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Abstract

Many systems exhibit a phase where the order parameter is spatially modulated. These patterns

can be the result of a frustration caused by the competition between interaction forces with opposite

effects.

In all models with local interactions, these ordered phases disappear in the strong segregation

regime (low temperature). It is expected however that these phases should persist in the case of

long range interactions, which can’t be correctly described by a Ginzburg-Landau type model with

only a finite number of spatial derivatives of the order parameter.

An alternative approach is to study the dynamics of the phase transition or pattern formation.

While, in the usual process of Ostwald ripening, succession of doubling of the domain size leads

to a total segregation, or macro-segregation, C. Misbah and P. Politi have shown that long-range

interactions could cause an interruption of this coalescence process, stabilizing a pattern which then

remains in a micro-structured state or super-crystal. We show that this is the case for a modified

Cahn-Hilliard dynamics due to Oono which includes a non local term and which is particularly

well suited to describe systems with a modulated phase.
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I. INTRODUCTION

Many systems exhibit phases where the order parameter is spatially modulated and forms

a pattern [1]. These phases are the result of a frustration caused by the competition between

interaction forces with opposite effects.

For example, in a blend of polymers, the difference of interaction energies between homo

and hetero polymers generates locally a repulsion between heteropolymers which leads to a

macroscopic segregation. But for diblock co-polymers which are built with two heteropoly-

mers A and B which are attached to each other by a chemical bond, such a macroscopic

global phase separation is prohibited. They form a disordered phase at high temperature

(when the entropic effects prevail), but below a critical temperature, whereas energetic con-

siderations should lead to segregation, this chemical binding prevents separation between A

and B heteropolymers over a long distance : the two components A and B self-organized in

patterns or domains of finite size (mainly lamellar or hexagonal) in order to minimize nev-

ertheless contacts between heteropolymers en thus the energy of interaction. The relative

density in heteropolymers is thus spatially periodically modulated. This spontaneous mi-

crostructuration could be helpfull to design a new generation of solar cells based on organic

semi-conductors[2].

In all models with local interactions, these ordered phases disappear in the strong segre-

gation regime (low temperature). It is expected, however, that these phases should persist in

the case of long-range interactions, which can’t be correctly described by a Ginzburg-Landau

type model with only a finite number of spatial derivatives of an order parameter (which

can be defined in our preceding example from the relative density in the two components A

and B).

An alternative approach is to study the dynamics of phase transition. While, in the

usual process of Ostwald ripening, succession of coarsening events with doubling of the

domain size leads to a total segregation, or macro-segregation, C. Misbah and P. Politi

[3] have shown that long-range interactions could cause an interruption of this coalescence

process, stabilizing a pattern that remains consequently in a micro-structured pattern or

super-crystal.

We show here that this is the case for the equation of Oono[4], which is particularly well

suited to describe the dynamics of systems with a modulated phase.
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II. DYNAMICS OF PHASE TRANSITIONS

A. Time-Dependent Ginzburg Landau equation

1. Derivation of the model

Different equations can be used to describe the dynamics of a phase transition depending

on, for example, if the order parameter is a scalar or a vector, and whether it is conserved

by the dynamics or not (for a review see [6, 7]).

As at equilibrium, this order parameter must minimize a free energy, the dynamics out of

equilibrium must then involve deviation from this stable order parameter value or function,

just like in a simple mechanical system. The simplest dynamics based on Ginzburg-Landau

free energy for a scalar order parameter is the TDGL (Time-Dependent Ginzburg Landau

or model A in Hohenberg and Halperin classification[6]) which writes

∂u

∂t
(r, t) = −δFGL

δu
= ∇2u− ε

2
u− 2u3 (1)

In this equation, u (r, t) is a macroscopic order parameter which is a coarse grained of

a microscopic order parameter in a small volume around the postition r. And ε is the

dimensionless control parameter, usually the reduce temperature ε = T−Tc

Tc
where Tc is the

critical temperature of the phase transition. This partial differential equation is invariant

by the transformations u → −u and xi → −xi+ai. FGL is the Ginzburg-Landau free energy

local density or Lyapounov functional in the context of dynamical systems :

FGL =
1

2

(
(∇u)2 +

ε

2
u2 + u4

)

The non-local term (∇u)2 prevents discontinuity or roughness of the order parameter and

assigns energetic overcost to its variations in proportion with their sharpness. When looking

at the temporal evolution of the free energy
∫
FGL(r, t)dr :

d

dt

∫
FGLdr =

∫
δFGL

δu
.
∂u

∂t
dr =

∫
δFGL

δu
.(−δFGL

δu
)dr = −

∫
(
δFGL

δu
)2dr < 0

One notices from equation 1 that the dynamics will induce a change of u (r) as long as

it hasn’t reached a minimum of the free energy density FGL. If one looks for homogeneous

states (where the order parameter is independent of the spatial coordinates) to be stationary

states of this equation, they will be the extrema of the Landau potential V (u) = ε
2
u2 + u4
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FIG. 1: Landau potential as a function of u, the amplitude of the order parameter. We have plotted the

profil of this potential above and below the pitchfork bifurcation at ε=0.

For ε > 0, the potential is a convex function and there is only one minimum, u = 0.

For ε < 0, the Landau potential is a concave function around u = 0, which is now a maximum ; two other

solutions have now appeared as miminum of the potential, symmetric one each other.

which is plotted in Fig. 1 for the two possible signs of the control parameter. For ε > 0, the

only extremum is u = 0, so there is only one homogenous solution, which is stable, being

a minimum of the Landau potential (which is a convex function as long as ε > 0). When

ε < 0, this potential is now concave in a neighborhood of u = 0, which is now a maximum

and thus is now linearly instable. Two other symmetric solutions u = ±
√
−ε
2

have now

appeared due to this pitchfork bifurcation. They are the new stable homogeneous solutions

and correspond to a minimum of the potential Vmin = −ε2/32.
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2. Linear stability analysis

Linear stability analysis consists in computing the growth rate of small fluctuations of a

solution. When linearizing equation (1) around u = 0 (i.e. when neglecting the nonlinear

term u3) one gets
∂u

∂t
(r, t) = −ε

2
u+∇2u

Considering this equation in the Fourier space we can decompose u in Fourier series in

the case of a finite size problem or Fourier transform in the infinite case :

u(r, t) =
∑

q

uqe
iq·r+σt (2)

where uq is the amplitude of the Fourier mode at t = 0. For example, it can be the

thermal fluctuations proportional to T . This mode decomposition enables to compute the q-

dependence of the amplification factor σ(q) (or growth rate or imaginary part of k = q−iσ) :

σ(q) = −(q2 +
ε

2
) (3)

σ(q) is negative for ε > 0, and thus the homogeneous solution u = 0 is unstable with

respect to fluctuations of the order parameter. The whole band 0 < q <
√

(−ε/2) is linearly

unstable as σ(q) > 0 (see Fig. 2)

FIG. 2: Amplification factor σ(q) computed via linear stabily analysis of the time-dependent

Ginzburg-Landau equation (TDGL). It is positive (growth of the modulations) for all the modes

q <
√

−ε
2 .
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3. Symmetry breaking and conservation law

The linear stability analysis enables to conclude that the most instable mode is for q = 0 :

it is thus a long wave instability, which will give rise to large homogeneous domains and

imply spontaneous symmetry breaking. This is the case, for example, in magnetic systems.

But if there is a conservation law, as for example a conservation of mass, such an in-

stantaneous symmetry breaking is prohibited : the matter, or the different species diffuse

with a finite characteristic time. Hillert [8], Cahn and Hilliard [9] have proposed a model

to describe segregation in a binary mixture. This equation, later on denoted C-H for Cahn-

Hilliard, corresponds to model B in the Hohenberg and Halperin classification[6]. Cahn-

Hilliard dynamics is the minimal equation describing phase transition for a conserved scalar

order parameter. As this conservation law prevents global symmetry breaking, it will gener-

ate numerous domains and interfaces separating them. This dynamic governs a whole class

of first order phase transition like the Fréedericksz transition in liquid crystals [10], segrega-

tion of granular media in a rotating drum[11], or formation of ripple due to hydrodynamic

oscillations [13, 14].
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B. Model B or Cahn-Hilliard equation

1. Derivation of the model

Cahn-Hilliard dynamics is a modified diffusion equation for a scalar order parameter u,

which writes :

∂u

∂t
(r, t) = ∇2(

ε

2
u+ 2u3 −∇2u) = ∇2(

δF

δu
) (4)

In the original work of Cahn and Hilliard, u (r, t) represents the concentration of one of

the components of a binary alloy. But it can also be the fluctuation of density of a fluid

around its mean value, or concentration of one chemical component of a binary mixture, or

the height of a copolymer layer[15]..

As in model A, this equation is invariant by the transformations u → −u and xi →
−xi + ai and when looking at the time evolution of the local quantity F (t) , we still have :

dF

dt
=

δF

δΦu
.
∂u

∂t
=

δF

δu
.∇2(

δF

δu
) = −(∇δF

δu
)2 < 0

In order to derive a conservative dynamics, such that
∫
Φ(x, t)dx = cste, one can start

from a detail balance [16] , or from a conservation equation for the order parameter Φ.

∂u

∂t
= −∇ · j

where j is a matter current associated with u. This current is related to the gradient of

the chemical potential µ via the Hartley-Fick law : j = −∇µ). And this chemical potential

is itself related to the functional derivative of the free energy µ = δF
δΦ
. This phenomenological

approach enables to recover the C-H equation(eq 4).

If one looks globally at the quantity
∫
u(x, t)dx =< u >, the Cahn-Hilliard gives

d < u >

dt
=

∫
∂u

∂t
(x, t)dx =

∫
∇2(

δF

δu
(x, t))dx =

[
−(∇δF

δu
)

]

So, apart from boundary terms, the order parameter is indeed a conserved quantity.

2. Linear stability analysis
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FIG. 3: Amplification factor σ(q) computed from the linear stability analysis of Cahn and Hilliard

equation

Stationary states of the (C-H) are again the extrema of the Landau potential V (u) =

ε
2
u2+u4. And after a quench, the system undergoes a first order phase transition associated

with the pitchfork bifurcation from the u = 0 solution to the symmetric solutions u = ±
√
−ε
2

.

But due to the conservation law, the dynamics is different as Cahn and Hilliard have shown

via the linear stability analysis of equation (4) around u = 0.

∂u

∂t
(r, t) = ∇2 ε

2
u−∇4u (5)

one gets for the amplification factor in the Fourier space σ(q) :

σ(q) = −(q2 +
ε

2
)q2 (6)

So, as σ(q) is negative for ε > 0, the u = 0 solution is stable with respect to small

fluctuations of the order parameter. For negative ε, Fig 3 shows a band of instable Fourier

modes, as σ(q) > 0 for 0 < q <
√

(−ε/2). Moreover, linear stability analysis of C-H predicts

that the most instable mode is not anymore for q = 0 but for qC−H =
√−ε/2 (for which

σmax = ε2

16
). This wave number of maximum amplification factor will dominate the first

stage of the dynamics which is called the spinodal decomposition; this explains in particular

why the homogeneous domains appear at length scales close to L = λC−H/2 = π/qC−H , half

the wave length associated with the instability. For longer times, interfaces separating each
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domain interact through Ostwald ripening or coarsening, causing < L > to change slowly

toward higher values.

III. CAHN-HILLIARD EQUATION

A. On the periodic solutions of Cahn-Hilliard equation

When the equation is studied for a constant negative ε, via a rescaling of u (as
√−εu),

position r (as r/
√−ε) and time (as t/|ε|2), we observe that we could restrict the dynamics

to the case ε = −1. So later on, we will study the equation

∂u

∂t
(r, t) = ∇2(−1

2
u+ 2u3 −∇2u) (7)

In 1D, a family of stationary solution of this nonlinear dynamics is the so-called interface-

lattice solutions (or soliton-lattice), which writes :

Uk,ε(x) = k∆Sn(
x

ξ
, k) with ξ = ∆−1 =

√
2 (k2 + 1) (8)

where Sn(x, k) is the Jacobian elliptic function sine-amplitude, or cnoidal mode. This family

of solutions is parametrized by the Jacobian modulus k ∈ [0, 1], or ”segregation parameter”.

These solutions describe periodic patterns of period

λ = 4K(k)ξ, where K(k) =

∫ π
2

0

dt√
1− k2 sin2 t

(9)

is the complete Jacobian elliptic integral of the first kind. K(k) together with k, characterize

the segregation, defined as the ratio between the size of the homogeneous domains, L = λ/2,

and the width of the interface separating them, 2ξ. The equation (9) and the relation

ξ = ∆−1 enable to rewrite this family as :

Uk,λ(x) =
4K(k) · k

λ
Sn(

4K(k)

λ
x, k). (10)

and using equations (8) and (9), we find that for a stationary solution, λ, and k have to be

related one another through the following implicit equation (or the state equation) :

λ2 = 2(1 + k2) (4K(k))2 . (11)

Using equations (10) we can compute the free energy per unit length

FGL(k, λ) =
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(
4K

λ
)2
[−ε

4
(1− E

K
) +

(
1 + 2k2

6
− E

6K
(1 + k2)

)
(
4K

λ
)2
]

where E(k)is the complete Jacobian elliptic integral of the second kind. The absolute

minimum for FGL(k, λ) is for k = 1 and λ = ∞, i.e. for complete segregation with a single

interface.

B. Stationary States of the Cahn-Hilliard Dynamics

The dynamics starts initially with k = 0, for which U(x) describes a sinusoidal modulation

of almost vanishing amplitude around the high temperature homogenous stationary solution

u = 0

Uk→0,ε(x) = k

√
1

2
sin(

√
1

2
x) (12)

= k
2π

λC−H
sin(

2π

λC−H
x) = kqC−H sin(qx)

The spinodal decomposition dynamics will saturate and reach a stationary state which is a

periodic pattern with a finite domain length (weak segregation regime) for which λ = λC−H ,

and k = ks
0 =0.687 so as to satisfy (11), i.e k is solution of the implicit equation :

2(1 + ks2
0 )K(ks

0)
2 = −ε0λ

2
C−H

16
= π2 . (13)

The amplitude of the modulation is then ks
0∆

s
0=0.400

√−ε0, which is different from ub.

Using linear stability analysis, Langer has shown that the stationary profile thus obtained,

u0(x) = Uks
0
,λC−H

(x), is destroyed by stochastic thermal fluctuations [16]. He has identified

the most instable mode as an ”antiferro” mode, leading to an infinite cascade of period

doubling [17]. Disorder of the pattern is also a cause of Ostwald ripening : if the periodicity

of the interface-lattice is broken, either when the distance between theses interfaces or when

the bulk value in the different domains become non-constant, coarsening is triggered by

diffusion of matter between neighboring domains : big domains will then absorb smaller

ones [18].
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C. Coarsening

When considering the C-H equation 4 as a diffusion equation, P. Politi and C. Misbah

have shown that there should be coarsening as long as dν/dλ is positive, where ν is the

amplitude of the modulation and λ its [3]. As in Cahn-Hilliard dynamics

ν = k∆ = k

√ −ε

2(k2 + 1)
and λ = 4K(k)ξ = 4K(k)

√
2(k2 + 1)

−ε

are two growing functions of the parameter k, this diffusion coefficient will always remain

positive and coarsening will proceed until λ → ∞ (as in Fig. 4 left).

FIG. 4: Left : evolution of the amplitude of the modulation of the stationart states as a function of the

period, in the cases of a Cahn-Hilliard dynamics. As dν/dλ is always positive, the pattern will rippen until

all the interfaces disappear but one (note that as dν/dλ → 0, there is a slowing down of the coarsening

process). Right, a model where dν/dλ changes sign : the coarsening will then be interrupted.

When looking at Figure (1), one can see that the bulk energy is decreasing when the

amplitude varies from ν = 0 to ν = ±
√
−ε
2

, that is, when the segregation increase. Meanwhile,

the interfacial energy is proportional to the period, we finally get that the total energy

decreases when the period of the stationary solutions gets longer and longer. But for other

dynamics (as in Fig. 4 right), dν/dλ can change of sign as we will see in the following :

segregation then remains partial. P. Politi et C. Misbah speak then of interrupted coarsening.

IV. OONO’S MODEL

A. Derivation of the model

We would like to work out the period of modulated phase systems for which there is

a competition between two types of interactions: a short-range interaction which tends to
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make the system more homogeneous together with a long-range one, or a non-local one,

which prefers proliferation of domain walls. This competition results in a microphase sep-

aration with a preferred mesoscopic length scale. These systems forming a super-crystal

can be studied using a modified Landau-Ginzburg approach, derived from Cahn-Hilliard

equation and of practical use for numerical simulations [4]:

∂u

∂t
= (∇2 δFGL(u)

δu
)− β2u = ∇2(

−1

2
u+ 2u3 −∇2u)−

(
β

4

)2

u. (14)

The −β2u term models in the Cahn-Hilliard equation the long-range interactions, which

prevents the formation of macroscopic domains and favors the modulation. We will see that

the inclusion of such a term, following Oono, enables to describe the behavior of modulated

systems at T much lower than Tc. If we suppose, for example, that in a 3D problem, the

long-range interaction decreases like 1
r
, the full free energy density writes

F (u) = FGL + Fint (15)

=
1

2
(∇u(r))2 +

−1

4
u2(r) +

1

2
u4(r) +

∫
u(r′)g(r′, r)u(r)dr′ ,

where g(r′, r) = 4π
(β

4
)
2

|r′−r| in D=3, or |x′ − x| in D=1.The long-range interaction g(r′, r)

corresponds to a repulsive interaction when u(r′) and u(r) are of the same sign : thus it

favors the formation of interphases. If we want to study the dynamic of this phase separation,

we use the Cahn-Hilliard equation :

∂u

∂t
= ∇2

r

(
δF (u)

δu

)
(16)

= ∇2
r

(−1

2
u+ 2u3 −∇2u+

∫
u(r′)g(r′, r)dr′

)
.

If one recalls that −1
|r′−r| is the Green’s function associated with the Laplacian operator ∇2

r

in 3D, the preceding equation then transforms into

∇2
r

(∫
u(r′)g(r′, r)dr′

)
=

∫
u(r′)∇2

rg(r
′, r)dr′ (17)

= −
(
β

4

)2 ∫
u(r′)δ(r′, r)dr′ = −

(
β

4

)2

u(r).

which leads to equation (14). Note that, even with the new term added by Oono to the

usual Cahn-Hilliard dynamics, this equation remains in the class of the conservative models,

as it derives from a equation of conservation. Note also that the free energy Fint is infinite

if u(r) is of the same sign in a macroscopic domain.

12



B. Linear stability analysis for Oono’s model

If we look at the linear stability analysis of the homogenous solution u = 0, we found

almost the same results as in the original work of Cahn and Hilliard, except that the am-

plification factor σ(q) now write:

σ(q) = (
1

2
− q2)q2 −

(
β

4

)2

This shows immediately that u = 0 is linearly instable if β < 1, with a band of unstable

Fourier modes 0.5
√
1−

√
1− β2 < q < 0.5

√
1 +

√
1− β2 (for which σ(q) > 0). The most

unstable mode is for qC−H = 0.5 like in the simplest Cahn-Hilliard model(4). Therefore,

during the initial stage of the dynamics, the spinodal decomposition the homogeneous do-

mains appear at length scales close to L = 2π, as in the usual Cahn Hilliard dynamics. But

one sees that, contrary to the simple Cahn-Hilliard case, the long wave length modulations

are now stable as σ(q) < 0 for q < 0.5
√

1−
√

1− β2. This explains qualitatively why, for

any finite value of β, the dynamics will end in a micro segregated regime, as it is observed

numerically and as we will discuss quantitatively below.

It has been noticed in different models [20] that, if the interaction responsible of the

modulation is local (i.e. described in the free energy by local terms only, like −(∇u)2 in the

Swift Hohenberg model), then for low temperature or small β, the macrosegregated regime

(one unique interface) will be energetically favored compared to the microphase separation.

However, in this model by Oono, because the interaction is long range (i.e. non-local), no

matter how small is β, there will always be a finite region around q = 0 where σ(q) < 0. In-

deed, σ(0) = −
(
β
4

)2
. Consequently, a modulated phase should always end the dynamics[21].

C. Direct minimization of the free energy

For D=1, the contribution of the long-range interaction to the free energy per unit length

is [22]

Fint =
1

λ

∫ λ

0

Fintdr =
−β2

2λ

∫ λ
2

0

∫ λ
2

0

Ψ(r′) |r′ − r|Ψ(r)drdr′.
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When using as ansatz the family of interface-lattice solutions Uk,λ(x), we then obtain

Fint =
−β2

2λ

∫ λ
2

0

∫ λ
2

0

k2(
4K

λ
)2 |r′ − r| Sn(4K(k)

λ
r, k)Sn(

4K(k)

λ
r′, k)drdr′

=
π

K

−β2

8

∫ 2K

0

∫ 2K

0

k2 |x′ − x| Sn(x, k)Sn(x′, k)dxdx′.

Thus, this contribution is independent of λ and the only minimization is with respect to

k. Consequently, the minimization with respect to λ concerns only FGL and enables to

find λ as a function of k : λ(k) = 8K
√

1+k2

3
+ k2

3(1− E
K
)
. And the minimization of the free

energy FGL(k, λ(k)) + Fint(k) is simply with respect to a single variable k, which can be

done numerically for different values of the interaction strength β2.

Figure 5 presents λ (β2) which scales like (β2)
1/3

.

FIG. 5: Graph of the stable period λ
(
β2
)
computed by minimizing cthe free energy FGL(k, λ(k)) +

Fint(k, β
2) with respect to k. The result scales like

(
β2
)1/3

.

D. Stationary microsegregated patterns

The family (10) is not anymore an exact stationary solution of the dynamics (14) because

of its last term. Nevertheless, it is a good candidate for an approximate solution (especially

in the case of small β) and thus can be used as a tool for calculation using a solvability

condition or Fredholm’s alternative.

Indeed, we can write deviation from a given periodic stationary profile of period λ as

u(x, t) = u0(φ(x, t)) + εu1(φ(x, t)) + ... where ε is a small parameter and u0 is a periodic
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function of the phase φ(x, t). For a steady state solution φ(x, t) = qx with q = 2π/λ. In

the general case φ(x, t) = q(X, T )x where X = ǫx and T = ǫ2t i.e. q = ∂φ
∂x

is now a slowly

varying function of x and t.

∂u

∂t
=

∂u

∂φ

∂φ

∂t
=

∂u

∂φ

∂φ

∂T

dT

dt
= ǫ2

∂φ

∂T

∂u

∂φ
∂u

∂x
=

∂u

∂φ

∂φ

∂x
=

∂u

∂φ
(q +

∂φ

∂X

dX

dx
) = q

∂u

∂φ
+ ǫ

∂u

∂X

If we denote Ψ(X, T ) = ǫφ(x, t), then the local wave number is q(X, T ) = ∂φ
∂x

= ∂Ψ
∂X

and

∂

∂t
= ǫ∂TΨ∂φ

∂

∂x
= q∂φ + ǫ

∂q

∂X

∂

∂q
= q∂φ + ǫ

∂2Ψ

∂X2
∂q

∂2

∂x2
= q

∂

∂φ

(
q∂φ + ǫ∂2

XXΨ∂q
)
+ ǫ∂2

XX∂q
(
q∂φ + ǫ∂2

XXΨ∂q
)

∂2

∂x2
= q2∂φφ + ǫ∂2

XXΨ∂φ + 2ǫ∂2
XXΨq∂q∂φ

∂2

∂x2
= q2∂φφ + ∂2

XXΨ (1 + 2q∂q) ∂φ

where we have kept only the first order terms in ǫ.

If we consider a stationary profile u0 which satisfies (zero order equation):

q2
∂2

∂φ2

(−1

2
u0 + 2u3

0 − q2
∂2

∂φ2
u0

)
−
(
β

4

)2

u0 = 0

i.e.
∂

∂φ

(−1

2
u0 + 2u3

0 − q2
∂2

∂φ2
u0

)
=

(
β

4

)2

w where ∂φw = q−2u0 (18)

Oono’s equation (14) becomes then at order one in ǫ

ǫ∂TΨ∂φu0 = ǫN0(u1) + ǫN1(u0) where

N0(u1) = q2
∂2

∂φ2
(
−1

2
u1 + 6u2

0u1 − q2
∂2

∂φ2
u1)−

(
β

4

)2

u1

= q2
∂2

∂φ2
L(u1)−

(
β

4

)2

u1 and
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N1(u0) = ∂2
XXΨ (1 + 2q∂q) ∂φ

(−1

2
u0 + 2u3

0 − q2
∂2

∂φ2
u0

)

− q2
∂2

∂φ2

(
∂2
XXΨ (1 + 2q∂q) ∂φu0

)

=

(
β

4

)2

∂2
XXΨ (1 + 2q∂q)w − q2

∂2

∂φ2

(
∂2
XXΨ (1 + 2q∂q) ∂φu0

)

where we have used ∂φw = q−2u0 and equation (18) to simplify N1(u0). So Oono’s equation

(14) writes

ǫ∂TΨ∂φu0 −
(
β

4

)2

∂2
XXΨ (1 + 2q∂q)w (19)

+q2∂2
XXΨ

∂2

∂φ2
((1 + 2q∂q) ∂φu0) = q2

∂2

∂φ2
L(u1)−

(
β

4

)2

u1

E. Stability of stationary microsegregated patterns

A necessary condition for a solution to exist is that the left-hand side of the sys-

tem is orthogonal to the kernel of the adjoint operator N †
0 =

(
q2∂φφL −

(
β
4

)2
Id
)†
;

if v ∈Ker
(
q2∂φφL −

(
β
4

)2
Id
)†
then the solvability condition (or Fredholm alternative) writes:

< v|∂TΨ∂φu0 −N1(u0) >=< v|N0(u1) >= 0

As for any v we have

< v|q2 ∂2

∂φ2

(−1

2
u1 + 6u2

0u1 − q2
∂2

∂φ2
u1

)
−
(
β

4

)2

u1 >

=< q2
∂2

∂φ2
v|−1

2
+ 6u2

0 − q2
∂2

∂φ2
)u1 > −

(
β

4

)2

< v|u1 >

=< q2
(−1

2
+ 6u2

0 − q2
∂2

∂φ2

)
∂φφv|u1 > −

(
β

4

)2

< v|u1 >

this adjoint operator writes :

N †
0 =

(
q2∂φφL −

(
β

4

)2

Id

)†

= q2
(−1

2
+ 6u2

0 − q2
∂2

∂φ2

)
∂φφ −

(
β

4

)2

If v ∈KerN †
0 , we can define ũ such that q2∂φφv = ũ and which satisfies

q2
∂2

∂φ2

(−1

2
ũ+ 6u2

0ũ− q2
∂2

∂φ2
ũ

)
= q2

(
β

4

)2

∂φφv =

(
β

4

)2

ũ. (20)

So ũ is solution of
−1

2
ũ+ 6u2

0ũ− q2
∂2

∂φ2
ũ =

(
β

4

)2

v.
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Using equation (18), we thus find that v defined by

q2∂φφv(=ũ)=∂φu0 is an element of

Ker
(
q2∂φφL −

(
β
4

)2
Id
)†
.

As a consequence, the diffusion equation writes

ǫ∂TΨ =
−q2 < v| ∂2

∂φ2 ((1 + 2q∂q) ∂φu0) > + < v|
(
β
4

)2
(1 + 2q∂q)w >

< v|∂φu0 >
∂2
XXΨ

As q2∂φw = u0 and q2∂φφv = ∂φu0 we get the equality

v = w.

So < v|∂φu0 >= − < ∂φv|u0 >= − < ∂φw|u0 >

= −q−2 < u0|u0 >

and consequently equation (19) is a diffusion equation

ǫ∂TΨ = D∂2
XXΨ

ǫ∂TΨ = q2
∂q < q (∂φu0)

2 > −
(
β
4

)2
∂q < q w2 >

< u2
0 >

∂2
XXΨ

V. CONCLUSION

As long as the diffusion coefficient is negative (due to the < ∂ku0| ((1 + 2q∂q) ∂φu0) >=

∂q < q (∂φu0)
2 > term), the coarsening process goes on, in order to minimize interfacial

energy. But, due to its second part in β2, the diffusion coefficient will vanishe and thus the

coarsening will be interrupted at a finite length scale.
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