H =

⋂

φ∈Φ+
PφR̂

m (note that H ∩ R = (0)). If the valuation

ν is Abhyankar an extension to a quotient R̂m/H has to be Abhyankar too, so
that the ideal H has to be a minimal prime of R̂m and the value group Φ̂ of
the extended valuation must also be equal to Zr. Now let h be the rank of our
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valuation and let us assume that the result is true for all valuations of lower
rank. Let

(0) ⊂ Ψh−1 ⊂ · · · ⊂ Ψ1 ⊂ Ψ0 = Φ

be the sequence of convex subgroups of Φ. If p1 is the center in R of the rank
one valuation ν1 with which ν is composed, by our induction assumption for
R′ sufficiently far in the tree of ν-modifications of R we may assume that the
valuation ν on R′

1 = R′/p′1 extends uniquely to a valuation ν̂− on the quotient

R′
1
(ν)

of R̂′
m′

/p′1R̂
′
m′

by the ideal
⋂

φ∈Ψ1+
Pφ(R′)R̂′

m′

/p′1R̂
′
m′

, with the same
semigroup.

The inclusion Φ ⊂ Φ̂ of value groups is then Zr ⊂ Zr. As a consequence
there is an integer f such that f Φ̂ ⊂ Φ so that the two groups have the same real
rank. From this and Lemma 5.1 of [37] it follows that Ψ̂2ℓ+1 = Ψ̂2ℓ for 0 ≤ ℓ ≤ h,
and so the corresponding sequence of prime ideals of R̂m associated in section
5 of [37] to the extension ν̂− also satisfies H̃2ℓ = H̃2ℓ+1. By proposition 5.3 of
[37] we have for an R′ sufficiently far in the tree described above the inclusions
H ′
i ⊂ H̃ ′

i for 0 ≤ i ≤ 2h and

H ′
2ℓ+1 =

⋂

φ∈Ψℓ

P ′
φR̂

′
m′

and H ′
2ℓ is the unique minimal prime of p′ℓR̂

′
m′

contained in H ′
2ℓ+1. Since ν̂− is

Abhyankar H̃ ′
2ℓ has to be both a minimal prime of p′ℓR̂

′
m′

and equal to H ′
2ℓ+1

and finally we must have H̃ ′
i = H ′

i for all i and H ′
2ℓ = H ′

2ℓ+1 for all ℓ. We can

apply proposition 6.9 of [37] which tells us that the extension of ν to R̂′
m′

/H ′
0

is unique, minimal and tight (see Definition 6.1 of [37]) so that in particular by
proposition 6.7 of loc.cit. the groups of values of ν and ν̂− are the same. In

what follows we set H ′
0 = H ′ and R̂′

(ν)
= R̂′

m′

/H ′.

Now the valuation ν1 extends to a valuation ν̂−,1 of R̂′
(ν)

, after perhaps
choosing an R′ further in the tree. This valuation is the valuation of rank one
with which ν̂− is composed. Imitating the proof of Lemma 2.3 of [37], we see

that for z ∈ R̂′
(ν)

we have ν̂−,1(z) = max{φ1 ∈ Φ1|z̃ ∈ Pφ1(R′)R̂′
m′

}, where z̃

is a representative in R̂′
m′

of z. This makes sense as follows: by construction

there exists an element φ+1 ∈ Φ1 such that the element z̃ is not in Pφ+
1

(R′)R̂′
m′

.

Since ν1 is of rank one, the set of elements of the semigroup of values of ν1
which are ≤ φ̃+1 is finite (see [89], Vol. II, App. 3, Lemma 3), so that there is a

φ1 ≤ φ+1 with z̃ ∈ Pφ1(R′)R̂′
m′

\ P+
φ1

(R′)R̂′
m′

. In view of the definition of H ,
this φ1 is independent of the choice of the representative z̃. As a consequence,

the semigroup of values Γ′
1 of ν̂−,1 on R̂′

(ν)
is the same as that of ν1 and we have

for φ1 ∈ Γ1 the equality Pφ1(R̂′
(ν)

) = Pφ1(R′)R̂′
(ν)

. Thus, the natural map of
graded R′

1-algebras

grν1R
′ ⊗R′

1
R̂′

1

(ν)

→ grν̂−,1
R̂′

(ν)
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is an isomorphism. Since it is graded, it has to be also an isomorphism of

R̂′
1

(ν)

-algebras. We know that the value groups of ν and ν̂− are the same and

we assume by induction that the value semigroups of ν on R′
1 and ν̂− on R̂′

1

(ν)

are the same. By the structure result of corollary 3.8 the fact that the sets of

generators as R̂′
1

(ν)

-algebras of both algebras have to be the same implies that

the semigroups of R′ and R̂′
(ν)

are equal. �

Remarks 6.3. 1. According to lemma 7.3 of [37], by taking a smaller cofinal tree
we can even assume in the statement of the proposition that R′ is analytically
irreducible, so that H ′ = (0).

2. The results of [37] assume that R is excellent, which explains the hypothesis
made in the proposition.

3. One may ask whether if the semigroup of values of a rational Abhyankar val-
uation ν on R is finitely generated, and R is analytically irreducible, there is
a unique extension ν̂ of ν to R̂m and it has the same semigroup. According
to [76], 7.11, in that case a birational toric map R → R′ which induce a local

uniformization R̂m → R̂′m′

of ν̂ uniformizes ν.

6.3 Key polynomials for Abhyankar valuations

Assume that R is complete and equicharacteristic with an algebraically closed
residue field and that ν is Abhyankar and rational, and fix a field of represen-
tatives k ⊂ R. There are elements x1, . . . , xr in R, with r = dimR, such that
Φ0 = Zν(x1) ⊕ · · · ⊕ Zν(xr) is a subgroup of finite index in Φ ≃ Zr (see [81],
Théorème 9.2). The xi are analytically independent so we have an injection
R0 = k[[x1, . . . , xr ]] → R which, with respect to the valuation ν0 = ν|R0, cor-
responds to a finite extension of the value group and a trivial extension of the
residue field. The valuation ν0 is a monomial valuation; its associated graded
ring is grν0R0 = k[X1, . . . , Xr] with degree of Xi equal to ν(xi). In this sub-
section we show that after base change (R,m) → (R′,m′) on R by a birational
toric map k[[x1, . . . , xr]] → k[[x′1, . . . , x

′
r]] in the coordinates x1, . . . , xr (followed

by localization at the center of the valuation and completion), we obtain a sit-
uation where the transformed ring R̂′m′

is a finite k[[x′1, . . . , x
′
r ]]-module. For a

suitable choice of the x′i the extension of value groups is tame and the extension

of fraction fields corresponding to k[[x′1, . . . , x
′
r]] ⊂ R̂′m′

is finite and separable.
The description for each y ∈ R̂′m′

of the valuation ν|k[[x′1, . . . , x
′
r]][y] with key

polynomials plays an important role. We can then apply the same description
when y ∈ R̂′m′

is a primitive element of the separable field extension, and deduce
that the semigroup ν(R′ \ {0}) is finitely generated.

Proposition 6.4. Let ν be a rational Abhyankar valuation on R. After a ν-
modification (R,m) → (R′,m′), it is possible to choose elements x′1, . . . , x

′
r as

above in such a way that R̂′m′

is a finite k[[x′1, . . . , x
′
r]]-module, the field K ′ is

a finite extension of K ′
0 = k((x′1, . . . , x

′
r)) and the index in Φ of the subgroup

generated by ν(x′1), . . . , ν(x′r) is not divisible by the characteristic of k = R/m.
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Proof. Since Φ is finitely generated, there is a finite set of generators γ1, . . . , γN
of the semigroup Γ = ν(R \ {0}) which generates Φ as a group. We consider
the semigroup Γ1 which they generate and apply to it what we recalled just
before section 2. A subset of r linearly independent generators of this semigroup
generates a lattice Φ0 of rank r in the group Φ ≃ Zr . These generators are the
images of r vectors of the canonical basis of ZN by the surjective morphism
of groups b : ZN → Zr ≃ Φ which sends the basis vectors of ZN to the N
generators of the semigroup.

The kernel of b is a saturated sub-lattice L of ZN of rational rank N − r,
and hence a direct factor of ZN . There are L generators mℓ − nℓ of L, with
L ≥ N−r, which correspond to binomials generating the ideal of the affine toric
variety associated to Γ1. The (N − r)-th exterior power ΛN−rL ⊂ ΛN−rZN

is also a direct factor, so it must be a primitive vector which means that the
(N−r)×(N−r) minors of the matrix M(L) whose columns are the coordinates
of the system of generators mℓ−nℓ of the lattice L in the canonical basis of ZN

are coprime (compare with [76], Prop. 6.2).
Indeed, the lattice L is the image of a map c : ZL → ZN so that ΛN−rL ⊂

ΛN−rZN is the image of ΛN−rc : ΛN−rZL → ΛN−rZN , a sublattice generated
by vectors corresponding to the choices of N − r basis vectors of ZL (N − r
”columns”) and whose coordinates are the (N − r) × (N − r) minors which
involve those columns in the matrix describing c which, in the canonical basis
of ZN , is the matrix of the L vectors mℓ − nℓ. The fact that ΛN−rL ≃ Z
implies that up to a change of the generators mℓ−nℓ of L, we may assume that
ΛN−rL is the image of a single basis vector of ΛN−rZL, which means that its
coordinates in ΛN−rZN are the minors corresponding to a single set of N − r
binomials and different choices of N − r basis vectors of ZN .
Let us denote by b̌ : Žr ⊂ ŽN the inclusion which is dual to the surjection b.
Its image is a direct factor in ŽN so the image of Λrb̌ : ΛrŽr ⊂ ΛrŽN is also a
direct factor, which means that it is a primitive vector; each of its coordinates
corresponds to a choice {i1, . . . , ir} of r basis vectors of ZN which by duality of
the corresponding injection Zr ⊂ ZN gives a projection ΛrŽN → ΛrŽr ≃ Z.
The choice of r basis vectors, of indices {i1, . . . , ir}, of ZN corresponds to the
choice of a basis vector in ΛrZN . By duality the images by the canonical map
ΛrZN → ΛrZr of the basis vectors of ΛrZN are the coordinates of the vector
ΛrŽr ∈ ΛrŽN . The image in ΛrZr ≃ Z by the map Λrb of a basis vector of
ΛrZN is the determinant of the matrix whose columns are the images by b of
the corresponding r basis vectors of ZN . The absolute value of each of these
coordinates, then, is the index of the subgroup of Zr generated by the images
of the corresponding r basis vectors of ZN .

The isomorphism between ΛrŽN and ΛN−rZN ([8], §11, No. 11, Prop. 12)
already used in ([34], proof of Prop. 10.1) maps the primitive vector ΛrŽr ⊂
ΛrŽN to the primitive vector ΛN−rL ⊂ ΛN−rZN : each coordinate of the vector
ΛrŽr ⊂ ΛrŽN is equal to an (N − r) × (N − r) minor of the matrix M(L) and
the N − r coordinates of ZN appearing in that minor are those indexed by the
complementary set of {i1, . . . , ir} in {1, . . . , N}.
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For any prime p there must be such minors which are not divisible by p.

Example 6.5. A simple example, closely related to Example 2.7, is given by
the numerical semigroup Γ = 〈4, 6, 13〉 ⊂ N. Each of these integers can be seen
as the index of the injection Z ⊂ Z corresponding to the choice of a generator
of the semigroup. The lattice L ⊂ Z3 of relations between the generators can
be generated by the vectors (−3, 2, 0) and (−5,−1, 2). The 2 × 2 minors of the
3 × 2 matrix whose columns are these vectors are, up to sign, 4, 6, 13.

Remarks 6.6. 1. Recall the description found in [76], before Prop. 6.2 and in
[34], Prop. 10.1 of the jacobian ideal of an affine toric variety defined by a
prime binomial ideal P ⊂ k[U1, . . . , UN ]. The jacobian determinant JG,L′ of

rank c = N − r of the generators (Umℓ − λℓU
nℓ

)ℓ∈{1,...,L} of P , associated to
a sequence G = (k1, . . . , kc) of distinct elements of {1, . . . , N} and a subset
L

′ ⊆ {1, . . . , L} of cardinality c, satisfies the congruence

Uk1 . . . Ukc .JG,L′ ≡
(

∏

ℓ∈L′

Umℓ)

DetG,L′ (〈m− n〉) mod.P, (Jac)

where
(

〈m − n〉
)

is the matrix of the vectors (mℓ − nℓ)ℓ∈{1,...,L}, and DetG,L′

indicates the minor in question. If the field k is of characteristic p, choosing
a minor which is not divisible by p amounts to choosing r of the coordinates
such that the corresponding projection to A

r(k) of a certain binomial variety
containing the toric variety as one of its irreducible components (see [19]) is
étale outside of the coordinate hyperplanes.

This is the equational aspect of the smoothness over SpecZ of the torus SpecZ[tZ
r

]
of the affine toric variety over Z corresponding to the subsemigroup b(NN ) of Zr;
it has the advantage that it deforms with overweight deformations (see propo-
sition 6.16 below). The gist of the linear algebra detailed above is that for a
projection of a toric variety (equipped with a weight) to an affine space of the
same dimension, over an algebraically closed field, separability and tameness of
the corresponding valued fields extension (see remarks 2.5, 1)) go together. From
this point of view, tameness in our case appears as a portable (with respect to
strict transforms and immediate extensions, such as henselizations) equational
version of etaleness, which ensures that after a birational toric modification, and
only near the point picked by the valuation, the map from the strict transform to
a r-dimensional affine space is still etale outside of the coordinate hyperplanes.

2. As a special case, we have that given an algebraically closed field k and an affine
(toric) semigroup Γ, the affine toric variety Speck[tΓ] can always be presented
as a separable and tame ”weakly” quasi-ordinary singularity: if r = rat.rk.Γ =
dimk[tΓ] there exist r rationally independent generators γi1 , . . . , γir of Γ such
that the corresponding map ̟ : Speck[tΓ] → A

r(k) is étale outside of the toric
boundary and hence induces a separable extension k(x1, . . . , xr) → Frack[tΓ].
For example, taking a field k of characteristic p and Γ = 〈p − 1, p〉 ⊂ N, the
inclusion k[tp−1] ⊂ k[tΓ] has this property while the inclusion k[tp] ⊂ k[tΓ] does
not. We shall see a consequence of this at the end of Section 9 and a more
interesting example of numerical semigroup in remark 6.19.

The map ̟ is finite and makes Speck[tΓ] into a truly quasi-ordinary singularity
if and only if the semigroup is contained in the cone generated by the vectors
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γi1 , . . . , γir . This is the case for example for the semigroups of the toric varieties
to which an irreducible quasi-ordinary hypersurface specializes (in characteristic
zero) as explained in [31].

Let us come back to the proof of proposition 6.4. Applying what we have seen
above to the kernel of the corresponding surjective map b : ZN → Zr we see that
we can choose r of these generators such that taking elements x1, . . . , xr ∈ R
with these valuations gives us an injection R0 = k[[x1, . . . , xr]] ⊂ R with the
property that the index of the value group Φ0 of ν|R0 in the group Φ is not
divisible by the characteristic of k. We shall denote by Γ0 the free subsemigroup

Γ0 = 〈ν(x1), . . . , ν(xr)〉 ⊂ Φ0

The ring R is a quotient of a power series ring k[[x1, . . . , xr, y1, . . . , yt]] and
we can apply the Hironaka flattening theorem in the formal case, which relies
on the Hironaka division theorem of [39] and [40]; see [2] for an algorithmic
characteristic-free proof and [39] for the application to flattening. It is summa-
rized in the Appendix, section 11.

Since we want to flatten at the point picked by one valuation in the strict
transform, we only need the existence of a local flattener at a point, which follows
from the division theorem for power series, and the fact that after blowing-up
the flattener in the base, if the map was not already flat, the fiber of the strict
transform of the map at the point picked by the valuation strictly decreases so
that after finitely many such steps, the strict transform has to be flat at the
point picked by the valuation (see [39], [41]).

The flattening theorem then tells us that there exists a ν-blowing up of local
rings R0 → Re0, which we may assume to be the blowing-up of a monomial ideal
(see [76], corollary 7.5) of R0, such that Re, defined as R⊗R0 R

e
0 divided by its

Re0-torsion, and localized at the point picked by the valuation ν, is a flat Re0-
module. By construction, its field of fractions is the same as that of R. Then,
since dimR0 = dimR, the Re0-module Re is finite and free so that the extension
of fraction fields is algebraic.

By construction, (since it is the blowing-up of a monomial ideal, see [34], part
1, section 5) and there is no relation between the values of the variables there
exist an element m ∈ Γ0 and a system of generators (δej ) of the semigroup Γe0 of
the values of ν0 on Re0 such that m+ δej ∈ Γ0 for all j, so that by proposition 5.1
the semigroup Γe0 is finitely generated. This property is preserved under further
birational ν-modifications of Re0. Since flatness is also preserved under further
blowing-ups of Re0 we can assume that Re0 is analytically irreducible by lemma
7.3 of [37] and use proposition 6.2 to extend the valuation ν0 to a complete R̂e0,
with a finitely generated semigroup.
Here we also use lemma 1.1 of [37] which states that in a ν-modification R → R′,
the ideal N = m̂ ⊗R 1 + 1 ⊗R m

′ is maximal in the R-algebra R̂m ⊗R R
′ and

the injection (R̂m⊗R R
′)N → R̂′m′

is the completion homomorphism. Then we
can apply Theorem 4.3 and assume that R̂e0 is a power series ring with a system
of local coordinates having rationally independent values γ̃1, . . . , γ̃r generating
a semigroup Γ̃0 ≃ Nr.
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Since Re is finite and free overRe0, and R̂e0 is henselian, the R̂e0-module Re⊗Re
0
R̂e0

is again finitely generated and free and contains as a summand a complete local
domain corresponding to the maximal ideal picked by ν, which we call R̂e. The
map R̂e0 → R̂e is finite and injective. After what we have just seen and the
results of subsection 6.2, throughout these birational maps and completions the
value groups have not changed and both maps R0 → R̂e0 and R → R̂e are
birational ν-modifications of complete local domains followed by completion in
the sense of subsection 6.2, passing eventually to a quotient of the maximal-adic
completion. �

Remark 6.7. Any complete equicharacteristic local domain R admits rational
Abhyankar valuations: it is in many ways a finite module over a power series
ring R0 = k[[x1, . . . , xr]] with the same residue field and by general facts of
valuation theory rational monomial valuations of R0 extend to R. This implies
that local equicharacteristic noetherian domains also admit rational Abhyankar
valuations since they are subrings of a quotient of their completion by a minimal
prime.

Until the end of this subsection we assume that R satisfies the conclusion of
proposition 6.4: The ring R0 is k[[x1, . . . , xr]], the ring R is a finite R0-module
and the extension of their valued fraction fields is tame.

Set R0 = k[[x1, . . . , xr]] and denote by ν0 the restriction of ν to R0.
Any element y ∈ R has a unitary minimal polynomial p(y) ∈ R0[y] over K0.
Consider the subring R1 = R0[y]/(p(y)) ⊂ R generated by y. The ring R
is integral over R1. Since R0 is complete it is henselian and since R1 is an
integral domain, it is a complete local ring and a free R0-module with generators
1, y, . . . , ye−1 where e is the degree [K0(y) : K0] = degp(y).

We fix an element y ∈ R \ R0 and temporarily restrict our attention to the
corresponding R1 to show that the semigroup of the valuation ν|R1 is finitely
generated. In the proof of Theorem 6.21 below we shall see that this implies the
result we seek. For the sake of simplicity, we continue to write ν, Γ, and Φ ≃ Zr

for the valuation and semigroup of R1 and for the corresponding group of values,
and K for the field of fractions of R1. This will last until proposition 6.16 where
we shall see that we can take for y a primitive element of the extension K0 ⊂ K,
so that there should be no confusion.
Let us choose a minimal system of generators (ξi)i∈I of the k-algebra grνR1.
The set I is well ordered, in bijection with a minimal set of generators of the
well ordered semigroup Γ which, as we recalled in the Introduction, is of ordinal
≤ ωh where h is the rank of ν.

Definition 6.8. Let Γ0 ⊂ Γ be an inclusion of affine semigroups. Assume that
the group Φ generated by Γ is totally ordered with Γ ⊂ Φ≥0. Assume moreover
that Γ\ ((Γ0 \{0})+Γ) is well ordered14. Then we define a system of generators
of Γ by adding to Γ0 the elements defined inductively as follows: γ1 is the least

14We may have to use this construction to a situation where Γ0 itself is not well ordered.
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nonzero element of Γ which is not in Γ0,...., γi+1 is the least nonzero element of
Γ which is not in Γi = 〈Γ0, (γk)1≤k≤i〉. This is a transfinite construction, and
the resulting set of generators (γi)i∈I is minimal by construction and is indexed
by an ordinal (see [76], corollary 3.10). In short, some γi may be less that a
generator of Γ0, but γi < γi+1.

We also make in the sequel a convenient abuse of notation: since the rational
rank of ν0 is r, for each value s ∈ Φ0 there is a unique Laurent monomial in
k((x1, . . . , xr)) with this value. We denote it by xs. In other words, we identify
k((x1, . . . , xr)) with a subfield of k((tΦ0)).

Let us denote by (ξi)i∈I the generators of the k-algebra grνR1 which are not
the initial forms X1, . . . , Xr of the xj . We have already seen that an element
of R1 whose valuation is not in Γ0 must involve y in its expression and thus
has a value ≥ ν(y). Since R1 is complete we may, up to a change of the
variable y, assume that ν(y) is the smallest element of Γ which is not in the
semigroup Γ0 = 〈ν(x1), . . . , ν(xr)〉. Indeed, if ν(y) ∈ Γ0 there exist a monomial
xr1 and ρ1 ∈ k such that ν(y − ρ1x

r1) > ν(y). We repeat the argument with
y1 = y− ρ1x

r1 . If ν is of rank one and after finitely many steps we do not reach
an yk such that ν(yk) /∈ Γ0, we have built an expression of y as a series in x
and so y ∈ R0 and R1 = R0. If ν is of rank > 1, we build a transfinite series
and use the fact we saw in section 3 that R0 is complete with respect to ν0, to
reach the same conclusion. Thus we may take y = ξ1 and γ1 = ν(y).

Except in the case where r = 1, this does not exclude the possibility that
ν(y) ∈ Φ0 or that ν(y) < ν(xi) for some i. We set x = (x1, . . . , xr) and
X = (X1, . . . , Xr) and denote by Φ0 ≃ Zr the value group of ν0 = ν|R0, and
apply what is said in remark 6.8. There is an integer f such that fΦ ⊂ Φ0 and so
for each γi there is a smallest positive integer ni such that niγi is in the subgroup
Φ−
i of Φ, with the notations of proposition 5.4. If the Ψk, 1 ≤ k ≤ h − 1 are

the non trivial convex subgroups of Φ, there is no claim that Φ0 ⊂ Ψh−1, but
we note that if niγi ∈ Ψk, then γi ∈ Ψk since 0 < γi ≤ niγi. In particular if
Φ0 ⊂ Ψh−1 then Φ ⊂ Ψh−1 and h = 1.

Since Φ0 is of finite index in Φ, and this index is the product of all the ni,
only a finite number of the ni can be > 1. In view of proposition 5.4 this implies
that the kernel of the surjective map of k-algebras

k[X, (Ui)i∈I ]
grwπ−→ grνR1, determined by Xj 7→ Xj, Ui 7→ ξi

contains binomials XsiUni

i − λiX
ri
∏

k∈E(i) U
t
(i)
k

k , with si, ri ∈ Nr, λi ∈ k∗ and

0 ≤ t
(i)
k < nk. These binomials encode the presentations niγi = φ

(i)
0 +

∑

t
(i)
k γk,

with φ
(i)
0 ∈ Φ0 of proposition 5.4. The element φ

(i)
0 is uniquely determined

and we assume that it is written φ
(i)
0 = ri − si with ri, si ∈ Nr by separating

non negative and negative coordinates. This uniquely determines ri, si and is
equivalent to saying that the corresponding binomial is not divisible by any of
the Xj . The minimality of ni implies that for each binomial the set of exponents
of the variables Xj, Ui, Uk is a set of coprime integers so that the binomial is an
irreducible element of the polynomial ring by [19].
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Recall that according to the valuative Cohen Theorem 3.12, the map grwπ lifts

to a continuous surjective map π : ̂k[x, (ui)i∈I ] → R1, where the first ring is the
scalewise completion of the polynomial ring.

Proposition 6.9. Set R0 = k[[x1, . . . , xr]] and R1 = R0[y]/(p(y)) where p(y) ∈
R0[y] is a unitary irreducible polynomial, and let ν be a rational Abhyankar
valuation on R1. With the notations just introduced we have:

• The binomials (XsiUni

i − λiX
ri
∏

k∈E(i) U
t
(i)
k

k )i∈I generate the kernel F0

of grwπ.

• If the set I has no largest element, up to a change of the representa-
tives ξi ∈ R1 of the ξi, the kernel F of the continuous surjective map

π : ̂k[x, (ui)i∈I ] −→ R1 determined by xj 7→ xj , ui 7→ ξi according to the
valuative Cohen theorem is generated up to closure by the elements

Hi = xsiuni

i − λix
ri

∏

k∈E(i)

u
t
(i)
k

k − gi − ui+1 for i ∈ I,

where i+1 = min{j ∈ I|j > i}, gi ∈ ̂k[x, (uj)j≤i] with w(xri
∏

k∈E(i) u
t
(i)
k

k ) <

w(gi) < γi+1 and inw(gi) /∈ F0. If I has a largest element i all the equa-
tions Hi can be assumed to be in the form above except the last one which
is

Hi = xsiu
ni

i
− λix

ri
∏

k∈E(i)

u
t
(i)
k

k − gi,

with gi =
∑

w(xmpup)>w(x
s
iu

n
i

i
)
c
(i)
p xrpup, c

(i)
p ∈ k.

Proof. We have noted that the valuation of an element of R1 which is not in
the semigroup Γ0 generated by the ν(xj) has to be ≥ ν(y). Let us denote by
F0 the kernel of the map grwπ and let n1 ≥ 1 be the smallest integer such that
n1ν(y) ∈ Φ0. We have Xs1Un1

1 −λ1X
r1 ∈ F0. Let Xs′Un

′

1 −λ′Xr′ ∈ F0 be any
other relation. If we divide n′ by n1 and write n′ = qn1 + r, 0 ≤ r < n1, we see
that r = 0 by the minimality of n1. Now the product Xqs1(Xs′U qn1

1 −λ′Xr′) is

in F0 and is congruent modulo Xs1Un1
1 − λ1X

r1 to λq1X
s′+qr1 − λ′Xr′+qs1 . So

this last binomial has to be in F0 ∩ k[X1, . . . , Xr] which is the zero ideal by our
assumption. If we remember that whenever we write r − s it is shorthand for
the decomposition of a vector of Zr according to its positive and negative coor-
dinates in the canonical basis so that r, s both have non negative coordinates,
we see that s′ +qr1 = r′ +qs1, rewritten r′−s′ = q(r1−s1) implies, since q > 0,
that s′ = qs1, r

′ = qr1. Thus we must have λ′ = λq1 and r′ = qr1, s
′ = qs1 so

that Xs′Un
′

1 − λ′Xr′ ∈ F0 is a multiple of Xs1Un1
1 − λ1X

r1 . This proves that
F0 ∩ k[X1, . . . , Xr, U1] is the prime ideal generated by Xs1Un1

1 − λ1X
r1.

We now proceed by transfinite induction on the largest index of a variable
appearing in a binomial relation. Given a binomial relation B ∈ F0 we denote
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by i the largest index of a variable Uk appearing in it. Again by division of
the exponent of Ui by ni we find that the exponent of Ui in the relation has to
be a multiple of ni and so our binomial is of the form B = Xs′iU qni

i U(i)s
′(i) −

λ′Xr′iU(i)r
′(i), where U(i) represents the variables of index < i. The binomial

B involves only finitely many variables and our inductive assumption is that the
ideal F0 ∩ k[X, (Uj)j<i] is generated by the binomials of our list which involve
only the variables X, (Uj)j<i. Each of the variables Uj other than Ui which
appear in our binomial B is involved in one such relation with variables of lower
weight. Each of these variables in turn is involved in one such relation with
variables of lower weight, and so on. By induction we may assume that for each
such relation involving a variable of weight < γi the total number of variables
appearing in this iterative process is finite. Then it is also finite for our binomial
B since it involves a finite number of variables. We do the same thing with

the binomial relation XsiUni

i − λiX
ri
∏

k∈E(i) U
t
(i)
k

k and add the corresponding
variables to the set of variables associated to B.
Note that if the rank of our valuation is one, the set of variables of weight less
than the weight of some Ui is finite anyway.

At this stage we have a finite subset (Uj)j∈Ai
of the variables (Uj)j<i which

has the property that the kernel of the map k[X, (Uj)j∈Ai
] → grνR1 is generated

by the binomial relations in our list which involve these variables, since by our
inductive assumption they generate all the relations between them. The group
generated by the weights of the variables X, (Uj)j∈Ai

is still Φ−
i so that our ni

is still minimal.
Then, the binomial XqsiB is equal to Xs′i(XsiUni

i )qU(i)s
′(i)−λ′Xr′iU(i)r

′(i)

and thus, modulo the relation XsiUni

i − λiX
ri
∏

k∈E(i) U
t
(i)
k

k , is equal to a re-
lation between variables of indices which belong to our set Ai. By the induc-
tion hypothesis this product XqsiB is in the ideal of k[X, (Uj)j∈Ai

, Ui] gen-

erated by the binomials (XsjU
nj

j − λjX
rj
∏

k∈E(j) u
t
(j)
k

k )j∈Ai
and XsiUni

i −

λiX
ri
∏

k∈E(i) U
t
(i)
k

k .
Let us show that this last ideal is prime. Let Ni denote the cardinality of the
set Ai. By induction on i we may assume that the lattice Li−1 generated in

ZNi by the exponents of the binomials (XsjU
nj

j − λjX
rj
∏

k∈E(j) U
t
(j)
k

k )j∈Ai
is

a direct factor, or equivalently is saturated. By ([19], Corollaries 2.2 and 2.3)
it suffices to prove that the same is true of the lattice Li = Li−1 + Zv ⊂ ZNi+1

where v the vector of exponents of the binomial XsiUni

i − λiX
ri
∏

k∈E(i) U
t
(i)
k

k .
This vector is primitive since ni is minimal. To prove that Li is saturated we
take a primitive vector m ∈ ZNi+1 \ Li such that qm ∈ Li, and the least such
q. Since Li−1 is saturated, we have qm = qℓi−1 + tv with ℓi−1 ∈ Li−1. The
integers q, t must be coprime since q is minimal, but then q, which is > 1 since
m /∈ Li, must divide v which is primitive. This contradiction shows that Li is
saturated and our ideal is prime.
The ideal F0 can contain no monomial such as Xqsi since grνR is a domain
and minimally generated by the ξi, so the binomial B has to be in the ideal
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generated by the binomials (XsjU
nj

j − λjX
rj
∏

k∈E(j) U
t
(j)
k

k )j≤i. This ends the

proof of (1).
To prove (2) we first assume that we have chosen representatives ξi for which

the theorem is valid and recall that in view of the valuative Cohen theorem of [76]
and of (1), the ideal F is generated, up to closure, by overweight deformations

xsiuni

i − λix
ri

∏

k∈E(i)

u
t
(i)
k

k +
∑

w(xmpup)>w(xsiu
ni
i

)

c(i)p xmpup.

In the ring R1, the elements ξi with i > 1 must be series in x1, . . . , xr, y since
these generate the maximal ideal. This implies that each uj with j > 1 must
appear linearly with a non zero constant coefficient, which we may take equal
to 1, in one of the series Hi. Now u2 cannot appear linearly in the series H2

because the overweight condition would imply that s2 = 0 and n2 = 1 and then
γ2 would be in the semigroup generated by the previous ones, which contradicts
the minimality of our set of generators. The overweight condition also prevents
u2 from appearing linearly in any Hi with i ≥ 3. So u2 must appear in H1.
Of course some uj with j > 2 might also appear linearly in H1 but if it does
not appear linearly in any other equation, ultimately it will not be expressible
in terms of x1, . . . , xr, y; as we shall see below it can be eliminated from the
equation by a change of the representative ξi ∈ R1 of the generator ξi of the
graded algebra. The same argument shows that ui+1 must appear linearly in
Hi for all i ∈ I.

Our next step is to show that we can modify the Hi into another system of
equations generating the same closed ideal, and which have the form:

xsiuni

i − λix
ri

∏

k∈E(i)

u
t
(i)
k

k − gi − ui+1 +
∑

w(xrpup)>γi+1

c(i)p xrpup. (∗)

Let us write, perhaps at the price of replacing the representatives ξi+1 by
ρi+1ξi+1, with ρi+1 ∈ k∗, the equations (Hi) above in the form:

xsiuni

i − λix
ri

∏

k∈E(i)

u
t
(i)
k

k −Gi(x, u) − ui+1 +
∑

w(xrpup)>γi+1

c(i)p xrpup. (∗+),

whereGi does not contain any term of weight ≥ γi+1. The equality ν(Gi(x, u)) =
γi+1 is impossible because of the minimality of the system of generators of Γ.
If ν(Gi(x, u)) > γi+1, by adding an element of the kernel F of the surjection

π : ̂k[x, (ui)i∈I ] → R1 we can eliminate Gi from the equation by incorporat-
ing it in the last sum. If that is not the case, again by adding an element
of F we can replace Gi in the expression (∗+) by an element gi such that
w(gi) = ν(π(gi)) < γi+1. Since we have chosen representatives ξi which are
appropriate for the valuative Cohen theorem, we can also assume that for all i

except possibly a finite number, the sum
∑

w(xrpup)>γi+1
c
(i)
p xrpup does not con-

tain variables uk whose weight is not in the smallest convex subgroup containing
γi+1.
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Once our equations are all in the form (∗) we can iteratively make the changes

of variables u′i+1 = ui+1 −
∑

w(xrpup)>γi+1
c
(i)
p xmpup, which corresponds to a

change of the representatives ξi ∈ R1 of the ξi. These new representatives still
satisfy the conditions for the validity of the valuative Cohen theorem. The
reason is that in the equations (∗+), except for finitely many of them, we may
assume that all the variables uk which appear have their indices in the smallest
union

⋃s
k=1 Ik which contains the index i of ui. In that case, the terms of the last

sum belong to powers of the maximal ideal which increase with i as was shown
in the proof of the valuative Cohen theorem, and the change of representatives
is harmless. The exceptions correspond to the equations where i + 1 is not in
the smallest union

⋃s
k=1 Ik which contains the index i of ui. This happens only

if there are, for the quotient R/ph−s, a last element ι in Is and a last equation

xsιunι

ι − λιx
sι

∏

k∈E(ι)

u
t
(ι)
k

k − gι = 0.

This equation has to be the trace of an equation

xsιunι

ι − λιx
sι

∏

k∈E(ι)

u
t
(ι)
k

k − gι − uι+1 +
∑

w(xrpup)>γι+1

c(ι)p xrpup

for R, in which we have lost control of the m-adic order of the last sum because
γι+1 /∈ Is and Chevalley’s theorem cannot be brought to bear. But this concerns
only finitely many of the variables ui and therefore has no consequence for the
valuative Cohen theorem.

At this point, dividing π(gi) by the unitary polynomial p(y), we may assume
that π(gi) is a polynomial of degree < degp(y).
If the set I has no largest element, ultimately all the equations are in the form
required by the proposition. If the set I has a largest element i, then the last
equation is not in that form, but in the form

xsiu
ni

i
− λix

ri
∏

k∈E(i)

u
t
(i)
k

k +
∑

w(xrpup)>w(x
s
iu

n
i

i
)

c(i)p xrpup,

where the last sum includes the result of all the previous changes of variables. �

Remark 6.10. Let us keep the notation

Hi = xsiuni
i − λix

ri
∏

k∈E(i)

u
t
(i)
k
k − gi − ui+1 ∈ ̂k[x, (ui)i∈I ].

If there is an infinite segment j1 < j < j2 in I, since the number of k ∈ I with nk > 1
is finite, for all but finitely many j in the segment we must have nj = 1, and when
nj = 1 the minimality of the system of generators implies sj 6= 0.

Let us consider the valuation µ of k[[x, y]] which is composed of the p(y)-
adic valuation and our valuation ν on the quotient ring R1 = k[[x, y]]/(p(y)) =
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k[[x]][y]/(p(y)). Its rank is r+1, its group is Z⊕Φ with the lexicographic order,
and its associated graded ring is grµk[[x, y]] = grνR1[P ], where P is the µ-initial
form of p(y) (see [76], Example 3.19).

By abuse of language, let us continue to denote by ξj elements in k[[x, y]],
polynomials of degree < degp(y), which lift the corresponding ones in R1. Sim-
ilarly, since for elements of k[[x, y]] which are not in the ideal generated by p(y)
we may identify the valuation µ with the value of ν, we will sometimes use the
notation ν instead of µ for such elements.
According to the valuative Cohen theorem we have a continuous surjective map
of k-algebras

̂k[x, (ui)i∈I , v] → k[[x, y]]

determined by xj 7→ xj , ui 7→ ξi ∈ k[[x, y]] (u1 7→ y) and v 7→ p(y). In what
follows we will deal mostly with elements of k[[x, y]] that are not divisible by
p(y), and write ν instead of µ.
We now eliminate the variables ui, i > 1 from the equations Hi.

Given i ∈ I, consider the ideal Fi which is the closure in ̂k[x, (ui)i∈I ] of
the ideal generated by {(Hj)j<i, Hi + ui+1}. Elimination produces generators
for each Fi ∩ k[[x, u1]]. Since the expression of ui+1 depends only on the vari-
ables x, u1, . . . , ui, the elimination of the variables u1, . . . , ui consists in suc-
cessively replacing for j = 1, . . . , i each uj by its expression as a polynomial
in y in the expression of ui+1 given by the equation Hi. Then we replace
the result of the elimination by the remainder of its division by the unitary
polynomial p(y). In this manner we build a sequence of polynomials Qi(y) ∈
k[[x]][y] ⊂ k[[x, y]], with Q1 = y,Q2 = xs1yn1

1 −λ1x
r1 − g1(x, y), Q3 = xs2Qn2

2 −

λ2x
r2Q

t
(2)
1
1 −g2(x, y,Q1(x, y), Q2(x, y)), ..., Qi+1 = xsiQni

i −λix
ri
∏

k∈E(i)Q
t
(i)
k

k −

gi(x, y, . . . , Qi(x, y)), . . . which are all of degree < degp(y).
We remark that by construction the polynomial Qi+1 obtained by elimina-

tion of the variables uj , j ≥ 2, between the generators of the ideal Fi has the
property that Qi+1(y) − ui+1 is in the ideal F , so that the variables xj and
the polynomials (Qi)i∈I , p(y) form a generating sequence for the valuation µ of
k[[x, y]]: every element q(y) of k[[x, y]] is represented by a series in the Qi(y)
and p(y) with coefficients in k[[x]], where every term has µ-valuation ≥ µ(q(y)).

Proposition 6.11. The polynomials Qi+1(y), i ≥ 0, are irreducible in k[[x, y]].

Proof. The µ-initial form of Qi+1(y) in grµk[[x, y]] is ξi+1 which is irreducible
since it is part of a minimal set of generators of that algebra, and so Qi+1(y)
has to be irreducible. �

We shall later make use of the following:

Proposition 6.12. For each i ∈ I the inequality ν(xri−si) > 0 holds.

Proof. The statement is equivalent to: ν(Qni

i ) > ν(
∏

k∈E(i)Q
t
(i)
k

k ). In fact,

remembering the inequalities 0 ≤ t
(j)
k < nk, we are going to prove the stronger
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inequality ν(Qni

i ) > ν(
∏

k∈E(i)Q
nk−1
k ). By the equations of Proposition 6.9,

denoting by j \ 1 the predecessor of j in the finite set E(i)
⋃

{i}, we have the

inequalities and equalities ν(Qni

i ) ≥ ν(Qi) > ν(Q
ni\1

i\1 ) = ν(Q
ni\1−1

i\1 )+ν(Qi\1) >

ν(Q
ni−1−1
i\1 ) + ν(Q

ni\2

i\2 ). Note that the second and last inequalities are valid

because the successor of j \ 1 in I is less than or equal to j. Now we can again

write ν(Q
ni\2

i\2 ) > ν(Q
ni\2−1

i\2 ) + ν(Q
ni\3

i\3 ) and so on. This stops when we have

exhausted E(i) and proves the proposition. �

Remark 6.13. The proposition implies that when r = 1 all the si are 0. It is also
closely related to the proposition of E. Garćıa Barroso and A. P loski quoted in remark
7.19 below.

We now resume the proof of the fact that the semigroup is finitely generated.

Proposition 6.14. In the situation of proposition 6.9 the semigroup of the Ab-
hyankar valuation ν on the ring R1 = k[[x1, . . . , xr]]/(p(y)) is finitely generated.

Proof. We begin by the case where the valuation ν is of rank one, so that for
any index i, there are only finitely many elements between ν(y) and γi and i
has a predecessor denoted by i − 1.

Lemma 6.15. There is a function β : N → N with β(i) tending to infinity
with i and such that for each i ≥ 2 the coefficients in k[[x]] of the polynomial
Qi(y) ∈ k[[x]][y] are in (x)β(i).

Proof. By Chevalley’s theorem the polynomials Qi(y) must belong to powers of
the maximal ideal of R1 which tend to infinity with i. Since the maximal ideal
of R1 is generated by (x, y) and the degrees of the Qi(y) are bounded the powers
of the ideal (x) to which the Qi(y) belong must tend to infinity with i. �

To produce a contradiction with the fact that the semigroup is not finitely
generated, we proceed as follows, using the valuation µ of k[[x, y]] introduced
above:

In the value group Z ⊕ Φ of the valuation µ the valuation µ(p(y)) = (1, 0)

is certainly larger than the weight of p(u1) ∈ ̂k[x, (ui)i∈I , v] which belongs to
{0} ⊕ Φ. By an immediate extension of proposition 2.6 to this context, since
p(u1) − v ∈ F , we have inwp(u1) ∈ F0. Since p(u1) contains only the variables

x, u1, we must have an expression inwp(u1) = A
(1)
1 (x, u1)(xs1un1

1 − λ1x
r1)e

(1)
1

with A
(1)
1 (x, u1) /∈ F0 and e

(1)
1 ≥ 1. Applying the same treatment to p(u1) −

A
(1)
1 (x, u1)(xs1un1

1 −λ1x
r1)e

(1)
1 and continuing in the same manner, we build a se-

ries
∑

i≥1 A
(1)
i (x, u1)(xs1un1

1 − λ1x
r1)e

(1)
i with A

(1)
i (x, u1) /∈ F0 and e

(1)
i ≥ 1, and

we see that only two things can happen:

- Either we never reach a point where the series stops, and then since the
weight increases at each step and the group is of rank one, p(u1) is a series
in xs1un1

1 − λ1x
r1 . Factoring out the smallest power of this binomial, we can
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write it p(u1) = A(1)(x, u1)(xs1un1
1 − λ1x

r1)e
(1)

. Thus p(u1) is divisible by
the binomial and since it is irreducible it means that p(u1) = xs1un1

1 − λ1x
r1 ,

necessarily s1 = 0 and n1 = degp(u1). The semigroup of R1 is generated by
ν(x1), . . . , ν(xr), ν(y).

- Or such is not the case, and there is an integer k such that

p(u1)−A(1)(x, u1)(xs1un1
1 − λ1x

r1)e
(1)

= B(1)(x, u1), with inwB
(1)(x, u1) /∈ F0,

where A(1)(x, u1)(xn1us11 − λ1x
m1)e

(1)

=
∑k

i=1 A
(1)
i (x, u1)(xn1us11 − λ1x

m1)e
(1)
i .

We note that B(1)(x, u1) is a polynomial in u1 of degree ≤ degp(u1) and
A(1)(x, u1) is not a multiple of xn1us11 − λ1x

m1 . Moreover, by construction,
every term of B(1)(x, u1) is of weight larger than the weight of any term of

A(1)(x, u1)(xn1us11 − λ1x
m1)e

(1)

. In this case, it is impossible that the valuation
of xs1un1

1 −λ1x
r1 is equal to (1, 0) and since it has to be larger than the weight

of xs1un1
1 −λ1x

r1 it is equal to the valuation of g1 +u2. Then, modulo the ideal
F , we can substitute g1 + u2 for the binomial, in order to increase the weight of

the expression of p(u1), obtaining an expression in ̂k[x, (ui), v]:

p(u1) = A(1)(x, u1)(g1(x, u1) + u2)e
(1)

+B(1)(x, u1) mod.F, (E1)

or equivalently, taking images in R1,

p(y) = A(1)(x, y)(g1(x, y) +Q2(y))e
(1)

+B(1)(x, y).

If the µ-value of the right hand side, which is (1, 0), is equal to the weight of
the expression (E1) of p(u1) mod.F given just above, there must be in that
expression a term of weight (1, 0), and by definition of the generators of the
semigroup, this implies that u2 must have weight (1, 0) and e(1) = 1. So u1 is
the last of the ui and in fact u2 = v and equation (E1) reduces to p(u1)−u2 ∈ F .
This implies that A(1)(x, u1)g1(x, u1) + B(1)(x, u1) = 0 mod.F and p(u1) =
A(1)(x, u1, u2)u2 mod.F so that p(y) is a multiple of Q2(y) and they must be
equal since p(y) is irreducible, and A(1)(x, u1) = 1 mod.F . In this case we have
the equality

p(y) = xs1yn1 − λ1x
r1 − g1(x, y),

and the semigroup ν(R1 \ {0}) is generated by ν(x1), . . . , ν(xr), ν(y), while the
semigroup µ(k[[x, y]] \ {0}) is generated by ν(x1), . . . , ν(xr), ν(y), (0, 1).
If the weight of (E1) is < (1, 0), its initial form must be in the ideal generated by

xs1un1
1 − λ1x

r1 and xs2un2
2 − λ2x

r2u
t
(2)
1
1 but since modulo F each occurrence of

the first binomial can be replaced by g1+u2, we can modify this right hand side

until its initial form is A
(2)
1 (x, u1, u2)(x

s2un2
2 − λ2x

r2u
t
(2)
1
1 )e

(2)
1 without changing

the image in R1. We apply the same treatment to the difference of p(u1) and
this initial form, and continuing in this manner, we find ourselves with the
same alternatives as before: either the process never ends and then for the same

reason as above we have p(u1) = xs2un2
2 − λ2x

r2u
t
(2)
1
1 mod.F and the semigroup
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of R1 is generated by ν(x1), . . . , ν(xr), ν(y), ν(xs1yn1 − λ1x
r1), or we reach a

form

p(u1) = A(2)(x, u1, u2)(g2(x, u1, u2) + u3)
e(2) +B(2)(x, u1, u2) mod.F, (E2)

with inwB
(2)(x, u1, u2) /∈ F0.

If the weight of the right hand side of (E2) is (1, 0) then this must be the weight
of u3 because the weights of all other terms is necessarily smaller than (1, 0). By
the same argument we used for u2 we have p(u1) − u3 ∈ F and u3 = v so that

p(y) = xs2Q2(y)n2 − λ2x
r2yt

(2)
1 − g2(x, y,Q2(y)). Otherwise the initial form of

the right hand side is in F0 and we can continue the process to build a sequence
of presentations

p(u1) = A(i−1)(x, u1, u2, . . . , ui−1)(gi−1+ui)
e(i−1)

+B(i−1)(x, u1, . . . , ui−1) mod.F,

with inwB
(i−1)(x, u1, . . . ui−1) /∈ F0, degB(i−1)(x, y,Q2(y), . . . , Qi−1(y)) ≤ degp(y)

and ever increasing weights. Assuming that the set I is infinite, when the index
i is so large that the degrees of the polynomials Qi(u1) are constant and the si
are 6= 0 (see remark 6.10), the only possibility for the weights to increase with
bounded degree is that B(i−1)(x, u1, . . . ui−1) involves only monomials which
contain variables uj of high index. But since, as we saw in Lemma 6.15, we or-
ders in (x) of the polynomials Qi+1(y) tend to infinity with i, this would imply
that the coefficients of the polynomial p(y) belong to arbitrarily high powers of
the ideal (x1, . . . , xr). This contradiction shows that the set I must be finite in
this case.

Assume now that the rank of the group is > 1. Using the notations of
subsection 3.1, let

(0) ⊆ p1 ⊆ p2 . . . ⊆ ph−1 ⊆ ph = m

be the sequence of the centers in R of the valuations with which ν is composed.
The residual valuations on the R/pk are Abhyankar by the results of subsection
6.1. By convexity for each k the generators of the semigroup Γ∩Ψk are exactly
the generators of Γ which are in Ψk and since Γ∩Ψk is the semigroup of values
of the residual valuation on R/pk which is Abhyankar it has to generate the
group Ψk. The indices of the Ψk

⋂

Φ0 in the Ψk are divisors of [Φ : Φ0] and so
prime to the characteristic of k.

We may then partition the set of indices {1, . . . , r} of the variables x1, . . . , xr
as
{1, . . . , r} = T1

⋃

. . .
⋃

Th with Tk = {i ∈ {1, . . . , r}|ν(xi) ∈ Ψh−k \ Ψh−k+1,
and we have the equality pj ∩ k[[x1, . . . , xr]] = ((xj)j∈T1

⋃
...

⋃
Tj

)k[[x1, . . . , xr]].
Then R/p1, which is a finite module over R0/p1 ∩R0 = k[[(xj)j /∈T1

⋃
...

⋃
Th−1

]],
has to be of the form (R0/p1∩R0)[y]/(p1(y)) where p1(y) is an irreducible factor
of the image of p(y) in (R0/p1 ∩R0)[y]. By induction on the dimension (using
the arguments of proposition 6.18 below) we may assume that the semigroup
Γ ∩ Ψ1 is finitely generated since it is the semigroup of values of the residual
valuation on R/p1.
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The smallest γi of Φ \ Ψ1 therefore has a predecessor, and if we denote the
corresponding polynomial by Qb+1(y), we have an equation

Qb+1 = xsbQnb

b − λbx
rb

∏

1≤k≤b−1

Q
t
(b)
k

k − gb.

If, as we build successively the polynomials (Qi)i>b, the corresponding unitary
polynomials have increasing valuations in the rank one group Φ/Ψ1, we find
a contradiction exactly as in the rank one case. If not, for some γ1 ∈ Φ/Ψ1

their values in Pγ1/P
+
γ1 must increase, and applying Chevalley’s theorem to this

finitely generated complete R1/p1-module shows by the same argument as in
the rank one case, in view of remark 6.10, when i becomes very large this implies
that the coefficients of p(y) should belong to arbitrarily high powers of the ideal
generated by (xj)j∈T1

⋃
...

⋃
Th−1

and gives us a contradiction.
We have tacitly assumed that the ideals pi are distinct. A result of Zariski

(see [89], Vol.2, Appendix 3, lemma 4 or [76], 3.17; see also the proof of proposi-
tion 3.10) implies that if two consecutive pi are equal the conditions of finiteness
of generation for the corresponding residual semigroups are equivalent.
This shows that the semigroup of values of ν on R1 is finitely generated. �

Proposition 6.16. The finite fields extension K0 ⊂ K0(y) is separable.

Proof. The proof is based on the jacobian interpretation given in remark 6.6, 1)
above of the non vanishing mod.p of the minors studied above. Since the semi-
group of values is finitely generated, the valuative Cohen theorem presents the
noetherian ring R0[y]/(p(y)) as a quotient of a power series ring in N variables
by an ideal which is an overweight deformation of a prime binomial ideal, indeed
the ideal of proposition 6.9, and one uses, exactly as in the proof of proposition
2.20 the N−r overweight deformations of binomials whose jacobian determinant
is non zero to show that the projection from the formal space X corresponding
to R0[y]/(p(y)) to the affine space Ar(k) corresponding to R0 is generically étale
because the jacobian minor of the deformed equations has the nonzero jacobian
minor of binomials as its initial form (see [7], §7, No. 9, Th.3), and this prop-
erty of being generically étale corresponds to the separability of the extension
K0 ⊂ K(y) (loc.cit., §7, No. 3, Remarques, 2)). �

Corollary 6.17. The extension K0 ⊂ K of the fields of fractions of R0 and R
is separable.

Proof. By proposition 6.16, each element z ∈ K is a quotient of two elements
of R which are both separable over K0 in view of proposition 6.16. �

Corollary 6.18. Let ν be a rational Abhyankar valuation of a complete equichar-
acteristic noetherian local domain. Assume that there are r = dimR elements
xi ∈ R whose values are rationally independent and such that the injection
k[[x1, . . . , xr]] = R0 ⊂ R makes R into a finite R0-module, with a separable
fields extension K0 ⊂ K. Then the semigroup of values of the valuation ν on R
is finitely generated.
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Proof. By corollary 6.17, we can choose a primitive element y ∈ R for the
separable extension K0 ⊂ K and by proposition 6.14 the semigroup Γ1 of ν on
R1 = R0[y]/(p(y)) is finitely generated. The inclusion R1 ⊂ R is integral since
R is integral over R0, and birational because y is a primitive element, so that
there is a conductor, an element f ∈ R1 such that fR ⊂ R1. This implies that
there is a γ ∈ Γ1 such that γ + Γ ⊂ Γ1 and we can apply proposition 5.1 to
deduce that Γ is finitely generated. �

Remark 6.19. Let p be a prime number. If we consider the numerical semigroup

Γ = 〈p3, p3 + p2, p4 + p3 + p2 + p, p5 + p4 + p3 + p2 + p+ 1〉

as in ([76], 6.3)15, and we choose a field k of characteristic p, then Γ is the semigroup

of a plane branch defined parametrically by x = tp
3

, y = tp
3+p2 + tp

3+p2+p+1, and
implicitly by a unitary polynomial of degree p3 in y with coefficients in k[[x]]. With
the current notations, this polynomial can be obtained by eliminating u2, u3 between
three equations (where the last equation F3 is not in the binomial form given above);
see loc.cit., where we compute the equations taking p3 as generator of Γ0. From the
viewpoint taken here it is the last generator of Γ which must be chosen because it is
prime to p. But then we are no longer in the situation of proposition 6.9 because
the corresponding element of the ring of the curve is not part of a minimal system
of generators of the maximal ideal, and a new primitive element must be chosen,
corresponding to another curve.

The situation may be summed up by saying that once we have re-embedded, using
the valuative Cohen theorem, our plane curve in the space spanned by the associated
monomial curve, new projections to coordinate axis are available, whose kernel may
have high contact with the curve, but which are separable and tame, and then a suitable
projection of our curve to a new plane is a plane curve for which this axis is a coordinate
axis with separable and tame projection, and which is birationally equivalent to our
original curve. This is not in the spirit of the classical approaches to resolution of
singularities since in this operation the multiplicity of the plane curve considered may
increase in a way that is not controllable by classical invariants. What we have done
above in the proof of the quasi finite generation of semigroups of Abhyankar valuations
is a generalization of this.

6.4 Abhyankar valuations and quasi monomial valuations

We have already defined birational ν-modifications and toric ν-modifications
R→ R′ of our local ring R. In the case where R is complete and our valuation
is rational and Abhyankar, let us agree to call with the same name the morphism
R→ R” obtained by completing R′ and extending the valuation to the quotient
of R̂′ by a minimal prime, with the same semigroup, according to subsection
6.2.

Definition 6.20. We say that the semigroup of values of a valuation ν on
a local domain R which is dominated by the valuation ring Rν of ν is quasi
finitely generated if there exists a birational ν-modification R → R′ such that
the semigroup of values of ν on R′ is finitely generated.

15This reference is a development of the study of Example 3.5.4, p. 114 of [10].
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Theorem 6.21. The semigroup of a rational valuation of a complete equichar-
acteristic noetherian local ring R with algebraically closed residue field is quasi
finitely generated if and only if the valuation is Abhyankar.

Proof. We have seen the ”only if” part at the beginning of the section.
By propositions 6.4 and 6.16 we can after a ν-modification assume that R is a
finite extension of R0 = k[[x1, . . . , xr]] with a separable fraction fields extension.
We now apply corollary 6.18. �

Corollary 6.22. The semigroup of values of an Abhyankar valuation µ of
a complete equicharacteristic noetherian local ring R with algebraically closed
residue field is quasi finitely generated.

Proof. Using §3.6 of [76], remark 6.7 and proposition 6.1, which applies because
complete noetherian local rings are catenary, we see that there is a rational
Abhyankar valuation ν of R which is composed with µ. To uniformize µ it is
sufficient to uniformize ν since if the excellent ring R′ obtained from R by a
birational modification is regular at the center of ν it must be regular at the
center of µ, and once we have made the semigroup of ν finitely generated, the
semigroup of µ is an image of the semigroup of ν. �

Definition 6.23. A valuation on R is said to be quasi monomial if there is a
birational ν-extension R → R′ where R′ is a regular local ring and there is a
system of generators of its maximal ideal with respect to which ν is a monomial
valuation.

A rational quasi monomial valuation is obviously Abhyankar and its semi-
group is quasi finitely generated. The conjunction of corollary 6.22, proposition
2.3 and proposition 4.1, with the addition of proposition 2.21, show the:

Proposition 6.24. Any rational Abhyankar valuation of a noetherian complete
equicharacteristic local domain with an algebraically closed residue field is quasi
monomial. �

Corollary 6.25. Any Abhyankar valuation R ⊂ Rν of an an excellent equichar-
acteristic local domain with an algebraically closed residue field can be uni-
formized by a birational ν-modification: there exists a regular local ring R′,
essentially of finite type over R and dominated by Rν . If it is rational, it is also
quasi monomial.

Proof. Let R be an excellent equicharacteristic local domain with an alge-
braically closed residue field and let µ be an Abhyankar valuation of R. By
the same argument as in the proof of corollary 6.22, which applies because ex-
cellent local domains are catenary, we obtain a rational Abhyankar valuation ν
of R which is composed with µ. Using the fact proved in ([37], Lemma 7.3) that
sufficiently far in the tree of ν-modifications of R, the local ring R′ becomes
analytically irreducible and proposition 6.2, after renaming R′ into R we can
extend ν to an Abhyankar valuation ν̂ of R̂m with the same semigroup. Now
we can apply Theorem 6.21 to the valuation ν̂ on R̂m and obtain a complete
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ν-modification of R with a finitely generated semigroup. The blowing-ups we
make are dominated by monomial blowing-ups in the variables generating the
maximal ideals of the complete local rings, but they are obtained by completion
from the blowing-ups of the same monomial ideals in the rings we consider be-
fore completion. So the reduction of the general case of an Abhyankar valuation
on R to the case where R̂m is a finite module over a power series ring with a
separable and tame fraction fields extension is achieved by blowing-up an ideal
in R, localizing at the point picked by the valuation, and taking the comple-
tion. Similarly, once we have thus reached the situation where the semigroup
is finitely generated, the toric map in the coordinates (ξi) which uniformizes ν̂
according to Theorem 4.3 is an algebraic map for R since in view of the isomor-
phism grνR ≃ grν̂R̂

(ν) we can choose, as representatives of the generators ξi of
grν̂R̂

(ν), elements ξi ∈ R, and the completion of the local ring of the transform
of SpecR at the point picked by ν is the (completion of the) transform of R̂(ν).
After applying Theorem 4.3, the regularity of the transform of R̂(ν) implies the
regularity of R̂′m′

and hence the fact that the transform of SpecR is regular at
that point. Here we use the fact that R and its transforms are excellent, that
if R is analytically irreducible and sufficiently far in the tree of ν-modifications,
so are its ν-modifications and finally that in this case an Abhyankar valuation
extends uniquely to the completion, with the same semigroup. Alternatively,
we might have used this last fact and the argument of ([76], §7). �

Remarks 6.26. 1. Local uniformization for Abhyankar valuations of rank one
of algebraic function fields in characteristic zero was proved by Dale Cutkosky
(see [20], proposition 2.8 and [42], Prop. 3.7) as a consequence of embedded
resolution of singularities. It can also be deduced, in arbitrary characteristic and
for algebraic function fields separable over the base field and arbitrary Abhyankar
valuations, from the main result (Theorem 1.1) of Knaf-Kühlmann ([46])

2. Assuming that Conjecture 9.1 of [37] is true, or even only the ”asterisked propo-
sition” 5.19 of [76], for a ring R as in corollary 6.25, there is an ideal H in
R̂m with H ∩R = (0) such that ν extends to a valuation ν̂− on R̂m/H with the
same value group. We defined in [76], Remarks 7.3, the fact that R is weakly
Abhyankar by the equality dimR̂m/H = rat.rk.ν. The proof of [76], 7.11 shows
that local uniformization of Abhyankar valuations of complete local rings implies
local uniformization of weakly Abhyankar valuations.

In the special case of rational Abhyankar valuations we have the ungraded
analogue of corollary 1.4:

Theorem 6.27. (The toroidal nature of rational Abhyankar valuations) Let
R ⊂ Rν be a rational Abhyankar valuation of an excellent equicharacteristic
local domain R with algebraically closed residue field k. Assume that R contains
a field of representatives of k. Using proposition 6.4, choose r homogeneous

elements x
(0)
1 , . . . , x

(0)
r ∈ grνR whose valuations are rationally independent and

such that the index in the group Φ of ν of the subgroup Φ0 which they generate
is prime to the characteristic of k. The ring Rν is the union of a nested family
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indexed by N of local domains R(h) essentially of finite type over R, which are
regular for h ≥ 1:

R = R(0) ⊂ R(1) ⊂ . . . ⊂ R(h) ⊂ R(h+1) ⊂ . . . ⊂ Rν ,

where each inclusion R(h) ⊂ R(h+1), including the first one R(0) ⊂ R(1), is
obtained by localizing at the point picked by the valuation a birational map of
finite type, which for h ≥ 1 is monomial with respect to a suitable minimal
sets of generators of the maximal ideals of R(h) and R(h+1), and the associated
graded rings grνR

(h) for h ≥ 1 form a nested system of polynomial rings in r

variables over k containing k[x
(0)
1 , . . . , x

(0)
r ], where the inclusion maps

k[x
(0)
1 , . . . , x(0)r ] ⊂ . . . ⊂ k[x

(h)
1 , . . . , x(h)r ] ⊂ k[x

(h+1)
1 , . . . , x(h+1)

r ] ⊂ . . . ⊂ grνRν
(gr)

send each variable to a term, and the inclusions are birational, with the pos-

sible exception of the first one, which is composed: k[x
(0)
1 , . . . , x

(0)
r ] ⊂ grνR ⊂

k[x
(1)
1 , . . . , x

(1)
r ].

Proof. Using corollary 6.25, let us begin with a birational ν-modification R →
R(1) such that R(1) ⊂ Rν is regular and ν|R(1) is monomial in coordinates

x̃
(1)
1 , . . . , x̃

(1)
r . Define the x

(1)
i as the ν-initial forms of the x̃

(1)
i . Now use the

inductive limit presentation of grνRν given by corollary 1.4 and, starting from

h = 1, inductively choose representatives x̃
(h+1)
i ∈ Rν of the x

(h+1)
i in such

a way that they satisfy the same equations x̃
(h)
i − µ

(h)
i (x̃(h+1))b

(h)
i = 0, with

µ
(h)
i ∈ k∗ and b

(h)
i ∈ Nr, as their images in grνR satisfy. To achieve this, it

suffices to use the fact that the inclusions of polynomial rings are birational for
h ≥ 1 because ν|R(1) is monomial (see also remark 1.5) so that the matrix of the

vectors (b
(h)
i )1≤i≤r is unimodular and the x

(h+1)
i are Laurent terms (=constant

times a Laurent monomial) in the x
(h)
i . Since k has a field of representatives

in R, we can use the same expression to define the x̃
(h+1)
i in terms of the x̃

(h)
i .

Define inductively R(h+1) for h ≥ 1 to be the R(h)-subalgebra of Rν obtained

by localizing the subalgebra R(h)[x̃
(h+1)
1 , . . . , x̃

(h+1)
r ] of Rν at the maximal ideal

which is its intersection with mν . Since R(h+1) is a localization at the origin

of R(h)[X1, . . . , Xr]/(x̃
(h)
i − µ

(h)
i Xb

(h)
i )1≤i≤r , we see that the R(h+1) are regular

local rings with coordinates x̃
(h+1)
1 , . . . , x̃

(h+1)
r .

As a consequence of proposition 1.3, given h ∈ N \ {0}, and two terms in

k[x
(h)
1 , . . . , x

(h)
r ], there is an h′ ≥ h such that the image in k[x

(h′)
1 , . . . , x

(h′)
r ] of

one of the two terms becomes a multiple of the image of the other. Therefore
the same is true, of any two monomials (x̃(h))m, (x̃(h))n of R(h). We can write

any element of R(1) as a series in x
(1)
1 , . . . , x

(1)
r in R̂(1). The ideal of monomials

appearing in this series is finitely generated, and so it becomes principal in some
R̂(h), so that our element of R(1) can be written (x̃(h))EU(x̃(h)) in R̂(h), with
U(x̃(h)) a unit. By ([5], Chap. III, §3, no.5, Corollaire 4) it follows from this
that U((x̃(h)) ∈ R(h), and finally that the union of the R(h)’s is a valuation ring,
and since its value group is Φ it has to be Rν . �
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Remarks 6.28. 1. We cannot say that grνR stands at the left of the inclusions
(gr) because we do not know that its semigroup is finitely generated. Before we
can do that we have to make a ν-modification R → R′ of R.

One may hope that the semigroup of a rational Abhyankar valuation of an
equicharacteristic excellent noetherian local domain with an algebraically closed
residue field is always finitely generated, so that the valuation has an embedded
local uniformization given by a toric map with respect to suitable generators of
the maximal ideal, whose ν-initial forms generate the k-algebra grνR.

2. Even in the case where the ring R is regular, the first inclusion R ⊂ R(1) may
be necessary to make the valuation monomial. For a regular two dimensional
local ring, theorem 6.27 reduces to the fact that in the sequence of blowing-ups
of centers of a rational Abhyankar valuation, after finitely many steps there are
only satellite points, which means that from there on the sequence of blowing-ups
is toroidal, and this characterizes rational Abhyankar valuations (see [24], 6.2).

3. This theorem states in a precise way that rational Abhyankar valuations are
those which are toroidal in nature, which is somewhat more precise than ”quasi
monomial”. In the toric world, say over a field k, the analogues of valuations
are (additive) preorders on the lattice Z

r, and they are all ”Abhyankar”: see
[23] and [34], §13. The analogue of the valuation ring is the semigroup algebra
over k of the non-negative part Z

r
≥0 with respect to the preorder. The theorem

gives us a relationship between the nature of the valuation as expressed by Φ≥0

and specific sequences of birational toroidal modifications.

Going back to Theorem 6.27, if we assume that R is analytically irreducible,

we have injections R̂m ⊂ k[[x̃
(h)
1 , . . . , x̃

(h)
r ]] and we may view this last ring, say

for h = 1, as k[[tN
r

]], which is itself a subalgebra of k[[tΦ+ ]], with Φ = Zr.

The valuation on k[[x̃
(h)
1 , . . . , x̃

(h)
r ]] and therefore also the valuation ν̂ on R̂m

extending the valuation ν on R, is induced by the t-adic valuation of k[[tΦ+ ]].
Up to multiplication by a nonzero constant, the image in k[[tN

r

]] or k[[tΦ+ ]]

of each ξi ∈ R is of the form ξi(t) = tγi +
∑

δ>γi
c
(i)
δ tδ with c

(i)
δ ∈ k, and we

may view R̂m as the image of the map ̂k[(ui)i∈I ] → k[[tΦ+ ]] determined by
ui 7→ ξi(t).
We can say that just like in the case of curves (see [75]), the formal space
corresponding to R is obtained by deforming the parametrization ui 7→ tγi of the
formal space corresponding to Γ, inside the space with coordinates (ui)i∈I .

In particular the valuation ν is induced by the embedding R ⊂ R̂m ⊂
k[[tΦ+ ]]. According to what we saw before Lemma 2.10 or in §13 of [34], if
the order on Φ ≃ Zr is of rank (or height) h it is induced by an embedding
Φ ⊂ (Rh)lex.

Putting together these remarks and the fact that we have the inequality
h ≤ dimR and for h ≤ h′ natural convex inclusions (Rh)lex ⊂ (Rh′

)lex we see
that we have proved the following result16, which partially answers a question

16Belonging to a tradition in valuation theory which goes back to Ostrowski in [62]. A
recent result for valuations of rank one on complete regular local rings, including the mixed
characteristic case and making significant use of key polynomials, is due to San Saturnino in
[72].
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of D.A. Stepanov. Here the ring k[[t(R
dimR)lex,+ ]] is endowed with its natural

t-adic valuation.

Proposition 6.29. Let R be an excellent equicharacteristic local domain with
algebraically closed residue field k. Every rational Abhyankar valuation ν of R

is induced by an injective map fν : R −→ k[[t(R
dimR)lex,+ ]] of local rings such

that the rank h of the valuation determines the smallest subring k[[t(R
h)lex,+ ]]

containing its image. �

Any local injective map defines a rational valuation on R but if it is Ab-
hyankar the same valuation can be defined via an injection satisfying the con-
dition of the proposition.
Stepanov asks17 whether given a field k with a rank one valuation ν and a k-
algebra R there exists an extension K of the field k and a valuation µ : K →
R∪{∞} extending ν such that for any valuation v on R extending ν there exists
a morphism fv : R → K of k-algebras such that the valuation v is induced from
the valuation µ on K via the morphism fv.
This embedding of R in a power series (or Hahn) ring is of course related to the
classical theorem of Kaplansky (see [43]) about embeddings of valued fields in
fields of power series. It would be interesting to compare the proof given here
with the recent constructive proof of San Saturnino (see [72]) for valuations of
rank one of complete regular local rings without the equicharacteristic condition,
using key polynomials.

7 An example of G. Rond, the defect, analytic

irreducibility and the structure of the semi-

groups of hypersurfaces

In this section, we give applications of proposition 6.9 to the study of the exten-
sions of a rational monomial valuation ν0 on k[[x1, . . . , xr]] to k[[x1, . . . , xr]][y]/(p(y)),
where p(y) is an irreducible unitary polynomial. We show that some classical
results for plane branches can be understood in this context.

Example 7.1. The following example is due to Guillaume Rond: Let k be an
algebraically closed field of characteristic 6= 2. Set R0 = k[[x1, x2]], equip it with
a monomial valuation ν0 of rank one such that w2 = ν0(x2) > ν0(x1) = w1,
w2 /∈ 〈w1〉 and 3w2−w1 /∈ 〈w1, w2〉. Consider the irreducible polynomial p(y) =
y2 − x21 − x32 ∈ R0[y]. If ν is a valuation on R0[y]/(p(y)) which extends the
valuation ν0 then ν(y) = ν0(x1) and either the value of y − x1 or the value of
y+x1 has to be equal to 3w2−w1, which is in Φ0,≥0 but not in Γ0. Here we have
the equality Φ = Φ0 while the degree of p(y) is equal to two. In this case the
polynomial p(y) becomes reducible in the completion (or in the henselization)

of the valuation ring Rν0 ⊂ k((x1, x2)) of ν0, with roots y = ±x1

√

1 +
x3
2

x2
1
, and

17See [73] for motivation and results.
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there are two extensions of ν0 to K0(y), so that indeed the extension is defectless
in view of Ostrowski’s ramification formula (see [49], [70] and [83]):

[K0(y) : K0] =
∑

νs

e(νs/ν0)f(νs/ν0)d(νs/ν0), (O)

where νs runs through the extensions of ν0, and the integers e(νs/ν0), f(νs/ν0),
and d(νs/ν0) are respectively the ramification index [Φs : Φ0], the degree of the
residual extension, and the defect of the extension of valuations. Here for both
extensions we have e(νs/ν0) = f(νs/ν0) = 1. The semigroup of values of both
valuations on the ring R0[y]/(p(y)) is the semigroup minimally generated by
w1, w2, 3w2 − w1, the last one being the valuation of y ± x1 depending on the
valuation chosen, so that it is not true in this case that all the si are zero (see

proposition 7.7). The kernel of the map ̂k[x1, x2, u1, u2] → k[[x1, x2, y]]/(p(y))
is generated by the overweight deformation F1 = u1 − x1 − u2 = 0, F2 =
2x1u2 − x32 + u22 of the binomial ideal (u1 − x1, 2x1u2 − x32). For the valuation
which gives value 3w2−w1 to u1 +x1 (and value w1 to u1−x1) , the generators
are u1 + x1 − u2, 2x1u2 + x32 − u22. For both extensions of ν0 we must have
d(νs/ν0) = 1: they are defectless.

Let us go back to our general notations, with R0 = k[[x1, . . . , xr]] and ν0
a valuation such that the ν(xi) are rationally independent. Denote by Rν0 ⊂
K0 = k((x1, . . . , xr)) the valuation ring of ν0 and by R̃ν0 ⊂ K̃0 the valuation

ring of a fixed henselization (K̃0, ν̃0) of the valued field (K0, ν0). Let K̃0 be
an algebraic closure of K̃0 equipped with the unique extension ν̃0 of ν̃0. It is
classical 18 that the extensions of ν0 to a finite algebraic extension K0[y]/(p(y))

are obtained by restriction of ν̃0 via K0-injections of fields K0[y]/(p(y)) ⊂ K̃0

given by y 7→ ρ(y) ∈ K̃0 and two injections ρ, ρ′ define the same extension
of ν0 if and only if ρ(y) and ρ′(y) are roots of the same irreducible factor of
p(y) in K̃0[y]. Indeed, if ρ(y) and ρ′(y) determine the same extension of ν0
to K0[y]/(p(y)), they determine the same henselizations of this field, so that
K̃0(ρ(y)) and K̃0(ρ′(y)) must be isomorphic by a unique K0-isomorphism, which
sends ρ(y) to ρ′(y) since they are the images of y. Therefore they must also be
K̃0-isomorphic (we could also use the fact that K0 is scalewise dense in K̃0 in
the sense of [76] according to [51]) and so ρ(y) and ρ′(y) must be roots of the
same irreducible polynomial in K̃0[y]. It is also classical that the valuation rings
of the extensions of ν0 all contain the integral closure of Rν0 in K0(y)/(p(y))
and therefore also contain R0[y]/(p(y)).

Definition 7.2. We say that a polynomial q(y) ∈ K0[y] (or Rν0 [y]) is ν0-
analytically irreducible if it is irreducible in K̃0[y] (or R̃ν0 [y]). By the universal
property of henselization, this property does not depend upon the choice of

18See [68], 6.2 for the special case of valuations of rank one, the proof in fact does not use
the rank one assumption if one replaces completion by henselization and uses the uniqueness
of henselization up to a unique K0-isomorphism; see also [69], Chapitre F and Chapitre G,
proposition 2.
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the henselization. If the valuation is of rank one and p(y) defines a separable
extension of K0, it is the same as being irreducible over the completion of
(K0, ν0). If r = 1 it is the same as being irreducible in k((x))[y]. The example
of G. Rond given at the beginning of this section is irreducible in k((x1, x2))[y]
but not ν0-analytically irreducible.

Let us now denote by H◦
i , 1 ≤ i ≤ t, the equations of proposition 6.9 where

we have omitted the summand gi for each i, that is

H◦
i = xsiuni

i − λix
ri

∏

k∈E(i)

u
t
(i)
k

k − ui+1,

and by Q◦
i the polynomials in y := u1 obtained by elimination of the uk, 2 ≤

k ≤ i between the H◦
j for 2 ≤ j ≤ i, forgetting the variables of index ≥ i + 1.

By proposition 2.3, the overweight deformation described by the H◦
i gives rise

to a valuation ν◦ on k[[x]][y]/(Q◦
t (y)).

Lemma 7.3. With the notations just defined, we have the following:

1. For 1 ≤ j ≤ t − 1, the coefficient of lowest value of the polynomial
Q◦
j+1(y) ∈ R0[y] is the coefficient of the highest power of y, which is

yn1...nj and it is the only one with this value, which is Sj+1(1) := sj +
njsj−1 + njnj−1sj−2 + · · · + nj . . . n3s2 + nj . . . n3n2s1 = sj + njSj(1).

2. For 1 ≤ j ≤ t − 1 the valuation of Q◦
j+1(0) ∈ R0 is sj + njsj−1 +

njnj−1sj−2 + · · ·+nj . . . n3s2 +nj . . . n3n2r1 and the term with the lowest
valuation comes from xsjQ

◦nj

j (y).

Given the binomials xsiuni

i − λix
ri
∏

k∈E(i) u
t
(i)
k

k we define two sequences:

• The sequence of integers Ti(i− k) is defined inductively for 0 ≤ k ≤ i− 1 by:

Ti(i) = ni, Ti(i − 1) = nini−1 − t
(i)
i−1, . . . , Ti(i − k − 1) = Ti(i − k)ni−k−1 −

t
(i)
i−k−1, Ti(j) = 0 if j /∈ {1, . . . , i}.
• The sequence Li(i−k) of elements of Zr is defined inductively for 0 ≤ k ≤ i−1
by:
Li(i) = si, Li(i−1) = Ti(i)si−1 +si, . . . , Li(i−k−1) = Ti(i−k)si−k−1 +Li(i−
k), Li(j) = 0 if j /∈ {1, . . . , i}.

Lemma 7.4. We have the equality

ν◦(xri) = ν◦(xLi(1)u
Ti(1)
1 ) +

i−2
∑

k=0

ν◦
(

(
ui−k

xsi−k−1u
ni−k−1

i−k−1

)Ti(i−k)
)

Proof. Start from the equality ν◦(xsiuni

i ) = ν◦(xri
∏

k∈E(i) u
t
(i)
k

k ) and write the

second term ν◦(xri
∏i−1
k=1 u

t
(i)
k

k ) by adding the required number of t
(i)
k that are

zero. Then replace the first term by ν◦(xsi (xsi−1u
ni−1

i−1 )ni), adding the correction
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term ν◦
(

( ui

xsi−1u
ni−1
i−1

)ni
)

. We can simplify the powers of ui−1 to obtain the

equality:

ν◦(xri
i−2
∏

k=1

u
t
(i)
k

k ) = ν◦(xsi+nisi−1u
ni−1ni−t

(i)
i−1

i−1 ) + ν◦
(

(
ui

xsi−1u
ni−1

i−1

)ni
)

,

and repeat the operation with u
ni−1ni−t

(i)
i−1

i−1 and so on. The inductive definition
of Ti(i) and Li(i) follows this process. �

Corollary 7.5. We have the inequality ri ≥ Li(1), which is stronger than the
inequality ri ≥ si of proposition 6.12 except if s1 = · · · = si−1 = 0. �

Let us define for each i two more sequences as follows:
• The sequence of positive integers Mi(i − k) = nini−1ni−2 . . . ni−k, Mi(j) =
1 if j /∈ {1, . . . , i}.
• The sequence of elements of Nr defined inductively by Si(i− 1) = si−1, Si(i−
2) = ni−1si−2 + si−1, . . . , Si(i− k− 1) = Mi−1(i− k)si−k−1 +Si(i− k), Si(j) =
0 if j /∈ {1, . . . , i− 1}.

One checks easily by induction the identity

Mi(i− k) = Ti(i− k) +

k
∑

s=2

Mi−s(i− k)t
(i)
i−s+1 + t

(i)
i−k,

which we can also write, setting ℓ = i−s+1 and remembering that Mi−k−1(i−
k) = 1:

Mi(i− k) = Ti(i− k) +

i−1
∑

ℓ=i−k

Mℓ−1(i− k)t
(i)
ℓ . (MT )

We have by definition Li(i) = Si+1(i) = si and Li(i − 1) = nisi−1 + si =
Si+1(i − 1). and now we can prove by induction on k the equality

Li(i − k) +

i−1
∑

ℓ=2

t
(i)
ℓ Sℓ(i − k) = Si+1(i− k).

Assuming that it is true for i, i − 1, . . . , i − k, to prove the same equality for
i− k − 1, by the inductive definition, amounts to proving the equality

Ti(i− k)si−k+1 +

i−1
∑

ℓ=i−k

Mℓ−1(i − k)t
(i)
ℓ si−k+1 = Mi(i − k)si−k+1,

which follows from the equality (MT ) above. We can continue until we reach
i− k − 1 = 1. As a consequence we have the equality

Li(1) +

i−1
∑

ℓ=2

t
(i)
ℓ Sℓ(1) = Si+1(1). (∗∗)
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We are now in position to prove that the coefficient of least valuation of
each polynomial Q◦

i (y) is the coefficient of its highest degree term and that
after division by this coefficient the other coefficients of the resulting unitary
polynomials have valuations increasing with i.
Given a polynomial q(y) ∈ R0[y], let us define N(q(y)) to be the least valuation
of its coefficients. Assume that for k < i + 1 we have the equality N(Q◦

k(y)) =
ν◦(xSk(1)), which is obvious for i = 1, 2, and let us find the least valuation of a

coefficient of the polynomial xriyt
(i)
1 Q

◦t
(i)
2

2 . . . Q
◦t

(i)
i−1

i−1 . According to Lemma 7.4
and equality (∗∗), we have

N(xriyt
(i)
1 Q

◦t
(i)
2

2 . . .Q
◦t

(i)
i−1

i−1 ) ≥ ν◦(xSi+1(1)u
Ti(1)
1 )+

i−2
∑

k=0

ν◦
(

(
ui−k

xsi−k−1u
ni−k−1

i−k−1

)Ti(i−k)
)

,

(∗ ∗ ∗)
and this implies that N(Q◦

i+1(y)) = ν◦(xSi+1(1)) and we can continue the in-
duction. To complete the proof of the first statement of the lemma, we check
that:

Lemma 7.6. If the degree of Q◦
k is n1 . . . nk−1 for k ≤ i − 1, the degree of the

polynomial
∏

k∈E(i)Q
◦t

(i)
k

k (y) is ≤
∑i−1
k=1(nk−1)n1 . . . nk−1 = n1 . . . ni−1−1. �

To prove the second statement of lemma 7.3, we observe that by proposition
6.12, the constant term of the polynomial Q◦

i+1(y) must come from xsiQ◦ni

i .
Iterating the construction by elimination shows that it must ultimately come
from the term xr1 in Q◦

2(y) and gives the result. �

Let us simplify Si+1(1) into Si+1. The polynomials x−Sj+1Q◦
j+1(y) are uni-

tary polynomials in Rν0 [y]. Using the presentation of Rν0 as an inductive limit
of regular local rings given in theorem 6.27, we may assume that they are poly-

nomials in R
(h)
0 [y] for sufficiently large h, with R

(h)
0 a monomial ν0-modification

of R0 as in theorem 6.27. By construction, in view of equality (∗∗) above,
they are the result of elimination of the u′j for 2 ≤ k ≤ j between the equations

u′
ni

i −λix
ri−Li(1)

∏

k∈E(i) u
′t

(i)
k

k −u′i+1, where Li is the function defined after the

statement of lemma 7.3 and u′i+1 = x−Si+1ui+1. A direct computation shows
that these are the transforms of our overweight equations which by elimination
give the unitary polynomials associated to the Q◦

i (y).
We note that the semigroup associated with this new overweight deformation is

equal to 〈Γ
(h)
0 , γ1, γ2 − S2, . . . , γi − Si, . . . γt − St〉, where Γ

(h)
0 is the semigroup

of ν0 on R
(h)
0 and if we want a minimal system of generators, all the indices i

with ni = 1 disappear.

Equality (∗∗) above implies that we can rewrite the image in Rν0 [y], or in R
(h)
0 [y]

for sufficiently large h, of equation H◦
i as

x−Si+1Q◦
i+1 = (x−SiQ◦

i )
ni − λix

ri−Li(1)
∏

k

(x−SkQ◦
k)t

(i)
k .

Using corollary 7.5 we see that ni is the smallest integer k > 0 such that k(γi−

Si) ∈ 〈Γ
(h)
0 , γ1, γ2 − S2, . . . , γi−1 − Si−1〉.
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As a result, we can for each index j define a valuation ν◦(j) on

R̂
(h)
0 [y]/(x−Sj+1Q◦

j+1(y)) by the overweight deformation described by the first j
equations and Q◦

j+1 = 0. These are approximate pseudo-valuations in the sense
of Vaquié (see [82]).
With the usual convention that n0 = 1, the degree of Q◦

j+1(y)) is n1 . . . nj−1,

which is the index of Φ0 in the group of values of ν◦(j), so that each Q◦
j+1(y))

is ν0-analytically irreducible: by the ramification formula there is only one ex-
tension of ν0 to K0[y]/(x−Sj+1Q◦

j+1(y)).
We must add to the simple equations H◦

i the ”perturbations” gi in order to
obtain the real equations Hi, but when all the si are zero this does not change
the semigroup. This has a geometric interpretation (the geometry will be more
apparent in corollary 7.13):

Proposition 7.7. Let p(y) be a unitary irreducible polynomial in R0[y] and let
ν be an extension of ν0 to the field K = K0[y]/(p(y)). Let p1(y) ∈ R̃ν0 [y] be
the irreducible unitary factor of p(y) corresponding to the extension ν. Then we
have:

• The valuation ν has a unique extension ν̃ to R̃ν0 [y]/(p1(y)).

• If p(y) is ν0-analytically irreducible, all the si are 0, so all the ni are > 1.
Conversely, if all the si are zero, the polynomial p(y) is ν0-analytically
irreducible and its degree is [Φ : Φ0].

• Writing, according to definition 6.8, the semigroup of ν on R = R0[y]/(p(y))
as Γ = 〈Γ0, γ1, . . . , γt〉, let i1, . . . , il be the integers among {1, . . . , t} such
that nik > 1, so that ni1 . . . nil = [Φ : Φ0]. The semigroup Γ̃ of ν̃ on
R̃ν0 [y]/(p1(y)) is equal to the semigroup 〈Φ0,≥0, γ1, γi2 −Si2 , . . . , γil −Sil〉
(or 〈Φ0,≥0, γi2 − Si2 , . . . , γil − Sil〉 if γ1 ∈ Φ0,≥0).

Proof. The first statement is classical and follows from what was recalled above
on the classification of extensions. The second statement follows from the first
and lemma 7.3 as follows: the polynomial p(y) is equal to the last polynomial
Qt+1(y) obtained by elimination. Since it is irreducible in R̃ν0 [y] all its roots in
a splitting extension L of K̃0 have the same valuation because the valuation of
K̃0 has a unique extension to L. From lemma 7.3, we see that the valuation of
Qt+1(0) is st +ntst−1 +ntnt−1st−2 + · · ·+nt . . . n3s2 +nt . . . n3n2r1. Therefore
we must have the equality nν(y) = ν0(Qt+1(0)) with n = degp(y). On the other
hand, in view of the equation xs1un1

1 − λ1x
r1 − g1(x, u1) = u2, we must have

n1ν(y) = r1 − s1. The equality of the two expressions for ν(y) implies s1 = 0
because there is no negative component in ν0(Qt+1(0)). If the highest degree
term yn does not come from the initial binomial, the first equality of lemma 7.3
and the overweight condition yield st+ntst−1 +ntnt−1st−2 + · · ·+nt . . . n3s2 +
nt . . . n2n1

r1
n1

< n r1n1
, which contradicts the previous equality. Thus, the term

yn must come from the initial binomial, and in view of the structure of the
equations, the only possibility is that n = n1 . . . nt and all the si are zero, and
then all the ni are > 1 because of the minimality of the system of generators.
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Conversely, if all the sk are zero, one can choose each gi to be a polynomial of
degree < nk in uk for 1 ≤ k ≤ i: starting from i = 1, iteratively substitute in Hi

each occurrence of unk

k by its expression modulo Hk, iterate and use theorem
3.2. A computation which we have already used in the proof of lemma 7.6 then
shows that the polynomial p(u1) which is obtained by elimination of u2, . . . , ut
between the Hi is of degree n1 . . . nt = [Φ : Φ0]. Since henselization is an
immediate extension (see [69], Chapitre F, Corollaire 1 du Théorème 3, or [51],
Theorem 1, for a more precise result), the extension K̃0[ρ(y)]/K̃0 is of degree
≥ [Φ : Φ0]. Since ρ(y) is a root of p(y) this implies that p(y) is the minimal
polynomial of ρ(y) in this extension, and therefore irreducible in K̃0[y].

In general, since a finite algebraic extension of a henselian valued field is
henselian, the valued field (K̃0[y]/(p1(y)), ν̃) is a henselization of (K0[y]/(p(y)), ν).
The map R̃ν0 ⊗R0 k[[x, u1, . . . , ul]] → R̃ν0 [y]/(p1(y)) deduced from the valuative
Cohen theorem for R1 is surjective, so that the elements of the second ring are
expressed as series in the Qi(y) with coefficients in R̃ν0 . Since we have a descrip-
tion of a generating system of relations between the γi which involves only Φ0

and not Γ0 as such, the only possibility for the semigroup to grow is that new
generators are obtained by substracting an element of Φ≥0 from the old ones,
because this would not add new relations but only constitute a displacement of
elements of Γ0 from one side of a relation to the other. The other possibility
would be that there appear new cancellations between the initial forms of mono-
mials in the x,Qi, which means the appearance of some new relations between
the γi, or that the values of the Qi themselves appear as sums of two elements.
This would contradict proposition 6.9. However, the elements γ̃i obtained by
substracting from γi an element of Φ≥0 no longer necessarily constitute a min-

imal system of generators of Γ̃ and to get a minimal system we have to remove
the generators which can be expressed in terms of the preceding ones when one
takes into account the growth from Γ0 to Φ0,≥0. In view of proposition 6.12,
they are precisely those γi for which ni = 1.
The ring R̃ν0 [y]/(p1(y)) is a quotient of a henselization of Rν0 [y]/(p(y)), and
we use the presentation of Rν0 as an inductive limit of regular local rings given
in theorem 6.27. Since henselization commutes with filtering inductive limits
(see [38], 18.6.14. ii)), the ring R̃ν0 is the inductive limit of the henselizations

R̃
(h)
0 of the regular local rings R

(h)
0 of theorem 6.27. We may assume that the

polynomial p1(y) ∈ R̃ν0 [y] has coefficients in some R̃
(h)
0 , so that it is irreducible

in R̃
(h)
0 [y]. Since R̃

(h)
0 is henselian, the polynomial p1(y) remains irreducible

in ˆ̃R
(h)
0 [y] where ˆ̃R

(h)
0 is the m̃0-adic completion of R̃

(h)
0 , which is in fact the

completion R̂
(h)
0 , of the noetherian local ring R

(h)
0 (see [38], théorème 18.6.6),

and then we can apply the valuative Cohen theorem.

By construction the extension ν̃ of ν0 to R̃
(h)
0 [y]/(p1(y)) is unique and its

group of values is Φ since henselization is an immediate extension of fields, and
this remains true when we pass to completion as we have seen in subsection

6.2; here we know that R̂
(h)
0 [y]/(p1(y)) is an integral domain. We continue to

note ν̃ the corresponding valuation. Also by construction we have injections
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of valued local rings R0[y]/(p(y)) ⊂ R̃
(h)
0 [y]/(p1(y)) ⊂ R̂

(h)
0 [y]/(p1(y)) which all

have Φ as value group. The initial forms of the polynomials Qi(y) with ni > 1

must be multiples in R̂
(h)
0 [y]/(p1(y)) of the the initial forms of corresponding

polynomials Q̃i(y) for the unitary polynomial p1(y) since they correspond to the
same relations between the generators of the semigroup. Since p1(y) is unitary,
so must be the Q̃i(y) according to the previous result and the only possibility is

that in R̂
(h)
0 [y]/(p1(y)) we have Qi(y) = (xSi + Ṽi)Q̃i(y) with Ṽi of higher value

than xSi . �

Remarks 7.8. 1. As the proof shows, the third statement of the proposition holds
if R̃ν0 is replaced by R̃

(h)
0 with a sufficiently large h, and then the semigroup is

finitely generated since it is 〈Γ(h)
0 , γ1, γi2 − Si2 , . . . , γil − Sil〉. In G. Rond’s

example, since the degree of p1(y) is one, the semigroup is Γ
(h)
0 . Indeed, in this

case γ1 ∈ Γ
(h)
0 and there is no γi, i ≥ 2.

2. For the proof of the second statement, we could have used a Newton polygon
argument: if the valuation ν0 is of rank one, since K̃0 is henselian the Newton
polygon of the ν0-analytically irreducible polynomial p(y) must have only one
compact face (see [68]), which necessarily is a homothetic of the compact face
of the Newton polygon of Q2(y) in view of the weight conditions on the equa-
tions Hi. But since p(y) is unitary this imposes that the monomial yn is on
that compact face, which implies that all sk are zero and the Qk(y) are unitary
polynomials. The semigroup is generated by the ν(xi) and the valuations of the
Qk, and the degree of p(y) is equal to

∏

k nk = [Φ : Φ0] so that in this case
there is no defect for the extension K of K0. If the rank of ν0 is > 1 we use the
remarkable work of Vaquié on key polynomials, and in particular [84], §3, which
tells us that again in that case there is a Newton polygon in a suitable sense
which has only one compact face and allows us to reach the same conclusion.

Let us denote by Qui (y) ∈ K0[y] the polynomials Qi(y) made unitary.

Proposition 7.9. The polynomials (Quik(y))1≤k≤l are key polynomials for the
extension ν to K0[y]/(p(y)) of the valuation ν0 of K0.

Proof. Recalling the definition of MacLane extended by Vaquié (see [53], [82]),
the three conditions are that they should be µ-minimal, ν-irreducible and uni-
tary. In view of proposition 7.7 it suffices to prove the result for the polyno-

mials Q̃j(y) associated to p1(y) ∈ R̂
(h)
0 [y] so that we may assume that p(y)

is ν0-analytically irreducible. Then, the Qi(y) are all unitary, and according
to proposition 6.11 they are all irreducible. They are also ν-irreducible since
their initial forms minimally generate grνk[[x]][y]/(p(y)) and are therefore irre-
ducible elements. The only thing left to prove is that if the ν-initial form of
a polynomial q(y) is divisible by the ν-initial form of a polynomial Qi(y) then
degq(y) ≥ degQi(y) (resp. degq(y) ≥ degp(y)).
After what we have seen we can, in K0[y]/(p(y)), write

q(y) =

n
∑

t=1

at(x)yt1(Qu2 )
t2 . . . (Quk)

tk
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with tj ≤ nj − 1 for 1 ≤ j ≤ k and the valuation of each term of the sum is
≥ ν(q(y)). Now we can follow the proof of corollary 5.4 given in [64], since we
have reduced our problem to a very similar situation. This corollary states in
particular that the degrees in y of the terms of the sum are all distinct. If one
of the terms, corresponding to the initial form, contains the polynomial Qi(y) it
must be of degree ≥ degQi(y), and this cannot be cancelled by any of the other
terms, which are of different degrees. Finally, by the valuative Cohen theorem
the Qi(y) form a generating sequence for ν so that their values determine it and
in fact the Qui (y) generate the grν0K0-algebra grνK0[y]/(p(y)) (Compare with
[54]). �

Proposition 7.10. Let us keep the notations introduced in subsection 6.3.
Given a unitary irreducible polynomial p(y) ∈ R0[y] and a rational Abhyankar
valuation ν on R0[y]/(p(y)) as in proposition 6.9, with its extension µ to k[[x, y]],
let H1, . . . , Ht, p(y) − v be the generators of the kernel of the valuative Cohen
map k[[x, u1, . . . , ut, v]] → k[[x, y]] describing the valuation µ. There are two
possibilities for the last equation Ht in the sequence we have built in the proof
of proposition 6.14:

- Either the polynomial p(y) is ν0-analytically irreducible, its degree is [Φ : Φ0],
we have l = t and the last equation in the sequence is of the form

unt

t − λtx
rt

∏

k∈E(t)

u
t
(t)
k

k − gt = v.

In this case, and only in this case, we have si = 0 for all i, so that all the
polynomials Qi(y) are unitary, with degQi = n1 . . . ni−1 (setting n0 = 1), and
ν is the unique extension of ν0 to K0(y).

- Or the degree of p(y) is > [Φ : Φ0] and p(y) is divisible in R̃ν0 [y] by a unitary
polynomial p1(y) of degree [Φ : Φ0]. The last equation is of the form

xstunt

t − λtx
rt

∏

k∈E(t)

u
t
(t)
k

k − gt = v.

where the highest degree term yn of p(y) comes by elimination from a term of
one of the gj(x, y,Q2(y), . . . , Qj(y)).

In all cases, the separable extension of valued fields (K0, ν0) ⊂ (K0(y), ν) is
defectless.

Proof. The process we have described in the proof of proposition 6.14 stops
when for some index t we reach a situation where p(u1) − ut+1 ∈ F , which
means that

p(y) = xstQt(y)nt − λtx
rt

∏

k∈E(t)

Q
t
(t)
k

k (y) − gt(x, y,Q2(y), . . . , Qt(y)).

The first case follows directly from proposition 7.7, where we have seen that p(y)
is ν0-analytically irreducible if and only if all the si are zero, and the degree of
p(y) is then n1 . . . nt = [Φ : Φ0].
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In the second case, the fact that yn comes from a gj follows from the fact
that otherwise all the si must be zero since ri − si > 0 and then we are in the
first case.

Since [K0(y) : K0], which is the degree of p(y), is the sum of the degrees
of the irreducible factors ps(y) of p(y) in R̃ν0 [y], the Ostrowski ramification
formula (O) shows that the extension from K0 to K has no defect with respect
to ν0.
In this case too the semigroup is finitely generated by the valuations of the
x, y,Qk(y) but the Qk(y) are not necessarily unitary polynomials. �

Example 7.11. In the case where r > 1, let us assume that the valuation ν0 is
of rank one and consider two equations such as xs1y− xr1 = Q2(y), Q2(y)n2 −
xr2 − yn = p(y) satisfying the conditions we have observed above, in particular
that (xs1u1−x

r1 , un2
2 −xr2) generate a prime binomial ideal with n2 prime to the

characteristic of k, that r1−s1 is in Φ0+, that we have nν(y) = n(r1−s1) > r2,
and r2 > n2r1 > n2s1. According to corollary 2.4, the polynomial p(y) is
irreducible in k[[x]][y] because it corresponds to an overweight deformation of
the prime binomial ideal generated by xs1u1 − xr1 , un2

2 − xr2 , but in R̃ν0 [y] it
is divisible by a polynomial of degree n2, of the form p1(y) = (y − xr1−s1)n2 −
xr2−n2s1 + terms of higher value, as one sees using the Newton polygon of p(y)
according to [68], 5.1, D, E. The semigroup Γ of R0[y]/(p(y)) is 〈Γ0, r1−s1,

r2
n2

〉

and the semigroup Γ̃ of R̃ν0 [y]/(p1(y)) is 〈Φ0,≥0,
r2
n2

− s1〉.

Remarks 7.12. 1. In the example of G. Rond, we have t = 2 = l+1 and Vaquié’s
method builds, for each of the two extensions of ν0, an infinite continuous family
of key polynomials which has the polynomial p(y) as limit key polynomial.

Each family corresponds to the successive truncations

Te(x1, x2) = x1(1 +
1

2

x3
2

x2
1

+ · · ·+ ce
x3e
2

x2e
1

) ∈ k((x1, x2)), with ce ∈ k,

of the power series for x1

√

1 +
x3
2

x2
1

.

Using the equation (1 + c1β + · · ·+ ceβ
e + · · · )2 = 1+ β to compute inductively

the coefficients ce we see that if ce+1 = 0 in the field k, the smallest e′ > e + 1
such that ce′ 6= 0 is certainly ≤ 2e−1. Otherwise all the cf , f ≥ e+1, are zero,
and this makes

√
1 + β a polynomial in β, which would have to be of degree 1

2
.

Given a choice of extension of the valuation ν0, to each truncation corresponds a
polynomial Qe(y) of k[[x1, x2]][y]/(y

2 −x2
1 −x3

2), which is x2e−1
1 (y±Te(x1, x2)).

These polynomials satisfy relations of the form Qe+1 = x2
1Qe − λex

3(e+1)
2 with

λe = ±ce+1. Their valuations remain in the semigroup generated by w1, w2, 3w2−
w1. If λe 6= 0 they are ν(Qe) = (e + 1)(3w2 − w1) + (e − 1)w1 for e ≥ 1.
If λe = 0 and e′ is the least integer > e + 1 such that ce′ 6= 0, we com-
pute easily that the value of the polynomial Qe is 3e′w2 + (2e − 1 − 2e′)w1 =
e′(3w2 − w1) + (2e − 1 − e′)w1 and this is in the semigroup since e′ ≤ 2e − 1.
The unitary polynomials associated to the Qe, after the removal of repetitions
due to the fact that some ce may be zero in k, constitute the continuous family
of key polynomials describing the given extension of ν0.
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2. By proposition 7.7, when the polynomial p(y) is ν0-analytically irreducible, the
semigroup Γ is contained in the cone generated by Γ0 so that the map Speck[tΓ] →
A

r(k) corresponding to the injection k[X1, . . . , Xr] ⊂ k[tΓ] is finite.

In fact, with proposition 7.7, remark 6.6 and the results of subsection 6.3 we
have proved the following result:

Corollary 7.13. Let p(y) be a unitary irreducible polynomial in k[[x1, . . . , xr]][y],
let ν0 be a monomial valuation on k[[x1, . . . , xr]] = R0 such that the ν0(xi) are
rationally independent, and let ν be an extension of ν0 to R = R0[y]/(p(y)). Let
Γ be the semigroup of ν on R and let ̟ : Speck[tΓ] → Ar(k) be the map corre-
sponding to the injection k[X1, . . . , Xr] ⊂ k[tΓ] determined by Xi 7→ tν0(xi) (or
the map SpecgrνR → Ar(k) corresponding to the natural inclusion grν0R0 ⊂
grνR). The valuation ν defines a separable and tame extension of valued fields
(K0, ν0) ⊂ (K, ν) if and only if the index [Φ : Φ0] is prime to the characteristic of
k, and if that is the case the polynomial p(y) is ν0-analytically irreducible if and
only if the map ̟ is finite and thus makes Speck[tΓ] (or grνR) a quasi-ordinary
singularity. �

Remark 7.14. With the notations of proposition 1.3 and in view of corollary 7.5,
even in the case where p(y) is not ν0-analytically irreducible, there exists a smallest
integer h such that the strict transform (tensor product modulo torsion) of the map

SpecgrνR → A
r(k) by the birational toroidal map Speck[x

(h)
1 , . . . , x

(h)
r ] → A

r(k) is

finite. This strict transform must then correspond to the semigroup 〈Γ(h)
0 , γ1, γi2 −

Si2 , . . . , γil −Sil 〉. One may ask whether the polynomial p(y) then becomes divisible in

R̃
(h)
0 [y] by an analytically irreducible unitary polynomial p1(y) of degree [Φ : Φ0].

As a consequence of proposition 6.9 and the second statement of proposi-
tion 7.7, apart from the fact that one must replace ”irreducible” by ”ν0-analy-
tically irreducible”, the situation is quite similar to the plane branch case where
r = 1. Given q(y) ∈ R0[y] one can replace the intersection number of q(y) = 0
with our unitary polynomial p(y) = 0 by the valuation ν0(Resy(p(y), q(y)) of
the resultant of the two polynomials, and if we assume that the degree of p(y) is
prime to the characteristic of k, we can define approximate roots, for which we
refer to [64]. We only recall here that if n is the degree of p(y) and d is an integer
dividing n the approximate root of p(y) of degree n/d is the unique polynomial
q(y) ∈ k[[x1, . . . xr]][y] such that deg(p(y)− q(y)d) < degp(y)−degq(y). It must
be unitary. It is also the unique unitary polynomial such that the q(y)-adic
expansion of p(y) has the form:

p(y) = q(y)d + a1q(y)d−1 + · · · + ad,

with degai < degq(y), and the coefficient a1 is zero (see [64], proposition 6.1).
We are going to relate this to the expansion

q(y) =
∑

at(x)yt1Q2(y)t2 . . . Qk(y)tkp(y)t∞

given by the valuative Cohen theorem, which in the case where the Qi(y) are
unitary can be obtained by successive divisions as in [64].
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Given p(y) ∈ R0[y], of degree n prime to the characteristic, and a rational
Abhyankar valuation of R0, we have now give an analogue of Abhyankar’s irre-
ducibility criterion for plane curves, as found in [1], in [26], theorem 10.9 and in
[32], theorem 4.2; see also the analogous result for quasi-ordinary polynomials
in [4]. We need some preliminaries. First, we saw in the paragraph following
definition 6.8 that we could assume that for any extension ν of ν0 to R0[y]/(p(y))
we had ν(y) /∈ Γ0. We present the same fact a little differently:

Lemma 7.15. If p(y) ∈ R0[y] is ν0-analytically irreducible, there is a series

υ(x) ∈ R0 such that
ν0(Resy(p(y),y−υ(x))

degp(y) /∈ Γ0.

Proof. Let ν be the unique extension of ν0 to R0[y]/(p(y)) (proposition 7.7).
Recall that Resy(p(y), y) = p(0) and that it follows from lemma 7.3 (statement

2, with all the si = 0) that ν0(p(0))
n = ν(y).

If ν0(p(0))
n = ν(y) ∈ Γ0, we have λ0 ∈ k∗, γ0 ∈ Γ0 such that ν(y− λ0x

γ0) > ν(y).
If ν(y − λ0x

γ0) ∈ Γ0 we can repeat the construction and if there does not exist
a series υ(x) as in the statement, we obtain, possibly by transfinite induction,
a series such that Resy(p(y), y − υ(x)) = 0, which means that y − υ(x) divides
p(y) and contradicts the irreducibility of the polynomial p(y).
The reader is encouraged to produce another proof, valid if the degree n of p(y)
is not divisible by the characteristic of k, by verifying that if the coefficient of
yn−1 in p(y) is zero, one can take υ(x) = 0. �

Now, assuming that the degree of p(y) is not divisible by the characteristic
of k, we can build a sequence of values, numbers, and polynomials as follows:

begin with γ1 =
ν0(Resy(p(y),y))

degp(y) , take n1 to be the smallest integer such that

n1γ1 ∈ Φ0; it divides n and we can define Q2 to be the approximate root of
degree n1 of the polynomial p(y).
Assuming that the γk, nk, Qk+1(y) have been defined for k ≤ j − 1, define

γj =
ν0(Resy(p(y),Qj(y)))

degp(y) , then define nj to be the least integer such that njγj is

in the group Φj−1 generated by Φ0, γ1, . . . γj−1 and Qj+1 to be the approximate
root of degree n1 . . . nj of p(y). With this construction we have:

Proposition 7.16. Let p(y) ∈ k[[x1, . . . xr]][y] = R0[y] be a unitary polynomial
of degree n prime to the characteristic of k. Let ν0 be a rational valuation of
k[[x1, . . . xr]] such that the ν(xi) are rationally independent. The following are
equivalent:

1. The polynomial p(y) is ν0-analytically irreducible.

2. • There exists a series υ(x) ∈ R0 such that
ν0(Resy(p(y+υ(x)),y)

degp(y) /∈ Γ0

and after replacing p(y) by p(y+ υ(x)), in the construction described
above we have for each j that nj > 1 and njγj ∈ 〈Γ0, γ1, . . . , γj−1〉,
and

• Giving variables uj the weight γj, the map of complete k-algebras
k[[x, u1, . . . , ut]] → R0[y]/(p(y)) determined by xi 7→ xi and uj 7→
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Qj(y) is an overweight deformation of a prime binomial ideal corre-
sponding to the relations njγj ∈ 〈Γ0, γ1, . . . , γj−1〉 (in particular, the
inequalities njγj < γj+1 hold).

If these conditions are satisfied, the unique extension of the valuation ν0 to
R0[y]/(p(y)) is given by

ν(q(y)) =
ν0(Resy(p(y), q(y))

degp(y)

and any presentation of R0[y]/(p(y)) by the valuative Cohen theorem can be
modified in such a way that the polynomials Qj(y) are approximate roots of
p(y).

Proof. Here the ”overweight deformation” condition of 2) means that the Qj
satisfy the relations obtained by elimination:

Qj+1 = Q
nj

j − λjx
rj

∏

k∈E(i)

Q
t
(i)
k

k − gj(x, y,Q2(y) . . .Qi(y))

with the weight condition, so that p(y) is the end result of the elimination
process. Since p(y′) is ν0-analytically irreducible if and only if p(y′ + υ(x)) is,
it follows from lemma 7.15 that 2) implies 1). The converse is a consequence
of propositions 7.7 and 7.10 provided that we can show that the approximate
roots are eligible as polynomials Qi(y) in the sense of these propositions. But
if we view the expansion

uj+1 = u
nj

j − λjx
rj

∏

k∈E(i)

u
t
(i)
k

k − gj(x, u1, . . . uj) mod.F

as giving rise to the Qj-adic expansion of Qj+1, we need only to show that

we can avoid the appearance of a term with u
nj−1
j . Should such a term oc-

cur, it must come from gj and by the overweight condition must appear as

gj,nj−1(x, u1, . . . uj)u
nj−1
j with w(gj,nj−1) > w(uj). But then we can make a

change of representativesQj 7→ Qj−
gj,nj−1(x,y,...Qj(y))

nj
(an avatar of the Tschirn-

hausen transformation, permissible since nj must be prime to the characteristic)
to make this term disappear and transform our Qj into approximate roots of
p(y).
Since we assume p(y) to be analytically irreducible, the fact that the valuation
is given by the resultant is due to the uniqueness of the extension of ν to a
splitting field of p(y) and the fact that Resy(p(y), q(y)) =

∏

p(αi)=0 q(αi) (For

this usage of the resultant, which is classical for curves, see [27], [65], Définition
5.7 and [35], proposition 3.1). �

Remarks 7.17. 1. The idea behind Abhyankar’s criterion is that one knows that
if p(y) is analytically irreducible the extension of the valuation ν0 to R0[y]/(p(y))
is given by the resultant. So one begins to compute, with the resultant, the
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would-be valuations of the approximate roots which, as we show, should give an
overweight deformation with all the si = 0 (proposition 7.7). If they do, and
only if they do, then p(y) was indeed analytically irreducible.

2. The reader who is familiar with Abhyankar’s criterion will remark that the con-
junction of the condition njγj < γj+1 and the ”straight line condition” which
appear in that criterion has become an overweight condition with respect to bi-
nomials. This can be compared to ([26], §§7 and 8 and [32]) for plane curves.
It should also be compared with the proof in [13] where in dimension 2 the exis-
tence of a generating sequence for a curve valuation replaces the valuative Cohen
theorem, as key polynomials and approximate roots do in [26].

3. Using the change of variables y 7→ y− x1, we can rewrite G. Rond’s example in
such a way that ν(y) /∈ Γ0 as p(y) = y2 + 2x1y − x3

2. Then the value γ1 of y
given by the resultant is 3w2

2
, so n1 = 2 = degp(y). Our overweight deformation

would have to be y2 − x3
2 + 2x1y, but the weight of 2x1y is w1 + 3w2

2
< 3w2.

The overweight deformation condition fails and the criterion tells us that the
polynomial is not analytically irreducible. From the viewpoint of proposition 7.7,
it is an overweight deformation, written as 2x1y − x3

2 + y2 with y of weight
3w2 − w1, but we know it is reducible because s1 6= 0.

These two verifications correspond to the two ways of expressing that a Newton
polygon is not the segment joining the point (0, degp(y)) to some point (m, 0)
on the horizontal axis: the first is to say that there is an exponent below that
segment, and the second is to say that the point (0, degp(y)) is strictly above
the line supporting the compact face of the Newton polygon ending at the point
(m, 0).

The valuative Cohen theorem allows us to highlight the close relationship
between this result and the next one, a relationship which is also made apparent
in [26] for plane curves, from a different viewpoint.

Proposition 7.18. Let k be a field, let r be an integer, and let Γ be a semi-
group whose associated group is Zr, which we assume to be equipped with a
total monomial order ≺ such that Γ ⊂ Zr�0. The following two conditions are
equivalent:

(1) The semigroup Γ is finitely generated, hence by [61] well ordered, and
contains a free subsemigroup Γ0 ≃ Nr such that if we write, after defini-
tion 6.8, a minimal (with respect to Γ0 and ≺) system of generators as Γ =
〈Γ0, γ1, . . . , γl〉 and define Φi−1 to be the group generated by the semigroup
Γi−1 = 〈Γ0, γ1, . . . , γi−1〉, the following holds:
If ni is the least positive integer k such that kγi ∈ Φi−1, then for each i, 1 ≤
i ≤ l, we have niγi ∈ Γi−1 and for 1 ≤ i ≤ l − 1 we have niγi ≺ γi+1.

(2) The ordered semigroup (Γ,≺) is the semigroup of values of a rational Ab-
hyankar valuation ν on a ring of the form R = k[[x1, . . . , xr]][y]/(p(y)) where
ν(x1), . . . , ν(xr) are rationally independent and the polynomial p(y) is unitary
and ν0-analytically irreducible with respect to the restriction ν0 of ν to k[[x1, . . . , xr ]].

Proof. We have just seen how (2) implies (1), since the fact that all si = 0
implies the inclusions niγi ∈ Γi−1, and the inequalities niγi ≺ γi+1 follow from
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the equations as normalized in proposition 6.9 (compare with the introduction
of [26]). To prove the converse, using proposition 5.4 and the hypothesis, write

each niγi = ri +
∑

1≤k≤i−1 t
(i)
k γk with ri ∈ Γ0. Then, build the correspond-

ing equations H◦
i = uni

i − xri
∏

1≤k≤i−1 u
t
(i)
k

k − ui+1 = 0 for 1 ≤ i ≤ l − 1 and

H◦
l = unl

l −xrl
∏

1≤k≤l−1 u
t
(l)
k

k = 0, which, in view of the inequalities niγi ≺ γi+1,
determine an overweight deformation of a prime binomial ideal (the proof that
the binomial ideal is prime appears in the proof of a) of proposition 6.9). By
proposition 2.3 the weights w(xj) = ν(xj) and w(ui) = γi determine a valu-
ation on the quotient k[[x1, . . . , xr, u1, . . . , ul]]/(H

◦
1 , . . . , H

◦
l ), whose semigroup

is obviously Γ. There only remains to eliminate the variables u2, . . . , ul to ob-
tain a ν0-analytically irreducible unitary polynomial (proposition 7.10) of degree
n1 . . . nl in y := u1. �

Remarks 7.19. 1. When Γ generates the group Z
r, to give a total monomial

order on Z
r with Γ ⊂ Z

r
�0 is equivalent to giving a total monomial order on Γ,

so the proposition concerns totally ordered affine semigroups. The notation ≺
has been chosen here to emphasize the role of the order in the statement.

2. The special case r = 1 (numerical semigroups of plane branches) of this result
is due to Bresinsky ([9]) in characteristic zero, using the Puiseux expansion. It
was rediscovered in ([75], Remark 2.2.2) with a proof quite close to the one given
above, but still relying on Puiseux expansions, and extended to positive charac-
teristic by Angermüller in [3]. Recently in [26] Garćıa Barroso and P loski have
given a more general version for plane branches in arbitrary characteristic with
a proof based on intersection theory. Among other things they show that the in-
equalities niγi < γi+1 imply that in the expression niγi = φ

(i)
0 +

∑

1≤k≤i−1 t
(i)
k γk

of proposition 5.4 we must have φ
(i)
0 > 0 (this is generalized in proposition 6.12

above). Thus, when r = 1 the second condition of (1) implies the first.

3. As was already implicit in the statement of proposition 3.2.1 of [75], from the
viewpoint of the valuative Cohen theorem, for an Abhyankar valuation the clas-
sical inequalities niγi < γi+1 appear as consequences of the fact that the ring
has dimension r and embedding dimension ≤ r + 1. If the ring R is regular of
dimension 2, then the inequalities hold also for non-Abhyankar valuations; see
[15] and [16]. Related results, with different motivations, also valid in arbitrary
characteristic and expressed in the language of valuations on a polynomial ring
in two variables, are found much earlier in an article19 of A. Seidenberg; see
[71]. In this paper, Seidenberg in particular shows the existence of generating
sequences (or key polynomials) for rational valuations centered in a polynomial
ring in two variables and makes use of the inequalities niγi < γi+1.

In the same spirit we have an analogue of the Abhyankar-Moh irreducibility
theorem as it is stated in ([26], corollary 8.3); it is a direct consequence of
proposition 6.9 and what we have seen in this subsection. We keep the notations
of subsection 6.3 and in particular propositions 6.9 and 7.7:

19I am grateful to Arkadiusz P loski and Evelia Garćıa Barroso for bringing it to my atten-
tion.
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Proposition 7.20. Let ν0 be a valuation of k[[x1, . . . , xr]] such that the ν(xi)
are rationally independent. Let p(y) ∈ k[[x1, . . . , xr]][y] be a ν0-analytically irre-
ducible unitary polynomial and ν the unique extension of ν0 to k[[x1, . . . , xr ]][y]/(p(y)).
Denote by µ the valuation on k[[x, y]] with values in (Z× Zr)lex which is com-
posed with ν and gives value (1, 0) to p(y). Let Q1 = y,Q2(y), . . . , Ql(y) be the
unitary polynomials obtained by elimination from the Hi of proposition 6.9 and
whose valuations, together with those of the xi, minimally generate the semi-
group Γ of ν. If q′(x, y) ∈ k[[x, y]] is a series such that q′(0, y) is of order
n = degp(y) in y and µ(q′(x, y)) > nlγl, then q′(x, y) can be written as the
product of a unit of k[[x, y]] by a unitary polynomial which is ν0-analytically
irreducible in k[[x]][y] and is of the form:

q(y) = Ql(y)nl − λlx
rl

∏

k∈E(l)

Qk(y)t
(l)
k − g′l(x, y,Q2(y), . . . , Ql(y)),

where g′(x, u1, . . . , ul) is a series of weight > nlγl and g
′
l(x, y,Q2(y), . . . , Ql(y))

is a polynomial of degree < n in y. The semigroup of the unique extension of
ν0 to k[[x1, . . . , xr]][y]/(q(y)) is Γ.

Proof. First, by the Weierstrass preparation theorem, up to multiplication by a
unit of k[[x, y]], we may replace q′(y) is a unitary polynomial q(y) of the same
degree as p(y). If we divide q(y) by the unitary polynomial Ql(y) we therefore
obtain q(y) = Ql(y)nl + Al−1Ql(y)nl−1 + · · · + A0 with degyAi < degyQl(y).
If µ(q(y)) ≥ (1, 0), then by reason of degree we must have q(y) = p(y) and the
result is proved. So we assume µ(q(y)) < (1, 0). By the valuative Cohen theorem

q(y) is the image of a series q̃(x, u1, . . . , ul, v) = unl

l + · · · ∈ ̂k[x, u1, . . . , ul, v]
which is of weight ≤ nlγl since it contains unl

l . Now we use proposition 2.6
much as in the proof of proposition 6.14. By our assumption the weight of q̃
is less than the valuation of q(y) so that inw q̃ belongs to the binomial ideal of

the initial forms of the equations Hi. But any binomial uni

i −λix
ri
∏

k∈E(i) u
t
(i)
k

k

which is not unl

l − λlx
rl
∏

k∈E(l) u
t
(l)
k

k can be replaced, modulo the equations
Hi, by gi + ui+1, thus increasing the weight and making it disappear from the
initial form. Finally this produces a series which, since its image contains Qnl

l ,
must be of the form stated in the proposition: the only possibility for its initial
form, by reason of degree and because it must be in the binomial ideal, is to be

unl

l − λlx
rl
∏

k∈E(l) u
t
(l)
k

k . The polynomial g′l(x, y,Q2(y), . . . , Ql(y)) is of degree

< n because p(y)−q(y) is of degree < n. Finally our polynomial q(y) is obtained
by elimination from an overweight deformation of the same binomial ideal as
the polynomial p(y) and must have the same semigroup. �

Remark 7.21. Applying the proposition to the ν0-analytically irreducible polynomials
Qj(y) gives a generalization of Theorem 8.2 of [26]. The Abhyankar-Moh irreducibility
criterion is in fact an equisingularity criterion: if a polynomial has the same degree
as a ν0-analytically irreducible unitary polynomial and sufficiently high contact with
it, then it is not only ν0-analytically irreducible but in fact ”ν0-equisingular” with that
polynomial, in the sense that it determines the same semigroup.
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8 Key polynomials and the valuative Cohen the-

orem

The classical theory of key polynomials uses division by unitary polynomials of
K0[y] and can at best produce polynomials with coefficients in Rν0 [y] while the
valuative Cohen theorem produces, at least when R0 is complete, polynomials in
R0[y]. Also, when the semigroup Γ of ν on R0[y]/(p(y)) is finitely generated, the
valuative Cohen theorem produces finitely many polynomials while the classical
theory may produce infinitely many polynomials, as we have seen. In this section
we indicate references which may help the reader to analyze the differences in
viewpoints.

Concerning our construction of key polynomials, the basic mechanism ap-
pears in the equations Hi used above in the study of Abhyankar valuations of
k[[x]][y]/(p(y)) and our key polynomials are the images in k[[x]][y]/(p(y)) of the
variables ui by the valuative Cohen map. Assuming that all the si = 0, these
polynomials Qi(y) determine the valuation by the following construction (com-
pare with [76], Example 4.20, and [56]): given a polynomial q(y), we can replace
in it every occurrence of yn1 by xr1 + g1(x, y) + u2, and then continue induc-

tively, replacing each occurrence of uni

i by λix
ri
∏

k u
t
(i)
k

k + gi(x, y, . . . , Qi(y)) +
ui+1. In this way one produces in a finite number of steps a polynomial
q̃(y,Q2(y), . . . , Qs(y)) in y and the (Qk)k≥2 with coefficients in k[[x]], the image

of q̃(u1, u2, . . . , us) ∈ ̂k[x, (ui)i∈I ] which has the virtue that its value is now the
minimum of the values of its terms, which is also the weight of q̃(u1, u2, . . . , us).
Indeed, all the cancellations of initial forms which complicate the computation
of valuations have been transmuted into variables with weights.

If the si are not all zero, we use for q(y) the construction used for p(y) in
the proof of proposition 6.14, with the same result as above except that now the
polynomials Qi used in the substitutions are not unitary. In the complete case,
this expansion in terms of the ui is exactly the one coming from the valuative
Cohen Theorem.

The inverse operation, which we have seen above, is the elimination of the
variables ui to recover the polynomials in one variable whose valuations generate
the semigroup, which amounts to defining explicitly the map of the valuative
Cohen theorem. Indeed, if we replace each ui+1 by the polynomial Qi(y) we
get the expansion in terms of key polynomials which comes from that theory.
These polynomials are key polynomials by proposition 7.9, but here they are
defined for rings, not fields as in the classical case, and the proof of proposition
6.9 shows that there is indeed a difference.

The classical theory of key polynomials does not work in this way. Key
polynomials were developed by Ostrowski (see [70]) and MacLane (see [53]) in
special cases and in full generality by Vaquié (see [82]-[86]) to determine all
the extensions of a given valuation of the field K to the field K(y), where y
may be algebraic over K or not. Given such an extension of valuations, the
key polynomials are defined as ”milestones” of the cancellations of initial forms
which one has to take into account when computing the valuation of an element
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Q(y) ∈ K[y]; this systematic recording of cancellations ultimately provides a
sequence, in general indexed by an ordinal, of unitary polynomials in K[y]
whose values determine completely the valuation. Each element of K[y] is a
polynomial in these polynomials in such a way that now its valuation is the
least of the values of the terms.

In a sense the theory of key polynomials constructs simultaneously, by an
inductive process, a generating sequence for the valuation on K0[y] and the re-
lations between its members. But it uses the structure of K0[y] in an essential
way. For an arbitrary equicharacteristic noetherian complete local domain the
valuative Cohen theorem does the same with series but in a different, non con-
structive, way. Also, Vaquié’s theory has the advantage that it can be used to
build all the extensions of a valuation such as ν0 while the valuative Cohen the-
orem starts from a given extension. Thus, Vaquié’s theory may build infinitely
many polynomials whose values belong to a finitely generated semigroup, as we
saw in section 7. The point here is that key polynomials record new cancellations
of initial forms whether their result augments the semigroup of the valuation on
a given subring of K0(y) or not. There is no requirement of them corresponding
to a minimal set of generators of the graded algebra of a noetherian subring.

In ([76], examples 4.20 and 4.22) the author explained in the special case
of valuations of k(x)[y], where k is algebraically closed of characteristic zero,
the relationship between key polynomials, approximate roots, the valuative Co-
hen theorem, and the embedding of the field k(x)(y) in a field of generalized
power series à la Hahn-Kaplansky (proposition 5.48 of loc.cit.). Pedro González
Pérez showed among other things in [31] that the same mechanism is at work
for quasi-ordinary irreducible hypersurface singularities, still in characteristic
zero. In [56], M. Moghaddam has extended this mechanism again to general-
ized quasi-ordinary series in X1, . . . , Xd, possibly non-algebraic over the field
k(X1, . . . , Xd).
It is perhaps notable that although the construction given above differs from
that described in the work of Vaquié, the polynomials Qi(y) ∈ R0[y] ⊂ K0[y]
are indeed key polynomials for the valuation ν. This is due mostly to part (1)
of proposition 6.9 which gives a structure to the equations: this structure is
automatically given by the classical construction of key polynomials but is in
general sorely lacking in the equations given by the valuative Cohen theorem.
The basic reason is that the rings to which we apply the valuative Cohen theorem
are not assumed to be regular. As we noted, seeking polynomials in R0[y] instead
of K0[y] also makes a difference.

Other approaches, which also construct key polynomials step by step (in a
transfinite sense) are found in the work of M. Spivakovsky and his collaborators,
who have developed (see [36]) a general theory of key polynomials from the
viewpoint of generating sequences for valuations of rank one on complete regular
local rings, generalized to higher rank by W. Mahboub (see [55]) and in the work
of M. Moghaddam (see [57], [58]) who has generalized the constructions of Favre
and Jonsson (see [24]) for C{x, y}20. The relationship of the first approach with

20A description of the valuation semigroups and residue field extensions for valuations of any
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Vaquié’s is explained in [54] but again there, the key polynomials are sought in
K0[y] and not R0[y] although Mahboub corrects a lapsus in the definition of key
polynomials in [36] where one seeks generators of the graded ring with respect
to the valuation which is associated to K0(y) and not K0[y].

It should be noted that in [16], Cutkosky and Vinh build the equivalent of
a sequence of key polynomials for a valuation of any noetherian regular local
ring of dimension two. Their method is different from what we do in subsection
6.3 where we heavily use the hypothesis that the valuation is Abhyankar. Our
proposition 6.2 can be viewed as a generalization of cases 1), 3) and 4) of their
proposition 3.4. There is a difference in case 3) since we allow ourselves to move
in the tree of ν-modifications and so can assume β = 0 in their formula in view
of the results of [37] quoted in our proof.

The possibility of defining a generalization of key polynomials for valuations
on rings that are not regular has not yet been established. It would mean
essentially a structuring of the equations for the ring R given by the valuative
Cohen theorem allowing the systematic elimination of variables ui that are not
necessary to generate the maximal ideal of R.

9 The Artin-Schreier example

We continue the study we have begun in [76] of the difference between the
overweight deformation method for local uniformization and the ramification
theoretic method of [46] by revisiting example 4.23 of [76] from the viewpoint
of key polynomials. The main points here are that the construction of key
polynomials does not commute with base change (or field extension) and that
in positive characteristic the price to pay to write a fractional power series
parametrization of a curve may be high in terms of key polynomials.

Let k be a perfect field of finite characteristic p and x an indeterminate; set

K =
⋃

n≥1 k(x
1

pn ), the perfect closure of k(x). There is a unique extension νx
to K of the x-adic valuation of k(x), and its valuation ring is not nœtherian.
The value group of this valuation is 1

p∞Z. Consider the series

y =

∞
∑

i=1

x
1− 1

pi ∈ k[[xQ+ ]]; (NP )

it is a solution of the polynomial equation

yp − xp−1(1 + y) = 0.

This equation is an Artin-Schreier equation21: it is obtained from the standard
Artin-Schreier zp − z = 1

x by replacing z by y
x . Note that if p = 2 it is non

singular.

two dimensional regular local ring, containing also an algorithmic construction of a generating
sequence for the valuation on R itself, is given by Cutkosky and Vinh in [16].

21Of course this is a ”baby case” compared to the general Artin-Schreier equation
yp − g(x1, . . . , xr)p−1y + f(x1, . . . , xr) = 0 for which local uniformization was proved for
r ≤ 3 in [14].
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If we set L = K(y), it is shown in [49] that the extension L/K has degree
p and defect p. More precisely, the unique extension ν to K of the x-adic
valuation of k(x) has a unique extension ν′ to L, with the same group of values,
so that the ramification index e = [Φ′ : Φ] is equal to one, and no residual
extension so that the inertia degree f = [κ(ν′) : κ(ν)] is also equal to one. The
extension is of degree p so that the Ostrowski ramification formula (see [49],
[70] and [83]), which is [L : K] = def , where d is the defect, gives d = p.
This defect complicates the parametrization but does not make it more difficult
to create a non-singular model of the affine plane curve defined by the same
equation in k[x, y]. We remark that our curve is a deformation of the monomial
curve yp − xp−1 = 0, and apply to this monomial curve the toric embedded
resolution process of [33] and [76]: it gives us a proper toric map of non singular
surfaces Z(Σ) → A2(k) and a chart Z(σ) of Z(Σ) where the map is described by

x = yp1y2, y = yp−1
1 y2. Our equation then becomes y

p(p−1)
1 yp−1

2 (y2−1−yp−1
1 y2),

so that the strict transform y2 − 1 − yp−1
1 y2 = 0 is non singular. It can be

parametrized in the Zariski neighborhood y1 6= 1 of the point y1 = 0, y2 = 1 of
the exceptional divisor y1y2 = 0 by y2 = 1

1−yp−1
1

, so that we have the following

rational parametrization of our curve:

x =
yp1

1 − yp−1
1

; y =
yp−1
1

1 − yp−1
1

. (1)

Remark that in this case the blowing-up of the origin also gives an embedded
resolution.
It is with this parametrization that we get the embedding of proposition 6.29 of

R = k[x, y](x,y)/(y
p − xp−1(1 + y)) into k[[yN1 ]] ⊂ k[[y

R≥0

1 ]]. To seek a Newton-
Puiseux type embedding where y is a series in x makes things much more com-
plicated as in the expansion (NP ) above.

The fact that the extension K ⊂ K(v) has defect seems to be related to
the fact that while the extension of fields k(x) → k(x)[y]/(yp − xp−1(1 + y)) is
separable, the extension of graded rings associated to the x-adic valuation of
k[x] and its extension to k[x, y]/(yp − xp−1(1 + y)), which is

k[X ] → k[X,Y ]/(Y p −Xp−1)

is purely inseparable of degree p (the projection to the X-axis does not make the
monomial curve quasi-ordinary; see corollary 7.13) and in addition the binomial
yp−xp−1 becomes reducible when we extend k(x) to K so that there is no hope
for our ring to be, after this extension, an overweight deformation of such a
simple binomial.

Let us now illustrate on this example the difference in positive characteristic
between a system of key polynomials and our method of specialization to the
associated graded ring, first for the extension k(x) → k(x)(y) and then for the
extension K → K(y) where the key polynomials correspond to truncations of

the solution y =
∑∞

i=1 x
1− 1

pi at each exponent where the denominator of the
exponent increases, which in this case means truncating successively at every
exponent.
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Here, making more explicit what is described in [76], Example 4.20, we must
distinguish between ”natural coordinates” which belong to affine space in which
the singularity corresponding to R is determined by ”natural equations” and
the ”key polynomials” which are obtained by eliminating most of the natural
coordinates between the natural equations in order to obtain polynomials in one
variable.

Let us first build a system of ”key polynomials without root extraction”
for the pseudo-valuation of the ring k(x)[y] defined by the parametrization (1),
whose kernel is the prime ideal generated by yp − xp−1(1 + y). We normalize
the valuation on k(x) by setting ν(x) = 1.
The first key polynomial has to be Q0 = y, then we have Qp0 − xp−1 = Q1

and here, since we work over k, we cannot say that Q1 is a p-th power and
therefore not of minimal degree. So we keep Q1 as our key polynomial. In
view of the equation the value of Q1 has to be that of yxp−1, that is p− 1

p . In

fact the equation tells us that Q1 − yxp−1 = 0 and we have to stop. So our
system of polynomials consists of y,Q1, and we find again the presentation of
our curve as an overweight deformation of a curve defined by binomials, namely
Qp0 − xp−1 = 0 , Q1 − yxp−1 = 0.

We are no longer dealing with plane curves in the coordinates x, y but are
working in the space with ”key coordinates” x, y = Q0, Q1, where our curve is
a non transversal intersection of two non-singular surfaces: Qp0 − xp−1 −Q1 =
0 , Q1 − yxp−1 = 0. However, in view of the form of the second equation, this
presentation is isomorphic to the deformation yp−xp−1 = yxp−1 of the binomial
equation yp − xp−1 = 0 which we used above.
Here we have not tried to solve the equation with some series y(x) à la Newton-
Puiseux, but to present our curve as a deformation of a binomial variety over
k, namely yp − xp−1 = 0, which is a reduced binomial curve and as such has a
toric embedded resolution of singularities. Over the field K the same equation

is a p-th power, namely (y − x1−
1
p )p.

Now let us build a sequence of key polynomials for the extension of the
valuation νx on K to the pseudo valuation on K[y] whose kernel is the prime
ideal generated by yp − xp−1(1 + y). Building the key polynomials amounts
to writing systems of equations of plane curves of the form Fj(x, y) = 0 whose
solutions y(j)(x) are better and better finite approximations to our infinite series.

We notice that on the curve we have Q1 = (y − x1−
1
p )p = yxp−1 so that the

degree one polynomial t1 = y − x1−
1
p has valuation 1 − 1

p2 > 1 − 1
p = ν(y)

and we notice that Qp1 = tp
2

1 = xp
2−1(1 + y); its initial form is Qp1 − xp

2−1 =

(Q1 − xp−
1
p )p = (tp1 − xp−

1
p )p = (t1 − x

1− 1
p2 )p

2

and this produces a ”generating

sequence” polynomial t2 = t1−x
1− 1

p2 whose p2-th power, on the curve, is equal
to yxp

2−1 and which has valuation 1 − 1
p3 > ν(t1). Continuing in this manner

we build a system of ”key coordinates” (ti)i≥0 in K[y], where t0 = Q0 = y, t1 =

y − x1−
1
p and which are subjected to the ”key equations” ti+1 = ti − x

1− 1

pi+1 ,
with ν(ti) = 1 − 1

pi+1 . After eliminating ti between the first i equations, which
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means interpreting ti as y −
∑i

k=1 x
1− 1

pk , they are the key polynomials for the
extension ν from K to K[y]/(yp − xp−1(1 + y)) of the valuation νx. The limit
key polynomial is the result of the successive elimination of the variables (ti)i≥1

in the infinite sequence of degree one key polynomials. If the series
∑∞

i=1 x
1− 1

pi

converged in the field K for the topology given by the valuation νx, the result

would be the degree one polynomial y −
∑∞

i=1 x
1− 1

pi , but it does not, so the
result is the Artin-Schreier equation.

The Tj = y−
∑j

k=1 x
1− 1

pk form a continuous admissible family of key poly-
nomials of degree one in the sense of Vaquié [85], and their limit key polynomial
is yp−xp−1(1+y) = 0, which is of degree p. One verifies in this example the re-
sult of Vaquié in [83]: the jump in degree between the members of the continuous
admissible family and the limit key polynomial is equal to the defect.

We have built a sequence (νi)i≥1 of pseudo-valuations of K[y], beginning
with the Gauss valuation ν1 which gives y the value 1 − 1

p and corresponds

to defining the value of a polynomial P (y) ∈ K[y] as the order in x of its

restriction to the curve y = x1−
1
p , and in general νi(P ) computes the order in x

of the restriction of the polynomial P (y) to the curve C(i) given parametrically

by y =
∑i

k=1 x
1− 1

pk . This is essentially the same as what is done by Vaquié at
the end of [82].
According to the theory of ”approximate root” polynomials (see [64]), the valu-
ations νi converge to the valuation ν as i→ ∞. In analogy to what is explained
in [76], Example 4.20, in the characteristic zero case, if one keeps only the first

i equations tk+1 = tk − x
1− 1

pk+1 , 1 ≤ k ≤ i and sets ti+1 = 0, the system
obtained defines, by elimination of the tk for k ≥ 1, the equation of the curve
C(i). The difference with [76] is that here the limit curve as i → ∞ is alge-
braic. The natural valuation on the curve yp − xp−1(1 + y) = 0 appears, as we
have seen, as a very simple overweight deformation of its associated graded ring
k[X,Y ]/(Y p−Xp−1). The method of ”approximate root” polynomials gives us
an approximation process of this valuation, seen as a pseudo-valuation on the
(x, y) plane, by pseudo-valuations corresponding to the finite expansions of y in
rational powers of x parametrizing the curves C(i).

Finally, the same story can be told in the language of overweight deforma-
tions: let Rνx ⊂ K be the valuation ring of the valuation νx and let grνxRνx
be its associated graded ring. Since the positive semigroup of 1

p∞Z is 1
p∞N,

we have a presentation grνxRνx ≃ k[(Ui)i≥0]/((Ui−U
p
i+1)i≥0), corresponding as

in ([76], 4.3, corollary 4.13) to the presentation according to proposition 1.3 of
1
p∞N as the limit of the inductive system indexed by N:

N(0) ⊂ N(1) ⊂ · · · ⊂ N(i) ⊂ · · · ⊂
1

p∞
N,

where each map is multiplication by p and the map from the i-th copy of N
to 1

p∞N is a 7→ a
pi . The variable Ui corresponds to the generator 1

pi of the
semigroup of values of νx.
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The ring (grνxRνx)[y]/(yp−Up−1
0 (1+y)) can be seen as an overweight defor-

mation of the binomial scheme corresponding to the ring (grνxRνx)[(Tj)j≥0]/({Ti−1−

Up
i−1
i }i≥1), with the Ti denoting the initial forms of the ti we introduced above,

and the Ui denoting, by abuse of notation, the images of the variables Ui in
grνxRνx . The deformation is given, exactly as in [76], 4.20, by changing the

i-th equation Ti−1 − Up
i−1
i = 0 to ti−1 − Up

i−1
i = ti for all i ≥ 1. The first

equation T0−U
p−1
1 , read as T0−U

1− 1
p

0 , is a factor of the initial form T p0 −U
p−1
0 ,

which is no longer irreducible over grνxRνx , of the equation yp − Up−1
0 (1 + y).

The first j deformed equations, (ti = ti−1 − x
1− 1

pi )1≤i≤j , once transformed by
elimination into unitary polynomials of K[y] in the variable t0 = y as we have
seen above, are the key polynomials for the valuation corresponding by over-
weight deformation (see proposition 2.3, a)) to the natural weight on the ring
(grνxRνx)[(Tj)j≥0] making the binomial equations homogeneous with w(x) = 1.

We remark finally that the construction used in the proof of the quasi finite-
ness of the semigroup of Abhyankar valuations uses a different presentation for
the complete local ring

R = k[[x, y]]/(yp − xp−1(1 + y)). (A)

Indeed it suggests to write it as

R = k[[y, x]]/(xp−1 − yp(1 + y)−1) (B)

since if we provide R with the valuation induced from the y1-adic valuation via
the inclusion R ⊂ k[[y1]] given by the parametrization (1), in the presentation
(A) we have used above the index of the group extension Φ0 ⊂ Φ is not prime to
p (compare with remark 6.6, 2)); although the extension of valued fraction fields
is separable, it is not tame, but in (B) it is. While in characteristic p 6= 2 the
series xp−1− yp(1 + vy)−1 defines a non trivial deformation with parameter v of
its initial binomial, this deformation is equisingular in the sense of simultaneous
resolution. If p = 2 it gives a simultaneous power series parametrization of the
curves of the family.

As was mentioned at the end of the previous paragraph, the construction
of key polynomials by elimination of key coordinates between key equations is
more complicated in general and not yet understood.

10 Conclusion

If one sets aside the question of the finite generation of semigroups before any
ν-modification, the results of this paper complete the program of [76] in the
special case of Abhyankar valuations. The extension to all rational valuations
might lead to a proof of local resolution of singularities along the following lines:

Let k be an algebraically closed field and X a closed reduced subscheme of
a proper non singular algebraic scheme W over k. One may ask (see [76], [77]
and [78]) the following question:
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Does there exist a closed embedding of W into a normal toric variety Z such
that the intersection of X (resp. W ) with the torus T of Z is dense in X (resp.
W ) and there exist toric proper birational maps Z ′ → Z such that Z ′ is non
singular and the strict transforms X ′ and W ′ of X and W are also non singular
and transversal to the toric boundary in Z ′?

Moreover, the induced map X ′ → X should be a resolution of singularities
(i.e., an isomorphism over the non singular part). One may ask further that Z
itself is non singular and the map Z ′ → Z is a composition of blowing-ups with
non singular centers.

The first formulation of a question of this type goes back to [29] where
such a re-embedding result was proved for germs of complex analytic plane
branches. Pedro González Pérez and the author then proved an embedded
resolution theorem for an affine toric variety equivariantly embedded in a normal
one. This is a necessary step for the proof of embedded local uniformization
by deformation of the embedded resolution of a toric variety associated to the
valuation.

A recent result of Tevelev shows that if one assumes embedded resolution of
singularities to be true, most of the question above has a positive answer :

Theorem 10.1. (Tevelev, [80]) Let k be an algebraically closed field of char-
acteristic zero. Let X ⊂ Pn be an irreducible algebraic variety. For a suf-
ficiently high order Veronese re-embedding X ⊂ PN one can choose homoge-
neous coordinates z0, . . . , zN , a smooth toric variety Z ′ of the algebraic torus
T = PN \

⋃

{zi = 0} and a toric birational morphism Z ′ → PN such that the
following conditions are satisfied: X∩T is non-empty, the strict transform of X
in Z ′ is smooth and intersects the toric boundary transversally, and Z ′ → PN

is a composition of blowing-ups with smooth torus-invariant centers.

Tevelev’s proof starts from an embedded resolution of singularities W → Pn

of X ⊂ Pn and the re-embedding is constructed from sections of invertible
sheaves on Pn built from the images of special classes of divisors on W involving
the exceptional divisor and the pull back of the hyperplane class of Pn. In fact
Tevelev shows a stronger result, without assumption on the characteristic:
Given an embedding of X in a non singular irreducible projective variety S, an
embedded resolution of singularities W → S for X in S and an ample invertible
sheaf L on S, the projective embedding of X obtained through the projective
embedding of S by any sufficiently large multiple of L will have the desired
property in such a way that the strict transform of S by the toric embedded
resolution will be W .
It shows that such toric embedded resolutions are in a sense ”universal” among
embedded resolutions, so that embedded resolution by a single toric modifica-
tion of a larger ambient space is indeed an alternative to embedded resolution by
sequences of blowing-ups with non singular centers. Since by [17] and [60] bira-
tional toric maps of non singular toric varieties can be dominated by sequences
of blowing-ups of non singular invariant centers, one can hope for a future uni-
fication of the two viewpoints, obtained by generalizing what is achieved for
quasi-ordinary hypersurfaces in characteristic zero by ([31], theorem 3).
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The approach which led to the program proposed in [76] is of course different
since one of its goals is to prove embedded resolution in any characteristic. It is
to prove first a ”local uniformization” version of the result, obtaining for each
(rational) valuation a re-embedding after which it is uniformized by a toric map
of the ambient space in suitable coordinates.

After the results of this paper one can formulate the following problem to
summarize the remaining part of the program of [76] in that direction:
1) Give a combinatorial proof of toric embedded local uniformization for ratio-
nal Abhyankar valuations (possibly by showing that their semigroup is finitely
generated).
2) Show that, for every valuation ν of an excellent equicharacteristic noethe-
rian local domain with algebraically closed residue field, there exist rational Ab-
hyankar valuations ν′ such that certain toric embedded uniformizations of ν′

uniformize ν.
Then, one should prove using the quasi-compactness of the Zariski-Riemann

manifold that there are finitely many valuations whose uniformizations suffice to
uniformize all valuations, and finally to glue up the corresponding re-embeddings
into a single one in which a toric modification uniformizes those valuations and
thus locally resolves singularities. After that one can attack the problem of
globalization.
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11 Appendix: On Hironaka’s division theorem

and flattening

Since the references [39] and [41] are not easily available, we present here for
the convenience of the reader a brief summary of Hironaka’s flattening adapted
to our situation.

Let A be a quotient of a power series ring over the field k and let (t1, . . . , tn)
be indeterminates. We are going to study submodules of A-modules of the form
B =

⊕n
i=0A[[t1, . . . , ti]]

ai , where ai ∈ N and the summand for i = 0 is A. A
homomorphism ∆: B → B′ of A-modules between two such sums is said to be
natural if all the homomorphisms A[[t1, . . . , ti]] → A[[t1, . . . , tj ]] induced from
∆ by composing injections and projections of summands are homomorphisms of
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A[[t1, . . . , tmin(i,j)]]-modules. One of Hironaka’s versions of the division theorem
goes as follows in our context:

Proposition 11.1. (See [39], lemma 4.9) Let q be an integer and J be a
A[[t1, . . . , tn]]-submodule of S = A[[t1, . . . , tn]]q. After a suitable invertible k-
linear transformation of the ti one can find a system of non negative integers ai
and a natural homomorphism of A-modules

∆: B =

n
⊕

i=0

A[[t1, . . . , ti]]
ai → S = A[[t1, . . . , tn]]q

such that

1. ∆ induces a surjective homomorphism of A-modules δ : B → S/J ,

2. We have Kerδ ⊂ mAB, where mA is the maximal ideal of A.

Proof. The proof is by induction on n using the classical Weierstrass division
theorem, which corresponds to the case A = k and q = 1, with J a principal
ideal of k[[t1, . . . , tn]]. Then we have B = k[[t1, . . . , tn−1]]a and the kernel of
δ is zero. One can also view it as a consequence of the formal version of the
Grauert-Hironaka division theorem (see [40], [25]). �

Taking now q = 1 so that J is an ideal of S = A[[t1, . . . , tn]], we take a
presentation ∆: B → S as above and, setting t(i) = (t1, . . . , ti), consider the
unique expansion of elements g of ∆−1(J) as

g =
n
∑

i=0

ai
∑

j=1

∑

α∈Ni

gijαt(i)
α,

with gijα ∈ A.
The ideal F of A generated by the coefficients gijα as g runs through ∆−1(J)
is the universal flattener of the map A → S/J . It means that S/J ⊗A A/F is
a flat A/F -module and the map A → A/F is minimal for this property. The
first statement is easy to verify since by construction we have S/J ⊗A A/F =
B ⊗A A/F =

⊕n
i=0 A/F [[t1, . . . , ti]]

ai .
If the ideal F is invertible, there exists an element h ∈ S/J which is not

contained in the ideal mA.S/J but satisfies hF .S/J = 0. Indeed, assuming that
a generator of F is gijα, we can write g = gijαg

′ with g′ ∈ B and g′ /∈ mAB since
one of its coefficients is equal to 1. The image h = δ(g′) ∈ S/J is not in mAS/J
since Kerδ ⊂ mAB, and by the definition of F we have δ(g) = hδ(gijα) = 0,
which means hF .S/J = (0).
So when we blow up the flattener of A→ S/J , localize at a point and complete
to obtain a map A → A′ of quotients of power series rings, the flattener of
S/J⊗AA

′, which is F .A′ by the universal property, is an invertible ideal, and the
strict transform (S/J)′ of S/J , which is S/J ⊗A A

′ divided by its F .A′-torsion,
is a quotient of (S/J ⊗A A

′)/h′ with h′ /∈ mA′(S/J ⊗A A
′). The inclusion of

88



the fiber of the space corresponding to (S/J)′ over the (point corresponding to
the) maximal ideal mA′ into the fiber of the space corresponding to S/J ⊗A A

′

is strict since h′ /∈ mA′(S/J⊗AA
′). Now we take the flattener of the A′-module

(S/J)′, which is an ideal of A′, blow it up and localize the corresponding space
at a point lying over the maximal ideal of A′. At each iteration of this process,
the inclusion of the fiber of the space corresponding to the strict transform into
the previous fiber is strict, so that it has to stop after finitely many iterations,
and then the flattener of the corresponding strict transform must be zero, which
means that the corresponding δ for this strict transform is an isomorphism and
the map is flat. In the proof of proposition 6.4 we have a valuation of S/J which
picks a point in each of the strict transforms, and we use the strict inclusion of
fibers at that point.
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[64] P. Popescu Pampu, Approximate roots, in Proceedings of the Saska-
toon Conference and Workshop on valuation theory, F-V. Kuhlmann, S.
Kuhlmann, M. Marshall, editors, Fields Institute Communications, Vol.
33, 2003. 285-321.

[65] P. Popescu Pampu, sur le contact d’une hypersurface quasi-ordinaire avec
ses hypersurfaces polaires, Journ. Inst. Math. Jussieu, 3, 1, (2004), 105-138.
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[69] P. Ribenboim, Théorie des Valuations, Presses de l’Université de Montréal,
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