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VISCOSITY SOLUTIONS OF FULLY NONLINEAR ELLIPTIC

PATH DEPENDENT PDES

ZHENJIE REN

Abstract. This paper introduces a convenient solution space for the uni-
formly elliptic fully nonlinear path dependent PDEs. It provides a wellposed-
ness result under standard Lipschitz-type assumptions on the nonlinearity and
an additional assumption formulated on some partial differential equation de-
fined locally by freezing the path.

Part 1. Introduction

Consider a Dirichlet problem for a fully nonlinear elliptic path-dependent partial
differential equation (PPDE) defined on a set of continuous paths Q ⊂ Ω = {ω ∈
C([0, T ];Rd) : ω0 = 0}:

−Lu(ω) := −G
(

·, u, ∂ωu, ∂2ωωu
)

(ω) = 0, t < T, ω ∈ Q,(0.1)

u(ω) = ξ(ω), ω ∈ ∂Q.
for some progressively measurable nonlinearity G: Ω × R × R

d × S
d, where S

d is
the set of symmetric matrices of size d with real entries. Ekren, Touzi and Zhang
[1, 2, 3] have considered parabolic PPDE with a terminal condition. However, in the
elliptic equation, the time variable is absent. Instead of working with the terminal
condition, we need to work with the boundary condition.

When the nonlinearity G is semilinear, i.e. linear with respect to the ∂2ωωu-
component, the theory of backward stochastic differential equations with random
terminal, studied by Darling and Pardoux [5], Briand and Hu [6], provides a well-
posedness result for the Dirichlet problem. They also related the solution to the
corresponding elliptic PDE in the Markovian case.

The first contribution of this paper is to find a convenient solution space. A
series of observations lead to the space Ωe := {ω ∈ Ω : for some t ≥ 0, ω = ωt∧·}
instead of the whole space Ω. Also, we define a distance de(·, ·) on Ωe such that
the corresponding regularity of the nonlinearity G and of the boundary condition
ξ ensures that the solution is independent of time (elliptic). Then, we define the
derivatives by the functional Itô formula. Finally, inspired by [3], we define the
viscosity solution, by using the nonlinear expectation.

The paper contains the main wellposedness theory for the above PPDE. We
mainly follow the framework of [3]. The extra technical difficulty comes from the
boundary. The irregularity of the hitting time of the boundary makes some esti-
mates more complex. To show the wellposedness, we start from the partial com-
parison result which states, under fairly general condition on the nonlinearity G
and the boundary condition ξ, that for any bounded viscosity subsolution u1 and

Key words and phrases. Path dependent PDEs, Dirichlet problem, viscosity solutions, nonlin-
ear expectation, comparison principle.
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supersolution u2 with u1 ≤ u2 on ∂O, we have u1 ≤ u2 in O, provided that one of
them is smooth. Then, we follow the spirit of the Perron’s approach to construct a
viscosity solution and prove that the comparison result of bounded viscosity sub-
solutions and supersolutions holds true without the requirement that one of them
is smooth. In this Perron’s approach, the constructed viscosity solution is obtained
from the solutions to the path-frozen PDEs.

The rest of the paper is organized as follows. Part 2 introduces the solution
space, defines the derivatives and recalls the nonlinear expectations. Part 3 gives
the definition of the viscosity solutions to the elliptic PPDE, lists the basic as-
sumptions of wellposedness, and introduces some tools which will be crucial in the
following discussions. Part 4 explains the comparison principle so as to achieve the
uniqueness. Part 5 verifies that the function constructed before is indeed a viscosity
solution so that we get the existence. Part 6 gives some more technical proofs.

Part 2. Preliminaries

1. The canonical space

Let Ω :=
{

ω ∈ C(R+,Rd) : ω0 = 0
}

be the set of continuous paths starting from
the origin, B be the canonical process, F be the filtration generated by B, and P0

be the Wiener measure. Also, denote by S
d the set of d× d matrices and

x · y =

d
∑

i=1

xiyi for all x, y ∈ R
d, γ : η = trace[γη] for all γ, η ∈ S

d.

Let Ωb be the subset of Ω containing all the bounded paths. We define the supreme
norm on Ωb:

‖ω‖ := sup
s≥0

|ωs| for all ω ∈ Ωb.

For any ω ∈ Ω and s, t ∈ R
+, we denote

‖ω‖t := sup
s≤t

|ωs|, ‖ω‖ts := sup
s≤u≤t

|ωu|.

Let ω, ω
′ ∈ Ω. The concatenation is defined as

(ω ⊗t ω
′

)(s) := ωs1[0,t)(s) + (ωt + ω
′

s−t)1[t,∞)(s).

Also, given ϕ : Ω → R, we define

(1.1) ϕt,ω(ω
′

) := ϕ(ω ⊗t ω
′

).

As in the work of ETZ [1], the theory of viscosity solutions to PPDEs is closely
related to the BSDEs. In the viewpoint of BSDE, the canonical space is a convenient
background for the probability set up. In the parabolic case the solution to a PPDE
can be well defined on the same space. However, when talking about the elliptic
equations, we need a slightly different solution space for the PPDEs.

2. Solution space for elliptic PPDEs

We define a subset of Ω (also in Ωb):

Ωe := {ω ∈ Ω : ω = ωt∧· for some t ≥ 0} ,
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a subset of paths with flat tails. We consider Ωe as the solution space for the elliptic
PPDEs. We denote

t̄(ω) := inf {t : ω = ωt∧·} for all ω ∈ Ωe.

In this paper we treat the Dirichlet problem.

Definition 2.1. We denote by R the set of all open, bounded and convex subsets
of Rd.

Let Q ∈ R. We define a subset of Ωe in which the paths take value in Q:

Q :=
{

ω ∈ Ωe : ωt ∈ Q for all t ∈ R
+
}

.

Q is the domain of our Dirichlet problem. Also we define the boundary and the
closure of Q in the following sense:

∂Q := {ω ∈ Ωe : t̄(ω) = HQ(ω)} , cl(Q) := Q∪ ∂Q,

where HQ(ω) := inf{t : ωt /∈ Q}, the hitting time to the boundary of Q. Later,
we will use other subsets of R. In that case, if , for instance, D ∈ R, then the
corresponding subset D, ∂D, cl(D) in Ωe and HD are defined in a similar manner.

Define the concatenation in Ωe:

(ω⊗̄ω′

)(s) := (ω ⊗t̄(ω) ω
′

)(s) for all ω ∈ Ωe, ω
′ ∈ Ω.

Similar to (1.1), we define:

ϕω(ω
′

) := ϕt̄(ω),ω(ω
′

) for all ω ∈ Ωe.

In particular, for the functions on R
d:

ϕx(y) := ϕ(x+ y) for all x, y ∈ R
d.

We denote by T the set of all F-stopping times, and by H ⊂ T the subset of the
hitting times HD, where D ∈ R. Moreover, fixing ω ∈ Ωe, we set Hω the subset of
the stopping times Hω

D with the form:

Hω
D(ω

′

) := inf
{

t ≥ 0 : ωt̄ + ω
′

t /∈ D
}

,

that is, the hitting times for the paths starting from ωt̄. For a function ϕ on Ω, we
may denote

(ϕHD
)ω := ϕω

Hω
D

for all ω ∈ D.

We also use the hitting times for the paths starting from a point x ∈ R
d denoted

by

Hx
D(ω) := inf {t : x+ ωt /∈ D} .

Correspondingly, given a function ϕ on R
d, we may denote

(ϕHD
)x := ϕx

Hx
D
.

To give a further explanation of why we choose Ωe to be our solution space, we
explore the relation between the PPDEs and the BSDEs.
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2.1. Heuristic idea of choosing the space. This section provides a heuristic
idea of choosing the space Ωe. The reasoning is not strict, and some notations are
not defined precisely. The readers can find the rigorous proofs in the subsequent
sections. Here, we prefer to make the motivation clear.

Darling and Pardoux [5] presented the relation between semilinear PDEs and
Markovian BSDEs. In the markovian case, they showed that the solutions to the
BSDEs are the viscosity solutions (in the classic sense) to the corresponding PDEs.
In our path dependent context, we are going to generalize their approach.

Let a semilinear elliptic PPDE be of the form

(2.1) −1

2
∂2ωωu− F (ω, u, ∂ωu) = 0 on Q, u = ξ on ∂Q.

Adapting the idea of Darling and Pardoux, we are interested in connecting PPDE
(2.1) to the following BSDE with a random terminal:

(2.2) Yt = ξ(BHQ∧·) +

ˆ HQ

t∧HQ

F (Bs∧·, Ys, Zs)ds−
ˆ HQ

t∧HQ

ZsdBs,P0-a.s.,

where P0 is Wiener measure. First, it is proved by Darling and Pardoux [5] or
Briand and Hu [6] that the BSDE has a unique solution under some general con-
ditions. We want to show that the solution to BSDE (2.2) is indeed a viscosity
solution to PPDE (2.1), i.e. u(t, ω) = Yt(ω). For this purpose, we set the follow-
ing group of BSDEs with a random terminal. For all (t, ω) ∈ R

+ × Ω such that
ωt∧· ∈ Q, we set

Y t,ω
u = ξt,ω(BHt,ω

Q ∧·) +

ˆ Ht,ω

Q

u∧Ht,ω

Q

F t,ω(Bs∧·, Y
t,ω
s , Zt,ω

s )ds(2.3)

−
ˆ Ht,ω

Q

u∧Ht,ω

Q

Zt,ω
s dBs, P0-a.s.

By the uniqueness of solution to a BSDE, we may show that

(2.4) Y t,ω
0 = Yt(ω), P0-a.s.

Therefore, we are interested in verifying that

(2.5) u(t, ω) := Y t,ω
0

is a viscosity solution to PPDE (2.1).
Since we are treating the elliptic equations, the first requirement is that the

solutions should be independent of time, i.e. ∂tu = 0, where ∂t is the Dupire’s
time derivative. Clearly, this cannot be satisfied unless ξ and F have a particular
structure. Assuming this requirement is satisfied, we may abuse the notation:

u(t, ω) = u(ωt∧·),

since we have (2.4) and Y is adapted as the solution to the BSDE (2.2). Recall
that (t, ω) is a pair in R

+ ×Ω such that ωt∧· ∈ Q ⊂ Ωe. Hence, we can indeed well
define a function on Ωe:

(2.6) u(ω) = Y ω
0 := Y

t̄(ω),ω
0 ,

which justifies the choice of Ωe as the solution space.
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2.2. Distance on Ωe. The example of the semilinear elliptic PPDE also helps
to define a convenient distance on the space Ωe. We want to equip Ωe with a
topology in which the regularity of the generator F and of the boundary condition
ξ guarantees that the solution u is independent of time.

As we have mentioned, u defined in (2.5) needs to have the null t-derivative.
Indeed, we have the following observation.

Proposition 2.2. Let u be defined as in (2.5). Suppose that for any y and z,
F (·, y, z) and ξ satisfy the following property (P) : for ϕ : Ωe → R,

(P) for all ω ∈ Ω and ω
′ ∈ Ωe: ϕ(ω ⊗s ω

′

) = ϕ(ω ⊗s 0⊗s+h ω
′

), ∀s, h ≥ 0 .
Then ∂tu(s, ω) = 0, for ωs∧· ∈ Q.

Proof. For any h > 0, we know that u(s + h, ωs∧·) = Y s+h,ωs∧·

0 . The Dupire’s
t-derivative is defined as

∂tu(s, ω) = lim
h→0

u(s+ h, ωs∧·)− u(s, ω)

h
.

Since ξ satisfies the property (P), we have

ξs,ω(BHs,ω

Q
∧·) = ξ

(

(ω ⊗s B)HQ∧·
)

= ξ
(

(ω ⊗s 0⊗s+h B)HQ∧·
)

= ξs+h,ωs∧·(BHs+h,ωs∧·
Q ∧·).

In the same way, we may show that F s,ω(B·, y, z) = F s+h,ωs∧·(B·, y, z). Finally, by
the uniqueness of solution to a BSDE, we conclude that

u(s+ h, ωs∧·) = u(s, ω).

Hence ∂tu(s, ω) = 0. �

The following example shows that if F or ξ does not satisfy property (P), it is
possible that ∂tu 6= 0. So the solution could no longer be elliptic.

Example 2.3. Set the parameters of the BSDE (2.2) as:

F = 0, ξ(ω) =

ˆ t̄(ω)

0

ω(s)ds, H(ω) = inf {t : |ω(t)| > 1} .

Note that ξ does not satisfy the (P) property. We are going to calculate the t-
derivative of u. We have

u(t, ω) = Y t,ω(0) = E [ξ ((ω ⊕t B)H∧·)] .

We divide the discussion into two cases.
(1) If ‖ωt∧·‖ > 1, i.e. H(ω) ≤ t, then

E [ξ ((ω ⊕t B)H∧·)] =

ˆ H(ω)

0

ωsds.

In this case, the t-derivative is equal to 0.
(2) Otherwise, we have

E [ξ ((ω ⊕t B)H∧·)] =

ˆ t

0

ωsds+ E

[

ˆ Ht,ω

0

(ωt +Bs)ds

]

,

The t-derivative is ωt, which is not necessarily 0.

Finally, we conclude that ξ in the form ξ(ω) =
´ t̄(ω)

0 ω(s)ds leads to a solution
which is not elliptic.
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Now a natural question is how we can introduce a topology in which the contin-
uous functions automatically satisfy property (P). For this purpose, we introduce
the following distance ignoring the time.

Definition 2.4. On the space Ωe, we define the following pseudometric. For any
ω, ω̃ ∈ Ωe,

de(ω, ω̃) := inf
l∈I

sup
t∈[0,+∞)

|ωl(t) − ω̃t|,

where I is the set of all increasing bijections from [0,+∞) to [0,+∞). Moreover,
we denote by C(Ωe) the set of continuous functionals on Ωe with respect to de(·, ·).
We also use the notations C

(

Ωe;Rd
)

, C
(

Ωe; Sd
)

when we need to emphasize the
space where the functionals takes values.

Note that in the definition of de(·, ·), we make use of the time scaling to remove
the importance of the time.

Proposition 2.5. The following statements are correct.
(i) For all ω ∈ Ωe, de(ω,0) = ‖ω‖.
(ii) For t < t

′

we have

de(ω ⊕t ω
′

, ω ⊕t 0⊕t′ ω
′

) = 0, ∀ω ∈ Ω, ω
′ ∈ Ωe.

In particular, given ϕ ∈ Cb(Ω
e), we have ϕ

(

ω ⊕t ω
′
)

= ϕ
(

ω ⊕t 0⊕t′ ω
′
)

, i.e. ϕ

satisfies property (P).
(iii) Let {xi}i=1,··· ,n be a sequence in R

d, and {ti}i=1,··· ,n and {t̃i}i=1,··· ,n be two
different time sequences. Denote by ω the linear interpolation of {(ti, xi)}i=1,··· ,n
and by ω̃ that of {(t̃i, xi)}i=1,··· ,n. To make both ω and ω̃ be in the space Ωe, add
flat tails to them. By the definition of de(·, ·), we can easily verify that de(ω, ω̃) = 0,
while ‖ω − ω̃‖, the supremum norm, can be arbitrarily large.

The proof is easy and omitted. Indeed, in order for property (P) to be satisfied,
we need, in a certain sense, to consider distance de(·, ·).
Proposition 2.6. Let ϕ be defined on Q. The following two statements are equiv-
alent:

(1) ϕ is continuous w.r.t. the distance de(·, ·), PL-q.s.;
(2) ϕ satisfies the property (P) and is continuous w.r.t. the supremum norm ‖·‖

PL-q.s..

The family of probabilities PL will be introduced later in Section 3. Since the
proof is neither trivial nor needed for our main results, we will present it in Appen-
dix.

2.3. Derivatives. To give a precise as well as a brief definition of the derivative of
a function defined on Ωe, we turn to ETZ [2, 3], where they introduced a class of
C1,2 processes by using the functional Itô’s formula.

Definition 2.7. (1) Denote by H
0 (E) the set of all F-progressively measurable

processes with values in E. In particular, denote by H
0
(

B̄d
L(0)

)

(where B̄d
L(0) :=

{

x ∈ R
d : |x| ≤ L

}

) the set of all d-dimensional F-progressively measurable pro-
cesses which are bounded by L.

(2) Similarly, H0 ([aId, bId]) is the set of all Sd-valued F-progressively measurable
processes which satisfy:

aId ≤ βt ≤ bId for all t ∈ R
+.
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We define a family of probability:

PL
0 :=

{

P : Bt =

ˆ t

0

αsds+

ˆ t

0

βsdW
P

s , P-a.s., for some(2.7)

(α, β) ∈ H
0
(

B̄d
L(0)×

[

0,
√
2LId

])

, P-Browinan motion W P

}

Furthermore, define

P∞
0 := ∪L>0PL

0 .

Definition 2.8 (The class C2(Ωe)). We say that u ∈ C2(Ωe), if u ∈ C(Ωe) and
there exist ∂ωu ∈ C

(

Ωe;Rd
)

, ∂2ωωu ∈ C
(

Ωe; Sd
)

such that, for any ω ∈ Ω and any
P ∈ P∞

0 , {u(ωt∧·)}t≥0 is a local P-semimartingale with decomposition:

(2.8) du(ωt∧·) = ∂ωu(ωt∧·) · dBt +
1

2
∂2ωωu(ωt∧·) : d 〈B〉t , P-a.s.

By a direct localization argument, we see that the above ∂ωu and ∂2ωωu, if they
exist, are unique. Consequently, we call them the first order and the second order
derivatives of u, respectively.

Since we are discussing the Dirichlet problem, our solutions are defined only on
the domain Q.

Definition 2.9. For D ∈ R we say that u ∈ C2(D), if u ∈ C(cl(D)) and there exist
∂ωu ∈ C

(

D;Rd
)

, ∂2ωωu ∈ C
(

D; Sd
)

such that, for any ω ∈ Ω and any P ∈ P∞
0 ,

{u(ωt∧·)}t≥0 is a local P-semimartingale and the following property holds: ∀t ≤ HD,

(2.9) u(ωt∧·)− u(0) =

ˆ t

0

∂ωu(ωs∧·) · dBs +

ˆ t

0

1

2
∂2ωωu(ωs∧·) : d 〈B〉s , P-a.s.

2.4. Class of solution. To ensure the wellposedness of the viscosity solutions to
the PPDEs, we need to set a requirement on the regularity of the solutions.

Definition 2.10. We denote by BUC(Q) the collection of functions u : cl(Q) → R

such that u is bounded and uniformly continuous, i.e. there exists a modulus of
continuity ρ such that

∣

∣

∣
u(ω)− u(ω

′

)
∣

∣

∣
≤ ρ(de(ω, ω

′

)) for all ω, ω
′ ∈ cl(Q).

Since we are going to handle several uniform continuous functions (the genera-
tors, the boundary conditions, the solutions, etc.), many different moduli of conti-
nuity will be concerned. However, the moduli themselves are not essential in our
discussion. Therefore, for simplification, we allow ourselves to abuse the notation
of ρ, which can be different from line to line. In addition, without loss of generality,
we assume that ρ is concave.

3. Capacity and nonlinear expectation

As in the framework of [3], the capacity and the nonlinear expectation play an
important role in the definition of viscosity solutions to parabolic PPDEs. In the
elliptic case, they will still be crucial.
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Let P be a family of probabilities on Ω. The capacities and the nonlinear expec-
tations in our discussion are always in the form:

(3.1) C [·] := sup
P∈P

P [·] , E [·] := sup
P∈P

E
P [·] , E [·] := inf

P∈P
E
P [·]

3.1. Notations of capacity and nonlinear expectation. Define a family of
probability measures

PL :=

{

P ∈ PL
0 : d 〈B〉t ≥

√

2

L
Iddt

}

.

Lemma 3.1. PL is weakly compact.

As in (3.1), we define CL, EL
and EL. Further, the conditional nonlinear expec-

tation in this paper is denoted as:

(3.2) EL

t [X ] (ω) := sup
P∈PL

E
P
[

Xt,ω
]

.

3.2. Properties of the capacity and of the nonlinear expectation. Accord-
ing to Nutz and Van Handel [7], the conditional nonlinear expectation defined in
(3.2) satisfies the tower property:

(3.3) EL

σ [·] = EL

σ

[

EL

τ [·]
]

for stopping times σ ≤ τ.

Let HD ∈ H. For X ∈ L
0(Λ) and (t, ω) such that ωt∧· ∈ D, denote

SL

t [XHD∧·] (ω) := sup
τ∈T t

EL

t [Xτ∧HD
] (ω),

SL
t [XHD∧·] (ω) := inf

τ∈T t
EL
t [Xτ∧HD

] (ω).

We recall from ETZ [4] that the following characterization of the optimal stopping
problems holds.

Theorem 3.2 (Snell envelope characterization). Let HD ∈ H and X ∈ BUC(D).
Define the Snell envelope and the corresponding first hitting time of the obstacles:

Y := SL
[XHD∧·] , τ

∗ := inf {t ≥ 0 : Yt = Xt} .

Then Yτ∗ = Xτ∗. Y is an EL
-supermartingale on [0, HD] and an EL

-martingale on
[0, τ∗]. Consequently, τ∗ is an optimal stopping time.

Apart from the tower property and the optimal stopping theorem, the capacity
has some other properties which will be useful in our future arguments.

Fix any D ∈ R. Let O ⊂ D be also in R. Then define a sequence of stopping
times Hn:

(3.4) H0 = 0, Hi+1 := inf {s ≥ Hi : Bs −BHi
/∈ O} , i ≥ 0.

Proposition 3.3. (1) For any T ∈ R
+, limn→∞ CL [Hn < T ] = 0, i = 0, 1.

(2) We have EL
[HD] <∞.

(3) limn→∞ CL [Hn < HD] = 0.
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Proof. (1) and (2) are easy to show, so we omit the proof here. We prove (3) as
follow.

First, we have

CL [HD ≥ T ] ≤ EL
[HD]

T
.

By (1), we have CL [HD ≥ T ] ≤ C
T . It follows

lim
T→∞

CL [HD ≥ T ] = 0.

Furthermore,

CL [Hn < HD] ≤ CL [Hn < HD;HD ≤ T ] + CL [Hn < HD;HD > T ]

≤ CL [Hn < T ] + CL [HD > T ] .

Finally, by (2), the result follows. �

Corollary 3.4. We have

(3.5) lim
n→∞

sup
x∈D

CL [Hn < Hx
D] = 0.

Proof. For any D ⊂ R
d, we put Dx := {y : ∃z ∈ D, y = z − x}. Take a bigger set

in R: D̂ := ∪x∈DD
x. Then observe that

Hx
D ≤ HD̂ for all x ∈ D.

Hence we have

sup
x∈D

CL [Hx
D ≥ T ] ≤ CL

[

HD̂ ≥ T
]

→ 0.

�

4. Extension of C2(Q)

It is important for us to propose the following extension of C2(Q), which is the
class of the piecewise smooth functions.

Definition 4.1. Let u : Q → R. We say that u ∈ C
2
(Q), if u is bounded, u(ωt∧·)

is continuous in t, and there exists an increasing sequence of F-stopping times
{Hn;n ≥ 1}, such that

(1) for each i and ω, HHi,ω
i+1 ∈ HωHi∧· whenever Hi(ω) < HQ(ω) < ∞; for any

L > 0 the set {i : Hi(ω) < HQ(ω)} is finite PL-q.s. and limi→∞ CL
0

[

Hω
i < Hω

Q

]

= 0
for any ω ∈ Q;

(2) for each i there exist ∂ωu
i, ∂2ωωu

i such that for all ω,
(

∂ωu
i
)ωHi∧·

and
(

∂2ωωu
i
)ωHi∧·

are both continuous on Oω
i :=

{

ω
′

t∧· ∈ Ωe : t ≤ HHi,ω
i+1

}

and such that

for all t ∈ [Hi, Hi+1)

u(ωt∧·)− u(ωHi∧·) =

ˆ t

Hi

∂ωu
i(ωs∧·) · dBs +

ˆ t

Hi

1

2
∂2ωωu

i(ωs∧·) : d 〈B〉s , P∞
0 -q.s.

Since HHi,ω
i+1 ∈ HωHi∧· , there are sets in R corresponding to the hitting times.

We will call them Oω
i .
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Part 3. Fully nonlinear elliptic path dependent PDEs

5. Definition of viscosity solutions to uniformly elliptic PPDEs

In the previous discussion, we have mentioned the form of the semilinear elliptic
PPDEs (2.1). However, at that moment the discussion was only heuristic. In this
section, we will introduce the elliptic PPDEs in rigorous way.

Define

(5.1)

{

Lu(ω) := −G(ω, u, ∂ωu, ∂2ωωu) = 0, ω ∈ Q;

u = ξ, ω ∈ ∂Q.

The nonlinearity is denoted by G and the boundary condition by ξ.

Assumption 5.1. The nonlinearity G : Ω× R× R
d × S

d satisfies:
(i) For fixed (y, z, γ), G(·, y, z, γ) ∈ L

0(Ω) and |G(·, 0, z, 0)| ≤ C0 uniformly in
z.

(ii) G is uniformly elliptic, i.e., there exists L0 > 0 such that for all (ω, y, z)

G(ω, y, z, γ1)−G(ω, y, z, γ2) ≥
1

L0
Id : (γ1 − γ2) for all γ1 ≥ γ2.

(iii) G is uniformly continuous on Ωe with respect to de(·, ·), and is uniformly
Lipschitz continuous in (y, z, γ) with a Lipschitz constant L0.

(iv) G is uniformly decreasing in y, i.e. there exists a function λ : R → R strictly
increasing and continuous (λ(0) = 0), and y2 ≥ y1

G(ω, y1, z, γ)−G(ω, y2, z, γ) ≥ λ(y2 − y1).

For any u ∈ BUC(Q), ω ∈ Q and L > 0, define:

ALu(ω) :=
{

ϕ ∈ C2(D) for some D ∈ R : (ϕ− uω)0 = 0 = SL
[

(ϕ− uω)Hω
D
∧·
]}

,

AL
u(ω) :=

{

ϕ ∈ C2(D) for some D ∈ R : (ϕ− uω)0 = 0 = SL [

(ϕ− uω)Hω
D
∧·
]

}

.

Remark 5.2 (u on Ω\Ωe). In the above definition, HD can possibly take the value of
∞. In that case, u(BHD∧·) is not defined, since u is a function on Ωe. However, it is
not essential, becauseHD <∞PL-q.s.. If necessary, we can define complementarily
u := 0 on Ω\Ωe.

Definition 5.3. (i) Let L > 0. We say that u ∈ BUC(Q) is an L-viscosity subso-

lution (resp. L-supersolution) of PPDE (5.1) if, for ω ∈ Q and any ϕ ∈ ALu(ω)

(resp. ϕ ∈ AL
u(ω)):

−G(ω, ϕ(0), ∂ωϕ(0), ∂2ωωϕ(0)) ≤ (resp. ≥) 0.

(ii) We say that u ∈ BUC(Q) is a viscosity subsolution (resp. supersolution)
of PPDE (5.1) if u is an L-viscosity subsolution (resp. L-supersolution) of PPDE
(5.1) for some L > 0.

(iii) We say that u ∈ BUC(Q) is a viscosity solution of PPDE (5.1) if it is both
a viscosity subsolution and a viscosity supersolution.
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6. Consistency with the classical solutions

In this section, we verify that the definition of the viscosity solution is consistent
with that of the classical solution.

Proposition 6.1. Let Assumption 5.1 hold. Given a functional u ∈ C2(Q), then
u is a viscosity solution to PPDE (5.1) if and only if u is a classical solution.

Proof. First, suppose that u is an L-viscosity solution to the PPDE. Set ϕ := u.

Obviously, ϕ ∈ AL
u(ω) (resp. ϕ ∈ ALu(ω)), for any ω ∈ Q and L > 0. By the

subsolution (resp. supersolution) property of u, we deduce that Lu(ω) ≤ 0 (resp.
≥ 0). Therefore, Lu(ω) = 0.

On the other hand, suppose that u is a classical solution. Without loss of gen-
erality, we prove only that u is an L0-viscosity supersolution at 0, where L0 is the

constant in Assumption 5.1. Assume the contrary, i.e. there exists ϕ ∈ AL0
u(0)

such that −c := Lϕ(0) < 0. Let HD be the hitting time required in AL0
u(0). Since

ϕ ∈ C2(D) and u ∈ C2(Q), without loss of generality we may assume that

Lϕ(ωt∧·) ≤ − c

2
and |ϕt − ϕ0|+ |ut − u0| ≤

c

6L0
, for all t ≤ HD.

Since ϕ ∈ AL0
u(0), it implies that for all P ∈ PL0 :

(6.1) 0 = (ϕ− u)0 ≥ E
P [(ϕ− u)HD

]

Denote GPφ := αP · ∂ωφ+ 1
2 (β

P)2 : ∂2ωωφ. Again, since ϕ ∈ C2(D) and u ∈ C2(Q),
we have

0 ≥ E
P [(ϕ− u)HD

− (ϕ− u)0] = E
P

[

ˆ HD

0

GP(ϕ− u)sds

]

≥ E
P

[
ˆ HD

0

( c

2
−G(ωs∧·, ϕs, ∂ωϕs, ∂

2
ωωϕs)

+G(ωs∧·, us, ∂ωus, ∂
2
ωωus) + GP(ϕ− u)s

)

ds

]

,

where the last inequality is due to the supersolution property of u and the mono-
tonicity in y of G. Since ϕ0 = u0, we get

0 ≥ E
P

[
ˆ HD

0

( c

3
−G(ωs∧·, u0, ∂ωϕs, ∂

2
ωωϕs)

+G(ωs∧·, u0, ∂ωus, ∂
2
ωωus) + GP(ϕ− u)s

)

ds

]

.

Now let η = c
6C . We may assume that

HD ≤ inf
{

t ≥ 0 : ρ(de(ωt∧·, 0)) + |∂ωϕt − ∂ωϕ0|+ |∂2ωωϕt − ∂2ωωϕ0|

+|∂ωut − ∂ωu0|+ |∂2ωωut − ∂2ωωu0| ≥ η
}

.
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Thus,

0 ≥ (
c

3
− Cη)EP [HD] + E

P

ˆ HD

0

(

−G(·, u0, ∂ωϕ0, ∂
2
ωωϕ0)

+G(·, u0, ∂ωu0, ∂2ωωu0) + GP(ϕ− u)0

)

ds

=
c

6
E
P [HD] + E

P

ˆ HD

0

(

α · ∂ω(u− ϕ)0 +
1

2
β2 : ∂2ωω(u− ϕ)0

+GP(ϕ− u)0

)

ds,

for some
∣

∣

∣
α
∣

∣

∣
≤ L0,

√

L/2Id ≤ β ≤
√
2LId. Now choose P

∗ ∈ PL0 such that

αP
∗

t = α, βP
∗

t = β. Then 0 ≥ c
6E

P
∗

[HD], which is a contradiction. �

7. Path-frozen PDE

Given a nonlinearity G satisfying Assumption 5.1, define the following function
on R× R

d × S
d:

(7.1) gω(y, z, γ) := G(ω, y, z, γ), ω ∈ Q.
For any ǫ > 0, we denote

(7.2) Oǫ :=
{

x ∈ R
d : |x| < ǫ

}

.

Denote

OQ
ǫ := Oǫ ∩Q, OQ,x

ǫ = Oǫ ∩Qx.

Also by abusing the previous notation, we introduce

OQ,ω
ǫ := Oǫ ∩Qωt̄(ω) , for all ω ∈ Q.

We introduce here a path-frozen PDE with the nonlinearity gω as in (7.1) :

(E)ωǫ L
ωv := −gω(v,Dv,D2v) = 0 on OQ,ω

ǫ .

Notice that for fixed ω ∈ Q, this is a standard deterministic partial differential
equation for which we now assume the following wellposedness condition.

Assumption 7.1. For ǫ > 0, ω ∈ Q, and h ∈ C(∂OQ,ω
ǫ ), we have v = v, where

v(x) := inf
{

w(x) : w ∈ C2(OQ,ω
ǫ ) ∩ C(cl(OQ,ω

ǫ )),Lωw ≥ 0 on OQ,ω
ǫ , w ≥ h on ∂OQ,ω

ǫ

}

,

v(x) := sup
{

w(x) : w ∈ C2(OQ,ω
ǫ ) ∩ C(cl(OQ,ω

ǫ )),Lωw ≤ 0 on OQ,ω
ǫ , w ≤ h on ∂OQ,ω

ǫ

}

.

Remark 7.2. This assumption implies two points. First, by applying the comparison
principle of PDE, we may deduce that v = v is the unique viscosity solution of (E)ωǫ .
On the other hand, there exist regular approximations of the solutions.

8. Two important functions

Recall the class C
2
(Q) in Definition 4.1. The following two functions will be

essential in our future construction of solution:

(8.1) u(ω) := inf
{

ψ(ω) : ψ ∈ Dξ

Q(ω)
}

, u(ω) := sup
{

ψ(ω) : ψ ∈ Dξ
Q(ω)

}

,

where

Dξ

Q(ω) :=
{

ψ ∈ C
2
(Qω) : ψ is bounded, Lωψ ≥ 0 on Q, ψ ≥ ξω on ∂Q

}

,
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Dξ
Q(ω) :=

{

ψ ∈ C
2
(Qω) : ψ is bounded, Lωψ ≤ 0 on Q, ψ ≤ ξω on ∂Q

}

.

Indeed, we shall finally show that u = u is the unique viscosity solution to PPDE
(5.1).

Proposition 8.1. Let Assumption 5.1 hold and |ξ| ≤ C0. Then u is bounded from
above and u is bounded from below.

Proof. Set a constant function:

ψ := λ−1 (C0) + C0.

Note that ψ ∈ C̄2. Observe that ψT ≥ C0 ≥ ξ. Also,

(Lψ)ωs = −Gω(·, ψs, 0, 0) ≥ C0 −Gω(·, 0, 0, 0) ≥ 0.

It follows that ψ ∈ Dξ

Q(ω), and thus u(ω) ≤ ψ(0) = λ−1 (C0) + C0. Similarly, one

can show that u(ω) ≥ −λ−1 (C0)− C0. �

9. Stochastic representation for HJB equations

The nonlinear expectation EL
is closely related to optimal control problems and

the corresponding HJB equations. In this section, we will explore this topic.
Recall the constants L0 and C0 in Assumption 5.1 and consider two functions:

(9.1) g(y, z, γ) :=
1

2
sup

β∈H0
([√

2/L0Id,
√
2L0Id

])

β2 : γ + L0 |z|+ L0y
− + C0,

(9.2) g(y, z, γ) :=
1

2
inf

β∈H0
([√

2/L0Id,
√
2L0Id

])

β2 : γ − L0 |z| − C0,

Indeed, for all nonlinearities G satisfying Assumption 5.1, it holds

g ≤ G ≤ g.

Consider PDEs:

Lu := −g(u,Du,D2u) = 0 and Lu := −g(u,Du,D2u) = 0.

Let D ∈ R, and hD : Rd → R a bounded and continuous function. We define for
x ∈ D

(9.3) w(x) := sup
b∈H0([0,L0])

EL0

[

hD(BHx
D
)e−

´Hx
D

0 brdr + C0

ˆ Hx
D

0

e−
´

t

0
brdrdt

]

,

(9.4) w(x) := EL0
[

hD(BHx
D
) + C0H

x
D

]

.

It is not hard to verify that if w and w are continuous, then they are respectively
the viscosity solutions to Lu = 0 and Lu = 0 with the boundary condition hD on
∂D. We should pay attention to the continuity of w and w.

Lemma 9.1. There exists a modulus of continuity ρ, such that

EL0
[|Hx1 −Hx2 |] ≤ ρ(|x1 − x2|).

Moreover, define

(9.5) hD(x) := EL0
[

v(x,BHx
D
∧·)

]

for some v ∈ BUC(Rd × Ωe). Then hD ∈ BUC
(

R
d
)

.
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The proof can be found in Appendix. Indeed, we can go further to show the
uniform continuity of the functions w and w.

Proposition 9.2. Given hD in the form of (9.5), the functions w and w are
uniformly continuous in cl(D).

Proof. We only show the proposition for w. Since hD is bounded and b only takes
non-negative values, we can easily estimate that for x1, x2 ∈ D,

|w(x1)− w(x2)| ≤ sup
b∈H0([0,L0])

EL0

[∣

∣

∣

∣

hD(BH
x1
D
)e−

´H
x1
D

0 brdr + C0

ˆ H
x1
D

0

e−
´

t

0
brdrdt

−hD(BH
x2
D
)e−

´H
x2
D

0 brdr − C0

ˆ H
x2
D

0

e−
´

t

0
brdrdt

∣

∣

∣

∣

]

≤ EL0
[∣

∣

∣
hD(BH

x1
D
)− hD(BH

x2
D
)
∣

∣

∣

]

+ CEL0
[|Hx1

D −Hx2

D |] .

By applying Lemma 9.1, we finish the proof. �

This uniform continuity result will be useful to show the existence of the viscosity
solution. Recall that we assume that the viscosity solution should be in the class
BUC(Q).

Part 4. Uniqueness

10. Partial comparison principle

The first step to show the uniqueness is the following partial comparison princi-
ple.

Proposition 10.1. Let Assumption 5.1 hold true. Let u2 ∈ BUC(Q) be a viscosity

supersolution of PPDE (5.1) and let u1 ∈ C
2
(Q) be bounded, satisfying Lu1(ω) ≤ 0

for all ω ∈ Q. If u1 ≤ u2 on ∂Q, then u1 ≤ u2 in Q. Similar result holds if we
exchange the roles of u1 and u2.

In the proof of the proposition, we will use the result of the following lemma.

Lemma 10.2. Given a domain D ∈ R such that D ⊂ Oδ (defined in (7.2)), there
exists a function l ∈ C2(D) ∩ C(cl(D)) such that

l = 0 on ∂D, l < 0 on D and l
′

bounded.

In particular, for arbitrary a > 0, there exists a function l such that l = 0 on ∂D,

l < 0 on D and
∣

∣

∣
l
′
∣

∣

∣
≤ a.

Proof. Consider the Dirichlet problem for the Poisson equation in the domain D:

∆l = 1 on D, and l = 0 on ∂D.

By the classical PDE theory [9] (Theorem 4.3, page 56), there exists a unique
classical solution, i.e. l ∈ C2(D)∩C(cl(D)). Moreover, the solution can be written
explicitly as:

l(x) = E
P0 [Hx

D] , for all x ∈ D.

By Corollary 15.2 in Appendix, we have

|l(x1)− l(x2)| =
∣

∣E
P0 [Hx1

D −Hx2

D ]
∣

∣ ≤ C |x1 − x2| .
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Consequently, we get the estimate:
∣

∣

∣
l
′
∣

∣

∣
≤ C.

It remains to verify that l < 0 on D. Indeed, by Itô’s formula, we have that for all
x ∈ D

l(x+BHx
D
)− l(x) =

ˆ Hx
D

0

l
′

(x+Bs) · dBs +
1

2

ˆ Hx
D

0

∆l(x+Bs)ds, P0-a.s.

Observe that l(x+BHx
D
) ≡ 0, that l

′

is bounded and that ∆l = 1 in D. By taking
the expectation on both sides, we have

0− l(x) =
1

2
E [Hx

D] > 0.

To construct a function satisfying the second statement, we only need to consider
la = a

C l. �

Proof of Proposition 10.1. Recall the notation Hn and Oω
n in Definition 4.1. We

now prove the proposition in two steps.
Step 1. We first show that for all i ≥ 0 and ω ∈ Q

(u1 − u2)+Hi
(ω) ≤ EL

[

(

(u1Hi+1
)Hi,ω − (u2Hi+1

)Hi,ω
)+

]

.

Clearly it suffices to consider i = 0, i.e.

(10.1) (u1 − u2)+(0) ≤ EL
[

(

u1 − u2
)+

H1

]

.

Assume the contrary, i.e.

2c := (u1 − u2)+(0)− EL
[

(

u1 − u2
)+

H1

]

> 0.

Let l be the function defined in Lemma 10.2 with the domain D := O0
0. Also,

denote the minimum of l as lm := minx∈cl(O0
0)
l(x). Define

Xt(ω) := (u1 − u2)+(ωt∧·)− c
l(ωt)

lm
,

Y := SL
[XH1∧·] and τ

∗ := inf {t ≥ 0 : Yt = Xt} .
Note that 0 < l(x)

lm
≤ 1, for all x ∈ O0

0. Applying the optimal stopping result

(Theorem 3.2), we get

EL
[Xτ∗ ] = Y0 ≥ X0 = (u1 − u2)+(0)− c

l(0)

lm

≥ c+ EL
[

(

u1 − u2
)+

H1

]

≥ c+ EL
[XH1 ] .

Therefore, there exists ω∗ ∈ O0
0 , such that t∗ := t̄(ω∗) < H1(ω

∗). Next, by the
definition of Y , we have

(

(u1 − u2)+(ω∗)− c
l(ω∗

t∗)

lm

)

= Xt∗(ω
∗) = Yt∗(ω

∗) ≥ EL
[

(XH1)
t∗,ω∗

]

≥ 0.

Note that
l(ω∗

t∗ )

lm
> 0. Hence, 0 <

(

u1 − u2
)+

(ω∗) =
(

u1 − u2
)

(ω∗). Then

Xt∗,ω∗

t (ω) = ϕ(ωt∧·)−
(

u2
)ω∗

(ωt∧·) for all t ∈
[

0, Hω∗

1

]

, where ϕ(ω) := (u1)ω
∗

(ω)−
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c
l(ωt̄(ω))

lm
for all ω ∈ Ωe. Observe that ϕ ∈ C2

(

(O0
0)

ω∗)

, since u1 is assumed to be

in C̄2(Q). Using the E-supermartingale property of Y , we see that for all τ ∈ T t∗ :
(

ϕ− (u2)ω
∗
)

t∗
= Xt∗(ω

∗) = Yt∗(ω
∗) ≥ EL

[

Y t∗,ω∗

τ∧H1

]

≥ EL
[

Xt∗,ω∗

τ∧H1

]

≥ EL
[

(

ϕ− (u2)ω
∗
)

τ∧H1

]

,

i.e. ϕ ∈ AL
u2(ω∗). Finally, by the L-viscosity supersolution property of u2 and the

assumption on the function G, we have

0 ≤ −G
(

·, u2, ∂ωϕ, ∂2ωωϕ
)

(ω∗
t∗∧·)

= −G
(

·, u2, ∂ωu1 −
c

lm
l
′

, ∂2ωωu
1 − c

lm
a

)

(ω∗
t∗∧·)

≤ −G
(

·, u1, ∂ωu1, ∂2ωωu
1
)

(ω∗
t∗∧·)− λ

((

u1 − u2
)

(ω∗
t∗∧·)

)

+ Ca.

Since
(

u1 − u2
)

(ω∗) > 0 and a is arbitrary, we have

−G
(

·, u1, ∂ωu1, ∂2ωωu
1
)

(ω∗
t∗∧·) > 0.

This is in contradiction with the subsolution property of u1.
Step 2. We are going to show that

(u1 − u2)+(0) ≤ EL
[

(

u1 − u2
)+

HQ

]

.

By the result of Step 1 and the tower property of EL
(as mentioned before, it is a

result from [7]), we get

(u1 − u2)+(0) ≤ EL
[

(

u1 − u2
)+

Hi

]

for all i ≥ 1.

Next we get that for any T > 0,

EL
[

(

u1 − u2
)+

Hi

]

− EL
[

(

u1 − u2
)+

HQ

]

≤ EL
[

(

u1 − u2
)+

Hi
−
(

u1 − u2
)+

HQ

]

.

Note that CL [Hi < HQ] → 0 as i→ ∞. Therefore,

(u1 − u2)+(0) = 0.

�

11. Consistency of the Perron approach

We are going to give a constructive proof of the fact that u = u (as defined
in (8.1)). Since we follow the framework of ETZ [3], the lemmas in this section
resemble to the corresponding work in their paper. However, there are technical
differences, because we are dealing with the Dirichlet problem.

The following lemma gives an estimate on the difference between the superso-
lutions and the subsolutions to the PDEs. It will be useful when we analyze the
path-frozen PDEs.

Lemma 11.1. Fix D ∈ R. Let hi : ∂D → R be continuous (i = 1, 2), gi satisfy
Assumption 5.1, and vi be the viscosity solutions to the following PDEs:

gi(v,Dv,D2v) = 0 on D, vi = hi on ∂D.

Assume that there exists a constant c0, such that

|g1(y, z, γ)− g2(y, z, γ)| ≤ c0 for any (y, z, γ).
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Then, denoting δv = v1 − v2, δh := h1 − h2, we have

δv(x) ≤ EL0
[(

(δh)
+
HD

)x]

+ Cc0.

In particular, if g1 = g2, then we have δv(x) ≤ EL0
[(

(δh)+HD

)x]

.

Proof. By the standard argument, function w(x) := EL0
[(

(δh)+HD

)x

+
´ Hx

D

0
c0dt

]

is a viscosity solution of the nonlinear PDE:

−c0 − L0|Dw| −
1

2
sup

√

2
L0

Id≤σ≤
√
2L0Id

σ2 : D2w = 0 on D,

and w = (δh)+ on ∂D.

Let K be a smooth nonnegative kernel with unit total mass. For all η > 0, we
define the mollification wη := w ∗Kη of w. Then wη is smooth, and it follows from
a convexity argument that wη is a classic supersolution of

(11.1) −c0 − L0|Dwη | − 1

2
sup

√

2
L0

Id≤σ≤
√
2L0Id

σ2 : D2wη ≥ 0 on D,

and wη = (δh)+ ∗Kη on ∂D.

We claim that

w̄η + v2 is a supersolution to the PDE with generator g1,

where w̄η := wη + ‖wη − (δh)+‖L∞ . Then we note that w̄η + v2 ≥ wη + h2 +
‖wη − (δh)+‖L∞ ≥ h1 = v1 on ∂D. By comparison principle in PDEs, we have
w̄η + v2 ≥ v1 on cl(D). Setting η → 0, we obtain that δv ≤ w.

It remains to prove that w̄ + v2 is a supersolution of the PDE with generator
g1. Let x0 ∈ D, φ ∈ C2(D) be such that 0 = (φ−w̄η−v2)(x0) = max

(

φ− w̄η − v2
)

.

Then, it follows from the viscosity supersolution property of v2 that L2(φ−w̄η)(x0) ≥
0. Hence, at the point x0, by (11.1) we have

L
1φ ≥ L

1φ−L
2(φ− w̄η)

= −g1(φ,Dφ,D2φ) + g2(φ − w̄η, D(φ− w̄η), D2(φ− w̄η))

≥ −g1(φ,Dφ,D2φ) + g2(φ,D(φ − w̄η), D2(φ− w̄η))

≥ c0 + L0|Dwη|+ 1

2
sup

√

2
L0

Id≤σ≤
√
2L0Id

σ2 : D2wη − c0 − α ·Dwη − 1

2
γ : D2wη

≥ 0,

where |α| ≤ L0 and 2
L0
Id ≤ γ ≤ 2L0Id. �

In the next lemma, we will use the path-frozen PDEs to construct the functions
θǫn, which will be needed to construct close approximations of u and u defined in
(8.1). Before looking into the proof, we define some useful notations.

We first introduce the space of linear interpolations. For all ǫ > 0, n ≥ 0, denote

Πǫ
n :=

{

πn = (xi)1≤i≤n : |xi| ≤ ǫ
}

.



VISCOSITY SOLUTIONS OF FULLY NONLINEAR ELLIPTIC PATH DEPENDENT PDES 18

Example 11.2. Recall Oǫ defined as in (7.2). We denote a sequence of stopping
times by:

H0 := 0, Hi+1 := inf {t ≥ Hi : Bt −BHi
/∈ Oǫ} ∧HQ, i ≥ 0.

Then we see that (BHi
)1≤i≤n ∈ Πǫ

n.

For all πn ∈ Πǫ
n, we denote by ωπn ∈ Ωe the linear interpolation of (0, 0),

(i,
∑i

j=1 xj)1≤i≤n with a flat tail extending to t = ∞. For simplicity, we use πn

instead of ωπn as superscript (e.g. Oπn := Oωπn
).

We also denote :

πx
n := (πn, x) ∈ Πǫ

n+1 for all |x| ≤ ǫ.

The sequence of stopping times H
πx
n

i is defined as:

H
πx
n

0 := 0, H
πx
n

1 := inf {t ≥ Hi : x+Bt /∈ Oǫ} ∧Hπx
n

Q ,

H
πx
n

i+1 := inf
{

t ≥ H
πx
n

i : Bt −BHi
/∈ Oǫ

}

∧Hπx
n

Q , i ≥ 1.

Given the canonical process B , |x| < ǫ and πn ∈ Πn, we define for all m > n

ωπm
n (x,B) := ω

(

πn,x+B
H

πx
n

1

,(B
H

πx
n

j

−B
H

πx
n

j−1

)1≤j≤m

)

, ωπm
n (x,B,HQ) := ωπm

n (x,B)⊗̄BH
πx
n

m

H
πx
n

Q
∧·
.

Lemma 11.3. Let Assumptions 5.1 and 7.1 hold. Suppose that |ξ| ≤ C0. Let
|xi| = ǫ, i ≥ 1 and πn := {xi}1≤i≤n. Assume that ωπx

n ∈ Q. Then, there exists a

sequence of continuous functions (πn, x) 7→ θǫn(πn, x), bounded uniformly in (ǫ, n),
such that

θǫn(πn; ·) is a viscosity solution of (E)ω
πn

ǫ ,

and
{

θǫn(πn;x) = ξ(ωπx
n), |x| < ǫ and x ∈ ∂Qπn ,

θǫn(πn;x) = θǫn+1(π
x
n; 0), |x| = ǫ.

Remark 11.4. The boundary is composed of two parts, because for the domain
OQ,πn

ǫ one part of the boundary is that of Qπn , while the other is that of Oǫ. When
the variable touches ∂Qπn , we should set the solution to be equal to the boundary
condition of the PPDE. Otherwise, when ∂Oǫ is touched, the value of the solution
should be consistent with that of the next piece of the path-frozen PDE.

Proof. Step 1. Recall the definition of g and g in (9.1) and (9.2). Also recall that

g ≤ G ≤ g.

We first prove the lemma in the case G := g and G := g. It is easier than the
general case, because Bellman equations can be represented explicitly as optimal
control problems (as we discussed in Section 9).

We first study g. For any N , denote

θ
ǫ

N,N(πN , 0) := EL0
[

ξπN

HQ

]

,

and for n ≤ N − 1, θ := θ
ǫ

N,n(πn; ·) is a viscosity solution of the following PDE:

(11.2) −g(θ,Dθ,D2θ) = 0 on OQ,πn
ǫ ,

θ(x) = θ
ǫ

N,n+1(π
x
n;0) on ∂OQ,πn

ǫ .
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Note that θ
ǫ

N,n(πn, x) can be represented as the solution of the following optimal
control problem:
(11.3)

θ
ǫ

N,n(πn, x) = sup
b∈H0([0,L0])

EL0



e−
´

H
πx
n

N−n
0 brdrξ

(

ωπN−n
n (x,B,HQ)

)

+ C0

ˆ H
πx
n

N−n

0

e−
´

s

0
brdrds



 .

As we have discussed in Section 9, we may prove that θ
ǫ

N,n(πn, x) is continuous in
both variables (πn, x). Meanwhile, observe that they are uniformly bounded.

Define

θ
ǫ

n(πn, x) := sup
b∈H0([0,L0])

EL0



e−
´

H
πx
n

Q
0 brdr lim

N→∞
ξ
(

ωπN−n
n (x,B,HQ)

)

+ C0

ˆ H
πx
n

Q

0

e−
´

s

0
brdrds



 .

Then,

|θǫn(πn, x)− θ
ǫ

N,n(πn, x)| ≤ CCL0

[

H
πx
n

N−n < H
πx
n

Q

]

→ 0, N → ∞.

As we have argued in Corollary 3.4, the convergence is uniform in (πn, x). This

implies that θ
ǫ

n(πn;x) is uniformly bounded and continuous in (πn, x). Moreover,

by the stability of viscosity solutions we see that θ
ǫ

n(πn; ·) is the viscosity solution
of PDE (11.2) in OQ,πn

ǫ , with the boundary condition:
{

θ̄ǫn(πn;x) = ξ(ωπx
n), |x| < ǫ and x ∈ ∂Qπn ,

θ̄ǫn(πn;x) = θ̄ǫn+1(π
x
n; 0), |x| = ǫ.

Hence, we have shown the result in the case G = g.
Similarly, we may show that θǫn, defined below, is the viscosity solution to the

path-frozen PDE when the nonlinearity is g:

θn(πn, x) := inf
b∈H0([0,L0])

EL0



e−
´

H
πx
n

Q
0 brdr lim

i→∞
ξ
(

ωπN−n
n (x,B,H)

)

+ C0

ˆ H
πx
n

Q

0

e−
´

s

0
brdrds



 .

Step 2. We now prove the lemma for G. Given the construction of Step 1, define:

θ
ǫ,m

m (πm;x) := θ
ǫ

m(πm;x), θǫ,mm (πm;x) := θǫm(πm;x); m ≥ 1.

For n ≤ m− 1, we may define θ
ǫ,m

n and θǫ,mn as the unique viscosity solution of the
PDE (E)πn

ǫ with boundary conditions

θ
ǫ,m

n (πn;x) = θ
ǫ,m

n+1(π
x
n; 0), θ

ǫ,m
n (πn;x) = θǫ,mn+1(π

x
n; 0)

on ∂OQ,πn
ǫ . Note that, for x ∈ ∂OQ,πm

ǫ ,

θ
ǫ,m

m (πm;x) = θ
ǫ,m+1

m+1 (πx
m; 0), θǫ,mm (πm;x) = θǫ,m+1

m+1 (πx
m; 0).

By the comparison result for PDE (E)πn
ǫ , we also have that

θ
ǫ,m

m (πm; ·) ≥ θ
ǫ,m+1

m (πm; ·) ≥ θǫ,m+1
m (πm; ·) ≥ θǫ,mm (πm; ·) on OQ,πm

ǫ ,

and therefore, by the same comparison argument:
(11.4)

θ
ǫ,m

n (πn; ·) ≥ θ
ǫ,m+1

n (πn; ·) ≥ θǫ,m+1
n (πn; ·) ≥ θǫ,mn (πn; ·) on OQ,πn

ǫ for all n ≤ m.
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Denote δθǫ,mn := θ
ǫ,m

n − θǫ,mn . Applying Lemma 11.1 several times and using the

tower property of EL
, we get that

|δθǫ,mn (πn;x)| ≤ EL0
[∣

∣δθǫ,mm

(

πm−n
n (x,B); 0

)∣

∣

]

.

Note that δθǫ,mn (πn;x) = 0 when x ∈ ∂Qπn . Then, since CL0 [Hn < HQ] → 0, as
m→ ∞, we have that

|δθǫ,mn (πn;x)| ≤ CCL0 [Hm−n < HQ] → 0.

Together with (11.4), this implies the existence of θǫn such that

θ
ǫ,m

n ↓ θǫn, θǫ,mn ↑ θǫn, as m→ ∞.

Clearly θǫn is uniformly bounded and continuous. Finally, it follows from the sta-
bility of viscosity solutions that θǫn satisfies the requirement of the lemma. �

The previous lemma shows the existence of the viscosity solution to the path-
frozen PDE. Indeed, we can construct smooth super- and sub-solutions to the
PPDE from the solution to the path-frozen PDE. Let π̂n denote the sequence
(Hi, BHi

)1≤i≤n. Denote ωǫ := limn→∞ ωπ̂n .

Lemma 11.5. There exists ψǫ ∈ C
2
(Q), such that

ψǫ(0) = θǫ0(0) + ǫ, ψǫ ≥ h on Q, Lωπ̂n

ψǫ ≥ 0 on OQ,π̂n
ǫ .

Proof. For simplicity, in this proof we omit the superscript ǫ. Set δn := 2−n−2ǫ.
First, by applying Assumption 7.1 to PDE (E)0ǫ , we obtain that there exists a

function v0 ∈ C2(cl(OQ
ǫ )), such that

v0(0) = θ0(0) +
ǫ

2
, L0v0 ≥ 0 on OQ

ǫ , v0 ≥ θ0 on ∂OQ
ǫ .

Set

ψ(ω) := v0(ωt̄) +
∑

i≥0

δi on cl(OQ
ǫ ).

By the monotonicity of G, it is clear that

ψ(0)− θ0(0) =
ǫ

2
+
∑

i≥0

δi = ǫ and L0ψ ≥ L
0v0 ≥ 0 on cl(OQ

ǫ ).

Moreover, it is clear that ψ ∈ C(OQ
ǫ ).

Next, fix π1 := (x1) such that x1 ∈ ∂OQ
ǫ . Applying again Assumption 7.1 to

PDE (E)ω
π1

ǫ , we obtain that there exists a function v1(π1; ·) ∈ C2(cl(OQ,π1
ǫ )) such

that

v1(π1; 0) = v0(x1) + δ0, L
ωπ1

v1 ≥ 0 on OQ,π1
ǫ , v1(π1; ·) ≥ θ1(π1; ·) on ∂OQ,π1

ǫ .

Set

ψ(ω) := v1(π1;ωt̄ − ωH1) +
∑

i≥1

δi on OQ.π1
ǫ ,

otherwise ψ(ω) := v1(π1;ωH2 − ωH1) +
∑

i≥1

δi.

It is clear that the updated ψ is in C
2
(Q). Repeating the above arguments we may

construct a sequence of functions vn and thus construct the desired ψ ∈ C
2
(Q). �
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Finally, we have done all the necessary constructions and are ready to show the
main result in this section.

Proposition 11.6. Suppose |ξ| ≤ C0. Under Assumptions 5.1 and 7.1, we have
u = u.

Proof. For any ǫ > 0, let ψǫ be as in Lemma 11.5, and ψ
ǫ
:= ψǫ+ρ(2ǫ)+λ−1 (ρ(2ǫ)),

where ρ is the modulus of continuity of ξ andG and λ−1 is the inverse of the function

in Assumption 5.1. Then clearly ψ
ǫ ∈ C

2
(Q) and bounded. Also,

ψ
ǫ
(ω)− ξ(ω) ≥ ψǫ(ω) + ρ(2ǫ)− ξ(ω) ≥ ξ(ωǫ)− ξ(ω) + ρ(2ǫ) ≥ 0 on ∂Q.

Moreover, when t̄(ω) ∈ [Hn(ω), Hn+1(ω)), we have that

Lψǫ
(ω) = −G

(

ω, ψ
ǫ
, ∂ωψ

ǫ, ∂2ωωψ
ǫ
)

≥ −G
(

ωπ̂n , ψǫ + λ−1 (ρ(2ǫ)) , ∂ωψ
ǫ, ∂2ωωψ

ǫ
)

− ρ(2ǫ)

≥ −G
(

ωπ̂n , ψǫ, ∂ωψ
ǫ, ∂2ωωψ

ǫ
)

≥ 0.

Then by the definition of u we see that

u(0) ≤ ψ
ǫ
(0) = ψǫ + ρ(2ǫ) + λ−1 (ρ(2ǫ)) ≤ θǫ0(0) + ǫ + ρ(2ǫ) + λ−1 (ρ(2ǫ)) .

Similarly, u(0) ≥ θǫ0(0)− ǫ− ρ(2ǫ)− λ−1 (ρ(2ǫ)). That implies that

u(0)− u(0) ≤ 2ǫ+ 2ρ(2ǫ) + 2λ−1 (ρ(2ǫ)) .

Since ǫ is arbitrary, this shows that u(0) = u(0). Similarly, we can show that
u(ω) = u(ω) for all ω ∈ Q. �

Combing the fact that u = u with the partial comparison principle, we finish the
proof of the uniqueness of the viscosity solutions to the PPDEs.

Theorem 11.7. Suppose |ξ| ≤ C0. Let Assumptions 5.1 and 7.1 hold. If a viscosity
solution to the PPDE (5.1) exists, it is unique.

Part 5. Existence

12. Regularity

Our objective is to show that u := u = u is indeed the unique viscosity solution of
PPDE (5.1). The uniform continuity of u will be a by-product of our approximation
procedure. We have following corollary of Lemma 11.3.

Corollary 12.1. Let |xi| = ǫ, i ≥ 1. Fix an ω ∈ Q. For ǫ > 0 small enough, there
exists a sequence of continuous functions (πn, x) 7→ θωn(πn, x), bounded uniformly
in (ǫ, n), such that

θωn(πn; ·) is a viscosity solution of (E)ω⊗̄ωπn

ǫ ,

with boundary conditions:
{

θωn(πn;x) = ξ(ωω⊗̄πx
n), |x| < ǫ and x ∈ ∂Qω⊗̄ωπn

,

θωn(πn;x) = θωn+1(π
x
n; 0), |x| = ǫ.

Moreover, we can prove the following lemma which is important for the uniform
continuity of u.
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Lemma 12.2. Let θωn be defined as in Corollary 12.1. Then there is a modulus of
continuity ρ such that for any ω1, ω2 ∈ Q,

(12.1)
∣

∣

∣
θω

1

0 (0; 0)− θω
2

0 (0; 0)
∣

∣

∣
≤ ρ

(

de(ω1, ω2)
)

.

Proof. Similarly as in the proof of Lemma 11.3, we divide the proof in two parts.
Step 1. We again first prove the result for the case when G := g or G := g. The

detailed proof is only given for g.
Review the proof of Lemma 11.3 and note the definition of θ

ǫ

N,n. Here, we

define correspondingly θ
ω

N,n which depends on ω (the superscript ǫ is omitted for
simplicity, since the dependence on ω is more essential here). For any N , denote

θ
ω

N,N(πN , 0) := EL0
[

ξω⊗̄ωπN

H

]

.

For n ≤ N − 1, θ := θ
ω

N,n(πn; ·) is a viscosity solution of the following PDE:

(12.2) −g(θ,Dθ,D2θ) = 0 on OQ,ω⊗̄ωπn

ǫ

θ(x) = θ
ω

N,n+1(π
x
n;0) on ∂OQ,ω⊗̄ωπn

ǫ .

Function θ
ω

N,n(πn, x) can be represented as the solution of the following optimal
control problem:
(12.3)

θ
ω

N,n(πn, x) = sup
b∈H0([0,L0])

EL0



e−
´

H
ω,πx

n
N−n

0 brdrξ
(

ω⊗̄ωπN−n
n (x,B,Hω

Q)
)

+ C0

ˆ H
ω,πx

n
N−n

0

e−
´

s

0
brdrds



 ,

where H
ω,πx

n

Q := Hω⊗̄ωπx
n

Q . Then, we have the following estimate: for ωπx
n ∈ Qω1 ∩

Qω2

,
∣

∣

∣

∣

θ
ω1

N,n(πn, x)− θ
ω2

N,n(πn, x)

∣

∣

∣

∣

≤ CEL0
[∣

∣

∣
H

ω1,πx
n

N−n −H
ω2,πx

n

N−n

∣

∣

∣

]

+ CEL0

[

ξ
(

ω1⊗̄ωπN−n
n (x,B,Hω1

Q )
)

−ξ
(

ω2⊗̄ωπN−n
n (x,B,Hω2

Q )
)

]

.

Note that
∣

∣

∣
H

ω1,πx
n

N−n −H
ω2,πx

n

N−n

∣

∣

∣
≤

∣

∣

∣
H

ω1,πx
n

Q −H
ω2,πx

n

Q

∣

∣

∣
. Based on Lemma 9.1 , we may

show that

(12.4)

∣

∣

∣

∣

θ
ω1

N,n − θ
ω2

N,n

∣

∣

∣

∣

≤ ρ(de(ω1, ω2)),

where ρ is independent of N . Then define θ
ω

n similarly to θ
ǫ

n in Lemma 11.3. Then

|θωn(πn, x)− θ
ω

N,n(πn, x)| → 0, and

(12.5)

∣

∣

∣

∣

θ
ω1

n − θ
ω2

n

∣

∣

∣

∣

≤ ρ(de(ω1, ω2)).

A similar argument provides the same estimate for θωn :

(12.6)
∣

∣

∣
θω

1

n − θω
2

n

∣

∣

∣
≤ ρ(de(ω1, ω2)).

Step 2. We now show the result in the general case.
We follow Lemma 11.3 and define θ

ω,m

n similarly to θ
ǫ,m

n . Define the stopping
times:

Hi := H
ωi,πx

n

Q , i = 1, 2; H1,2 := H1 ∧H2,
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H0 = 0, Hi+1 := inf {t ≥ 0 : Bt −BHi
/∈ Oǫ} , i ≥ 0.

By comparison arguments, we claim that for ωπx
n ∈ Qω1 ∩ Qω2

(θ
ω1,m

n − θω
2,m

n )(πn;x) ≤ EL0

[

(θ
ω1

m − θω
2

m )(πm−n
n (x,B)), 0)1{Hm−n≤H1,2}

]

+I1 + I2 + C(m− n)ρ(de(ω1, ω2)),(12.7)

where

I1 :=

m−n−1
∑

k=0

EL0

[(

θ
ω1,m

n+k+1(π
k+1
n (x,B), 0)− θω

2,m
n+k (πk

n(x,B), BH1 −BHk
)

)

1{H1<Hk+1≤H2}

]

,

I2 :=

m−n−1
∑

k=0

EL0

[(

θ
ω1,m

n+k (πk
n(x,B), BH2 −BHk

)− θω
2,m

n+k+1(π
k+1
n (x,B), 0)

)

1{H2<Hk+1≤H1}

]

.

(We will prove the claim later.) Next, we focus on the term: θ
ω1,m

n+k+1(π
k+1
n (x,B), 0)−

θω
2,m

n+k (πk
n(x,B), BH1 −BHk

) . Note the results of the comparison:

θω
2,m

n+k (πk
n(x,B), BH1 −BHk

) ≥ θω
2

n+k(π
k
n(x,B), BH1 −BHk

);

θ
ω1,m

n+k+1(π
k+1
n (x,B), 0) ≤ θ

ω1

n+k+1(π
k+1
n (x,B), 0).

By (12.6), we have
∣

∣

∣
θω

2

n+k(Πk(π
x
n), BH1 −BHk

)− θω
1

n+k(Πk(π
x
n), BH1 −BHk

)
∣

∣

∣
≤ ρ(de(ω1, ω2)).

Also, notice that θ
ω1

n+k+1(π
k+1
n (x,B), 0) = θω

1

n+k+1(π
k+1
n (x,B), 0) = θω

1

n+k(π
k
n(x,B), BH1−

BHk
). As a result, we have

θ
ω1,m

n+k+1(Π
H1

k+1(π
x
n), 0)− θω

2,m
n+k (Πk(π

x
n), BH1 ) ≤ ρ(de(ω1, ω2)).

Moreover, turn back to (12.7). We conclude that

(θ
ω1,m

n − θω
2,m

n )(πn;x) ≤ CCL
[

Hm−n < H1,2
]

+ C(m− n+ 1)ρ(de(ω1, ω2)).

Note that

θ
ω1,m

n ≥ θω
1

n and θω
2

n ≥ θω
2,m

n .

It follows that
(θω

1

n − θω
2

n )(πn;x) ≤ ρ(de(ω1, ω2)).

(Recall that ρ is different from line to line.) By exchanging the roles of ω1 and ω2,
we may show that

∣

∣

∣
(θω

1

n − θω
2

n )(πn;x)
∣

∣

∣
≤ ρ(de(ω1, ω2)).

Proof of the claim (12.7). Suppose that m ≥ n+ 1. It suffices to show that

(θ
ω1,m

n − θω
2,m

n )(πn;x) ≤ EL0

[

(θ
ω1,m

n+1 − θω
2,m

n+1 )(π1
n(x,B)), 0)1{H1≤H1,2}

]

+EL0

[

(θ
ω1,m

n+1 (π1
n(x,B), 0) − θω

2,m
n (πn, x+BH1))1{H1<H1≤H2}

]

+EL0

[

(θ
ω1,m

n (πn, x+BH2 )− θω
2,m

n+1 (π1
n(x,B), 0))1{H2<H1≤H1}

]

+Cρ(de(ω1, ω2)).
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Then the claim can be easily shown by induction. The proof is similar to the proof

of the estimate in Lemma 11.1. Recall that θ
ω1,m

n (resp. θω
2,m

n ) is a solution to the

PDE with generator gω
1

(resp. gω
2

). Now we study those two equations on the
domain:

Oǫ ∩Qω1 ∩Qω2

.

Therefore, the boundary can be divided into three parts which belong to ∂Oǫ, ∂Q
ω1

and ∂Qω2

respectively. We denote them by Bd1, Bd2 and Bd3.

(a) On Bd1, we have H1 ≤ H1,2. Also, on this part of the boundary, θ
ω1,m

n =

θ
ω1,m

n+1 and θω
2,m

n = θω
2,m

n+1 .

(b) On Bd2, we have H1 < H1 ≤ H2. Here θ
ω1,m

n = θ
ω1,m

n+1 . However, on this

part of the boundary, θω
2,m

n does not take the value of θω
2,m

n+1 .

(c) On Bd3, we have H2 < H1 ≤ H1. Similar to the case of Bd2, we find that

θω
2,m

n = θω
2,m

n+1 .
After clarifying all the boundary conditions of the two equations on the different

parts of the boundary, we can then use Lemma 11.1 to finish the proof. �

Corollary 12.3. u is uniformly continuous in Q.

Proof. We have already shown in Proposition 11.6 that for ω1, ω2 ∈ Q
u(ω1) ≤ θω

1

0 (0) + ǫ+ ρ(2ǫ) and u(ω2) ≥ θω
2

0 (0)− ǫ− ρ(2ǫ).

Hence, it follows from Lemma 12.2 that

u(ω1)−u(ω2) = u(ω1)−u(ω2) ≤ θω
1

0 (0)−θω2

0 (0)+2(ǫ+ρ(2ǫ)) ≤ ρ(de(ω1, ω2))+ρ(2ǫ).

By exchanging the roles of ω1 and ω2, we show that u is uniformly continuous. �

13. Viscosity property

After having shown that u = u = u is uniformly continuous, we are ready to
verify that it is indeed the unique viscosity solution to PPDE (5.1). The following
proof is similar to the corresponding work in ETZ [3].

Proposition 13.1. u is the viscosity solution to PPDE (5.1).

Proof. Without loss of generality, we prove only that u is a L0-viscosity super-

solution at 0. Assume the contrary, i.e. there exists ϕ ∈ AL0
u(0) such that

−c := Lϕ(0) < 0. For any ψ ∈ Dξ

Q(0) and ω ∈ Q it is clear that ψω ∈ Dξ

Q(ω) and

ψ(ω) ≥ u(ω). Now by the definition of u, there exists ψn ∈ C
2
(Q) such that

(13.1) δn := ψn(0)− u(0) ↓ 0 as n→ ∞, Lψn(ω) ≥ 0, ω ∈ Q.

LetHD be the hitting time required in AL0
u(0). Since ϕ ∈ C2(D) and u ∈ BUC(Q),

without loss of generality we may assume that

Lϕ(ωt∧·) ≤ − c

2
and |ϕt − ϕ0|+ |ut − u0| ≤

c

6L0
for all t ≤ HD.

We emphasize that the above HD is independent of n. Now let {Hn
i , i ≥ 1} corre-

spond to ψn ∈ C
2
(Q). Since ϕ ∈ AL0

u(0), this implies for all P ∈ PL0 and n, i
that :

(13.2) 0 ≥ E
P
[

(ϕ− u)HD∧Hn
i

]

≥ E
P
[

(ϕ− ψn)HD∧Hn
i

]

.
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Denote GPφ := αP · ∂ωφ + 1
2 (β

P)2 : ∂2ωωφ. Then, since ϕ ∈ C2 and ψn is a semi-
martingale on [0, Hn

i ], it follows from (13.1) that:

δn ≥ E
P
[

(ϕ− ψn)HD∧Hn
i
− (ϕ− ψn)0

]

= E
P

[

ˆ HD∧Hn
i

0

GP(ϕ− ψn)ds

]

≥ E
P

[
ˆ HD∧Hn

i

0

(
c

2
−G(ωs∧·, ϕ, ∂ωϕ, ∂

2
ωωϕ)

+G(ωs∧·, ψ
n, ∂ωψ

n, ∂2ωωψ
n) + GP(ϕ − ψn))ds

]

≥ E
P

[
ˆ HD∧Hn

i

0

(
c

2
−G(ωs∧·, ϕ, ∂ωϕ, ∂

2
ωωϕ)

+G(ωs∧·, u, ∂ωψ
n, ∂2ωωψ

n) + GP(ϕ− ψn))ds

]

,

where the last inequality is due to the monotonicity in y of G. Since ϕ0 = u0, we
get

δn ≥ E
P

[
ˆ HD∧Hn

i

0

(
c

3
−G(ωs∧·, u0, ∂ωϕ, ∂

2
ωωϕ)

+G(ωs∧·, u0, ∂ωψ
n, ∂2ωωψ

n) + GP(ϕ− ψn))ds

]

.

Now let η > 0 be a small number. For each n, define τn0 := 0, and

τnj+1 : = HD ∧ inf{t ≥ τnj : ρ(de(ωt∧·, ωτn
j ∧·)) + |∂ωϕ(ωt∧·)− ∂ωϕ(ωτn

j ∧·)|
+|∂2ωωϕ(ωt∧·)− ∂2ωωϕ(ωτn

j
∧·)|+ |∂ωψn(ωt∧·)− ∂ωψ

n(ωτn
j
∧·)|

+|∂2ωωψ
n(ωt∧·)− ∂2ωωψ

n(ωτn
j ∧·)| ≥ η}.

Since ψn is regular on [0, Hn
i ] for each n and so is ϕ, one can easily check that

τnj ↑ HD PL0-q.s. as j → ∞. Thus,

δn ≥ (
c

3
− Cη)EP [HD ∧Hn

i ] +
∑

j≥0

E
P

ˆ τn
j+1∧Hn

i

τn
j ∧Hn

i

(

−G(·, u0, ∂ωϕ, ∂2ωωϕ)

+G(·, u0, ∂ωψn, ∂2ωωψ
n) + GP(ϕ− ψn)

)

τn
j

ds

= (
c

3
− Cη)EP [HD ∧Hn

i ] +
∑

j≥0

E
P

ˆ τn
j+1∧Hn

i

τn
j ∧Hn

i

(

αn
j · ∂ω(ψn − ϕ)

+
1

2
(βn

j )
2 : ∂2ωω(ψ

n − ϕ) + GP(ϕ− ψn)
)

τn
j

ds,

for some appropriate αn
j , βn

j . Note that αn
j and βn

j are both Fτn
j
-measurable. Now

choose Pn ∈ PL0 such that αPn

t = αn
j , βPn

t = βn
j , for t ∈ [τnj , τ

n
j+1). Then

δn ≥ (
c

3
− Cη)EPn [HD ∧Hn

i ] .

Set η := c
6C . Since limi→∞ Pn [H

n
i < HD] = 0, we have EL0 [HD] ≤ E

Pn [HD] ≤ δn.

By putting n→ ∞, we get EL0 [HD] = 0. This is a contradiction. �
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Part 6. Appendix

14. Property of the distance de(·, ·)
In this section, we discuss the relation between property (P) and the quasi metric

de(·, ·).
Proposition 14.1. Let h be defined on Q. The following two statements are equiv-
alent:

(1) h is continuous with respect to de(·, ·) PL-q.s.;
(2) h satisfies (P), and h is continuous with respect to the supermum norm PL-

q.s..

Proof. Without loss of generality, we only show the result for the one-dimensional
case.

(1)⇒(2) is trivial, since de(ω, ω̃) ≤ ‖ω − ω̃‖.
(2)⇒(1). For ω ∈ Q, define the stopping times

Hn
0 (ω) = 0, Hn

i+1(ω) = inf

{

t ≥ Hn
i : |ωt − ωHi

| ≥ 1

n

}

∧HQ, i ≥ 0.

Set a piecewise constant path:

ωn
t :=

∑

i

ωHn
i
1{Hn

i ≤t<Hn
i+1} + ωHQ

1{t≥HQ}.

Then by Proposition 3.3, we know that

(14.1) ωn has finite jumps PL − q.s.

Since now, we fix an ω ∈ Q such that (14.1) holds and h is continuous in ‖·‖ at
point ω.

Let ǫ > 0 and ω̃ ∈ Ωe, such that de(ω, ω̃) < ǫ. According to the definition of
de(·, ·), there is a time scaling function φ ∈ I, such that

∥

∥ωφ(·) − ω̃·
∥

∥ < ǫ. Note
that

(14.2)
∥

∥

∥
ωn
φ(·) − ωφ(·)

∥

∥

∥
≤ 1

n
and ‖ωn

· − ω·‖ ≤ 1

n
.

Next, we are going to adjust the paths ωn and ωn
φ to be continuous. For these

two piecewise constant paths, the jumps occur at {Hn
i }i≥0 and at

{

φ−1(Hn
i )

}

i≥0

respectively. Assume that the shortest constant piece of ωn and ωn
φ(·) has the length

of δ, i.e.

δ := min
i≥0,Hn

i <HQ

{

|Hn
i+1 −Hn

i |, |φ−1(Hn
i+1)− φ−1(Hn

i )|
}

.

Then, define two continuous paths:

ωn,c
t := ωHQ

1{t≥HQ} +
∑

i

(

ωHn
i
1{Hn

i ≤t<Hn
i+1}

+
t−Hn

i+1 + δ

δ
(ωHn

i+1
− ωHn

i
)1{Hn

i+1−δ≤t≤Hn
i+1}

)

,

ωn,c
φ(t) := ωHQ

1{t≥HQ} +
∑

i

(

ωHn
i
1{φ−1(Hn

i )≤t<φ−1(Hn
i+1)}

+
t− φ−1(Hn

i+1) + δ

δ
(ωHn

i+1
− ωHn

i
)1{φ−1(Hn

i+1)−δ≤t≤φ−1(Hn
i+1)}

)

.
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Ignoring the constant pieces of ωn,c and ωn,c
φ(·), we may see that these two paths are

exactly the same. Since h satisfies property (P), we have that

(14.3) h(ωn,c) = h(ωn,c
φ(·)).

Recall that we have (14.2). Hence, by continuity of h in ‖·‖ and (14.3), we know
that h(ω) = h(ωφ(·)). Finally, we have

|h(ω)− h(ω̃)| = |h(ωφ(·))− h(ω̃)|.
The continuity in de(·, ·) at point ω follows. �

15. Estimate on the hitting time

Here, we compare two stopping times Hω1

and Hω2

, where the paths ω1 and ω2

are both supposed to be in Q. The aim is to give some estimates of the form:

(15.1) ∃ρ, s.t. EL
[

|Hω1

Q −Hω2

Q |n
]

≤ ρ
(

de(ω1, ω2)
)

for all n ≥ 1.

To simplify notations, we put H1 := Hω1

Q and H2 := Hω2

Q . First, fix a probability

P
0,β ∈ PL such that there exists a P

0,β-Brownian motion W and

Bt =

ˆ t

0

βsdWs, P
0,β-a.s.

(under P
0,β the canonical process is without drift a.s.) We will show that there

exists a modulus of continuity ρ such that

(15.2) E
P
0,β

[

|Hω1 −Hω2 |n
]

≤ ρ (de(ω, ω̃)) .

Further, by a simple application of Girsanov theorem, we may prove (15.1). The
following discussion is to prove (15.2).

First of all, denote the starts of the flat tails of ω1and ω2 as x1 := ω1
t̄ and

x2 := ω2
t̄ respectively. Since ω1, ω2 ∈ Q, it is clear that H1 and H2 depend only

on x1 and x2, respectively. Since the roles of ω1 and ω2 are symmetric here, we
only consider the case when H1 ≥ H2. In this case the path ω2⊕̄B touches the
boundary ∂Q earlier than ω1⊕̄B. Also, we observe that

ω1⊕̄BH2 − ω2⊕̄BH2 = x1 − x2.

Denote by y1 the point ω1⊕̄BH2 and by y2 the point ω2⊕̄BH2 . Notice that y2 ∈ ∂Q
and y1 ∈ Q. Furthermore, there exists a point y∗ ∈ ∂Q such that

∣

∣y1 − y∗
∣

∣ = min
x∈∂Q

∣

∣y1 − x
∣

∣ ≤
∣

∣x1 − x2
∣

∣ .

From now on, we are interested in the one-dimensional subspace R1, the line passing
through y1 and y∗. We take the segment

l := proj
R1

(Q)

to be the projection of Q on R1. Then we observe that y1 ∈ l and that y∗ is one
of the end points of l. Denote by y∗ the other end point of l. Since Q is bounded
(i.e. there exists a constant M such that |x| ≤M for any x ∈ Q), we deduce that

∣

∣y1 − y∗
∣

∣ ≤ 2M.

Further we define the projection of the canonical process on R1:

Bl
t = proj

R1

(

y1 +Bt

)

.
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It is easy to show that Bl is a one-dimensional martingale departing from y1, whose
quadratic variation is equal to

´ ·
0 trace(β

2
s )ds. Observe that

H1 −H2 ≤ τ l,

where τ l := inf
{

t : Bl
t /∈ l

}

.
Now, set a probability space (R,B(R),P). Let X be a 1-dimensional local mar-

tingale starting from 0 with the quadratic variation
´ ·
0 trace(β

2
s )ds under P. Define

the stopping time:

ηδx,−2M = ηδx ∧ η−2M ,

where δx := |x1−x2|, ηδx := inf {t : X(t) > δx} and η−2M := inf {t : X(t) < −2M}.
In particular, note that

δx ≤ de(ω1, ω2).

Finally, we have

E
P
0,β [|τ l|n

]

≤ E
[

ηnδx,−2M

]

.

Consequently, we will focus on estimating E

[

ηnδx,−2M

]

. The following lemma leads

to (15.2).

Lemma 15.1. Suppose that n ≥ 1 and δx ≤ 2M , then E

[

ηnδx,−2M

]

≤ Cδx. In

particular, C does not depend on β.

Proof. Denote X∗
t := maxs≤t |Xs|, Xt := maxs≤tX

+
s and X(t) := maxs≤tX

−
s .

Make use of the Burkholder-Davis-Gundy inequality:

E
[

ηnδx,−2M

]

≤
(

Ld

2

)n

E

[(
ˆ ηδx,−2M

0

β2
sds

)n]

≤ CE

[

(

X∗
ηδx,−2M

)2n
]

,

since β ≥
√

2
LId. Then observe

E

[

(

X∗
ηδx,−2M

)2n

; ηδx ≥ η−2M

]

= (2M)2nP [ηδx ≥ η−2M ]

= C
δx

δx+ 2M
≤ C

2M
δx.

On the other hand, we can estimate:

E

[

(

X∗
ηδx,−2M

)2n

; ηδx < η−2M

]

≤ E

[

X
2n

ηδx,−2M

]

+ E

[

X2n
ηδx,−2M

; ηδx < η−2M

]

≤ (δx)
2n

+ E

[

X2n
ηδx,−2M

; ηδx < η−2M

]

.

To estimate the second item on the right side, we note that it is dominated by the
following sum:

2M

N

N
∑

k=1

E

[

2n

(

2M
k

N

)2n−1

; {ηδx < η−2M} ∩
{

X(η2nδx,−2M ) ≥ 2M
k − 1

N

}

]

≤ 2M

N

N
∑

k=1

E

[

2n

(

2M
k

N

)2n−1

;
{

ηδx < η−2M k
N

}

]

=
2M

N

N
∑

k=1

2n

(

2M
k

N

)2n−1
δx

δx+ 2M k
N

.
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Let N → +∞, the sum converges to the following integral.

I :=

ˆ 2M

0

2nt2n−1 δx

δx+ t
dt.

Now, since n ≥ 1, we have

I ≤ δx

ˆ 2M

0

2nt2n−2dt = Cδx.

�

Corollary 15.2. For any n ≥ 1, there exists a constant C such that

E
P
0,β

[

|Hω1

Q −Hω2

Q |n
]

≤ Cde(ω1, ω2).

Furthermore, there exists a modulus of continuity ρ such that

EL
[

|Hω1

Q −Hω2

Q |n
]

≤ ρ
(

de(ω1, ω2)
)

.
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