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, relying on the theory of optimal stopping under nonlinear expectation. We prove a comparison result implying the uniqueness of viscosity solution, and the existence follows from a Perron-type construction using path-frozen PDEs. We also provide an application to a time homogeneous stochastic control problem motivated by an application in finance.

Introduction

In this paper, we develop a theory of viscosity solutions of elliptic PDEs for non-Markovian stochastic processes, by extending the recent literature on path-dependent PDEs to this context. Nonlinear path dependent PDEs appear in various applications as the stochastic control of non-Markovian systems [START_REF] Ekren | Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part I[END_REF], and the corresponding stochastic differential games [START_REF] Pham | Two Person Zero-Sum Game in Weak Formulation and Path Dependent BellmanIsaacs Equation[END_REF]. They are also intimately related to the backward stochastic differential equations introduced by Pardoux and Peng [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF], and their extension to the second order in [START_REF] Cheridito | Second order BSDE's and fully nonlinear PDEs[END_REF][START_REF] Soner | Well-posedness of second order backward SDEs[END_REF]. We also refer to the recent applications in [START_REF] Henry-Labordere | A numerical algorithm for a class of BSDEs via the branching process[END_REF] to establish a representation of the solution of a class of PPDEs in terms of branching diffusions, and to [START_REF] Ma | Large Deviations for Non-Markovian Diffusions and a Path-Dependent Eikonal Equation[END_REF] for the small time large deviation results of path-dependent diffusions.

Our starting point is the BSDE approach of Darling and Pardoux [START_REF] Darling | Backward SDE with random terminal time and applications to semilinear elliptic PDE[END_REF] which can be viewed as a theory of Sobolev solutions for path-dependent PDEs. In particular, the Feynman-Kac representation provided in [START_REF] Darling | Backward SDE with random terminal time and applications to semilinear elliptic PDE[END_REF] shows a close connection between Markovian BSDEs with random terminal times and semilinear PDEs with Dirichlet boundary conditions.

Following the recent work of Ekren, Touzi and Zhang [START_REF] Ekren | Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part I[END_REF][START_REF] Ekren | Viscosity soltuions of fully nonlinear parabolic path dependent PDEs: Part II[END_REF], we would like to introduce a notion of viscosity solution for an elliptic path dependent PDE on the path space Ω of the form:

G(•, u, ∂ ω u, ∂ 2 ωω u)(ω) = 0, ω ∈ Q, and u = ξ, ω ∈ ∂ Q ,
where ω ∈ Ω is a path variable and Q ⊂ Ω is a domain of continuous paths. Our notions of the derivatives ∂ ω and ∂ 2 ωω are inspired by the calculus developed in Dupire [START_REF] Dupire | Functional Ito calculus[END_REF] as well as Cont and Fournie [START_REF] Cont | Functional Ito calculus and stochastic integral representation of martingales[END_REF]. According to their work, considering the process u t (ω) := u(ω t∧• ), one may define the horizontal and vertical derivatives: It follows that a smooth process satisfies the functional Itô formula:

du t = ∂ t u dt + ∂ ω u dω t + 1 2 ∂ 2
ωω u d ω t , P-a.s. for all semimartingale measures P.

(1.2) However, Definition (1.1) requires to extend the process u to the set of cadlag paths. Although this technical difficulty is addressed and solved in [START_REF] Cont | Functional Ito calculus and stochastic integral representation of martingales[END_REF], it was observed by [START_REF] Ekren | On viscosity solutions of path dependent PDEs[END_REF] that it is more convenient to define the derivatives by means of the Itô formula (1.2).

We next restrict our solution space so as to agree with the condition ∂ t u = 0 for any potential solution of an elliptic path dependent PDE. A measurable function u :

Ω → R is called time invariant, if u(ω) = u ω (•)
for all ω and all increasing bijection : R + → R + .

Loosely speaking, a time invariant map u is unchanged by any time scaling of path. This property implies the time-independence property, i.e. ∂ t u = 0, necessary for solutions of elliptic equations.

Moreover, when reduced to the Markovian case, the time invariance property coincides exactly with time independence: any potential solution v(x) of an elliptic PDE corresponds to a map u defined on the space of stopped paths Ω e by u(ω) := v(ω ∞ ) = u(ω (∞) ) for all increasing bijections : R + → R + .

Our existence and uniqueness results follow the line of argument in [START_REF] Ekren | Viscosity soltuions of fully nonlinear parabolic path dependent PDEs: Part II[END_REF], but we have to address some new difficulties in the present elliptic context. One of the main difficulties is due to the boundary of Dirichlet problem. In general, the hitting time of the boundary h Q (ω) is not continuous in ω. Consequently, it is non-trivial to verify the continuity of the viscosity solution constructed through path-frozen PDEs. Also, the transform: ũ := e λt u, repeatedly used in [START_REF] Ekren | Viscosity soltuions of fully nonlinear parabolic path dependent PDEs: Part II[END_REF], clearly violates the time-independence of solution, so we need to introduce a convenient substitute to this argument.

We also provide an application of our result to the problem of superhedging a time invariant derivative security under uncertain volatility model. This is a classical time homogeneous stochastic control problem motivated by the application in financial mathematics.

The rest of paper is organized as follows. Section 2 introduces the main notations, as well as the notion of time-invariance, and recalls the result of optimal stopping under non-dominated measures. Section 3 defines the viscosity solution of the elliptic PPDEs. Section 4 presents the main results of this paper. In Section 5, we prove the comparison result which implies the uniqueness of viscosity solutions. In Section 6 we verify that a function constructed by a Perron-type approach is an viscosity solution, so the existence follows. We present in Section 7 an application of elliptic PPDE in the field of financial mathematics. Finally, we complete some proofs in Section 8.

Preliminary

Let Ω := ω ∈ C(R + , R d ) : ω 0 = 0 be the set of continuous paths starting from the origin, B be the canonical process, F be the filtration generated by B, and P 0 be the Wiener measure. We introduce the following notations:

• S d denotes the set of d × d symmetric matrices and γ : η = Tr[γη] for all γ, η ∈ S d ;

• R denotes the set of all open, bounded and convex subsets of R d containing 0;

• O L := x ∈ R d : |x| < L , O L denotes the closure of O, aI d , bI d := β ∈ S d : aI d ≤ β ≤ bI d ;
• H 0 (E) denotes the set of all F-progressively measurable processes with values in E, and

H 0 L := H 0 2/LI d , √ 2LI d for L > 0;
• T t denote the set of all stopping times larger than t; in particular, T := T 0 ;

• ω t := sup s≤t |ω s |, ω t s := sup s≤u≤t |ω u | for ω ∈ Ω and s, t ∈ R + ; • (ω ⊗ t ω )(s) := ω s 1 [0,t) (s) + (ω t + ω s-t )1 [t,∞) (s) for ω, ω ∈ Ω and s, t ∈ R + ; • given ϕ : Ω → R d , we define ϕ t,ω (ω ) := ϕ(ω ⊗ t ω ).
In this paper, we focus on a subset of Ω denoted as Ω e which will be considered as the solution space of elliptic path-dependent PDEs.

• Ω e := {ω ∈ Ω : ω = ω t∧• for some t ≥ 0} denotes the set of all paths with flat tails;

• t(ω) := inf {t : ω = ω t∧• } for all ω ∈ Ω e ;

• given ϕ : Ω → R d , we define the process ϕ t (ω) := ϕ(ω t∧• ).

Elliptic equations are devoted to model time-invariant phenomena, and in the path space the timeinvariance property can be formulated mathematically as follows.

Definition 2.1 Define the distance on Ω e :

d e (ω, ω ) := inf t∈I sup t∈R + |ω l(t) -ω t |, for ω, ω ∈ Ω e ,
where I is the set of all increasing bijections from R + to R + . We say ω is equivalent to ω , if

d e (ω, ω ) = 0. A function u
on Ω e is time-invariant, if u is well defined on the equivalent class:

u(ω) = u(ω ) whenever d e (ω, ω ) = 0.
Further, C(Ω e ) denotes the set of all random variables on Ω e continuous with respect to d e (•, •).

We also use the notations C Ω e ; R d , C Ω e ; S d when we need to emphasize the space where the functions take values. Finally, we say u ∈ BUC(Ω e ) if u : Ω e → R is bounded and uniformly continuous with respect to d e (•, •), i.e. there exists a modulus of continuity ρ such that

u(ω 1 ) -u(ω 2 ) ≤ ρ(d e (ω 1 , ω 2 )) for all ω 1 , ω 2 ∈ Ω e . (2.1) 
In this paper, we assume ρ to be convex.

Example 2.2 We show some examples of time-invariant functions:

• Markovian case: Assume that there exists ū : R d → R such that u(ω) = ū(ωt (ω) ). Since

ω 1 t(ω 1 ) -ω 2 t(ω 2 ) ≤ d e (ω 1 , ω 2 ) for all ω 1 , ω 2 ∈ Ω e , u is time-invariant.
• Maximum dependent case: Assume that there exists ū : R → R such that u(ω) = ū( ω ∞ ).

Note that ω ∞ = d e (ω, 0) and

d e (ω 1 , 0) -d e (ω 2 , 0) ≤ d e (ω 1 , ω 2 ). Thus, ω 1 ∞ = ω 2 ∞ whenever d e (ω 1 , ω 2 ) = 0. Consequently, u is time-invariant. • Let (t i , x i ) ∈ R + × R d for each 1 ≤ i ≤ n. We denote by Lin (0, 0), (t 1 , x 1 ), • • • , (t n , x n ) (2.2)
the linear interpolation of the points with a flat tail extending to t = ∞. Then, for the two paths defined as the interpolations as follows:

ω i := Lin (0, 0), (t i 1 , x 1 ), • • • , (t i n , x n ) for i = 1, 2,
the distance between them is 0, i.e. d e (ω 1 , ω 2 ) = 0.

In this paper, we will prove the wellposedness result for time-invariant solutions to elliptic pathdependent PDEs.

Further, for all D ∈ R we have the following notations:

• D := {ω ∈ Ω e : ω t ∈ D for all t ≥ 0};

• Also, C(D) denotes the set of all continuous functions defined on D. For ω ∈ Ω e and ω ∈ Ω,

• (ω ⊗ω )(s) := (ω ⊗t (ω) ω )(s) defines the concatenation of the paths;

• given ϕ : Ω → R d , we define ϕ ω (ω ) := ϕ t(ω),ω (ω ) = ϕ(ω ⊗ω ).
Similarly, for φ : R d → R d , we define that φ x (y) := φ(x + y) for all x, y ∈ R d .

We next introduce the smooth functions on the space Ω e . First, as in [START_REF] Ekren | Viscosity soltuions of fully nonlinear parabolic path dependent PDEs: Part II[END_REF], for every constant L > 0, we denote by P L the collection of all continuous semimartingale measures P on Ω whose drift and diffusion belong to H 0 (O L ) and H 0 L , respectively. More precisely, let Ω := Ω × Ω × Ω be an enlarged canonical space, B := (B, A, M ) be the canonical process. A probability measure P ∈ P L means that there exists an extension Q α,β of P on Ω such that: 

B = A + M, A is absolutely continuous, M is a martingale, α P ∞ ≤ L, β P ∈ H 0 L ,
u : R + × Ω → R d .
In particular, the t-derivative is defined as:

∂ t u(s, ω) := lim h→0 + u(t + h, ω t∧• ) -u(t, ω) h .
Also, Dupire and other authors, for example [START_REF] Cont | Functional Ito calculus and stochastic integral representation of martingales[END_REF], proved the functional Itô formula for the processes regular in Dupire's sense:

du s = ∂ t u s ds + ∂ ω u s • dB s + 1 2
∂ 2 ωω u s : B s , P-a.s. for all P ∈ P ∞ , Note that in the time-invariant case it always holds that ∂ t u = 0. Consequently, the processes with Dupire's derivatives in C(D) are also smooth according to our definition.

We next introduce the notations about nonlinear expectations. For a measurable set A ∈ Ω, a random variable ξ and a process X, we define:

• C L [A] := sup P∈P L P[A], E L [ξ] := sup P∈P L E P [ξ] and E L [ξ] := inf P∈P L E P [ξ]; • E L t [ξ](ω) := sup P∈P L E P [ξ t,ω ] and E L t [ξ](ω) := inf P∈P L E P [ξ t,ω ]; • S L t [X H D ∧• ] (ω) := sup τ ∈T t E L t [X τ ∧H D ] (ω) and S L t [X H D ∧• ] (ω) := inf τ ∈T t E L t [X τ ∧H D ] (ω). A process X is an E L -supermartingale on [0, T ], if X t (ω) = S L t [X]
(ω) for all (t, ω) ∈ [0, T ] × Ω; similarly, we define the E L -submartingales. The existing literature gives the following results.

Lemma 2.6 (Tower property, Nutz and van Handel [START_REF] Nutz | Constructing Sublinear Expectations on Path Space[END_REF]) For a bounded measurable process X, we have

E L σ [X] = E L σ E L τ [X] for all stopping times σ ≤ τ.
Lemma 2.7 (Snell envelop characterization, Ekren, Touzi and Zhang [START_REF] Ekren | Optimal stopping under nonlinear expectation[END_REF]) Let H D ∈ H and X ∈ BUC(D). Define the Snell envelope and the corresponding first hitting time of the obstacles:

Y := S L [X H D ∧• ] , τ * := inf {t ≥ 0 : Y t = X t } . Then Y τ * = X τ * . Y is an E L -supermartingale on [0, H D ]
and an E L -martingale on [0, τ * ]. Consequently, τ * is an optimal stopping time.

Some other properties of the nonlinear expectation will be useful.

Proposition 2.8 Let D ∈ R and O ⊂ D also in R. Define a sequence of stopping times H n :

h 0 = 0, h i+1 := inf {s ≥ h i : B s -B Hi / ∈ O} , i ≥ 0. (2.4)
Then, it holds that

lim n→∞ C L [h n < T ] = 0 for all T ∈ R + ; E L [h D ] < ∞; and lim n→∞ sup x∈D C L [h n < h x D ] = 0.
We report the proof in Appendix.

3 Fully nonlinear elliptic path-dependent PDEs

Definition of viscosity solutions of uniformly elliptic PPDEs

Let Q ∈ R and consider Q as the domain of the path-dependent Dirichlet problem of the equation:

Lu(ω) := -G(ω, u, ∂ ω u, ∂ 2 ωω u) = 0 for ω ∈ Q, u = ξ on ∂Q, (3.1) 
with nonlinearity G and boundary condition by ξ.

Assumption 3.1 The nonlinearity G : Ω × R × R d × S d satisfies: (i) For fixed (y, z, γ), |G(•, 0, 0, 0)| ≤ C 0 ;
(ii) G is uniformly elliptic, i.e., there exists L 0 > 0 such that for all (ω, y, z)

G(ω, y, z, γ 1 ) -G(ω, y, z, γ 2 ) ≥ 1 L 0 I d : (γ 1 -γ 2 ) for all γ 1 ≥ γ 2 .
(iii) G is uniformly continuous on Ω e with respect to d e (•, •), and is uniformly Lipschitz continuous in (y, z, γ) with a Lipschitz constant L 0 ;

(iv) G is uniformly decreasing in y, i.e. there exists a function λ : R → R strictly increasing and continuous, λ(0) = 0, and

G(ω, y 1 , z, γ) -G(ω, y 2 , z, γ) ≥ λ(y 2 -y 1 ), for all y 2 ≥ y 1 , (ω, z, γ) ∈ Ω e × R d × S d .
For any time-invariant function u on Ω e , ω ∈ Q and L > 0, we define the set of test functions:

A L u(ω) := ϕ : ϕ ∈ C 2 (O ε ) and (ϕ -u ω ) 0 = S L 0 (ϕ -u ω ) h ω Oε ∧• for some ε > 0 , A L u(ω) := ϕ : ϕ ∈ C 2 (O ε ) and (ϕ -u ω ) 0 = S L 0 (ϕ -u ω ) h ω Oε ∧• for some ε > 0 .
We call h Oε a localization of test function ϕ. Note that the stopping time h Oε can take the value of ∞, while u is only defined on Ω e . However, since h Oε < ∞ P L -q.s., it is not essential. If necessary, we can define complementarily u := 0 on Ω\Ω e . Now, we define the viscosity solution to the elliptic path-dependent PDEs (3.1).

Definition 3.2 Let L > 0 and {u t } t∈R + be a time-invariant progressively measurable process.

(i) u is an L-viscosity subsolution (resp. L-supersolution) of PPDE (3.1) if for ω ∈ Q and any

ϕ ∈ A L u(ω) (resp. ϕ ∈ A L u(ω)): -G(ω, u(ω), ∂ ω ϕ 0 , ∂ 2 ωω ϕ 0 ) ≤ (resp. ≥) 0. (ii) u is a viscosity subsolution (resp. supersolution) of PPDE (3.1) if u is an L-viscosity subsolu- tion (resp. L-supersolution) of PPDE (3.1) for some L > 0.
(iii) u is a viscosity solution of PPDE (3.1) if it is both a viscosity subsolution and a viscosity supersolution.

By very similar arguments as in the proof of Theorem 3.16 and Theorem 5.1 in [START_REF] Ekren | Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part I[END_REF], we may easily prove that: (ii) as ε → 0, (G ε , u ε ) converge to (G, u) locally uniformly in the following sense: for any (ω, y, z, γ) ∈

Ω e × R × R d × S d , there exits δ > 0 such that lim ε→0 sup (ω,ỹ,z,γ)∈O δ (ω,y,z,γ) |(G ε -G) ω (ω, ỹ, z, γ)| + |(u ε -u) ω (ω)| = 0,
where we abuse the notation O δ to denote a ball in the corresponding space. Then, u is a L-viscosity solution (resp. supersolution) of PPDE (3.1) with generator G.

Equivalent definition by semijets

Following the standard theory of viscosity solutions for PDEs, we may also define viscosity solutions via semijets. Similar to [START_REF] Ren | An overview of viscosity solution of path dependent PDEs. Stochastic Analysis and Applications -In Honour of Terry Lyons[END_REF] and [START_REF] Ren | Comparison result of semilinear path dependent PDEs[END_REF], we introduce the notion of semijets in the context of PPDE.

First, denote functions:

Q α,β,ω (ω ) = α ω t(ω ) -ωt (ω) + 1 2 β ω t(ω ) -ωt (ω) 2 .
Especially, if ω = 0, we denote Q α,β := Q α,β,0 . We next define: 

J L u(ω) := (α, β) : Q α,β,ω ∈ A L u(ω) and J L u(ω) := (α, β) : Q α,β,ω ∈ A L u(ω) .
∈ Q, -G ω, u(ω), α, β ≤ (resp. ≥) 0, for all (α, β) ∈ J L u(ω) (resp. J L u(ω))

Proof

The 'only if' part is trivial by the definitions. It remains to prove the 'if' part. We only show the result for L-viscosity subsolutions. Let ϕ ∈ A L u(0) and O δ is the corresponding localization. Without loss of generality, we may assume that ω = 0 and ϕ(0) = u(0). Define:

α := ∂ ω ϕ(0) and β := ∂ 2 ωω ϕ(0).
Let ε > 0. Since ∂ ω ϕ and ∂ 2 ωω ϕ are both continuous, there exists δ ≤ δ such that on O δ it holds:

|∂ ω ϕ -α| ≤ ε and |∂ 2 ωω ϕ -β| ≤ ε. Denote β ε := β + (1 + 2L)ε. Then, for all τ ∈ T such that τ ≤ h O δ , we have (Q α,βε -u) 0 -E L (Q α,βε -u) τ = E L (u -u 0 -Q α,βε ) τ ≤ E L (u -ϕ) τ + E L (ϕ -ϕ 0 -Q α,βε ) τ ≤ E L τ 0 (∂ ω ϕ s -α)dB s + 1 2 τ 0 (∂ 2 ωω ϕ s -β ε )ds ≤ E L τ 0 L|∂ ω ϕ s -α| + 1 2 (∂ 2 ωω ϕ s -β ε ) ds ≤ 0,
where we used the fact that ϕ ∈ A L u(0) and the definition of P L in (2.3). Consequently, we proved (α, β ε ) ∈ J L u(0), and thus

-G(0, u(0), α, β ε ) ≤ 0.
Finally, thanks to the continuity of G, we obtain the desired result by sending ε → 0.

Main results

Following Ekren, Touzi and Zhang [START_REF] Ekren | Viscosity soltuions of fully nonlinear parabolic path dependent PDEs: Part II[END_REF], we introduce the path-frozen PDEs:

(E) ω L ω v := -G(ω, v, Dv, D 2 v) = 0 on O ε (ω) := O ε ∩ Q ω . (4.1)
Note that ω is a parameter instead of a variable in the above PDE. Similar to [START_REF] Ekren | Viscosity soltuions of fully nonlinear parabolic path dependent PDEs: Part II[END_REF], our wellposedness result relies on the following condition on the PDE (E) ω ε .

Assumption 4.1 For > 0, ω ∈ Q and h ∈ C ∂O ε (ω) , we have v = v, where v(x) := inf w(x) : w ∈ C 2 0 (O ε (ω)), L ω w ≥ 0 on O ε (ω), w ≥ h on ∂O ε (ω) , v(x) := sup w(x) : w ∈ C 2 0 (O ε (ω)), L ω w ≤ 0 on O ε (ω), w ≤ h on ∂O ε (ω) ,
and

C 2 0 (O ε (ω)) := C 2 (O ε (ω)) ∩ C cl(O ε (ω)) .
In this paper, we use PDEs as tools to study PPDEs. Note that by viscosity solutions of PDEs, we mean the classical definition in the PDE literature, for example in [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF]. The rest of the paper will be devoted to prove the following two main results. Let u be a BUC viscosity subsolution and v be a BUC viscosity supersolution to the path-dependent 

PDE (3.1). Then, if u h Q ≤ ξ ≤ v h Q , we have u ≤ v on Q.

Comparison result 5.1 Partial comparison

Similar to [START_REF] Ekren | Viscosity soltuions of fully nonlinear parabolic path dependent PDEs: Part II[END_REF], we introduce the class of piecewise smooth processes in our time-invariant context.

Definition 5.1 Let u : Q → R. We say that u ∈ C 2 (Q), if u is bounded, process {u t } t∈R + is
pathwise continuous, and there exists an increasing sequence of F-stopping times {h n ; n ≥ 1} such that (1) for each i and ω, ∆h i,ω := h hi(ω),ω i+1

-h i (ω) ∈ H whenever h i (ω) < h Q (ω) < ∞, i.e. there is O i,ω ∈ R such that ∆h i,ω = inf{t : ω t / ∈ O i,ω };
(2) {i :

h i (ω) < h Q (ω)} is finite P ∞ -q.s. and lim i→∞ C L 0 h ω i < h ω Q = 0 for all ω ∈ Q and L > 0; (3) for each i, u ωh i ∧• ∈ BUC(O i,ω ), and there exist ∂ ω u i , ∂ 2 ωω u i such that for all ω, ∂ ω u i ωh i ∧• and ∂ 2 ωω u i ωh i ∧• are both continuous on O i,ω and 
u ωh i ∧• t -u ωh i ∧• 0 = t 0 (∂ ω u i ) ωh i ∧• s • dB s + 1 2 t 0 (∂ 2 ωω u i ) ωh i ∧• s : d B s for all t ≤ ∆h i,ω , P ∞ -q.s.
The rest of the subsection is devoted to the proof of the following partial comparison result.

Proposition 5.2 Let Assumption 3.1 hold. Let u 2 ∈ BUC(Q) be a viscosity supersolution of PPDE (3.1) and let u 1 ∈ C 2 (Q) satisfies Lu 1 (ω) ≤ 0 for all ω ∈ Q. If u 1 ≤ u 2 on ∂Q, then u 1 ≤ u 2 in cl(Q).
A similar result holds if we exchange the roles of u 1 and u 2 .

In preparation to the proof of Proposition 5.2, we prove the following lemma.

Lemma 5.3 Let D ∈ R and X ∈ BUC(D) and non-negative. Assume that

X 0 > E L [X h D ], then
there exists ω * ∈ D and t * := t(ω * ) such that

X t * (ω * ) = S L t * X h D ∧• (ω * ) and X t * (ω * ) > 0. Proof Denote Y as the Snell envelop of X h D ∧• , i.e. Y t := S L t X h D ∧•
. By Lemma 2.7, we know that τ * := inf{t : X t = Y t } defines an optimal stopping rule. So, we have

E L [X τ * ] = Y 0 ≥ X 0 > E L [X h D ]. Hence {τ * < h D } = φ. Suppose that X τ * = 0 on {τ * < h D }. Then, 0 = X τ * 1 {τ * <h D } = Y τ * 1 {τ * <h D } ≥ E L τ * [X h D ]1 {τ * <h D } .
Since X is non-negative, we obtain that

X h D 1 {τ * <h D } = 0. So, X τ * = X h D on {τ * < h D }. Thus,
we conclude that

X 0 ≤ Y 0 = E L [X τ * ] = E L [X h D ] < X 0 .

This contradiction implies that {τ

* < h D , X τ * > 0} = φ. Finally, take ω ∈ {τ * < h D , X τ * > 0},
and then ω * := ω τ * (ω )∧• is the desired path.

Proof of Proposition 5.2 Recall the notation h n and O ω n in Definition 5.1. We decompose the proof in two steps.

Step 1. We first show that for all i ≥ 0 and ω ∈ Q

(u 1 -u 2 ) + hi (ω) ≤ E L (u 1 hi+1 ) hi,ω -(u 2 hi+1 ) hi,ω + .
Clearly it suffices to consider i = 0. Assume the contrary, i.e.

c := (u 1 -u 2 ) + (0) -E L u 1 -u 2 + h1 > 0.
Denote X := (u 1 -u 2 ) + . Then, by Lemma 5.3, there exists ω * ∈ O 0 0 and t * := t(ω * ) such that

X t * (ω * ) = S L t * [X h D ∧• ] and X t * (ω * ) > 0.
Since u 1 is smooth on O 0 0 , we have ϕ := (u 1

h O 0 0 ∧• ) ω * ∈ A L u 2 (ω * )
. By the L-viscosity supersolution property of u 2 and the assumption on the function G, this implies that

0 ≤ -G •, u 2 , ∂ ω ϕ, ∂ 2 ωω ϕ (ω * t * ∧• ) ≤ -G •, u 1 , ∂ ω u 1 , ∂ 2 ωω u 1 (ω * t * ∧• ) -λ u 1 -u 2 t * (ω * ) < -G •, u 1 , ∂ ω u 1 , ∂ 2 ωω u 1 (ω * t * ∧• ) .
This is in contradiction with the classical subsolution property of u 1 .

Step 2. By the result of Step 1 and the tower property of E L stated in Lemma 2.6, we have

(u 1 -u 2 ) + (0) ≤ E L u 1 -u 2 + hi ≤ E L u 1 -u 2 + h Q + E L u 1 -u 2 + hi -u 1 -u 2 + h Q for all i ≥ 1.
By Proposition 2.8, we have

C L [h i < h Q ] → 0 as i → ∞. Therefore, (u 1 -u 2 ) + (0) ≤ E L u 1 -u 2 + h Q = 0.

The Perron type construction

Define the following two functions:

u(ω) := inf ψ(ω) : ψ ∈ D ξ Q (ω) , u(ω) := sup ψ(ω) : ψ ∈ D ξ Q (ω) , (5.1) 
where

D ξ Q (ω) := ψ ∈ C 2 (Q ω ) : L ω ψ ≥ 0 on Q, ψ ≥ ξ ω on ∂Q , D ξ Q (ω) := ψ ∈ C 2 (Q ω ) : L ω ψ ≤ 0 on Q, ψ ≤ ξ ω on ∂Q .
As a direct corollary of Proposition 5.2, we have:

Corollary 5.4 Let Assumption 3.1 hold. For all BUC viscosity supersolutions (resp. subsolution)

u such that u ≥ ξ (resp. u ≤ ξ) on ∂Q, it holds that u ≥ u (resp. u ≤ u) on Q.
In order to prove the comparison result of Theorem 4.3, it remains to show the following result. The proof of this proposition is reported in Subsection 5.4, and requires the preparations in Subsection 5.3.

Preliminary: HJB equations

In this part of the paper, we will recall the relation between HJB equations and stochastic control problems. Recall the constants L 0 and C 0 in Assumption 3.1 and consider two functions:

g(y, z, γ) := C 0 + L 0 |z| + L 0 y -+ sup β∈[ √ 2/L0I d , √ 2L0I d ] 1 2 β 2 : γ, g(y, z, γ) := -C 0 -L 0 |z| -L 0 y + + inf β∈[ √ 2/L0I d , √ 2L0I d ] 1 2 β 2 : γ, (5.2) 
Then for all nonlinearities G satisfying Assumption 3.1, it holds g ≤ G ≤ g. Consider the HJB equations:

Lu := -g(u, Du, D 2 u) = 0 and Lu := -g(u, Du, D 2 u) = 0.
In the rest of this subsection, we show that the explicit solutions of the Dirichlet problems of the above equations on a set D ∈ R are given in terms of boundary condition h D , i.e. Proof According to Proposition 8.1 in Appendix, there exists a modulus of continuity ρ such that

w(x) := sup b∈H 0 ([0,L0]) E L0 h D (B h x D )e -h x D 0 brdr + C 0 h x D 0 e -t 0 brdr dt , w ( 
E L0 [|h x1 D -h x2 D |] ≤ ρ(|x 1 -x 2 |). (5.3) 
Since v ∈ BUC(R × Ω e ), we obtain that

|h D (x 1 ) -h D (x 2 )| ≤ E L0 |v(x 1 , B h x 1 D ∧• ) -v(x 2 , B h x 2 D ∧• )| ≤ ρ |x 1 -x 2 | + E L0 |B h x 1 D -B h x 2 D | (5.4)
where we used the convexity of ρ and the Jensen's inequality. We next estimate:

E L0 |B h x 1 D -B h x 2 D | ≤ E L0 |B h x 1 D -B h x 2 D | 2 1 2 ≤ 2L 0 E L0 |h x1 D -h x2 D | 1 2 .
(5.5)

In view of (5.3), we conclude that h D is bounded and uniformly continuous. Further, since h D is bounded and b only takes non-negative values, we can easily obtain that for

x 1 , x 2 ∈ D, |w(x 1 ) -w(x 2 )| ≤ E L0 |h D (B h x 1 D ) -h D (B h x 2 D )| + CE L0 |h x1 D -h x2 D | .
Since h D ∈ BUC(R d ), by the same arguments in (5.4) and (5.5), we conclude that w ∈ BUC(cl(D)).

Then, by standard argument, one can easily verify that w is the viscosity solution to Lu = 0 with the boundary condition h D on ∂D. Similarly, we may prove the corresponding result for w.

Proof of u = u

Recall the two functions u, u defined in (5.1). In the next lemma, we will use the path-frozen PDEs to construct the functions θ n , which will be needed to construct the approximations of u and u defined in (5.1). Recall the notation of linear interpolation in (2.2). Then

• let x i ; 1 ≤ i ≤ n ∈ ( Bd ε ) n and denote π n := Lin (0, 0), (1, x 1 ), • • • , (n, x n ) ; in particular, note that π n ∈ Ω e ;
• denote π x n := Lin π n , (n + 1, x) for all x ∈ Bd ε ; clearly, we have π x n ∈ Ω e ;

• define a sequence of stopping times: for i ≥ 1

h π x n 0 := 0, h π x n 1 := inf {t ≥ h i : x + B t / ∈ O }∧h π x n Q , h π x n i+1 := inf t ≥ h π x n i : B t -B hi / ∈ O ∧h π x n Q
• given ω ∈ Ω, we define for m > 0:

π 1 n (x, ω) := Lin π n , (n + 1, x + ω h π x n 1
) and

π m n (x, ω) := Lin π n , (n + 1, x + ω h π x n 1 ), n + j, ω h π x n j -ω h π x n j-1 2≤j≤m
, for all m > 1.

Lemma 5.7 Let Assumption 3.1 hold, and assume that |ξ| ≤ C 0 . Let ω ∈ Q, |x i | = for all i ≥ 1, π n := {x i } 1≤i≤n , and ω ⊗π x n ∈ Q. Then (i) there exists a sequence of continuous functions (π n , x) → θ ω,ε n (π n , x), bounded uniformly in ( , n), such that θ ω,ε n (π n ; •) is a viscosity solution of (E) ω ⊗πn , with boundary conditions:

   θ ω,ε n (π n ; x) = ξ(ω ω ⊗π x n ), |x| < and x ∈ ∂Q ω ⊗πn , θ ω,ε n (π n ; x) = θ ω,ε n+1 (π x n ; 0), |x| = .
(ii) Moreover, there is a modulus of continuity ρ ε such that for any ω 1 , ω 2 ∈ Q,

θ ω 1 ,ε 0 (0; 0) -θ ω 2 ,ε 0 (0; 0) ≤ ρ ε d e (ω 1 , ω 2 ) . (5.6)
For the domain O ε (π n ) defined in (4.1), a part of the boundary belongs to ∂Q πn , while the other belongs to ∂O . On ∂Q πn , we should set the solution to be equal to the boundary condition of the path-dependent PDE. Otherwise, on ∂O , the value of the solution should be consistent with that of the next piece of the path-frozen PDEs. The proof of Lemma 5.7 is similar to that of Lemma 6.2 in [START_REF] Ekren | Viscosity soltuions of fully nonlinear parabolic path dependent PDEs: Part II[END_REF]. However, the stochastic representations and the estimates that we will use are all in the context of the elliptic equations. So it is necessary to explain the proof in detail.

In preparation of the proof of Lemma 5.7, we give the following estimate on the viscosity solutions to the path-frozen PDEs. The proof is reported in Appendix, Subsection 8.

Lemma 5.8 Fix D ∈ R. Let h i : ∂D → R be continuous (i = 1, 2), G satisfy Assumption 3.1, and v i be the viscosity solutions to the following PDEs:

G(ω i , v i , Dv i , D 2 v i ) = 0 on D, v i = h i on ∂D.
Then, we have

(v 1 -v 2 )(x) ≤ E L0 h 1 -h 2 + h D x + C G(ω 1 , •) -G(ω 2 , •) ∞ .
In particular, if ω 1 = ω 2 , then we have

(v 1 -v 2 )(x) ≤ E L0 h 1 -h 2 + h D x .
Proof of Lemma 5.7 Since ε is fixed, to simplify the notation, we omit ε in the superscript in the proof. We decompose the proof in five steps.

Step 1. We first prove (i) in the case of G := g, where g is defined in (5.2). For any N , denote

θ ω N,N (π N ; 0) := E L0 (ξ h Q ) ω ⊗π N .
Thanks to Lemma 5.6, we may define θ 

E L0 e - h ω ⊗π x n N -n 0 brdr ξ ω ⊗π N -n n (x, B) ⊗(B h ω ⊗π x n Q ∧• ) h ω ⊗π x n N -n + C 0 h ω ⊗π x n N -n 0 e -s 0 brdr ds .
(5.8) Lemma 5.6 also implies that θ N,n (π n ; x) is continuous in both variables (π n , x), and clearly, they are uniformly bounded. We next define

θ ω n (π n ; x) := sup b∈H 0 ([0,L0]) E L0 e - h ω ⊗π x n Q 0 brdr lim N →∞ ξ ω ⊗π N -n n (x, B) ⊗(B h ω ⊗π x n Q ∧• ) h ω ⊗π x n N -n +C 0 h ω ⊗π x n Q 0 e -s 0 brdr ds .
(5.9)

Then, it is easy to estimate that

|θ ω n (π n ; x) -θ ω N,n (π n ; x)| ≤ CC L0 h ω ⊗π x n N -n < h ω ⊗π x n Q → 0, N → ∞.
By Proposition 2.8, the convergence is uniform in (π n , x). This implies that θ ω n (π n ; x) is uniformly bounded and continuous in (π n , x). Moreover, by the stability of viscosity solutions we see that θ ω n (π n ; •) is the viscosity solution of PDE (5.7) in O ε (ω ⊗π n ), with the boundary condition:

   θω n (π n ; x) = ξ(ω ⊗π x n ), |x| < and x ∈ ∂Q ω ⊗πn , θω n (π n ; x) = θω n+1 (π x n ; 0), |x| = .
Hence, we have showed the desired result in the case G = g. Similarly, we may show that θ ω n defined below is the viscosity solution to the path-frozen PDE when the nonlinearity is g:

θ ω n (π n ; x) := inf b∈H 0 ([0,L0]) E L0 e - h ω ⊗π x n Q 0 brdr lim N →∞ ω ⊗π N -n n (x, B) ⊗(B h ω ⊗π x n Q ∧• ) h ω ⊗π x n N -n +C 0 h ω ⊗π x n Q 0 e -s 0 brdr ds .
Step 2. We next prove (ii) in the case of G = g. Considering π x n ∈ Q ω 1 ∩ Q ω 2 , we have the following estimate:

θ ω 1 N,n (π n ; x) -θ ω 2 N,n (π n ; x) ≤ CE L0 h ω 1 ⊗π x n N -n -h ω 2 ⊗π x n N -n + CE L0 ξ ω 1 ⊗π N -n n (x, B) ⊗(B h ω 1 ⊗π x n Q ∧• ) h ω 1 ⊗π x n N -n -ξ ω 2 ⊗π N -n n (x, B) ⊗(B h ω 2 ⊗π x n Q ∧• ) h ω 2 ⊗π x n N -n
, where θ ω i N,n (π n ; x), i = 1, 2, are defined in (5.8). Note that h

ω 1 ⊗π x n N -n -h ω 2 ⊗π x n N -n ≤ h ω 1 ⊗π x n Q -h ω 2 ⊗π x n Q .
As in Lemma 5.6, one may easily show that

θ ω 1 N,n -θ ω 2 N,n ≤ ρ ε (d e (ω 1 , ω 2 )),
where ρ ε is independent of N . Considering θ ω i n defined in (5.9), we obtain by sending N → ∞ that

θ ω 1 n -θ ω 2 n ≤ ρ ε (d e (ω 1 , ω 2 )).
A similar argument provides the same estimate for θ ω n :

θ ω 1 n -θ ω 2 n ≤ ρ ε (d e (ω 1 , ω 2 )).
(5.10)

Step 3. We now prove (i) for general G. Given the construction of Step 1, define:

θ ω,m m (π m ; x) := θ ω m (π m ; x), θ ω,m m (π m ; x) := θ ω m (π m ; x); m ≥ 1.
For n ≤ m -1, we may define θ ω,m n and θ ω,m n as the unique viscosity solution of the path-frozen PDE (E) ω ⊗πn with boundary conditions

θ ω,m n (π n ; x) = θ ω,m n+1 (π x n ; 0), θ ω,m n (π n ; x) = θ ω,m n+1 (π x n ; 0) for x ∈ ∂O ε (ω ⊗π n ).
Since g ≤ G ≤ g, it is easy to deduce that θ 

|δθ ω,m n (π n ; x)| ≤ CC L0 h ω ⊗π x n m-n < h ω ⊗π x n Q → 0, as m → ∞.
Together with (5.11), this implies the existence of θ ω n such that

θ ω,m n ↓ θ ω n , θ ω,m n ↑ θ ω n , as m → ∞.
(5.12)

Clearly θ ω n is uniformly bounded and continuous. Finally, it follows from the stability of viscosity solutions that θ ω n satisfies the statement of (i).

Step 4. We next prove (ii) for a general nonlinearity G. For the simplicity of notation, we denote the stopping times:

h i := h ω i ⊗π x n Q for i = 1, 2, h 1,2 := h 1 ∧ h 2 , h 0 = 0, h 1 := inf{t ≥ 0 : x + B t / ∈ O ε }, h i+1 := inf {t ≥ h i : B t -B hi / ∈ O } for i ≥ 1.
First, considering θ ω,m n defined in Step 3, we claim that for π

x n ∈ Q ω 1 ∩ Q ω 2 (θ ω 1 ,m n -θ ω 2 ,m n )(π n ; x) ≤ E L0 (θ ω 1 m -θ ω 2 m ) π m-n n (x, B); 0 1 {hm-n≤h 1,2 } +I 1 + I 2 + C(m -n)ρ(d e (ω 1 , ω 2 )), (5.13) 
where

I 1 := m-n-1 k=0 E L0 θ ω 1 ,m n+k+1 (π k+1 n (x, B); 0) -θ ω 2 ,m n+k (π k n (x, B); B h 1 -B h k ) 1 {h 1 <h k+1 ≤h 2 } , I 2 := m-n-1 k=0 E L0 θ ω 1 ,m n+k (π k n (x, B); B h 2 -B h k ) -θ ω 2 ,m n+k+1 (π k+1 n (x, B); 0) 1 {h 2 <h k+1 ≤h 1 }
This claim will be proved in Step 5. We next focus on the term in I 1 :

θ ω 1 ,m n+k+1 (π k+1 n (x, B); 0) -θ ω 2 ,m n+k (π k n (x, B); B h 1 -B h k ) 1 {h 1 <h k+1 ≤h 2 } .
Note that as h 1 < h k+1 ≤ h 2 , we have π k+1 n = π k n ⊗Lin ((0, 0), (1, B h 1 -B h k ) , and thus

θ ω 1 ,n+k+1 n+k+1 (π k+1 n (x, B); 0) = θ ω 1 ,n+k+1 n+k+1 (π k+1 n (x, B); 0) = θ ω 1 ,n+k n+k (π k n (x, B); B h 1 -B h k ).
So, by using (5.10), we obtain

θ ω 1 ,n+k+1 n+k+1 (π k+1 n (x, B); 0) -θ ω 2 ,n+k n+k (π k n (x, B); B h 1 -B h k ) ≤ θ ω 1 ,n+k n+k (π k n (x, B); B h 1 -B h k ) -θ ω 2 ,n+k n+k (π k n (x, B); B h 1 -B h k ) ≤ ρ ε (d e (ω 1 , ω 2 )). (5.14)
Further, as in Step 3, the comparison result implies that

θ ω 2 ,m n+k (π k n (x, B); B h 1 -B h k ) ≥ θ ω 2 ,n+k n+k (π k n (x, B); B h 1 -B h k ); θ ω 1 ,m n+k+1 (π k+1 n (x, B); 0) ≤ θ ω 1 ,n+k+1 n+k+1 
(π k+1 n (x, B); 0). Therefore, (5.14) implies that

θ ω 1 ,m n+k+1 (π k+1 n (x, B); 0) -θ ω 2 ,m n+k (π k n (x, B); B h 1 -B h k ) ≤ ρ ε (d e (ω 1 , ω 2 )).
Similarly, we may prove the same estimate for the term in I 2 . Then, by (5.13) we conclude that (θ

ω 1 ,m n -θ ω 2 ,m n )(π n ; x) ≤ CC L h m-n < h 1,2 + C(m -n + 1)ρ ε (d e (ω 1 , ω 2 )).
Recalling (5.12), we obtain that

(θ ω 1 n -θ ω 2 n )(π n ; x) ≤ ρ ε (d e (ω 1 , ω 2 )).
By exchanging the roles of ω 1 and ω 2 , we have (θ

ω 1 n -θ ω 2 n )(π n ; x) ≤ ρ ε (d e (ω 1 , ω 2 )).
Step 5. We prove Claim (5.13). Suppose that m ≥ n + 1. It suffices to show that (θ

ω 1 ,m n -θ ω 2 ,m n )(π n ; x) ≤ E L0 (θ ω 1 ,m n+1 -θ ω 2 ,m n+1 )(π 1 n (x, B)); 0)1 {h1≤h 1,2 } +E L0 (θ ω 1 ,m n+1 (π 1 n (x, B); 0) -θ ω 2 ,m n (π n ; x + B h 1 ))1 {h 1 <h1≤h 2 } +E L0 (θ ω 1 ,m n (π n ; x + B h 2 ) -θ ω 2 ,m n+1 (π 1 n (x, B); 0))1 {h 2 <h1≤h 1 } +Cρ ε (d e (ω 1 , ω 2 )).
Then the claim can be easily proved by induction. Recall that θ

ω 1 ,m n (resp. θ ω 2 ,m n ) is a solution to the PDE with generator G(ω 1 , •) (resp. G(ω 2 , •)
). Now we study those two PDEs on the domain:

O ∩ Q ω 1 ∩ Q ω 2 .
The boundary of this set can be divided into three parts which belong to ∂O , ∂Q ω 1 and ∂Q ω 2 respectively. We denote them by Bd 1 , Bd 2 and Bd 3 .

(i) On Bd 1 , we have h 1 ≤ h 1,2 , and thus

θ ω 1 ,m n (π n , x) = θ ω 1 ,m n+1 (π x n , 0) and θ ω 2 ,m n (π n , x) = θ ω 2 ,m n+1 (π x n , 0).
(ii) On Bd 2 , we have h 1 < h 1 ≤ h 2 , so we only have θ

ω 1 ,m n (π n , x) = θ ω 1 ,m n+1 (π x n , 0). (iii) On Bd 3 , we have h 2 < h 1 ≤ h 1 , so we only have θ ω 2 ,m n (π n , x) = θ ω 2 ,m
n+1 (π x n , 0). Finally, Lemma 5.8 completes the proof.

The previous lemma shows the existence of the viscosity solution to the path-frozen PDEs. We now use Assumption 4.1 to construct smooth super-and sub-solutions to the PPDE from the solution to the path-frozen PDEs.

Denote

θ ε n := θ 0,ε n , h n := h 0 n and πn := Lin (h i , ω hi ); 0 ≤ i ≤ n .
Lemma 5.9 There exists ψ ∈ C 2 (Q) such that

ψ (0) = θ 0 (0) + , ψ ≥ h on Q and L πn ψ ≥ 0 on O ε (π n ) for all n ∈ N.

Proof

For simplicity, in the proof we omit the superscript . Set δ n := 2 -n-2 . First, since PDE (E) 0 satisfies Assumption 4.1 and G(ω, y, z, γ) is decreasing in y, there exists a function

v 0 ∈ C 2 0 (O ε (0)) such that v 0 (0) = θ 0 (0) + 2 , L 0 v 0 ≥ 0 on O ε (0) and v 0 ≥ θ 0 on ∂O ε (0). Define ψ(ω) := v 0 (ωt) + i≥0 δ i on cl(O ε (0)).
By the monotonicity of G, it is clear that

ψ(0) -θ 0 (0) = 2 + i≥0 δ i = , ψ ∈ C 2 (O ε (0)) and L 0 ψ ≥ L 0 v 0 ≥ 0 on O ε (0).
Next, applying again Assumption 4.1 to PDE (E) π1 , we can find a function

v 1 (π 1 ; •) ∈ C 2 0 (O ε (π 1 )) such that v 1 (π 1 ; 0) = v 0 (x 1 ) + δ 0 , L π1 v 1 ≥ 0 on O ε (π 1 ), v 1 (π 1 ; •) ≥ θ 1 (π 1 ; •) on ∂O ε (π 1 ). Then, define ψ(ω) := v 1 (π 1 ; ωt -ω H1 ) + i≥1 δ i , for ω ∈ O ε (π 1 ) It is clear that the updated ψ is in C 2 and L π1 ϕ ≥ 0 on O ε (π n ).
Repeating the procedure, we may find a sequence of functions v n and thus construct the desired ψ ∈ C 2 (Q).

Finally, we have done all the necessary constructions and are ready to show the main result of the section.

Proof of Proposition 5.5 For any > 0, let ψ be as in Lemma 5.9, and ψ := ψ + ρ(2 ) + λ -1 (ρ(2 )), where ρ is the modulus of continuity of ξ and G and λ -1 is the inverse of the function in Assumption 3.1. Then clearly ψ ∈ C 2 (Q) and bounded. Also,

ψ (ω) -ξ(ω) ≥ ψ (ω) + ρ(2 ) -ξ(ω) ≥ ξ(ω ) -ξ(ω) + ρ(2 ) ≥ 0 on ∂Q.
Moreover, when t(ω) ∈ [H n (ω), H n+1 (ω)), we have that

Lψ (ω) = -G ω, ψ , ∂ ω ψ , ∂ 2 ωω ψ ≥ -G πn , ψ + λ -1 (ρ(2 )) , ∂ ω ψ , ∂ 2 ωω ψ -ρ(2 ) ≥ -G πn , ψ , ∂ ω ψ , ∂ 2 ωω ψ ≥ 0.
Then by the definition of u we see that

u(0) ≤ ψ (0) = ψ + ρ(2 ) + λ -1 (ρ(2 )) ≤ θ 0 (0) + + ρ(2 ) + λ -1 (ρ(2 )) . (5.15) 
Similarly, u(0

) ≥ θ 0 (0) --ρ(2 ) -λ -1 (ρ(2 )). That implies that u(0) -u(0) ≤ 2 + 2ρ(2 ) + 2λ -1 (ρ(2 )) .
Since is arbitrary, this shows that u(0) = u(0). Similarly, we can show that u(ω) = u(ω) for all ω ∈ Q.

Existence

In this section, we verify that

u := u = u (6.1)
is the unique BUC viscosity solution to the path-dependent PDE (3.1). We will prove that u is BUC in Subsection 6.1 and u satisfies the viscosity property in Subsection 6.2.

Regularity

The non-continuity of the hitting time h Q (ω) brings difficulty to the proof of the regularity of u.

One cannot adapt the method used in [START_REF] Ekren | Viscosity soltuions of fully nonlinear parabolic path dependent PDEs: Part II[END_REF]. In our approach, we make use of the uniform continuity of the solution of the path-frozen PDEs proved in (ii) of Lemma 5.7.

First, it is easy to show that u is bounded.

Proposition 6.1 Let Assumption 3.1 hold and ξ ∈ BUC(∂Q). Then u is bounded from above and u is bounded from below.

Denote G P φ := α P • ∂ ω φ + 1 2 (β P ) 2 : ∂ 2 ωω φ. Then, since ϕ ∈ C 2 (O ε ) and ψ n ∈ C 2 (Q), it follows from (6.
2) that:

δ n ≥ E P (ϕ -ψ n ) h Oε -(ϕ -ψ n ) 0 = E P h Oε 0 G P (ϕ -ψ n )ds ≥ E P h Oε 0 ( c 2 -G(ω s∧• , ϕ, ∂ ω ϕ, ∂ 2 ωω ϕ) + G(ω s∧• , ψ n , ∂ ω ψ n , ∂ 2 ωω ψ n ) + G P (ϕ -ψ n ))ds ≥ E P h Oε 0 ( c 2 -G(ω s∧• , ϕ, ∂ ω ϕ, ∂ 2 ωω ϕ) + G(ω s∧• , u, ∂ ω ψ n , ∂ 2 ωω ψ n ) + G P (ϕ -ψ n ))ds ,
where the last inequality is due to the monotonicity in y of G. Since ϕ 0 = u 0 , we get

δ n ≥ E P h Oε 0 ( c 3 -G(ω s∧• , u 0 , ∂ ω ϕ, ∂ 2 ωω ϕ) +G(ω s∧• , u 0 , ∂ ω ψ n , ∂ 2 ωω ψ n ) + G P (ϕ -ψ n ))ds .
We next let η > 0, and for each n, define τ n 0 := 0 and

τ n j+1 : = h Oε ∧ inf{t ≥ τ n j : ρ(d e (ω t∧• , ω τ n j ∧• )) + |∂ ω ϕ(ω t∧• ) -∂ ω ϕ(ω τ n j ∧• )| +|∂ 2 ωω ϕ(ω t∧• ) -∂ 2 ωω ϕ(ω τ n j ∧• )| + |∂ ω ψ n (ω t∧• ) -∂ ω ψ n (ω τ n j ∧• )| +|∂ 2 ωω ψ n (ω t∧• ) -∂ 2 ωω ψ n (ω τ n j ∧• )| ≥ η}. Since ϕ ∈ C 2 (O ε ) and ψ n ∈ C 2 (Q)
, one can easily check that τ n j ↑ h D P L0 -q.s. as j → ∞. Thus,

δ n ≥ ( c 3 -Cη)E P [h Oε ] + j≥0 E P τ n j+1 τ n j -G(•, u 0 , ∂ ω ϕ, ∂ 2 ωω ϕ) +G(•, u 0 , ∂ ω ψ n , ∂ 2 ωω ψ n ) + G P (ϕ -ψ n ) τ n j ds = ( c 3 -Cη)E P [h Oε ] + j≥0 E P τ n j+1 τ n j α n j • ∂ ω (ψ n -ϕ) + 1 2 (β n j ) 2 : ∂ 2 ωω (ψ n -ϕ) + G P (ϕ -ψ n ) τ n j ds,
for some α n j , β n j such that |a n j | ≤ L and β n j ∈ H 0 L . Note that α n j and β n j are both F τ n j -measurable. Take P n ∈ P L0 such that α Pn t = α n j , β Pn t = β n j for t ∈ [τ n j , τ n j+1 ). Then

δ n ≥ ( c 3 -Cη)E Pn [h Oε ].
Let η := c 6C , and it follows

E L0 [h Oε ] ≤ E Pn [h Oε ] ≤ δ n . By putting n → ∞, we get E L0 [h Oε ] = 0, contradiction.
uncertain volatility model (see Avellaneda, Levy and Paras [START_REF] Avellaneda | Pricing and hedging derivative securities in markets with uncertain volatilities[END_REF], Lyons [START_REF] Lyons | Uncertain volatility and the risk free synthesis of derivatives[END_REF] or Nutz [START_REF] Nutz | Random G-expectations[END_REF]) provides a conservative answer to this problem.

In the present application, the canonical process B represents the price process of some primitive asset, and our objective is the hedging of the derivative security defined by the payoff ξ(B • ) at some maturity h Q defined as the exiting time from some domain Q.

In contrast with the standard Black-Scholes modeling, we assume that the probability space (Ω, F) is endowed with a family of probability measures P UVM . In the uncertain volatility model, the quadratic variation of the canonical process is assumed to lie between two given bounds, σ 2 dt ≤ d B t ≤ σ 2 dt, P-a.s. for all P ∈ P UVM .

Then, by the possible frictionless trading of the underlying asset, it is well known that the nonarbitrage condition is characterized by the existence of an equivalent martingale measure. Consequently, we take

P UVM := {P ∈ P ∞ : B is P-martingale and d B t dt ∈ [σ 2 , σ 2 ], P-a.s.}.
The superhedging problem under model uncertainty was initially formulated by Denis&Martini [START_REF] Denis | A theoretical framework for the pricing of contingent claims in the presence of model uncertainty[END_REF] and Neufeld&Nutz [START_REF] Neufeld | Superreplication under volatility uncertainty for measurable claims[END_REF], and involves delicate quasi-sure analysis. Their main result expresses the cost of robust superheging as

u 0 := E UVM e -rh Q ξ(B h Q ∧• ) := sup P∈P UVM E P e -rh Q ξ(B h Q ∧• ) ,
where r is the discount rate. Further, define u on Ω e as: Proof By (5.3) and the fact that ξ ∈ BUC(∂Q), one may easily obtain the desired result.

u(ω) := E UVM e -rh ω Q ξ (B h Q ∧• ) ω , for all ω ∈ Ω e . ( 7 
Lemma 7.4 Let ξ ∈ BUC(∂Q). There exists a probability measure P * ∈ P UVM such that e -r• u(B t∧• ) is a P * -martingale.

Proof Denote t n i := i 2 n for i ≤ n2 n and n ∈ N. Define process ũt := e -rt u t . Note that the tower property implies that ũ0 = E UVM [ũ t n 1 ]. Since P UVM is weakly compact and u is BUC, there exists a probability measure P n 0 such that

ũ0 = E UVM [ũ t n 1 ] = E P n 0 [ũ t n 1 ]
. Since the space Ω is separable, we may find a countable F t n 1 -measurable partition {E i } i∈N such that ω -ω t n 1 < ε for all ω, ω ∈ E i . Fix an ω i ∈ E i . As before, there exists probability measures P n,ε

1,i such that ũt n 1 (ω i ) = E P n,ε 1,i (ũ t n 2 ) t n 1 ,ω i . For ω ∈ E i , we have |u t n 1 (ω) -u t n 1 (ω i )| ≤ ρ(ε) and (u t n 2 ) t n 1 ,ω -(u t n 2 ) t n 1 ,ω i ≤ ρ(ε)
, where ρ is the modulus of continuity of u. Thus, we obtain that Finally, since P UVM is weakly compact and u is BUC, there exists P * ∈ P UVM such that ũ is a P * -martingale.

ũt n 1 (ω) ≤ E P n,ε 1,i (ũ t n 2 ) t n 1 ,ω + 2ρ(ε). (7.2) Define P n,ε 1 (A) := E P n 0 i P n,ε 1,i (A t n 1 ,B )1 {B t n 1 ∧• ∈Ei} .
Proof of Proposition 7.2 Step 1. We first verify the viscosity supersolution property. Take L > 0 such that L ≥ σ and 1 L ≤ σ. Without loss of generality, we only verify it at the point 0. Let

ϕ ∈ A L u(0) i.e. (ϕ -u) 0 = max τ E L (ϕ -u) h Oε ∧τ .
Then, for all P ∈ P L , we obtain that for all

h > 0 0 ≥ E P ϕ h Oε ∧h -ϕ 0 -u h Oε ∧h + u 0 ≥ E P h Oε ∧h 0 1 2 ∂ 2 ωω ϕ s d B s + ∂ ω ϕ s dB s +E P (e -r(h Oε ∧h) -1)u h Oε ∧h -E P e -r(h Oε ∧h) u h Oε ∧h + u 0 ≥ E P h Oε ∧h 0 1 2 ∂ 2 ωω ϕ s d B s + ∂ ω ϕ s dB s + E P (e -r(h Oε ∧h) -1)u h Oε ∧h .
Now, we take P λ,β ∈ P UVM such that there exists a P λ,β -Brownian motion W such that B t = λt + βW t , P λ,β -a.s. It follows that 0

≥ 1 h E P λ,β h Oε ∧h 0 1 2 β 2 ∂ 2 ωω ϕ s + λ∂ ω ϕ s ds + e -r(h Oε ∧h) -1 u h Oε ∧h . Let h → 0, we obtain that 0 ≥ -ru 0 + 1 2 β 2 ∂ 2 ωω ϕ 0 + λ∂ ω ϕ 0 . Since λ ∈ [-L, L], β ∈ [σ, σ] can be arbitrary, we finally have ru 0 -L|∂ ω ϕ 0 | -sup β∈[σ,σ] 1 2 β 2 ∂ 2 ωω ϕ 0 ≥ 0.
Step 2. Now we verify the viscosity subsolution property. Without loss of generality, we only verity it at the point 0. Let ϕ ∈ A L , i.e. (ϕ -u) 0 = min τ E L (ϕ -u) h Oε ∧τ . Take the probability measure P * ∈ P UVM in Lemma 7.4, so that u is a P * -martingale. Then it holds that for all h > 0

0 ≤ E P * [ϕ h Oε ∧h -ϕ 0 -u h Oε ∧h + u 0 ] ≤ E P * h Oε ∧h 0 1 2 ∂ 2 ωω ϕ s d B s + ∂ ω ϕ s dB s +E P * (e -r(h Oε ∧h) -1)u h Oε ∧h -E P * e -r(h Oε ∧h) u h Oε ∧h + u 0 ≤ E P * h Oε ∧h 0 L|∂ ω ϕ s | + sup β∈[σ,σ] 1 2 β 2 ∂ 2 ωω ϕ s ds + (e -r(h Oε ∧h) -1)u h Oε ∧h .
Divide the right side by h, and let h → 0. Finally, we get

ru 0 -L|∂ ω ϕ 0 | -sup β∈[σ,σ] 1 2 β 2 ∂ 2 ωω ϕ 0 ≤ 0.

Appendix

Proof of Proposition 2.8 The first result is easy, and we omit its proof. We decompose the proof in two steps.

Step 1. We first prove that E L [h D ] < ∞. Without loss of generality, we may assume that D = O r .

Further, since

h Or ≤ h 1 r := inf{t ≥ 0 : |B 1 t | ≥ r},
without loss of generality, we may assume that the dimension d = 1.

We first consider the following Dirichlet problem of ODE:

-L|∂ x u| - 1 L ∂ 2 xx u -1 = 0, u(r) = u(-r) = 0. (8.1)
It is easy to verify that Equation (8.1) has a classical solution:

u(x) = 1 L 3 e L 2 r -e L 2 x - 1 L (R -x) for 0 ≤ x ≤ r, and u(x) = u(-x) for -r ≤ x ≤ 0.
Further, it is clear that u is concave, so u is also a classical solution to the equation:

-L|∂ x u| - Taking the nonlinear expectation on both sides and recalling the definition of Q α,β in (2.3), we have Step 2. Note that

0 = u 0 + E Q α,
C L [h D ≥ T ] ≤ E L [h D ]
T . Let K be a smooth nonnegative kernel with unit total mass. For all η > 0, we define the mollification w η := w * K η of w. Then w η is smooth, and it follows from a convexity argument as in [START_REF] Krylov | On the rate of convergence of fnite-dierence approximations for Bellmans equations with variable coecients[END_REF] that w η We claim that wη + v 2 is a supersolution to the PDE with generator g 1 ,

By the result of

where wη := w η + w η -(δh) + L ∞ . Then we note that wη +v 2 ≥ w η +h 2 + w η -(δh) + L ∞ ≥ h 1 = v 1 on ∂D. By comparison principle in PDEs, we have wη + v 2 ≥ v 1 on cl(D). Setting η → 0, we obtain that v 1 -v 2 ≤ w. The desired result follows.

It remains to prove that w + v 2 is a supersolution of the PDE with generator g 1 . Let x 0 ∈ D, φ ∈ C 2 (D) be such that 0 = (φ -wη -v 2 )(x 0 ) = max φ -wη -v 2 . Then, it follows from the viscosity supersolution property of v 2 that L 2 (φ -wη )(x 0 ) ≥ 0. Hence, at the point x 0 , by (8. Proof By the tower property, we have

E L |h ω 1 Q -h ω 2 Q | ≤ E L |h ω 1 Q -h ω 2 Q |1 {h ω 1 Q ≤h ω 2 Q } + E L |h ω 1 Q -h ω 2 Q |1 {h ω 1 Q >h ω 2 Q } ≤ E L E L h ω 2 ⊗B h ω 1 Q ∧• Q 1 {h ω 1 Q ≤h ω 2 Q } + E L E L h ω 1 ⊗B h ω 2 Q ∧• Q 1 {h ω 1 Q >h ω 2 Q } .
So, it suffices to show that there exists a modulus of continuity ρ such that

E L h ω 2 ⊗ω h ω 1 Q ∧• Q ≤ ρ d e (ω 1 , ω 2 ) , for all ω such that h ω 1 Q (ω ) ≤ h ω 2 Q (ω ).
Further, without loss of generality, we may assume that the dimension d = 1 and Q = (a, a + h).

Denote x i := ω i t(ω i ) and y i := x i + ω 

ω 2 ⊗ω h ω 1 Q ∧• Q = h Q y 2 .
In particular, d(y 2 , ∂Q) = |x 1 -x 2 |. We next consider the Dirichlet problem of ODE:

-L|∂ x u| - Then, as in the proof of Proposition 2.8 in Section 8, we can prove that Equation (8.6) has a classical solution and

E L [h Q y 2 ] = u h 2 -|x 1 -x 2 | ≤ ρ |x 1 -x 2 | ,
where ρ is the modulus of continuity of u. The proof is complete.

∂

  t u t (ω) := lim h→0 u t+h (ω t∧• ) -u t (ω) h and ∂ ω u t (ω) := lim h→0 u t (ω) -u t (ω • + h1 [t,∞) )

  D x := D -x := {y : x + y ∈ D} for x ∈ D, and D ω := D ωt (ω) for ω ∈ D; • h D := inf{t ≥ 0 : ω t / ∈ D} and H := {h D : D ∈ R}; • ∂D := {ω ∈ Ω e : t(ω) = H D (ω)} defines the boundary of D, and cl(D) := D ∪ ∂D defines the closure of D.

Theorem 3 . 3 (

 33 Consistency with classical solution) Let Assumption 3.1 hold. Given a function u ∈ C 2 (Q), then u is a viscosity supersolution (resp. subsolution, solution) to PPDE (3.1) if and only if u is a classical supersolution (resp. subsolution, solution). Theorem 3.4 (Stability) Let L > 0, G satisfies Assumption 3.1, and u ∈ BUC. Assume (i) for any ε > 0, there exist G ε and u ε ∈ BUC such that G ε satisfies Assumption 3.1 and u ε is a L-viscosity subsolution (resp. supersolution) of PPDE (3.1) with generator G ε ;

Proposition 3 . 5

 35 Let u ∈ BUC(Q). Then, u is an L-viscosity subsolution (resp. supersolution) of PPDE (3.1), if and only if for any ω

Remark 4 . 2

 42 If Equation (E) ω t has the classical solution, then Assumption 4.1 holds. For example, let function G(ω, •) : S d → R be convex, and assume that the elliptic PDE: -G(ω, D 2 v) = 0 on O, v = h on ∂O has a unique viscosity solution. Then, according to Caffareli and Cabre [3], the viscosity solution has the interior C 2 -regularity.

Theorem 4 . 3 (

 43 Comparison result) Let Assumptions 3.1 and 4.1 hold true, and let ξ ∈ BUC(∂Q).

Theorem 4 . 4 (

 44 Wellposedness) Let Assumptions 3.1 and 4.1 hold, and let ξ ∈ BUC(∂Q). Then, the path-dependent PDE (3.1) has a unique viscosity solution in BUC(Q).

Proposition 5 . 5

 55 Let ξ ∈ BUC(∂Q). Under Assumptions 3.1 and 4.1, we have u = u.

Lemma 5 . 6

 56 x) := inf b∈H 0 ([0,L0]) E L0 h D (B h x D )e -Let h D (x) := E L0 v(x, B h x D ∧• ) for some v ∈ BUC(R d × Ω e ).Then w and w are the unique viscosity solutions in BUC(cl(D)) of the equations Lu = 0 and Lu = 0, respectively, with boundary condition u = h D on ∂D.

ωN

  ,n (π n ; •) as the viscosity solution of the following PDE:-g(θ, Dθ, D 2 θ) = 0 on O ε (ω ⊗π n ), θ(x) = θω N,n+1 (π x n ; 0) on ∂O ε (ω ⊗π n ), for all n ≤ N -1, (5.7) and we know θ ω N,n (π n ; x) = sup b∈H 0 ([0,L0])

-

  the path-frozen PDE (E) πm . By the comparison result for viscosity solutions of PDEs, we obtain thatθ ω,m m (π m ; •) ≥ θ ω,m+1 m (π m ; •) ≥ θ ω,m+1 m (π m ; •) ≥ θ ω,m m (π m ; •) on O ε (ω ⊗π m ),Using the comparison argument again, we obtainθ ω,m n (π n ; •) ≥ θ ω,m+1 n (π n ; •) ≥ θ ω,m+1 n (π n ; •) ≥ θ ω,m n (π n ; •) on O ε (ω ⊗π n ) forall n ≤ m. θ ω,m n . Applying Lemma 5.8 repeatedly and using the tower property of E L0 stated in Lemma 2.6, we obtain that |δθ ω,m n (π n ; x)| ≤ E L0 δθ ω,m m π m-n n (x, B); 0 . Note that δθ ω,m m (π m-n n (x, B); 0) = 0 as π m-n n (x, B) ∈ ∂Q ω . Then, by Proposition 2.8, we have

. 1 )Assumption 7 . 1 Proposition 7 . 2 2 β 2 Lemma 7 . 3

 171722273 We are interested in characterizing u as the viscosity solution of the corresponding fully nonlinear elliptic PPDE. Assume that ξ ∈ BUC(Ω e ), σ > 0, and the discount rate r > 0. Under Assumption 7.1, the function u defined in (7.1) is BUC and is a viscosity solution to the elliptic path-dependent HJB equation:ru -L|∂ ω u| -sup β∈[σ,σ] 1 ∂ 2 ωω u = 0 on Q, and u = ξ on ∂QIn preparation to the proof of the proposition, we first show two lemmas. The function u defined in (7.1) is BUC.

1 2 sup 2 L ≤β≤2L β∂ 2 2 h 0 ∂ 2

 22202 xx u -1 = 0, u(r) = u(-r) = 0. (8.2)Then by Itô's formula, we obtain0 = u(B h Or ) = u 0 + h Or 0 ∂ x u(B t )dB t + 1 Or xx u(B t )d B t .

Step 1 ,c 0 σ 2 :

 102 we have C L [h D ≥ T ] ≤ C T , and then lim T →∞ C L [h D ≥ T ] = 0. Further,C L [h n < h D ] ≤ C L [h n < h D ; h D ≤ T ] + C L [h n < h D ; h D > T ] ≤ C L [h n < T ] + C L [h D > T ] . We conclude that lim n→∞ C L [h n < h D ] = 0 Denote D x := {y : ∃z ∈ D, y = z -x}. Then, define D := ∪ x∈D D x . Note that h x D ≤ h D for all x ∈ D.Hence we have supx∈D C L [h x D ≥ T ] ≤ C L h D ≥ T → 0.Proof of Lemma 5.8 Denote δh := h 1 -h 2 . By standard argument, one can easily verify that function w(x) dt is a viscosity solution of the nonlinear PDE:-c 0 -L 0 |Dw| -D 2 w = 0 on D, and w = (δh) + on ∂D.

is a classic supersolution of -c 0 -σ 2 :

 02 L 0 |Dw η | -D 2 w η ≥ 0 on D, and w η = (δh) + * K η on ∂D.(8.4) 

σ 2 :Proposition 8 . 1

 281 4) wehaveL 1 φ ≥ L 1 φ -L 2 (φ -wη ) = -g 1 (φ, Dφ, D 2 φ) + g 2 (φ -wη , D(φ -wη ), D 2 (φ -wη )) ≥ -g 1 (φ, Dφ, D 2 φ) + g 2 (φ, D(φ -wη ), D 2 (φ -wη )) ≥ c 0 + L 0 |Dw η | + D 2 w η -c 0 -α • Dw η -1 2 γ : D 2 w η ≥ 0,where |α| ≤ L 0 and 2 L0 I d ≤ γ ≤ 2L 0 I d . For all n ≥ 1, there exists a modulus of continuity ρ such thatE L |h ω 1 Qh ω 2 Q | ≤ ρ d e (ω1 , ω 2 ) . (8.5)

h ω 1 Q

 1 for i = 1, 2. Note that |y 1 -y 2 | = |x 1 -x 2 |, y 1 ∈ ∂Q, y 2 ∈ Q,and h

  In the Markovian case mentioned in Example 2.2, if the function ū : R d → R satisfies ū ∈ C 2 (D), then by the Itô's formula it follows that u ∈ C 2 (D).

	where α P t := dAt dt , β P t := d M t dt ,	Q α,β -a.s.	(2.3)
	Further, denote P ∞ := ∪ L>0 P L .		
	Definition 2.3 (Smooth time-invariant processes) Let D ∈ R. We say that u ∈ C 2 (D), if
	u ∈ C(D) and there exist Z ∈ C D; R d , Γ ∈ C D; S d such that		
	du t = Z t • dB t + Γ By a direct localization argument, we see that the above Z and Γ, if they exist, are unique. Denote 1 2
	∂ ω u := Z and ∂ 2 ωω u := Γ.		
	Remark 2.4 Remark 2.5 In the path-dependent case, Dupire [8] defined derivatives, ∂ t u and ∂ ω u, for process

t : B t for t ≤ h D , P-a.s. for all P ∈ P ∞ .

  Clearly, still P n,ε

				1	∈ P UVM . Note that (7.2)
	implies that ũt n 1 ≤ E P n,ε 1	ũt n 2 F t n 1	+ 2ρ(ε), P n 1 -a.s. Again, since P UVM is weakly compact and u
	is BUC, there exists P n 1 ∈ P UVM such that ũt n 1 ≤ E P n 1 [ũ t n 2 |F t n 1 ], P n 1 -a.s.. On the other hand, by
	Theorem 2.3 in [19], it holds that ũt n 1 ≥ E P n 1 [ũ t n 2 |F t n 1 ], P n 1 -a.s. It follows that
			ũt n 1	= E P n 1 [ũ t n 2 |F t n 1 ], P n 1 -a.s.
	Note that by the definition of P n,ε 1 , we know that P n 1 = P n 0 on F t n 1 . So, it also holds that ũ0 =
	E P n 0 [ũ t n 1 ]. Repeating the construction, we may find a sequence of probability measures P n 0 , • • • , P n n2 n .
	Denote P n := P n n2 n . It holds that for all m ≤ n
	ũt m i	= E P n	ũt m j	F t m

i

, P n -a.s. for i ≤ j ≤ m2 m .

  β Or ]. On the other hand, taking α * := Lsgn ∂ x u(B t ) and β * := 2 L , we obtain from (8.2) and (8.3) thatu 0 = E Q α * ,β * [h Or ].

	0	h Or	α t ∂ x u(B t ) +	1 2	β 2 t ∂ 2 xx u(B t ) dt for all	α ≤ L,	2 L	≤ β • ≤ 2L	(8.3)
	Since u is a solution of Equation (8.2), we have	
	E Q α,β	0	h Or	α t ∂ x u(B t ) +	1 2	β 2 t ∂ 2 xx u(B	

t ) dt ≤ -E Q α,β [h Or ] Hence u 0 ≥ E L [h So, we have proved that u 0 = E L [h Or ]. Consequently, E L [h Or ] < ∞.

Path-dependent time-invariant stochastic controlIn this section, we present an application of fully nonlinear elliptic PPDE. An important question which is most relevant since the recent financial crisis is the risk of model mis-specification. The

Proof Assume that |ξ| ≤ C 0 . Define:

Note that ψ ∈ C2 . Observe that ψ T ≥ C 0 ≥ ξ. Also,

The rest of the subsection is devoted to prove the uniform continuity of u. Proposition 6.2 The function u defined in (6.1) is uniformly continuous in Q.

Proof Recall (5.15), i.e. for ω 1 , ω 2 ∈ Q, it holds that

Hence, it follows from Lemma 5.7 that

By exchanging the roles of ω 1 and ω 2 , we obtain that u is uniformly continuous.

Viscosity property

After having shown that u is uniformly continuous, we need to verify that it indeed satisfies the viscosity property. The following proof is similar to that of Proposition 4.3 in [START_REF] Ekren | Viscosity soltuions of fully nonlinear parabolic path dependent PDEs: Part II[END_REF].

Proposition 6.3 u is the viscosity solution to PPDE (3.1).

Proof

Without loss of generality, we prove only that u is a L 0 -viscosity supersolution at 0.

Assume the contrary, i.e. there exists ϕ ∈ A L0 u(0) such that -c := Lϕ(0) < 0. For any ψ ∈ D ξ Q (0) and ω ∈ Q it is clear that ψ ω ∈ D ξ Q (ω) and ψ(ω) ≥ u(ω). Now by the definition of u, there exists