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Abstract: Dynamic time warping (DTW) is a famous distance to compare two mono-stroke
symbols online. It obeys boundary and continuity constraints. The extension of DTW to
multi-stroke symbols raises specific problems. A naive solution is to convert the multi-stroke
symbol into a single one via a direct concatenation in the handwriting order. However, people may
write a symbol with different stroke directions and orders. Applying a brute force mieythod
searching all the possible directions and orders leads to prohibitive calculation times. To reduce
the searching complexity, DTW-A* algorithm, which keeps the continuity constraint during each
partial matching and reduces the searching complexity by using the A* algorithm, is proposed.
Experimental results on a flowchart dataset mainly containing multi-stroke symbols erithiaat
DTW-A* algorithm helps to achieve the highest recognition rate and stability in crodatiai,

as compared with such two other algorithms as Candmodified Hausdorff distance.
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O Introduction

In this paper, a distance applied to on-line handwritiitgpse basic elements are temporal
point sequences (strokes), is proposed. A sequence is started from the pen-down point and is ended
at the pen-up point, with variable point number. Based on the elastict@gioint matching, the
famous DTW algorithm computes the distance between two seqtericestwo single-stroke
symbols,andobeys continuity and boundary constraints during the matching.

Many works'? extend the temporal continuity constraint to a spatial continuity constraint in
two spatial dimensions. It aims at finding a mapping between two sets of points (pixels). The
contribution of this paper is to focus on how to design a matching between two sets of sequences,
i.e. two multi-stroke symbols.

Each instance of a handwritten graphical symbol is different from the other because of the
variability of human handwriting. Different people may write a visually sanmbel with
different stroke directions and orders. In writer identification, these characteristicsohelp t
efficiently distinguish writers®. However, to understand or communicate the same symbol
written by different writers, stroke direction and order could be ignored. For instanaapal sy
containing a horizontal stroke “—” can be written by two different approaches, namely the way
from left to right “—”or an inverse way “<—”. Comparing two opposite direction strokes, the DTW
distance disfrw(—, <) naturally produces a large value because of two inverse directions. A
simple solution is to choose the smaller distance between two possible directions of one stroke:
min(disbrw(—, <), disbrw(inv(—), <)), where inv(.) is an operator for reversing stroke
trajectory direction.

However, when comparing two multi-stroke symbols, the number of possible directions and
orders increases very fast as a function of the stroke number. Table 1 illustrates an example of how
to write “E” within four strokes. With this example, 384 different writing sequences are possible.

This example shows the complexity of the combination of different stroke directions and orders.
In general, the number of different temporal writing paths for a symbol is given by
Sy =NIX2V =2XNXSy_q 1)



where N is the stroke number of a symbol. For calculating the DTW distance between two
multi-stroke symbols, a simple solution is to concatenate the strokes using different stroke
directions and orders.

Table 1 Variability of stroke direction and order of on-line handwritten symbol

Stroke | Combination Wri
. . riting Method
Number | Example) * Nymber Tcmm\m]rlllu\ll:.‘uicvn
N) (S)
1 —_ 2 — —
s— i | — — ff— f—
— D — d— — —
) e —  G— f—
|— — —> —
— I— p—
| oe |- -
4 |: 384

For example, for the DTW distance betwel=1 (4 strokes) and= (2 strokes), 384 x 8 =
3092 possible matching should be calculated. This large combination number is due to different
writing orders ofN strokes I{!) and due to the two directions of each written ord®).(2

In a more extreme case, we can get rid of all the temporal information and consider the
symbol as a set of points ignoring the sequences they produce. This leads to the ese of th
Hausdorff distancd’. This metric is mainly used in image processing domain. Furthermore,
another varied version is the modified Hausdorff distance (MFID)

However, there exists one disadvantage that the temporal continuity property of sequences is
ignored. In this paper, a distance between two multi-stroke symbols is proposed, whiakdis call
DTW A* andpreserves the temporal continuity constraint. In the investigation, the classical DTW
between two sequences is first recalled, and is then extended to process two sets of sequences.
Finally, the corresponding experimental results are presented and a conclusion is drawn.

1 DTW Between Two Point Sequences

We start with the simple case in which the two characters are composed of only one stroke,
respectively. In this case, two strokes (two time-varying-data sequences), densted(pg1),
P1(2),... ,p1(Ny)) and S, = (p2(2), p2(2),... ,p2(N2)), are compared. Giving a warping p&th) =
(i(h),j(h)), 1 <h < H, defining the pointe-point associated pairs whemnds a pair index from the
i(h)th point inS; and from thg(h)th point inS,. P(h) should consider the boundary constraint and
the continuity constraint. It means that the first two beginning points should be matchedva the t
strokes, and so do the two ending points. The second temporal continuity constraint implies that
the pointto-point matching shift is equal to one. In addition, all the points are matched at least for
one time. Calculating the distance between two sequences involves the search of a warping path
that minimizes the sum of the poitmpoint associated cost function:

i H
D($1,52) = iy . dist (py (1), . ). @
h=1

where dist(.,.) is the Euclidean distance in the point feature space.
The solution to Eqg. (2) can be resolved by means of dynamic programming. The dynamic
programming searches the minimum warping path from a cumulative distance matrix



D(Gi—1,;h—1)
D(i,j; 0) = dist(py (), p;()) + miny  D(i,j—1; h— 1) (3)
D@i—-1,j— 1;h—1).
with D(i, j; 0) = 0 for initialization. Once the cumulative distance matrix is computed, we can use
backtracking to find the minimum warping path.

The Starting
Point Couple

Fig.1 Two point sequences (two single-stroke symbols)

Fig.1 illustrates an example of matching two single-stroke symbols. The starting point couple
is marked with the two circled points. The search for the next couple is obtained with. Bde (3)
first compute a cumulative distance matrix as explained in Fig. 2. The best warping path can be
found by means of backtracking from the ending point couple to the starting point couple to obtain:
P(1), P(2),...,P(9) = (1,1), (2,2), (3,3), (3,4), (4,5), (5,5), (6,6), (6,7), (6,8). We can see that, once
we define the starting point couple and the ending point couple, the best warping path will be
found. In Section 2, a comparison between two sets of point sequences will be introduced.

F(:ils&t:gﬁ 1 2 3 4 5 6 7 8 =N,
1 % 14
2 2 o 13.3
3 3143 13
4 s 12.2
5 55 6.9 1.2
N=6 |95 987 68 6782102 Backtracking

Fig. 2 The cumulative distance matiii, j; h) of Eq. (3) illustration and the best warping path

2 DTW Between Two Sets of Sequences

Here, we propose to extend the DTW algorithm to compare two multi-stroke symbols (i
two sets of sequences). A traditional method is to concatenate the strikefandwritten order
1 Therefore, the distance between two multi-stroke symbols can be computed usirf). D&V
call this method the classical DTW. However, because of the stroke-order and strokerdirecti
variation among writers, the classical DTW cannot easily match some symbols as disttissed i
introduction. The MHD is a possible solution to cope with this variation. In this paper, the MHD
between two symbols$( = {pti;} and S, = {pt;»}) is defined as

MHD(S,,S,) = ————(hd(5,,S;) + hd(S,,5,)) (4)
511 + |52
hd(51,5;) = Tpe,es, min  (dist(ptyy, ptiz))
where Pliz € 5 . The MHD here is slightly different from that

defined in Ref. [5]. We choose an average distance rather than a maximum distance between two
point sets to prevent the effect of outliers. However, the MHD does not consider the continuity
constraint.

We now introduce a new distance called DTWtd*compare two multi-stroke symbols by
keeping the continuity constraint.

Basically, as with the classical DTW, a padiatpoint distance matrix is built via the dynamic
programming. Giving two multi-stroke symbols, rows and columns of this matrix reprbsent t



two symbols, respectively, as shown in Fig. 3. The strokes of one symbol are placed in one side
(rows or columns). The respective positions of the strokes in the two sequences are iaabbvant
their matching has not to respect the temporal order.

The main idea insists in iteratively constructing a small warping path until all the poénts
used. Once we choose a starting point couple, four possible directions of warping path are possible.
Each direction represents a pdiotpoint distance matrix for matching two strokes or two
sub-parts from two strokes. In each iteration, we search a warping path that minieuipésw
cost and finishes at least one stroke. To find the best warping path, four cumulative distance
matrices (see Fig. 3) are explored in four directions, respectively.

For example, giving two symbols, one contains two strokes while the other contains one
stroke, the two strokes of the first symbol are placed in rows and the strokesettimel symbol
is placed in columns (one for each point), as shown in Fig. 3. Once we defineng gtairtt (the
small rectangle in the middle of Fig. 3), there are four possible matching directionpd$silsle
warping paths) corresponding to four cumulative matrices. In each cumulative matrix, we can
apply the classical DTW algorithm described in Fig. 2 to find the minimum costnggppth. We
allow, however, DTW algorithm to not stop at the diagonal opposed point (the ending point) in the
cumulative distance matrix but along the borders of the matrix (red cross signs).

Symbol 2
Str3
CDMbg— —&

Strl 4 Four directions
Symbol l{ CDMAR— R Ve

77 Possible Ending Point
tr2 = s
S CDM:
Cumulative Distance Matrix

CDM2

Fig. 3 Defining a starting point couple (the rectangle) and finding a warping path between the
two-stroke symbol (symbol 1) and the single-stroke symbol (symbol 2) in four directions

In fact, from Fig. 2, it can be found that the warping path stoppif§%t(6, 8) is not the
best as the distance increases @{&). This warping path can be cut by choosing the minimum
distance among the points of the cumulative matrix edgés:Ny), D(2, Np), ..., D(N1, N,) and
D(Ng, 1), D(Ny, 2), ...,D(N;, Ny). In reality, we first calculate the whole cumulative distance
matrix till to the end of both two strokes. Then the warping path stops when fingitiingt least
one of two strokes. Thus, a new ending point couple is obtained. For exampl&ig. 2, we
choose the sub-path: (1, 1), (2, 2), (3, 3), (3, 4), (4, 5), (5, 5), (6, 6).

With this strategy, starting point couples are chosen to associate the two sub-sequbnces wit
respect to the continuity constraint in each step. In each step, we choose a starting point couple
again from non-used points of the two strokes. The searching procedure finishes until all the
points are associated in the warping path. Our objective is to find the warping path thatesinim
the associated cost in Eq. (2). The distance of D¥\W¢ normalized by the number of couples.

Fig.4 shows the best warping path for associating two sets of point sequences. This solution
contains four DTW sub-warping paths, which are obtained from Step 1 to Step 4. The matching
directions are not necessary to be the same. A set of sub-warping paths which mithiemizes
associated cost (the sum of pdidpoint distances) are sehed

However, there are a large number of possibilities. To search the best warping path, an A*
algorithm™ is used to accelerate the search as discussed in Section 2.1.

2.1 A* Algorithm



In this section, the A* algorithm (A stdf} to limit some futureless exploratioissintroduced.
It iteratively searches the best path in a graph from the starting node (empty assoaidteéd poi
the ending node (all associated points). However, not all the possible nodes are generated because
of a heuristic function in the A* algorithm. In each step, only the best hypothesis aseskfir
the next step.

Syml Sym2 Syml Sym2 Syml Sym2
S)fr_rll Sym?2 i —t _— ? &
Strl § Strl I e o=
P z ;L
Str3 Str3 : @ Str3
Sir2 I StrZI_ _ smT j
o i) ®
Str3 Str3
. e e i, -t ., : e il . -
Sl g e sl g Strl Strl
 — * S R T : e
Str2 St2 4 Str2 Str2
(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4

Fig.4 A solution of warping path between two symbols (graphic and matrix views)

The A* algorithm uses a distance-plus-cost heuristic funéfigre g(x) + h(x) at each step.
The cosig(x) represents the cost of the best warping path from the starting step to the current step
X, and the heuristic cohk(x) estimates the minimum distance to the ending step. Ref. [7] described
the A* algorithm in detail. In this section, we define the two functions, nagtglyandh(x), for
our problem. Considering the heuristic distah€g it should be as large as possible but equal to
or less than the real optimal distance for reaching the ending step, which meahs) ttsat
admissible.

We first define each stepby a warping pati®,(h)=(ix(h), jx(h)), 1 <h <H,, between the two
symbolsS, = (p1(2), p(2), ..., p(N1)) andS; = (p2(1), p2(2), ..., p2(N2)). The warping path is a
sequence of associated index pairs. Its cost is defined by the sum of pair costs:

Hy
gx) = Z dist (pl(ix(h))x 2] (jx(h)))' ©
h=1

Defining a set of non-used points NUPt(Syr),for a symbol Sym in steg the heuristic codi(.)
therefore can be defined by

1
h(x) = E(hsub(xush SZ) % hsub(x-52: Sl)) (6)
where
how(® S0 $) = Y dist(p (0,0 (py,5,)) -
p1()ENUPLt(Sq,x)
np(py,Sp) = argmin - dist(py,p, ()
and p2(j) € NUPt(Sp, x) . This heuristic distancé(.) is admissible

because we always choose the minimum distance between the two sets of non-used pair points
during the association of the point pairs.

Even though the A* algorithm is used to accelerate the searching, the number of
combinations is still large. In order to further reduce the combination numbers, we tnjt tinéi
number of starting point couples rather than using all the non-used point couples. This strategy



will be developed in Section 2.2.
2.2 Choosing Sarting Points
In order to generate next steps from stepne have to choose a non-used starting point
couple, which is used for starting up two sequences with a matching in four directions in
maximum. For each direction, a new siepbtained. Although the A* algorithm can reduce the
searching complexity, there are still many possibilities when using all the non-usexifpoiat
next step. In this section, we propose a strategy to limit the starting point couple generation.
Defining the non-used segments in stdpr each stroke in a symbol Sym by Segs(Sym,
the boundary points of these segments are defined by FSeg{yiset of new starting point
couples {{i, p;)} between two symbols§, and S, are produced from FSegj( x) to the closest
points in Seg$, X), and vice versa:

{(pip;)} = {Vp: € Fseg(5,,x),  Vseg € Segs(S,,x), (p;, nnp(p;, seg))}
U (8)

[ij- € Fseg(S,,x), Yseg € Segs(S,,x), (nnp(pj—, seg),pj)}

Fig.5 shows the possible starting point couples of the first step in Fig.4 which is as
considered as the stapln this case, there exist three starting couples, namely (P1, P6) with only
one direction, (P1, P8) with two possible directions and (P5, P11) with only one possible direction.
In the general case, up to four directions have to be considered. All the possibititexglored
by the A* algorithm for searching the best warping path.

Syml Sym?2

-
Strl ? l

PLG@ ..
5 P8
Str2 p; P9
P4 P10 ;
[ — p11 <> Boundary points

Step x

Fig.5 Three starting point couples (P1, P6), (P1, P8) and (P5, P11) for starting the second step in
Fig.4

By limiting the number of starting couples, fewer branches are explored from the cupent st
It has two consequences: the sysiefaster but we cannot guarantee to select the best solution. In
the next section, we will present experimental results of D¥FVelgorithm.

3 Experiments

In this section, we first display a qualitative matching between two patterns seetftain
intuitively understand how it works. Second, a handwriting datssg@iresented. Then, the
performances of three distances (DTW A*, Classical DTW and MHD) are compared on a
handwriting dataset.

Fig. 6illustrates the matching between two allographs of “x”. Our algorithm finds the best
solution in 5 steps which are 5 sub-warping paths. The first two steps show thé&o{pmiimit
matching of the topeft branch of “x”. The bottom-right branch is matched in the third step, etc.



Our algorithm can cut the strokes into sub-graphemes which minimize the DTW distance between
segments from two symbols.

7o O X T X

(a) Two different “x” (b) Step 1 (c) Step 2
(d) Step 3 (e) Step 4 (f) Step 5

Fig. 6 The best solution of twx”

In order to assess the recognition efficiency of DTW A*, we first present a hamdwriti
dataset evaluated bykeNN classifier. The handwriting dataset is a realistic handwritten flowchart
dataset namedrC dataset®. We also use six different graphical symbols (six classes) that
represent the basic operations (data, terminator, process, decision, connection and arrow) without
any handwritten text, as displayed in Fig. 7. This data set contains a training part (3645)symbol
and a test part (2494 symbols). In average, each symbol contains 2.4 strokes. As we can see, most
symbols on the \textit{FC} dataset are composed of more than one stroke. People teay wri
strokes in a symbol with different orders and directions.

cprmpction

1 2
"Lﬂ_l W

- PEOCESS

-

ek decision R I provess

_;____":5‘“
B ‘T‘: !’1‘;‘\\
Fig. 7 An example of flowchart on the FC dataset

Table 2 shows the recognition rates of three algorithms. DTW A* is slightly better (97.47%
than the classical DTW (96.79%), and more surprisingly MHD is also very efficient (97.31%).
One explanation is that, for flowcharts, the sequence information is very irrelevatiasitds
better not to rely on. With the classical DTW, the strokes from one symbol are just comchtenat
so that the time information is strongly kept. Thus, when a symbol is written ifeeedifstroke
order, the same stroke order should exist in the train datasetlef\tNe To study the sensitivity
with respect to the training size set, a 5-fold cross validation with a smaiténgy set size is also
proposed. We can notice that DTW A* is quite stable (96.90%) although only one fifth of the
training samples are available. Conversely, the performance of the classical DTW @&@b338%6,
in that case missing samples of the training set are not compensated by the flefitifity
matching process.

Even though we have optimized a lot for the A* algorithm in terms of times tiil
time-consuming and memory-consuming (storing a large number of hypotheses). In average, each
comparison takes 0.04 s, but some of them consume several seconds.



Table 2 Results of k-NN classification (k = 5) and cross-validation on the FC dataset %

DTW A* | Classical DTW| MHD

Normalk-NN 97.47 96.79 97.31
Cross-Validation | 96.90 91.33 95.65
Decrease 0.57 4.86 1.66

4 Conclusions

As the brute force method produces a large number of possibilities, a distance between two
sets of sequences is proposed, which keeps the continuity during each small matching. The
proposed distance, namely DTW A*, uses the A* algorithm to reduce the comgaledionly the
promising candidates@considered. In addition, we limit the starting point couples. By the test
on the FC dataset which contains flowchart symbols, it is found that the proposed DTW A*
distance slightly outperforms the classical distances of DTW and MHD. The DTW A* remains
quite stable during the cross-validation test. Howatés, still not fast enough in practical usage.
Further limitation of the starting point couples is a possible solution.
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