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Abstract

The aim of this paper is to study singularly perturbed control systems. Firstly, we provide
linearized formulation version for the calculus of the value function associated with the averaged
dynamics. Secondly, we obtain necessary and sufficient conditions in order to identify the optimal
trajectory of the averaged system.
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1 Introduction

The aim of this parer is to study singularly perturbed control systems. Firstly, we provide linearized
formulation version for the calculus of the value function associated with the averaged dynamics.
Secondly, we obtain necessary and sufficient conditions in order to identify the optimal trajectory
of the averaged system.
Linear programming techniques have proved to be very useful in dealing with deterministic and
stochastic control problems. A wide literature is available on the subject both in the deterministic
and in the stochastic setting ([7, 3, 11, 12, 10, 14, 4, 6]).
One of the advantages of transforming a nonlinear control problem into a linear optimization prob-
lem consists in the possibility of obtaining approximation results for the value function. Following
the methods presented in [6] and [13], one can approximate the occupational measures by Dirac
measures and construct an optimal feedback control. Moreover, when considering the ergodic con-
trol problem (see, e.g. [2]), the study of the behavior of the value function is simplified whenever
this value is expressed by a linear problem.
Recently linearized versions of the standard continuous infinite horizon discounted control prob-
lems are provided in [13, 5]. When the perturbed system is fully nonlinear it is very difficult to
characterize the optimal trajectories using the classical methods given by the Pontryagin maximum
principle because we do not know exactly the form of the averaged dynamics. For works in this
direction we reefer the reader for instance to [8, 20, 9] and references therein.
Fortunately, using our approach we can characterize optimal trajectories. Our method consists in

∗This version improves the paper with the same title published in Journal of Differential Equations (Volume 255,
Issue 11, 2013) by fixing a small gap in the proof of Theorem 14 and correcting some misprints.
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embedding the trajectories into a space of probability measures satisfying a convenient condition.
This condition is given in terms of the coefficient functions. The results allow to characterize the
set of constraints as the closed convex hull of occupational measures associated to controls. We first
consider a general Mayer control problem for explaining the approach. Secondly, using linearization
techniques and the dual formulation we characterize the optimal occupational measures. Note that
as far as we know our method was not used before in the singularly perturbed setting. Moreover,
it’s advantage consists in the fact that we do not require to “explicitly” calculate the averaged
dynamics.

This paper is organized as follows: In the second section we aim at presenting singularly per-
turbed control systems and the averaging method and some important results concerning the sin-
gularly perturbed systems and the value functions associated with this problem. The third section
deals with the linear formulation associated with classical control problems. The fourth section
concerns with the characterization of optimal occupational measures for Mayer type control prob-
lems. In the fifth section we provide linearization techniques for the averaged system. In the sixth
section we describe optimal occupational measures/trajectories for the averaged system. Finally,
we provide an appendix for the convenience of the reader.

2 Singularly perturbed control systems

In the following we shortly present our problem. We consider the following dynamics:

(1)







dx
t,x,y,u
s = f

(

x
t,x,y,u
s , y

t,x,y,u
s , us

)

ds,

εdy
t,x,y,u
s = g

(

x
t,x,y,u
s , y

t,x,y,u
s , us

)

ds,

for all s ≥ t, where (t, x, y) ∈ [0,∞)×R
M ×R

N and ε is a small real parameter. The evolutions of
the two state variables x and y of the system are of different scale. We call x the ”slow” variable
and y the ”fast” variable. We recall that a control (ut)t0≤t<∈ is said to be admissible if it is
Lebesgue-measurable on [t0,∞) and u takes its values in a compact, metric space U . We let U
denote the family of all admissible controls on [0,∞) . The functions f : RM ×R

N ×U → R
M and

g : RM×R
N×U → R

N are assumed to be continuous on [0,∞)×R
M×R

N and Lipschitz-continuous
in (x, y), uniformly with respect to the control parameter u ∈ U.

We denote by
(

x
t,x,y,u;ε
(·) , y

t,x,y,u;ε
(·)

)

the solution of (1) starting from (t, x, y) ∈ [0, T ]×R
M ×R

N ,

for some u ∈ U .
We let h : RM → R be a given bounded function and define the following payoff:

(2) Ct,x,y;ε(u) = h
(

x
t,x,y,u;ε
T

)

,

for all (t, x, y) ∈ [0, T ]×R
M ×R

N and all u ∈ U . The value function associated with (1) and (2) is:

(3) Wε,h(t, x, y) = inf
u∈U

Ct,x,y;ε(u)

for all (t, x, y) ∈ [0, T ]× R
M × R

N .

The asymptotic behavior of the value function (3) when ε → 0 is a very interesting problem.
Whenever the control system (1) has some stability property, it is possible to prove that the

trajectories
(

x
t,x,y,u;ε
(·) , y

t,x,y,u;ε
(·)

)

of (1) converge towards some solution of some system obtained by

formally replacing ε by 0 in (1). This is the so called Tikhonov approach which has been successfully
developed in [23, 24] for instance.

When dyt,x,y,us = g
(

x
t,x,y,u
s , y

t,x,y,u
s , us

)

ds is not stable, another approach consists in investigat-

ing relationships between the system (1) and a new differential inclusion

(4) dxt,xs ∈ F
(

xt,xs
)
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obtained by an averaging method, that will be described later on. We emphasize that, in general,
the averaged system is set-valued. We refer the reader to [9, 16] for averaging methods. It is
important to notice that only the behavior of the ”slow” variable xt,x,y,u;ε(·) is concerned by this
approach.

Let us also recall that the sequence of functions (Wε,h (·, ·, y))ε>0 converges to the value function

WF,h : [0, T ]× R
M −→ R defined by

(5) WF,h(t, x) = inf
x
t,x

(·)
∈SF (t,x)

h
(

x
t,x
T

)

,

for all (t, x) ∈ [0, T ]× R
M if h is uniformly continuous and bounded.

Here, SF (t, x) stands for the set of solutions of (4) starting from (t, x) ∈ [0, T ]×R
M and Sε(t, x, y)

for the set of all the trajectories of (1)
(

x
t,x,y,u;ε
(·) , y

t,x,y,u;ε
(·)

)

starting from (t, x, y) ∈ [0, T ]×R
M×R

N .

Moreover, we define SF (0, x) =: SF (x) and by Sε(0, x, y) =: Sε(x, y), for all (x, y) ∈ R
M+N .

2.1 The averaging method

Let us shortly explain the behavior of the perturbed system (1) as ε→ 0. If one makes the change
of variables τ = s

ε
in the system (1) with t = 0, and sets (Xτ , Yτ , Uτ ) = (xετ , yετ , uετ ) for τ ∈ [0, T

ε
],

one gets






dX
t,x,y,u
τ = εf

(

X
t,x,y,u
τ , Y

t,x,y,u
τ , Uτ

)

dτ,

dY
t,x,y,u
s = g

(

X
t,x,y,u
τ , Y

t,x,y,u
τ , Uτ

)

dτ.

When ε tends to 0, we are led to consider the following associated system:

(6) dyt,y,us = g
(

x, yt,y,us , us
)

ds,

for s ∈ [0,+∞), where x is fixed in R
M . For every fixed x ∈ R

M , we denote by yt,y,u;x(·) the unique

solution of (6) corresponding to the control u and to the initial value y.
We follow an averaging method (cf. for instance [9], [17]): we set, for (x, y) ∈ R

M ×R
N , S > 0,

and u ∈ U ,

A(x, y, S, u) = 1
S

∫ S

0 f
(

x, y
t,y,u;x
s , us

)

ds,

F (x, y, S) = {A(x, y, S, u); u ∈ U}.

We shall make the following assumption on the systems:

(7)



















∀R > 0, there exist nonempty bounded subsets NR and ΩR of RN such that:

1)∀(x, y) ∈ B(0, R)×NR, ∀
(

x
0,x,y,u;ε
(·) , y

0,x,y,u;ε
(·)

)

∈ Sε(0, x, y),

y
0,x,y,u;ε
s ∈ ΩR, for all s ∈ [0, T ] and all ε > 0.

2)∀(x, y) ∈ B(0, R)×NR, ∀ u ∈ U , y0,y,u;xs ∈ ΩR, for all s ≥ 0.

Note that the previous assumption says in fact that all solutions of (1) starting fromB(0, R)×NR

and all solutions of (6) will belong to R
N × ΩR and, respectively, to ΩR. Under an assumption of

either total controllability or stability of the associated system (6), the set F (x, y, S) converges, in
the sense of the Hausdorff metric, towards a compact convex set F (x) of RM .

If the set-valued map F is Lipschitz, then the set of slow solutions xt,x,y,u;ε(·) converges towards
the set of solutions of the differential inclusion in the sense that

Πε
M (t, x, y) :=

{

x
t,x,y,u;ε
(·) :

(

x
t,x,y,u;ε
(·) , y

t,x,y,u;ε
(·)

)

∈ Sε(t, x, y)
}
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converges to SF (t, x) for the Hausdorff metric.
Let us describe the following property of total controllability: every two points of ΩR can be

joined in bounded time by a trajectory of the associated system for any x in B(0, R). Namely:

(8)

{

∀R > 0, ∃ tR ≥ 0 such that : ∀x ∈ B(0, R), ∀y1, y2 ∈ ΩR,

there exists u ∈ U and s ≤ tR such that y0,y2,u;xs = y1.

We notice that, the previous assumption is in fact a controllability assumption. The control-
lability of systems is a very important property and a large literature studying it is available (see
for instance [22], or Chapter 2 and 3 from [19]). Moreover, if (8) holds true, then, for every x in
B(0, R), ΩR is actually invariant for the associated system (6). Indeed, if y is in ΩR, then it can
be joined to a y0 in NR, so that any point of a trajectory with initial value y is also a point of a
trajectory with initial value y0. Hence, it belongs to ΩR by the assumption (7). Conditions for
invariance (or in particular, for having (7) and (8)) are presented for instance in [1] (Chapter 5).

We also need the following stability property:

(9)











∀R > 0, there exists ξR ∈ L1([0,+∞[,R+) such that :
∀x ∈ B(0, R), ∀y1, y2 ∈ ΩR, ∀u ∈ U ,
∣

∣

∣
y
t,y1,u;x
s − y

t,y2,u;x
s

∣

∣

∣
≤ ξR(s) |y1 − y2| for every s ≥ 0.

Remark 1 If one assumes the existence of some constant CR such that:

〈y2 − y1, g (x, y2, u)− g (x, y1, u)〉 ≤ −CR |y2 − y1|
2 ,

for every u ∈ U , then (9) is satisfied with ξR(τ) = e−CRτ . This is a classical assumption in order
to obtain Tychonoff’s Theorem,

Under the assumption (9), the map F is Lipschitz (cf. [9]), while under the assumption (8)
alone, the map F is only continuous, so one needs further conditions to get F Lipschitz-continuous.
Whenever the system is weakly coupled (i.e. if the trajectories yt,y,u;x(·) of the associated system (6)

do not actually depend on x), then F is Lipschitz (cf. [17]). Another possibility to get F Lipschitz
(or, at least, locally Lipschitz (cf. [21])) is to strengthen the assumption (8) into an assumption
(10) of Lipschitz controllability. This condition should guarantee that every two points of ΩR can
be joined in a time less or equal to some constant CR multiplied by the distance between the initial
points. We say that the system (1) satisfies (10) if:

∀R > 0, ∃cR > 0, ∀y1, y2 ∈ ΩR, ∀x ∈ B(0, R),(10)

∃u ∈ U , ∃s ≤ cR |y1 − y2| , such that y0,y2,u;xs = y1.

When F is locally Lipschitz, one has the following result:

Proposition 2 (cf. [21]) We assume that (7) holds true, either the assumption (8) or the as-
sumption (9) is true, f is bounded and F is locally Lipschitz. Then, for every R0 > 0, every
R ≥ R0 + T |f |∞, there exists a function µR : (0,+∞) → R, such that limε→0 µR(ε) = 0 and, for
every ε > 0 and every (x, y) ∈ B(0, R0)×NR :

-for every
(

x
t,x,y,uε;ε
(·) , y

t,x,y,uε;ε
(·)

)

∈ Sε (t, x, y), there exists xt,x(·) ∈ SF (t, x) and:

(11) sup
s∈[t,T ]

∣

∣xt,x,y,uε;ε
s − xt,xs

∣

∣ ≤ µR(ε);

-for any xt,x(·) ∈ SF (t, x), there exists (xε(·), yε(·)) ∈
(

x
t,x,y,uε;ε
(·) , y

t,x,y,uε;ε
(·)

)

∈ Sε (t, x, y), such

that the inequality (11) holds.
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Notice that the previous result can be reformulated using the Hausdorff distance for sets. More
precisely, we have that

lim
ε→0

dH(Sε (t, x, y) , SF (t, x)× {0}) = 0 ⇔

lim
ε→0

dH(clSε (t, x, y) , clSF (t, x)× {0}) = 0 ⇔

lim
ε→0

dH(clSε (t, x, y) , SF (t, x)× {0}) = 0

because of the regularity of F which implies that SF (t, x) is closed with respect to the uniform
convergence topology.

If the cost function h is bounded and uniformly continuous, the convergence of the value func-
tions is a direct consequence of the convergence of trajectories. More precisely, we haveWε,h →WF,h

with respect with the uniform convergence.

3 Linear formulation for classical control problems

Throughout this section, we will be dealing with the following control system

(12)

{

dx
t0,x0,u
t = b

(

x
t0,x0,u
t , ut

)

dt, t0 ≤ t ≤ T,

x
t0,x0,u
t0

= x0 ∈ R
N ,

where T > 0 is a finite time horizon, t0 ∈ [0, T ] and the control u is a measurable function which
takes its values in a compact, metric space U . We let U denote the family of all admissible controls
on [0, T ]. We assume that the dynamics b : RN × U −→ R

N satisfies

(13)

{

b is bounded and uniformly continuous on R
N × U,

|b (x, u)− b (y, u)| ≤ c |x− y| ,

for all (x, y, u) ∈ R
N × R

N × U , for some positive real constant c > 0.

3.1 Occupational measures

We begin by giving some properties of the linear formulation associated to control problems. Let
us suppose that T > 0 is a fixed time horizon. We fix t ≥ 0 and x0 ∈ R

N . To every r > t

and u ∈ U , one can associate a couple of occupational measures γt,r,x0,u =
(

γ
t,r,x0,u
1 , γ

t,r,x0,u
2

)

∈

P
(

[t, r]× R
N × U

)

× P
(

R
N
)

defined by

{

γ
t,r,x0,u
1 (A×B × C) = 1

r−t

∫ r

t
1A×B×C

(

s, x
t,x0,u
s , us

)

ds,

γ
t,r,x0,u
2 = δ

x
t,x0,u
r

,

for all Borel sets A ⊂ [t, r] , B ⊂ R
N and C ⊂ U . When x ∈ R

N , δx stands for the Dirac measure.

One can also define
(

γ
t,t,x0,u
1 , γt,t,x0,u

2

)

∈ P
(

{t} × R
N × U

)

× P
(

R
N
)

by setting

γ
t,t,x0,u
1 = δt,x0,ut , γ

t,t,x0,u
2 = δx0 .

For every r ≥ t, the family of occupational measures

(14) Γ (t, r, x0) =
{ (

γ
t,r,x0,u
1 , γ

t,r,x0,u
2

)

, for all u ∈ U
}
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can be embedded into a larger set

Θ (t, r, x0) =







(γ1, γ2) ∈ P
(

[t, r]× R
N × U

)

× P
(

R
N
)

, ∀φ ∈ C
1,1
b

(

R+ × R
N
)

,
∫

[t,r]×RN×U×RN

(φ (t, x0) + (r − t)Luφ (s, y)− φ (r, z)) γ1 (dsdydu) γ2 (dz) = 0







,

where
Luφ (s, y) = 〈b (y, u) , Dφ (s, y)〉+ ∂tφ (s, y) ,

for all φ ∈ C
1,1
b

(

R+ × R
N
)

and all s ≥ 0, y ∈ R
N . Here C1,1

b

(

R+ × R
N
)

is the class of real bounded,
differentiable functions defined on R+ × R

N and having Lipschitz gradient.

Remark 3 1. For every finite time horizon T > 0, there exists a constant c > 0 such that,

whenever u ∈ U ,
∣

∣

∣
x
t,x0,u
s

∣

∣

∣
≤ c (1 + |x0|) , for all 0 ≤ t ≤ s ≤ T and all x0 ∈ R

N . Therefore,

whenever γ ∈ Γ (t, r, x0) ,

Supp (γ1) ⊂ [t, r]×Kx0,c × U, Supp (γ2) ⊂ Kx0,c,

where Kx0,c =
{

x ∈ R
N : |x| ≤ c (1 + |x0|)

}

. We emphasize that the constant c can be chosen
independently of t, x0, u.

Remark 4 The set Θ(t, r, x0) contains all occupational measures γt,r,x0,u(·) issued from x0 at time
t. This follows from the following equality

−φ (t, x0) +

∫

RN

φ (r, z) γt,r,x0,u
2 (dz) = −φ (t, x0) + φ

(

r, xt,x0,u
r

)

=

∫ r

t

(

∂tφ
(

s, xt,x0,u
s

)

+
〈

b
(

xt,x0,u
s , us

)

, Dφ
(

s, xt,x0,u
s

)〉)

ds

=

∫

[t,r]×RN×U

(r − t)Luφ (s, y) γt,r,x0,u
1 (dsdydu) ,

for regular test functions φ ∈ C
1,1
b

(

R+ × R
N
)

. One notices that the equality constraint in the
definition of Θ(t, r, x0) can alternatively be written

φ (t, x0) +

∫

[t,r]×RN×U

(r − t)Luφ (s, y) γ1 (dsdydu)−

∫

RN

φ (r, z) γ2 (dz) = 0.

It follows that Θ(t, r, x0) is convex.

3.2 Linearized formulation for Mayer type control problems

We consider g′ : RN −→ R assumed to satisfy 1

(15)







(i) the function g′ is bounded,
(ii) there exist real constants c, c1 > 0 such that
|g′ (x)− g′ (y)| ≤ c |x− y| , g′ (x) ≥ c1

for all (x, y) ∈ R
N × R

N . To every (t, x) ∈ [0, T ]× R
N and u ∈ U , one associates the cost

Cg′ (t, x, u) = g′
(

x
t,x,u
T

)

1Note that we make the assumption g
′ (x) ≥ c1 > 0 for simplifying the calculus. Indeed, we can always add a

positive constant sufficiently large to the function g
′ in order to obtain the previous inequality because g

′ is bounded.
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and the corresponding value function

(16) Vg′ (t, x) = inf
u∈U

Cg′ (t, x, u) .

Under the assumptions (13) and (15), the value function Vg′ is the unique bounded, uniformly
continuous viscosity solution of the Hamilton Jacobi (HJ) equation

(17) ∂tVg′ (t, x) +H
(

x,DVg′ (t, x)
)

= 0,

for all (t, x) ∈ [0, T ]× R
N , and Vg′ (T, ·) = g′ (·) on R

N , where the Hamiltonian is given by

(18) H (x, p) = inf
u∈U

〈b (x, u) , p〉 ,

for all (t, x, p) ∈ R × R
N × R

N . For proofs of the connection between Vg′ and (17), the reader is
referred to [2] and the references therein.

We also consider the linearized problems

Λg′ (t, x) = inf
γ=(γ1,γ2)∈Θ(t,T,x)

∫

RN

g′ (z) γ2 (dz)

and its dual

(19) ηg′ (t, x) = sup

{

η ∈ R : ∃φ ∈ C
1,1
b

(

R+ × R
N
)

s.t. ∀ (s, y, v, z) ∈ [t, T ]× R
N × U × R

N ,

η ≤ (T − t)Lvφ (s, y) + g′ (z)− φ (T, z) + φ (t, x)

}

,

for all (t, x) ∈ [0, T ]×R
N . The following result links the three quantities. Its proof follows the ideas

in [5] and [15]. For reader’s convenience, we give the proof in the Appendix.

Proposition 5 If (13) and (15) hold true, then, for every (t, x) ∈ [0, T ]× R
N , one has

Vg′ (t, x) = Λg′ (t, x) = ηg′ (t, x) .

We have the following characterization of the set of constraints Θ (t, T, x0) :

Corollary 6 The set Θ(t, T, x0) is the closed convex hull of the family of occupational couples
Γ (t, T, x0)

Θ (t, T, x0) = cl (co (Γ (t, T, x0))) ,

for all T ≥ t ≥ 0. The operator cl designates the closure with respect to the topology induced by the
weak convergence of probability measures.

For further details, the reader is referred to [13].

Remark 7 Consequently, if γ = (γ1, γ2) ∈ Θ(t, T, x0), there exists a sequence of convex combina-
tions
(

∑kn
i=1 α

n
i γ

t,T,x0,u
n
i

)

n
converging to γ. Thus,

Supp (γ1) ⊂ [t, T ]×Kx0,c × U, Supp (γ2) ⊂ Kx0,c.

In particular, Θ(t, T, x0) is compact.
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4 Characterization of optimal measures

In this section we study necessary and sufficient conditions for characterizing optimal occupational
measures. In the sequel we denote Θ(t, T, x) := Θ(t, x) for simplicity. Recall that

Vg′ (t, x) = Λg′ (t, x) = ηg′ (t, x)

and

(20) ηg′ (t, x) = sup

{

η ∈ R : ∃φ ∈ C
1,1
b

(

R+ × R
N
)

s.t. ∀ (s, y, v, z) ∈ [t, T ]× R
N × U × R

N ,

η ≤ (T − t)Lvφ (s, y) + g′ (z)− φ (T, z) + φ (t, x)

}

,

for all (t, x) ∈ [0, T ]× R
N . We denote by

(21) Dg′ (t, x) =

{

(η, φ) ∈ R× C
1,1
b

(

R+ × R
N
)

s.t.
η = inf

(s,y,v,z)∈[t,T ]×RN×U×RN
{(T − t)Lvφ (s, y) + g′ (z)− φ (T, z) + φ (t, x)}

}

,

for all (t, x) ∈ [0, T ]× R
N .

Remark 8 We note that Θ(t, x) contains measures with compact support (see Remark 7). Con-
sequently, we may consider that the test functions have also compact support. Moreover, in the
previous formulation, we can replace the infimum over (s, y, v, z) ∈ [t, T ]× R

N × U × R
N with the

minimum over a compact set which contains the support of the occupational measures.

Consequently, the dual formulation becomes:

(22) Vg′ (t, x) = sup{η, (η, φ) ∈ Dg′ (t, x)}.

Definition 9 We say that (η̄, φ̄) ∈ Dg′ (t, x) is an optimal pair whenever we have Vg′ (t, x) = η̄.

Remark 10 It is not always sure that optimal pairs exist. Fortunately, in this case we can define

the set Ω using the sets Ω 1
n

associated to a sequence of pairs
(

η 1
n
, φ 1

n

)

∈ Dg′ (t, x) having the

property that η 1
n
ր η (t, x) = V (t, x). More precisely, 1Ω coincides with the lim inf

n→∞
1Ω 1

n

. Note that

such a sequence always exists because of (22).

Definition 11 We denote by

(23) Ωg′ (t, x) =







(s, y, v, z) ∈ [t, r]× R
N × U × R

N , s.t.
η̄ = (T − t)Lvφ̄ (s, y) + g′ (z)− φ̄ (T, z) + φ̄ (t, x) ,
for every optimal pair (η̄, φ̄) ∈ Dg′ (t, x) .







Proposition 12 Let (t, x) ∈ [0, T ] × R
N be fixed. Then, γ ∈ Θ(t, x) is optimal for Λg′ (t, x) iff

γ
(

Ωg′ (t, x)
)

= 1.

Proof.

Suppose that γ ∈ Θ(t, x) is such that γ
(

Ωg′ (t, x)
)

= 1, i.e. the support of γ is included in
Ωg′ (t, x). Then, by definition, we have the following equality

η̄ = (T − t)Lvφ̄ (s, y) + g′ (z)− φ̄ (T, z) + φ̄ (t, x) .

on Ωg′ (t, x), for all optimal pairs (η̄, φ̄) ∈ Dg′ (t, x). Consequently,

∫

Ωg′ (t,x)
η̄γ(dsdxdudz) =

∫

Ωg′(t,x)
g′γ(dsdxdudz) =

∫

[t,T ]×RN×U×RN

g′ (z) γ(dsdxdudz)
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because γ ∈ Θ(t, x). It follows that

γ (Ω (t, x)) η̄ = V (t, x) =

∫

[t,T ]×RN×U×RN

g′ (z) γ(dsdxdudz)

and that γ ∈ Θ(t, x) is optimal. Conversely, suppose that γ ∈ Θ(t, x) is optimal. Then, we have:

V (t, x) =
∫

[t,T ]×RN×U×RN g
′ (z) γ(dsdxdudz) =

∫

[t,T ]×RN×U×RN

[

(T − t)Lvφ̄ (s, y) + g′ (z)− φ̄ (T, z) + φ̄ (t, x)
]

γ(dsdxdudz) ≥
∫

Ωg′(t,x)

[

(T − t)Lvφ̄ (s, y) + g′ (z)− φ̄ (T, z) + φ̄ (t, x)
]

γ(dsdxdudz) =
∫

Ωg′(t,x)
η̄γ(dsdxdudz) = η̄γ(Ωg′ (t, x)) = V (t, x) γ(Ωg′ (t, x)).

for all optimal pairs (η̄, φ̄) ∈ Dg′ (t, x). Consequently, γ ∈ Θ(t, x) is such that γ
(

Ωg′ (t, x)
)

= 1
Indeed, if γ

(

Ωg′ (t, x)
)

< 1 we get

V (t, x) =

∫

[t,T ]×RN×U×RN

g′ (z) γ(dsdxdudz) > V (t, x) .

because V (t, x) > 0. The last inequality leads to a contradiction.

5 Dual formulation for the averaged system

In order to characterize the optimal controls/measures for the averaged system, we first state
it’s dual formulation. In the sequel we assume that (7) holds true, either the assumption (8)
or the assumption (9) is true, and F is locally Lipschitz. As previously, let us suppose that
T > 0 is a fixed time horizon. We fix ε > 0, t ≥ 0 and (x0, y0) ∈ R

M × R
N . To every u ∈ U ,

one can associate a couple of occupational measures γt,T,x0,y0,u;ε =
(

γ
t,T,x0,y0,u;ε
1 , γ

t,T,x0,y0,u;ε
2

)

∈

P
(

[t, T ]× R
M × R

N × U
)

× P
(

R
M × R

N
)

defined by







γ
t,T,x0,y0,u;ε
1 (A×B × C ×D) = 1

T−t

∫ T

t
1A×B×C×D

(

s, x
t,x0,y0,u;ε
s , y

t,x0,y0,u;ε
s , us

)

ds,

γ
t,T,x0,y0,u;ε
2 = δ

x
t,x0,y0,u;ε
T

,y
t,x0,y0,u;ε
T

,

for all Borel sets A ⊂ [t, T ], B ⊂ R
M , C ⊂ R

N and D ⊂ U . When (x, y) ∈ R
M × R

N , δx,y

stands for the Dirac measure. One can also define γt,t,x0,y0,u;ε =
(

γ
t,t,x0,y0,u;ε
1 , γ

t,t,x0,y0,u;ε
2

)

∈

P
(

{t} × R
M × R

N × U
)

× P
(

R
M × R

N
)

by setting

γ
t,t,x0,y0,u;ε
1 = δt,x0,y0,ut , γ

t,t,x,y,u;ε
2 = δx,y.

The family of occupational measures

(24) Γ (t, x0, y0; ε) =
{ (

γ
t,T,x0,y0,u;ε
1 , γ

t,T,x0,y0,u;ε
2

)

, for all u ∈ U
}

.

can be embedded into a larger set

Θ (t, x0, y0; ε) =































(γ1, γ2) ∈ P
(

[t, T ]× R
M × R

N × U
)

× P
(

R
M × R

N
)

∀φ ∈ C
1,1
b

(

R+ × R
M × R

N
)

,
∫

[t,T ]×RM×RN×U×RM×RN

(φ (t, x0, y0) + (T − t)Lu;εφ (s, x, y)

−φ (T, z, w)) γ1 (dsdxdydu) γ2 (dzdw) = 0,
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where

Lu;εφ (s, x, y) =

〈(

f (x, y, u) ,
1

ε
g (x, y, u)

)

, Dφ (s, x, y)

〉

+ ∂tφ (s, x, y) ,

for all φ ∈ C1,1
(

R+ × R
M × R

N
)

and all s ≥ 0, (x, y) ∈ R
M × R

N .

Remark 13 Using similar arguments as in the previous sections, the set Θ(t, T, x0, y0; ε) contains
all occupational measures γt,T,x0,y0,u;ε issued from (x0, y0) at time t. Moreover, it is also convex and
relatively compact with respect to the weak convergence of probability measures (due to Prohorov’s
Theorem).

We suppose that h satisfies the hypotheses (15). As previously, the linearized problem is

Λε,h (t, x0, y0) = inf
γ=(γ1,γ2)∈Θ(t,x0,y0;ε)

∫

RM×RN

h (z) γ2 (dzdw)

and its dual is

(25) ηε,h (t, x0, y0) = sup







η ∈ R : ∃φ ∈ C1,1
(

R+ × R
M × R

N
)

s.t.
∀ (s, x, y, v, z, w) ∈ [t, T ]× R

M × R
N × U × R × R

N ,

η ≤ (T − t)Lv;εφ (s, x, y) + h (z)− φ (T, z, w) + φ (t, x0, y0) .







,

for all (t, x0, y0) ∈ [0, T ]× R
M × R

N . Consequently, for every ε > 0 we have

Wε,h (t, x0, y0) = Λε,h (t, x0, y0) = ηε,h (t, x0, y0) .

We continue with the dual formulation for the averaged problem. We denote by

Θ (t, x0, y0) =















































(γ1, γ2) ∈ P
(

[t, T ]× R
M × R

N × U
)

× P
(

R
M × R

N
)

∀ψ ∈ C
1,1
b

(

R+ × R
M
)

and ∀φ ∈ C
1,1
b

(

R+ × R
M × R

N
)

,
∫

[t,T ]×RM×RN×U×RM×RN

(

ψ (t, x0) + (T − t)Lu,fψ (s, x)

−ψ (T, z)) γ1 (dsdxdydu) γ2 (dzdw) = 0 and
∫

[t,T ]×RM×RN×U×RM×RN

Lu,gφ (s, x, y) γ1 (dsdxdydu) γ2 (dzdw) = 0















































where
Lu,fψ (s, x, y) = 〈f (x, y, u) , Dxψ (s, x)〉+ ∂tψ (s, x)

and
Lu,gφ (s, x, y) = 〈g (x, y, u) , Dyφ (s, x, y)〉 ,

for all φ ∈ C1,1
(

R+ × R
M × R

N
)

and all s ≥ 0, (x, y) ∈ R
M × R

N .
We define the following linearized problem

Λh (t, x0, y0) = inf
γ=(γ1,γ2)∈Θ(t,x0,y0)

∫

RM×RN

h (z) γ2 (dzdw) .

We denote by

(26) ηh (t, x0, y0) = sup



































η ∈ R : ∃α ∈ C (R+) with lim
ε→0

α (ε) = 0 s.t. ∀ε > 0,

∃φ ∈ C1,1
(

R+ × R
M × R

N
)

and ψ ∈ C1,1
(

R+ × R
M
)

s.t.

‖φ− ψ‖∞ + ‖∇xφ−∇xψ‖∞ ≤ α (ε) and s.t.

∀ (s, x, y, v, z, w) ∈ [t, T ]× R
M × R

N × U × R × R
N ,

η ≤ (T − t)Lv;εφ (s, x, y) + h (z)− φ (T, z, w) + φ (t, x0, y0)



































,

for all (t, x0, y0) ∈ [0, T ]×R
M ×R

N . Consequently, we can formulate the main result of this section:
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Theorem 14 We have that

Wh (t, x0) = Λh (t, x0, y0) = ηh (t, x0, y0) .

for all (t, x0, y0) ∈ [0, T ]× R
M × R

N .

Proof. In a first step we recall that there exist an optimal measure γ̄t,T,x0,y0;ε =
(

γ̄
t,T,x0,y0;ε
1 γ̄

t,T,x0,y0;ε
2

)

∈

Θ(t, x0, y0; ε) such that

Λε,h (t, x0, y0) =

∫

RM×RN

h (z) γ̄t,T,x0,y0;ε
2 (dzdw)

for all (t, x0, y0) ∈ [0, T ] × R
M × R

N and ε > 0. Moreover, we can find a subsequence and
a probability measure γ̄ such that γ̄t,T,x0,y0;ε ⇀ γ̄ (see Corollary 6 and Remark 7). Using the
definitions of Θ (t, x0, y0; ε) and Θ (t, x0, y0), it is easy to see that γ̄ ∈ Θ(t, x0, y0). Consequently,

(27) Λh (t, x0, y0) ≤

∫

RM×RN

h (z) γt,T,x0,y0
2 (dzdw) = lim

ε→0

∫

RM×RN

h (z) γt,T,x0,y0;ε
2 (dzdw) =

lim
ε→0

Λε;h (t, x0, y0) = lim
ε→0

Wε,h (t, x0, y0) =Wh (t, x0)

for all (t, x0, y0) ∈ [0, T ]× R
M × R

N .
We continue by considering γ ∈ Θ(t, x0, y0) and η ∈ R such that

∃α ∈ C (R+) with lim
ε→0

α (ε) = 0 s.t. ∀ε > 0,

∃φ ∈ C1,1
(

R+ × R
M × R

N
)

and ψ ∈ C1,1
(

R+ × R
M
)

s.t.

‖φ− ψ‖∞ + ‖∇xφ−∇xψ‖∞ ≤ α (ε) and s.t.

∀ (s, x, y, v, z, w) ∈ [t, T ]× R
M × R

N × U × R × R
N ,

η ≤ (T − t)Lv;εφ (s, x, y) + h (z)− φ (T, z, w) + φ (t, x0, y0)

By integrating with respect to γ we obtain that

η ≤

∫

RM×RN

h (z) γ2 (dzdw)

and consequently,

ηh (t, x0, y0) ≤

∫

RM×RN

h (z) γ2 (dzdw)

for all γ ∈ Θ(t, x0, y0). We have that

(28) ηh (t, x0, y0) ≤ Λh (t, x0, y0) .

Using Proposition 19 there exist two families V δε
ε,h ∈ C

1,1
b

(

[0, T + δε]× R
M × R

N
)

and V δε
h ∈

C
1,1
b

(

[0, T + δ]× R
N
)

as in the definition of η (t, x0, y0) s. t.

∀ (s, x, y, v, z, w) ∈ [t, T ]× R
M × R

N × U × R
M × R

N ,

V δε
ε,h (t, x0, y0) ≤ (T − t)Lv;εV δε

ε,h (s, x, y) + h (z)− V δε
ε,h (T, z, w) + V δε

ε,h (t, x0, y0) .

Moreover lim
ε→0

V δε
ε,h (t, x0, y0) = Wh (t, x0). Using the definition of ηh (t, x0, y0), we obtain that

V δε
ε,h (t, x0, y0) ≤ η (t, x0, y0). Consequently,

(29) Wh (t, x0) = lim
ε→0

V δε
ε,h (t, x0, y0) ≤ ηh (t, x0, y0)

By combining the inequalities (27), (28) and (29) we complete the proof.
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6 Characterization of optimal trajectories for the averaged system

As already mentioned in the introduction, when the perturbed system is fully nonlinear it is very
difficult to characterize the optimal trajectories using the Pontryagin maximum principle because
we do not know exactly the form of the averaged dynamics. An alternative to this method is to
look at the support of the occupational measures contained in the set Θ (t, x0, y0) in order to obtain
optimal trajectories from every (t, x0) ∈ [0, T ]× R

M . We denote by

(30) Dε,h (t, x0, y0) =















(η, φ) ∈ R× C
1,1
b

(

R+ × R
M × R

N
)

s.t.

η = inf
(s,x,y,v,z,w)∈[t,T ]×RM×RN×U×RM×RN

{(T − t)Lv;εφ (s, x, y)

+h (z)− φ (T, z, w) + φ (t, x0, y0)}















,

for all (t, x0, y0) ∈ [0, T ]× R
M × R

N .

Remark 15 We note that Θ(t, x0, y0; ε) contains measures with compact support. Consequently,
we may consider that the test functions have also compact support. Moreover, in the previous
formulation, we can replace the infimum over (s, x, y, v, z, w) ∈ [t, T ]× R

M × R
N × U × R

M × R
N

with the minimum over a compact set which contains the support of the occupational measures.

Consequently, we can reformulate the dual formulation as folows:

Wε,h (t, x0, y0) = sup {η, (η, φ) ∈ Dε,h (t, x0, y0)} .

Definition 16 We say that (η̄ε, φ̄ε) ∈ Dε,h (t, x0, y0) is an optimal pair whenever we have
Wε,h (t, x0, y0) = η̄ε.

Definition 17 Let (t, x0, y0) ∈ [0, T ]× R
M × R

N be fixed. We denote by

(31) Ωε,h (t, x0, y0) =











(s, x, y, v, z, w) ∈ [t, T ]× R
M × R

N × U × R
M × R

N s.t.

η̄ε = {(T − t)Lv;εφ (s, x, y) + h (z)− φ (T, z, w) + φ (t, x0, y0)}

for every optimal pair (η̄ε, φ̄ε) ∈ Dε,h (t, x0, y0)











,

(32) Ω 1
n
,h (t, x0, y0) =



























(s, x, y, v, z, w) ∈ [t, T ]× R
M × R

N × U × R
M × R

N s.t.

η̄ 1
n
=

{

(T − t)Lv; 1
nφ (s, x, y) + h (z)− φ (T, z, w) + φ (t, x0, y0)

}

for every optimal pair (η̄ 1
n
, φ̄ 1

n
) ∈ D 1

n
,h (t, x0, y0)

and with φ̄ 1
n
as in the definition of ηh (t, x0, y0)



























and by

(33) 1Ωh
= lim inf

n→∞
1Ω 1

n ,h
.

Note that, as in Section 4, γε ∈ Θ(t, x0, y0; ε) is optimal iff γε (Ωε,h (t, x0, y0)) = 1 for all ε > 0.

Theorem 18 Let (t, x0, y0) ∈ [0, T ] × R
M × R

N be fixed. Then, γ ∈ Θ(t, x0, y0) is optimal iff
γ (Ωh (t, x0, y0)) = 1.
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Proof. First, suppose that γ ∈ Θ(t, x0, y0) is such that γ (Ωh (t, x0, y0)) = 1. In order to shorten
the formulas, we denote by ∆ := [t, T ]× R

M × R
N × U × R

M × R
N . We have the following

∫

∆

h (z) γ(dsdxdydudzdw) =
∫

Ωh(t,x0,y0)

h (z) γ(dsdxdydudzdw) and

∫

Ωh(t,x0,y0)

(

φ (t, x0, y0) + (T − t)Lu; 1
nφ (s, x, y)− φ (T, z, w) + h (z)

)

γ1 (dsdxdydu) γ2 (dzdw) =

∫

∆

1Ωh(t,x0,y0)

(

φ (t, x0, y0) + (T − t)Lu; 1
nφ (s, x, y)− φ (T, z, w) + h (z)

)

γ1 (dsdxdydu) γ2 (dzdw) ≤

∫

∆

lim infn→∞ 1Ω 1
n ,h

(t,x0,y0)

(

φ (t, x0, y0) + (T − t)Lu; 1
nφ (s, x, y)− φ (T, z, w) + h (z)

)

γ1 (dsdxdydu) γ2 (dzdw) ≤

lim infn→∞

∫

∆

1Ω 1
n ,h

(t,x0,y0)

(

φ (t, x0, y0) + (T − t)Lu; 1
nφ (s, x, y)− φ (T, z, w) + h (z)

)

γ1 (dsdxdydu) γ2 (dzdw) ,

∀φ ∈ C
1,1
b

(

R+ × R
M × R

N
)

.

Consider now an optima pair
(

η̄ 1
n
, φ̄ 1

n

)

∈ D 1
n
,h (t, x0, y0) and withφ̄ 1

n
as in the definition of

ηh (t, x0, y0). Using the previous estimation, we obtain
∫

∆

h (z) γ(dsdxdydudzdw) ≤

lim inf
n→∞

∫

∆

1Ω 1
n ,h

(t,x0,y0)

(

φ̄ 1
n
(t, x0, y0) + (T − t)Lu; 1

n φ̄ 1
n
(s, x, y)− φ̄ 1

n
(T, z, w)

)

γ (dsdxdydudzdw) =

lim inf
n→∞

∫

∆

1Ω 1
n ,h

(t,x0,y0)η̄ 1
n
γ (dsdxdydudzdw) ≤Wh (t, x0) .

Consequently, γ ∈ Θ(t, x0, y0) is optimal.

Secondly, let γ ∈ Θ(t, x0, y0) be optimal. For an optimal pair
(

η̄ 1
n
, φ̄ 1

n

)

∈ D 1
n
,h (t, x0, y0) as in

the definition of η (t, x0, y0) we obtain

Wh (t, x0) + α
(

1
n

)

=
∫

∆

h (z) γ(dsdxdydudzdw) + α
(

1
n

)

≥

∫

∆

(

φ̄ 1
n
(t, x0, y0) + (T − t)Lu; 1

n φ̄ 1
n
(s, x, y)− φ̄ 1

n
(T, z, w)

)

γ1 (dsdxdydu) γ2 (dzdw) ≥

∫

Ω 1
n ,h

(t,x0,y0)

(

φ̄ 1
n
(t, x0, y0) + (T − t)Lu; 1

n φ̄ 1
n
(s, x, y)− φ̄ 1

n
(T, z, w)

)

γ1 (dsdxdydu) γ2 (dzdw) =

∫

Ω 1
n ,h

(t,x0,y0)

η̄ 1
n
γ1 (dsdxdydu) γ2 (dzdw)− α

(

1
n

)

= γ
(

Ω 1
n
,h (t, x0, y0)

)

η̄ 1
n
.

and
Wh (t, x0) =

∫

∆

h (z) γ(dsdxdydudzdw) ≥ lim inf
n→∞

γ
(

Ω 1
n
,h (t, x0, y0)

)

η̄ 1
n
≥

Wh (t, x0) γ
(

lim infn→∞Ω 1
n
,h (t, x0, y0)

)

≥Wh (t, x0) γ (Ωh (t, x0, y0)) .

Consequently, γ ∈ Θ(t, x0, y0) is such that γ (Ωh (t, x0, y0)) = 1 Indeed, if γ (Ωh (t, x0, y0)) < 1
we get

Wh (t, x0, y0) =

∫

[t,T ]×RM×RN×U×RM×RN

h (z) γ(dsdxdudz) > Wh (t, x0, y0)

which leads to a contradiction.

7 Appendix

We prove the Proposition 5. We will make use of the following result due to N. V. Krylov (cf. [18],
Theorem 2.1):
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Proposition 19 There exists a constant C > 0 such that, for every δ ∈ (0, 1] , there exists a
function V δ ∈ C

1,1
b

(

[0, T + δ]× R
N
)

(classical) subsolution of (17) defined on [0, T + δ] × R
N

satisfying

(i)
∣

∣

∣
V δ (t, ·)− g′ (·)

∣

∣

∣
≤ Cδ, for t ∈ [T, T + δ] , and

(ii)
∣

∣

∣
V δ (·)− Vg′ (·)

∣

∣

∣
≤ Cδ, on [0, T ]× R

N .

Proof. (of Proposition 5) We have seen that γt,T,x,u ∈ Θ( t, T, x) , for all (t, x) ∈ [0, T ]× R
N and

all u ∈ U . It follows that

(34) Vg′ (t, x) ≥ Λg′ (t, x) .

For any γ ∈ Θ(t, T, x) , whenever (η, φ) ∈ R× C
1,1
2

(

R+ × R
N
)

satisfies

η ≤ (T − t)Lvφ (s, y) + g′ (z)− φ (T, z) + φ (t, x) ,

for all (s, y, v, z) ∈ [t, T ]× R
N × U × R

N , we have

η ≤

∫

RN

g′ (z) γ2 (dz) .

Hence,

(35) ηg′ (t, x) ≤ Λg′ (t, x) <∞.

To complete the proof, one only needs to show that

(36) Vg′ (t, x) ≤ ηg′ (t, x) .

To this purpose, we apply the previous Proposition and get, for every δ > 0, the existence of some
regular V δ such that

∂tV
δ (t, x) +H

(

t, x,DV δ (t, x)
)

≥ 0,

for all (t, x) ∈ [0, T ]×R
N . Thus, choosing C as in Proposition 19, for every (t, s, x, y, z) ∈ [0, T ]2 ×

R
3N and every v ∈ U , one has

V δ(t, x)− Cδ ≤ (T − t)LvV δ (s, y) + g′ (z)− V δ (T, z) + V δ(t, x).

Hence,

V δ(t, x)− Cδ ≤ ηg′ (t, x) .

The inequality (36) follows by passing to the limit as δ → 0 and recalling that Proposition 19 (ii)
holds true. The proof of our Theorem is now complete.
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