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No-reference image quality assessment and blind deblurring
with sharpness metrics exploiting Fourier phase information

Arthur Leclaire · Lionel Moisan

Abstract It has been known for more than 30 years

that most of the geometric content of a digital image is
encoded in the phase of its Fourier transform. This has
led to several works that exploit the global (Fourier)

or local (Wavelet) phase information of an image to

achieve quality assessment, edge detection, and, more

recently, blind deblurring. We here propose a deeper in-

sight into three recent sharpness metrics (Global Phase

Coherence, Sharpness Index and a simplified version of
it), that all measure in a probabilistic sense the surpris-
ingly small total variation of an image compared to that

of certain associated random-phase fields. We exhibit

several theoretical connections between these indices,

and study their behavior on a general class of station-

ary random fields. We also use experiments to highlight

the behavior of these metrics with respect to blur, noise

and deconvolution artifacts (ringing). Finally, we pro-

pose an application to isotropic blind deblurring and

illustrate its efficiency on several examples.

Keywords phase coherence, total variation, Fourier

transform, random phase noise, no-reference image

quality assessment, image sharpness, blind deblurring,

oracle deconvolution filter

1 Introduction

In several mathematical fields, the Fourier transform

has shown to be a useful tool of analysis and processing.

Most linear filtering operations, which are constantly

used in signal and image processing, are expressed in

spectral domain as simple multiplications. However, if

the modulus part of the Fourier coefficients of an im-

age is quite well understood (in particular because of
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the link that exists between the regularity of a signal

and the decrease rate of its Fourier coefficients at in-

finity), the argument part (the phase information) is

much more difficult to apprehend. In 1981, Oppenheim

and Lim [29] showed that the loss of the phase infor-
mation of an image entails the destruction of the image
geometry. This suggests that the precision of the image
geometry (and thus, in some sense, the image quality)

could be assessed through the coherence of the Fourier

phase information.

Quality indices divide into three categories : full-

reference, reduced-reference, and no-reference, depend-

ing on whether a supposedly ideal version of the im-

age is assumed to be fully or partially known. As con-

cerns the no-reference case (which is the one we are

interested in), the introduction of Chapter 4 of [37]

points out the difficulty to design generic image qual-

ity measures, concluding (in 2006) that “the design of

application-specific no-reference quality assessment sys-

tems appears to be much more approachable than the

general, assumption-free no-reference image quality as-

sessment problem.” Nevertheless, several interesting no-

reference quality measures have been proposed in the

literature (see the recent review [7]). Some of them try

to assess the quality through the direct analysis of edges

[25] or through the gradient singular values [39]. Others

use a perceptual analysis of certain image features, like

in [13]. The concept of local phase coherence, originally

introduced and developed in [28,19,20] for edge detec-

tion purposes, was later linked to the perception of blur

by Wang and Simoncelli [38], which ultimately led to

the definition of a no-reference image quality index [17].

Closer to our work lies the index [36] which combines

some spectral and spatial characteristics.

In 2008, a notion of global phase coherence was pro-

posed [3], and related to image sharpness. The idea was
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to use a kind of a contrario framework1 [10] to quan-

tize how much the regularity of the image (more pre-
cisely, its total variation) was affected by the destruc-
tion of the phase information. This led to the definition

of three phase coherence measures, namely the Global

Phase Coherence [3], the Sharpness Index [4], and the

index S [21]. The present paper gives a more detailed

and merged discussion about these global phase coher-

ence indices. Starting from their construction in Sec-

tion 2, we establish some of their mathematical prop-

erties in Section 3. Section 4 discusses several practical

aspects of these indices, including their validation as

no-reference quality measures, and finally Section 5 de-

scribes a way to use these indices to address the blind

deblurring problem.

2 Three Phase Coherence Indices

In this paragraph, we go back, in more details, to the

concept of phase coherence that was introduced in [3]

and [4]. But first, let us introduce some notations. Let

Ω = Z2 ∩
([
−M

2
,
M

2

)
×
[
−N

2
,
N

2

))

be a rectangular discrete domain of size M × N . Let

u : Ω → R be a discrete image, the real number u(x) re-
ferring to the gray level at pixel x. The Ω-periodization

of u is the image u̇ : Z2 → R defined by

∀(k, l) ∈ Z2, ∀(x, y) ∈ Ω, u̇(x+kM, y+ lN) = u(x, y) .

In the following, we will use a gradient scheme com-

puted with periodic boundary conditions,

∇u(x, y) =
(
∂xu̇(x, y)
∂yu̇(x, y)

)
=

(
u̇(x+ 1, y)− u̇(x, y)
u̇(x, y + 1)− u̇(x, y)

)
,

and the corresponding (periodic) Total Variation (TV)
of u

TV(u) =
∑

x∈Ω

|∂xu̇(x)|+ |∂yu̇(x)| ,

which measures in some sense how much the function u̇

oscillates. Precisely, the TV (u) is the l1-norm of the gra-
dient of u, and thus it assigns small values (relatively to

the l2-norm) to images whose gradient is well-localized
in space. Algorithms based on TV minimization have
been used for a long time to address image processing
tasks, for example, denoising [31,6].

1 The principle of a contrario methods is to detect struc-
tures as the cause of measurements that could not be observed
in random data.

The discrete Fourier transform (DFT) of u is the

Ω-periodic complex function û : Z2 → C defined by

∀ξ ∈ Z2, û(ξ) =
∑

x∈Ω

u(x)e−i〈ξ,x〉 ,

where 〈ξ,x〉 = 2π
(
x1ξ1
M + x2ξ2

N

)
for ξ = (ξ1, ξ2) and

x = (x1, x2). The function |û| will be called modulus of

u. A phase function for u is any function ϕ : Z2 → R

such that for all ξ ∈ Z2, û(ξ) = |û(ξ)|eiϕ(ξ). If û(ξ) 6= 0,

the phase coefficient ϕ(ξ) is uniquely defined modulo 2π

while any arbitrary value can be chosen if û(ξ) = 0.

Among useful properties of the DFT, we have the
reconstruction formula

∀x ∈ Z2, u̇(x) =
1

MN

∑

ξ∈Ω

û(ξ)ei〈ξ,x〉 . (1)

Also, the circular convolution of two images u and v

defined by

∀x ∈ Ω, u ∗ v(x) =
∑

y∈Ω

u̇(x− y)v(y) ,

satisfies û ∗ v = ûv̂.

We shall also need the (non-necessarily integer) Ny-

quist frequencies denoted by ηx = (−M2 , 0) , ηy =

(0,−N2 ), ηxy = (−M2 ,−N2 ) . When integer, these are

(with zero) the only points ξ ∈ Ω which are equal to
−ξ modulo (M,N).

2.1 Global Phase Coherence

As noticed in [29], most of the geometry of an image

is encoded in its phase coefficients. In Fig. 1, we repro-

duce the experiment which consists in exchanging the

moduli of two images: as can be seen, the geometry of

the image whose phase was kept persists. From there, in

an a contrario framework, the authors of [3] define the

global phase coherence (GPC) by measuring how much

the geometry is affected when the phase information is

lost, or more precisely, when the phase is made random

according to

Definition 1 ([16]) A (uniform) random phase func-

tion is a function ψ : Ω → R such that

• ψ is odd

• ∀ξ ∈ Ω \{0,ηx,ηy,ηxy}, ψ(ξ) is uniform on [−π, π)
• ∀ξ ∈ {0,ηx,ηy,ηxy}, ψ(ξ) is uniform on {0, π}
• for every subset S of Ω that does not contain two

symmetrical points, the random variables (r.v.) ψ(ξ),

ξ ∈ S are independent.
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(a) House (b) Lena phase of (a) with modulus of (b)

Fig. 1 Phase and perceived geometric content. When an image is built (in Fourier domain) with the phase of an image
(a) and the modulus of an image (b), the perceived geometry is that of (a). This famous experiment of Oppenheim and Lim
[29] shows that the geometry of an image is mostly encoded in the phase component.

Given u and a random phase function ψ, one can

define a random real-valued image uψ by

∀ξ ∈ Ω, ûψ(ξ) = |û(ξ)|eiψ(ξ) .

or equivalently, using the reconstruction formula (1), by

∀x ∈ Ω, uψ(x) =
1

MN

∑

ξ∈Ω

|û(ξ)|ei〈x,ξ〉+iψ(ξ) . (2)

The random image uψ is the random-phase noise (RPN)
associated with u [35,16]. Equation (2) can also be writ-

ten with cosine functions only. For example, if M and
N are odd integers (to get rid of Nyquist frequencies),

one has

∀x ∈ Ω, uψ(x) = |û(0)|(−1)ε0

+
1

MN

∑

ξ∈Ω+

2|û(ξ)| cos(ψ(ξ) + 〈x, ξ〉) ,

where ε0 = 1ψ(0)=π, and Ω+ is a subset of Ω \ {0} that
contains one point from each pair of symmetrical points

of Ω, so that Ω = {0}∪Ω+∪(−Ω+) is a partition of Ω.

This formula shows that the phase randomization shifts

the placement of the cosine components of the signal so

that some oscillations will appear in the regions where

the original image was flat. Thus, it becomes natural to

expect the TV to increase greatly after phase random-

ization. This effect is striking on the one-dimensional

example given in Fig. 2. The authors of [3] derive from

this observation the following

Definition 2 (Global Phase Coherence [3]) The

global phase coherence of an image u is the number

GPC(u) = − log10 P(TV(uψ) ≤ TV(u)) . (3)

In other words, the GPC is high if there is a very

small probability to make the TV decrease by a phase

randomization. Experimentally, it has been observed

that corrupting an image with blur or noise tend to de-

crease its GPC. Intuitively, when an image u is blurred,

its high-frequency components are attenuated, so that

the oscillations of the RPN realizations are smoother;

therefore, the TV increase entailed by the phase ran-

domization is expected to be less dramatic than in the
sharp case. Now, in a noisy image, the flat regions are
corrupted (by the noise) with high frequency variations
leading to a TV value which is already high, so that

the TV increase produced by the phase randomization

is smaller than in a clean image. For now, we have no

theoretical justification that goes beyond these heuris-

tic remarks, but they will be confirmed by a practical
study in Section 4.4.

The major drawback of Definition 2 is that no closed-

form formula is available to compute GPC(u) as an

explicit function of u, so that one has to use a compu-

tationally heavy Monte-Carlo procedure to estimate it.
In [3], the authors suggest to make the reasonable as-

sumption that in general, the distribution of TV(uψ) is
approximately Gaussian (this Gaussian approximation

is mentioned in Appendix A and B). This allows them

to define the following approximation of GPC, that is

GPCga(u) = − log10 Φ

(
µ0 − TV(u)

σ0

)
, (4)

where µ0 = E(TV(uψ)) , σ2
0 = Var(TV(uψ)) , (5)

and Φ(t) =
1√
2π

∫ +∞

t

e−s
2/2ds (6)

is the Gaussian tail function (“ga” stands for Gaussian

approximation). The values of µ0 and σ0 can be esti-

mated through N Monte-Carlo samples

TV
(
u
(1)
ψ

)
,TV

(
u
(2)
ψ

)
, . . . ,TV

(
u
(N)
ψ

)

of the r.v. TV(uψ), which leads to a numerical approx-

imation GPCN (u) of GPC(u). Unfortunately, the re-

sulting algorithm is quite slow, as it takes about one

minute to estimate the GPC of a 512× 512 image.
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Step function: TV = 2 After phase randomization: TV = 17.4

Fig. 2 Phase randomization of a step function. Notice the large increase of TV caused by phase randomization.

2.2 Sharpness Index

In a later work [4], a new measure of phase coherence

was introduced. It was noticed that when replacing the

random model uψ by u ∗W , that is, the convolution of

u with a Gaussian white noise W , the expectation and

variance of TV(u ∗W ) could be computed explicitly
as a function of u. Thus, with the same framework as

above, one can define

SI(u) = − log10 P(TV(u ∗W ) ≤ TV(u)) (7)

and, assuming as in [4] that the r.v. TV(u ∗W ) is ap-

proximately Gaussian,

Definition 3 (Sharpness Index [4]) The Sharpness
Index (SI) of an image u is

SI(u) = − log10 Φ

(
µ− TV(u)

σ

)
(8)

where Φ is defined by (6),

µ = E(TV(u ∗W )) , σ2 = Var(TV(u ∗W )) , (9)

and W is a Gaussian white noise with standard devia-

tion |Ω|−1/2 (i.e. the r.v. W (x),x ∈ Ω are independent
and N (0, |Ω|−1) distributed).

There are several reasons to expect GPC and SI to

behave in the same way. First, the corresponding ran-

dom image models (RPN for GPC, Gaussian for SI)

are known to be close, both mathematically (they only

differ by a Rayleigh noise on the Fourier modulus) and

perceptually (see [16]). Second, it has been noticed ex-

perimentally in [4] that the values of µ0 (Equation (5))

and µ (Equation (9)) were very close in general (a rel-

ative error below 1%). In Appendix A, we confirm this

experimental observation by a precise asymptotic result

(Theorem 6) based on Berry-Esseen theorem.

Concerning the fact that TV(u∗W ) is nearly Gaus-
sian (which is used without formal justification in [4]),

we also give an asymptotic proof in Appendix B using

a particular central limit theorem devoted to sums of

non-independent random variables controlled by a de-

pendency graph.

The great interest of SI over GPC is that it can
be computed with explicit formulae instead of a costly

Monte-Carlo simulations, as shown in

Theorem 1 ([4]) Let u : Ω → R be an image, and let

W : Ω → R be a Gaussian white noise with mean 0 and

standard deviation |Ω|−1/2. Then

E(TV(u ∗W )) = (αx + αy)

√
2

π

√
|Ω| , (10)

Var(TV(u ∗W )) =
2

π

∑

z∈Ω

α2
x · ω

(
Γxx(z)

α2
x

)

+ 2αxαy · ω
(
Γxy(z)

αxαy

)
+ α2

y · ω
(
Γyy(z)

α2
y

)
, (11)

where

α2
x = ‖∂xu̇‖22 =

∑

(x,y)∈Ω

|u̇(x+ 1, y)− u̇(x, y)|2 ,

α2
y = ‖∂yu̇‖22 =

∑

(x,y)∈Ω

|u̇(x, y + 1)− u̇(x, y)|2 ,

∀t ∈ [−1, 1], ω(t) = t arcsin(t) +
√

1− t2 − 1 ,

Γ (z) =

(
Γxx(z) Γxy(z)
Γxy(z) Γyy(z)

)
=
∑

y∈Ω

∇u̇(y) · ∇u̇(y + z)T .

Proof A short proof was given in [4]. In order not to

break the discussion about the different definitions of

phase coherence, we postpone the complete proof to

Appendix C. �
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2.3 A Simplified Version of SI

In [21], we suggested to approximate the denominator

of the fraction that appears in (8), which led us to a new

index (written S) that is analytically close to SI but can

be computed much faster. We will see empirically later

in Section 3 and Section 4 that S also behaves like SI

with respect to basic image transformations.

2.3.1 Definition of S

Lemma 2 One has

∀t ∈ [−1, 1], 0 ≤ ω(t)− 1

2
t2 ≤ ct4 , (12)

where the optimal constant is c = π−3
2 ≈ 0.0708.

Proof Since one has for all t ∈ [−1, 1],

ω′(t) = arcsin(t) =
∑

n≥0

(2n)!

22n(n!)2

(
1

2n+ 1

)
t2n+1 ,

one can write

ω(t) =
∑

n≥0

(2n)!

22n(n!)2

(
1

2n+ 1

)(
1

2n+ 2

)
t2n+2 ,

and the result follows by taking

c =
∑

n≥1

(2n)!

22n(n!)2

(
1

2n+ 1

)(
1

2n+ 2

)

= lim
t→1

ω(t)− 1
2 t

2

t4
= ω(1)− 1

2
=
π − 3

2
. �

The term (11) can thus be approximated by replac-

ing ω(t) by t2

2 . This leads to

σ2
a =

1

π

(‖Γxx‖22
α2
x

+ 2 · ‖Γxy‖
2
2

αxαy
+
‖Γyy‖22
α2
y

)
, (13)

and to

Definition 4 (S index [21]) The simplified sharpness
index associated to an image u is

S(u) = − log10 Φ

(
E(TV(u ∗W ))− TV(u)

σa

)
,

where σa is given by (13) and where Φ, E(TV(u ∗W ))

are given in Theorem 1.

Algorithm 1 : Computation of S(u)

1. Compute the derivatives ∂xu̇, ∂yu̇ and deduce their l1

and l2 norms

TV(u) , αx = ‖∂xu̇‖2 , αy = ‖∂yu̇‖2 .

2. Compute (in Fourier domain) the components of the
auto-correlation gradient matrix Γ :
(a) Compute the FFT û of u.
(b) Deduce the FFT of the derivatives using

∣∣∣∂̂xu̇(ξ)
∣∣∣
2
= 2 sin2

(
πξ1

M

)
|û(ξ)|2 ,

∣∣∣∂̂yu̇(ξ)
∣∣∣
2
= 2 sin2

(
πξ2

N

)
|û(ξ)|2 .

(c) Compute the moduli of the FFT of Γxx, Γxy and
Γyy using

|Γ̂xx| = |∂̂xu̇|2, |Γ̂xy| = |∂̂xu̇||∂̂yu̇|, |Γ̂yy| = |∂̂yu̇|2.

3. Compute µ and σa with

µ = (αx + αy)

√
2

π

√
MN and

σ2
a =

1

πMN

(
‖Γ̂xx‖22
α2
x

+ 2 · ‖Γ̂xy‖
2
2

αxαy
+
‖Γ̂yy‖22
α2
y

)
.

4. Finally deduce

S(u) = − log10 Φ

(
µ− TV(u)

σa

)
.

2.3.2 Fast calculation

Since the last formula is now free of ω, the index S
is, compared to SI, simpler to understand (it only de-

pends on the auto-correlation gradient matrix through

its energy) and faster to compute. In Algorithm 1, we

can notice that the most costly step is the FFT com-

putation (2.a): once û is computed, the FFTs of the
two derivatives follow immediately (step 2.b), and the

FFTs of the cross-correlation of the derivatives (step
2.c) follow from, e.g.,

Γxx = ∂xu̇ ∗ ∂̃xu̇ ⇒ |Γ̂xx| = |∂̂xu̇|2 , (14)

with the convention that w̃(x) = w(−x). In the end,
the computation of S(u) requires only 1 FFT, whereas

3 more FFTs are required for SI(u). In both cases, how-

ever, the complexity is the same, O(MN logMN) for

appropriate values of M and N .

2.3.3 Theoretical comparison with SI

We here investigate the quality of the approximation of

SI by S, showing that the fraction

va(u) =
E(TV(u ∗W ))− TV(u)

σa
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is a good approximation of

v(u) =
E(TV(u ∗W ))− TV(u)

σ
.

Proposition 1 We have

0 ≤ va(u)− v(u)

va(u)
≤ 1− 1√

π − 2
≈ 0.064 . (15)

Proof We first show that

0 ≤ σ2 − σ2
a

σ2
a

≤ 2c = π − 3 ≈ 0.142 . (16)

With the expressions of σ and σa, one can write

σ2 − σ2
a =

2

π

∑

x∈Ω

α2
x

[
ω

(
Γxx(x)

α2
x

)
− 1

2

(
Γxx(x)

α2
x

)2
]

+2αxαy

[
ω

(
Γxy(x)

αxαy

)
− 1

2

(
Γxy(x)

αxαy

)2
]

+α2
y

[
ω

(
Γyy(x)

α2
y

)
− 1

2

(
Γyy(x)

α2
y

)2
]
.

Using (12), we thus obtain on one hand σ2 − σ2
a ≥ 0,

and on the other hand,

∀t ∈ [−1, 1] , 0 ≤ ω(t)− 1

2
t2 ≤ ct4 ≤ ct2 ,

which implies

0 ≤ σ2 − σ2
a

≤ 2c

π

∑

x∈Ω

α2
x ·
(
Γxx(x)

α2
x

)2

+ 2αxαy ·
(
Γxy(x)

αxαy

)2

+ α2
y ·
(
Γyy(x)

α2
y

)2

,

and the right-hand term is equal to 2cσ2
a, which proves

(16). Now, since

v(u)

va(u)
=

(
1 +

σ2 − σ2
a

σ2
a

)−1/2

,

we get (15) as expected. �

3 Mathematical Properties

3.1 First properties

Proposition 2 The functions GPC, GPCga, GPCN ,

SI, SI, S are non-negative and invariant with respect

to affine contrast changes, that is,

∀a, b ∈ R, a 6= 0, f(a · u+ b) = f(u) ,

for f ∈ {GPC,GPCga,GPCN ,SI, SI, S}.

Proof These properties directly result from the defini-

tions. �

Let us now explore the Fourier representation of the
random field v = u ∗W , that is, v̂ = ûŴ . Since W is a

Gaussian white noise, Ŵ is a complex Gaussian white

noise. In particular, one can write

Ŵ (ξ) = |Ŵ (ξ)|eiψ(ξ)

where ψ is a random phase function in the sense of
Definition 1. Denoting by T the random image such

that T̂ = |Ŵ |, this writes

u ∗W = uϕ+ψ ∗ T

where ϕ+ψ is also a random phase. Therefore, in com-

parison to the phase randomization model, the opera-

tion u 7→ u∗W also includes a convolution by an image

T whose Fourier transform is |Ŵ |. Following [11], we
can say that T is the white noise texton. Proposition

1 of [11] shows that, statistically, T looks like a Dirac
mass in zero (up to a factor

√
π/2). Hence, one can

expect that this convolution will not drastically mod-

ify the statistical properties of the model, and, subse-

quently, that SI(u) behaves like GPC(u). Incidentally,

the discussion above brings an interesting remark, for-
mulated by the following

Proposition 3 GPC(u), GPCga(u), GPCN (u), SI(u),
SI(u), and S(u) only depend on the modulus and the TV

of u.

Proof For GPC(u), GPCga(u), GPCN (u) , SI(u), this
is because the distributions of uψ and u∗W only depend

on |û|. For SI(u) and S(u) this is because the gradient

autocorrelation and energy only depend on |û|. �

Thus, all these indices measure the global phase co-

herence of an image u only by its impact on the TV,

in a way (a “scale”) that is determined by the modulus
of u. As we shall see later in Section 4, when an image

is filtered by a symmetrical kernel that has a positive

Fourier Transform (e.g., a Gaussian kernel), its phase

is not changed but the indices above tend to decrease

(with the exception of the Dirac image that will be dis-

cussed in Section 4.5).
Notice also that since we are using a periodic scheme

for TV, these indices take the same values on u and on

the periodic translation τ(a,b)u defined by

∀(x, y) ∈ Z2, τ(a,b)u(x, y) = u̇(x− a, y − b) .

We end this paragraph with a simple question: What

happens if we replace the TV (l1-norm of gradient) by

the H1-norm (l2-norm of gradient) in the definitions?

With Parseval’s formula, one can see that the H1-norm
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only depends on the Fourier modulus, so that it is not

affected by the phase randomization. Hence, the corre-

sponding indices obtained with theH1-norm are trivial.

Considering anotherW 1,p-norm (that is, the lp-norm of

gradient) could be interesting, but it is likely that the

easiest calculations are obtained with TV (p = 1).

3.2 Regularity, Analytical Difficulties

The expression for SI(u) in Theorem 1 is not defined

when u is a constant image. In that case, Equation (7)
implies that SI(u) is zero. It is not a big issue because

natural images are never really constant. Apart from

these singular points, one can state the following

Proposition 4 The functions SI and S are defined and
continuous everywhere except on images for which ∂xu̇

or ∂yu̇ is identically zero. They are infinitely differen-
tiable around every point that is non-singular for TV

(that is, an image for which the values of any two ad-

jacent pixels are different).

Proof Let us consider an image u such that neither ∂xu̇

nor ∂yu̇ are not identically zero, Then, neither is Γxx
thanks to (14), and the same conclusion applies for Γxy
and Γyy. Consequently, σ and σa are non-zero, and

SI(u) and S(u) are well-defined. Moreover, the conti-

nuity of SI and S around u follows from the one of αx,

αy, Γ and TV. For the second part, we simply notice

that the functions αx, αy and Γ are smooth around u,

so the singular points of SI and S are those of TV. �

The fact that SI have some singular points would

not be very embarrassing in an optimization perspec-

tive. Indeed, several techniques are available to opti-

mize non-smooth quantities, in particular for convex

functions [12]. Unfortunately, the function SI is neither

convex nor concave, as shown in Fig. 3. For those rea-

sons, applying classical optimization techniques (like
gradient or sub-gradient descent schemes) on SI may
not be efficient. We will overcome this difficulty in Sec-

tion 5 by considering simple generic algorithms relying

on stochastic optimization.

3.3 Distribution of GPC on a random phase field

We continue with an explicit statement that generalize

a property mentioned (without proof) in [3].

Proposition 5 If U is a random image such that its
phase is uniform (in the sense of Definition 1) and in-

dependent of its modulus, then

∀t > 0, P(GPC(U) ≥ t) ≤ 10−t . (17)

Furthermore, if conditionally on |Û |, the r.v. TV(U)

admits a probability density function, then

∀t > 0, P(GPC(U) ≥ t) = 10−t , (18)

that is, 10−GPC(U) is uniform on [0, 1].

A consequence of (17) is that a texture obtained as

the realization of a RPN model or a stationary Gaussian

model is expected to have a small GPC value (that is,

below 3 or 4 in general), which is in accordance with the

fact that such texture models do not carry any phase

information. As concerns the hypothesis required for

the second part of Proposition 5, it may be satisfied as

soon as U is not constant almost surely, but we did not

find the proof of such a statement yet.

Using Lemma 3 below, Proposition 5 follows by con-

sidering conditional distributions given |Û |.

Lemma 3 If u is an image and if ψ is a random phase

function (in the sense of Definition 1), then

∀t > 0, P(GPC(uψ) ≥ t) ≤ 10−t .

Furthermore, if the r.v. TV(uψ) admits a probability

density function, then

∀t > 0, P(GPC(uψ) ≥ t) = 10−t .

Proof Let us denote by Fu the cumulative distribution

function of the r.v. TV(uψ), defined by

∀t ∈ R, Fu(t) = P(TV(uψ) ≤ t) .

The definition of GPC implies that for any image u,

GPC(u) = − log10 Fu(TV(u)) .

Since the distribution of TV(uψ) only depends on the

modulus of u, we have Fu = Fuχ for any phase function
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Fig. 3 A one-dimensional profile of SI. This graph of
the function λ 7→ SI(λu1 +(1−λ)u2) (where u1 and u2 refer
to the images Lena and Barbara respectively) shows that SI
is neither convex nor concave.
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χ. In particular, if ψ is a random phase function, one

can write

GPC(uψ) = − log10 Fuψ (TV(uψ)) = − log10 Fu(TV(uψ)

so that for all t > 0,

P(GPC(uψ) ≥ t) = P
(
Fu(TV(uψ)) ≤ 10−t

)
.

Because Fu is actually the cumulative distribution func-

tion of TV(uψ), Lemma 4 below (a reformulation of

Lemma 1 of [14]) allows us to conclude that this proba-
bility is smaller than 10−t. The equality case is obtained

similarly from the equality case of Lemma 4. �

Lemma 4 If Y is a r.v. and F (v) = P(Y ≤ v), then

∀s ∈ [0, 1], P(F (Y ) ≤ s) ≤ s ,

and the equality holds for all s as soon as Y admits a

probability density function.

Now we provide a similar result for the approxima-

tion GPCga of GPC defined in (4).

Proposition 6 Let u be an image and ψ a random

phase function (in the sense of Definition 1). Write
µ0 = E(TV(uψ)), σ

2
0 = Var(TV(uψ)), and denote by

F̃u the tail distribution function of the normalized r.v.

T =
µ0 − TV(uψ)

σ0
,

and by Gu the cumulative distribution function of

the r.v. 10−GPCga(uψ). If TV(uψ) admits a probability
density function then

sup
s∈[0,1]

|Gu(s)− s| ≤ sup
t∈R

|F̃u(t)− Φ(t)| (19)

Proposition 6 shows that, in terms of the L∞ distance

between the cumulative distribution functions, the ap-

proximation of 10−GPCga(uψ) by the uniform distribu-

tion on [0, 1] is at least as good as the Gaussian approx-

imation of TV(uψ).

Proof One can remark that

10−GPC(u) = P

(
µ0 − TV(uψ)

σ0
≥ µ0 − TV(u)

σ0

)

= F̃u

(
µ0 − TV(u)

σ0

)
.

Moreover, we have by definition

10−GPCga(u) = Φ

(
µ0 − TV(u)

σ0

)
.

Since F̃u, µ0 and σ0 depend on u only through its mod-
ulus, we also have

10−GPC(uψ) = F̃u

(
µ0 − TV(uψ)

σ0

)

and 10−GPCga(uψ) = Φ

(
µ0 − TV(uψ)

σ0

)
.

In particular,

∣∣∣10−GPC(uψ) − 10−GPCga(uψ)
∣∣∣ ≤ ε ,

where ε = supt∈R
|F̃u(t)−Φ(t)|. Since we assumed that

TV(uψ) admits a probability density function, Lemma 3

ensures that the r.v. X = 10−GPC(uψ) follows the uni-

form distribution on (0, 1). So we have almost surely

∣∣∣X − 10−GPCga(uψ)
∣∣∣ ≤ ε ,

where X is uniform on (0, 1), which implies the inequal-

ity (19) for the cumulative distribution functions. �

Notice that the result of Proposition 5 does not ex-
tend to SI. Actually, one can see empirically in Fig. 4

that it neither extends to SI or S. Let us try to under-
stand this by considering the distribution of

SI(uψ) = − log10 Φ

(
µ− TV(uψ)

σ

)

where µ = E(TV(u ∗W )) and σ = Var(TV(u ∗W )).

Once more, one can make the reasonable assumption

that TV(uψ) is nearly Gaussian. Concerning the first

moment, it has been observed numerically in [4] that
E(TV(uψ)) ≈ E(TV(u ∗ W )) (this approximation is

mathematically investigated in Appendix A). Concern-
ing the variance of TV(uψ), however, numerical simula-

tions indicate that it significantly differs (by a factor 7-8

in general [4]) from that of TV(u⋆W ). A consequence is

that the r.v. G =
µ−TV(uψ)

σ has a distribution close to
N (0, s2) for some s that is not close to 1. Therefore, one

can not expect the distribution of Φ(G) = 10−SI(uψ) to
be close to the uniform distribution on (0, 1).

To end this paragraph, we mention (without proof)

another result concerning the RPN model.

Proposition 7 If u is an image and ψ a discrete ran-

dom phase field (in the sense of Definition 1), then

P(SI(uψ) ≥ SI(u)) = P(SI(uψ) ≥ SI(u))
= P(TV(uψ) ≤ TV(u)) = 10−GPC(u) . (20)
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Fig. 4 Phase coherence indices of random phase fields. On each graph, one can see the estimated distributions of the
r.v. GPC(U) (in its numerical approximation defined at the end of paragraph 2.1), SI(U) and S(U), where U is a random field
(the distributions are estimated using the same 10,000 samples). The columns correspond to a certain size for the random field
U , respectively, 32 × 32 (left), 128 × 128 (middle) and 512 × 512 (right), while on each line we considered a different type of
random field. For the first line, U is the random phase noise (RPN) uψ where u is the image Lena. For the second line, U is
the asymptotic discrete spot noise (ADSN) u ∗W where u is again the image Lena. And for the third line, U is simply a white
Gaussian noise (WGN). First, as was predicted by Proposition 5, we observe that the distribution of GPC(U) has the density
log(10)10−t1t>0. Furthermore, we can also observe that even if the distributions of SI(U) and S(U) appear similar, they do
not coincide with the one of GPC(U). Last, we can see that on the RPN and ADSN models, the distributions of SI and S
seem to depend on the size of the random field, whereas they do not for the WGN model. However, the mean values of SI(U)
and S(U) remain close to 0.3.

4 Phase Coherence Indices and No-Reference

Quality Assessment

This paragraph is devoted to the practical study of the

phase coherence indices. Since the computation of S is

the fastest of all, we led the experiments on it, but the
major part of what follows extends to GPC and SI.

4.1 Periodization

The index S deals more with the periodized image u̇

than with u itself. Actually, since a periodic translation
of u has no effect on S(u), a discontinuity of u on the

boundary has the same effect as if it were positioned in

the middle of the image. So the index S is affected, and

actually biased, by the discontinuities that generally

occur between two opposite boundaries of an image.

In [3], the authors suggest to compute the phase co-

herence index not on u, but on its periodic component

[27]. This operation subtracts from the original image

a smooth component that cancels border-to-border dis-

continuities.

Let us also mention that it is possible to replace in

Equation (1) the gradient, the TV, and the autocor-

relation by their non-periodic counterparts. It leads to

a “Local Sharpness Index” [22] which is a little slower

to compute but naturally insensitive to border effects.

This index can be computed on any sub-domain of an

image, and produces, on rectangular domains, values
similar to the composition of S with the periodic com-

ponent operator. But since it is less close to the phase

coherence interpretation, we will not say more about it

in this paper.
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4.2 Quantization

Another classical operation that can bias the phase co-

herence is quantization. The gray levels of 8-bits natural

images are generally quantized on {0, 1, . . . , 255}, and
this causes artificial flat regions to appear. The con-
tribution of those regions to the TV is exactly zero,
whereas it should be a small (but non-zero) number.

To avoid that undesirable effect of quantization, as sug-

gested in [3], before computing these indices, one can

apply a sub-pixel translation of vector (1/2, 1/2), with

the following definition for the sub-pixel translation of

vector (α, β),

∀ξ ∈ Ω, τ̂(α,β)u(ξ) = e−2iπ(αξ1M +
βξ2
N )û(ξ) . (21)

More generally, one could consider the sub-pixel-transla-

tion-invariant sharpness index

inf
(α,β)∈R2

S(τ(α,β)u) . (22)

Since τ(a,b)u and u have the same modulus, the vector

(α, β) corresponding to the minimum value of SI(τ(α,β)u)
is actually the one that realizes the maximum value of

TV(τ(α,β)u). In practice, one can observe that, for most
natural images, this vector is usually near (1/2, 1/2),

which justifies the use of τ = τ(1/2,1/2) alone.

Another way to avoid the quantization bias on the

sharpness indices would be to consider

min
‖v−u‖∞≤q/2

S(v) , (23)

where q is the quantization step (q = 1 for integer-

valued images). Unfortunately, S may have a lot of local
minima in the neighborhood {‖v−u‖∞ ≤ q/2} of u, and
it seems difficult to solve (23) by standard optimization
techniques. Note that a solution v of the minimization

problem (23) could be a convincing dequantized ver-

sion of u, so that solving (23) would be interesting not

only for the computation of S but also for other im-

age processing tasks requiring dequantization (see [9]
for example).

To end this paragraph, we would like to mention

that it makes sense to penalize the quantization through
the aliasing it produces in the image. The ideal solu-

tion to that would be to replace in our construction the

simple discrete TV by another TV operator which is

invariant by sub-pixel translation. Integrating such an

operator (for example, the one suggested in [26]) in our

model would be an interesting development. Consider-

ing (22) gives an alternative solution which, if u is a
natural image, can be approximated by S(τ(u)). Ulti-

mately, the (1/2, 1/2)-sub-pixel translation is a precise
and efficient solution to avoid the quantization bias.

In the experiments that are presented in the
following sections, before computing the indices

SI and S, we extracted the periodic component

[27] of the image and applied to it a sub-pixel

translation of vector (1/2,1/2). Since the DFT of

the periodic component of u can be computed with one
FFT (see [27]), including these two preprocessing steps

yields an overall computation cost of 5 FFTs for SI and

2 FFTs for S.

4.3 Variations of S on natural images

Before we explore more precisely the links between the

S index and the perceived sharpness of an image, we

give in Fig. 5 some examples of the values obtained

for typical natural images. Several observations can be

made from these examples, that are confirmed on larger
image sets:

– the S index attains higher valued for images that

present sharp edges and smooth regions at the same
time; conversely, out-of-focus images tend to pro-

duce relatively low values of S;
– spectrally concentrated textures (in particular, pe-

riodic patterns like stripes) lead to surprisingly low

values of S, even if the texture patterns are made of

sharp edges;

– in general, S rapidly increases with the size of im-

ages, but since it is very content-dependent, coun-

terexamples (images parts that have a greater S
value than the whole image) can be found.

4.4 Influence of blur and noise

In [3] and [4], experiments show that even if the values
assigned to an image by GPC and SI can be quite dif-
ferent, both indices decrease when an image is degraded

with noise and/or blur. We here check that the same

property holds for the S index. Given an initial image

u, we computed S(κρ ∗ u + σn) for several values of ρ

(the level of blur) and σ (the level of noise), where the

Gaussian blur kernel κρ is defined in Fourier domain by

∀ξ ∈ Ω, κ̂ρ(ξ) = e−πρ
2〈ξ,ξ〉 , (24)

and n is a realization of a white Gaussian noise with

unit variance. The obtained values were then averaged

over 10 noise realizations, yielding an estimate of the

expectation map

(σ, ρ) 7→ E

(
S(κρ ∗ u+ σn)

)
.
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(a) SI = 943, S = 955 (b) SI = 679, S = 689 (c) SI = 115, S = 116

(d) SI = 155, S = 156 (e) SI = 31.0, S = 31.3 (f) SI = 709, S = 722 (g) SI = 4.80, S = 4.85 (h) SI = 333, S = 340

Fig. 5 Examples of values of SI and S for some natural images. One can observe that the values of SI and S are very
close, and tend to be small for out-of-focus images like (e) and in the case of a strong high-frequency spectral component (g).
Also, the order of magnitude of SI and S grows with the image size (compare the values for the 512× 512 images of the first
row to those of the 256× 256 images of the second row), but it may happen that a sub-part of an image has a larger value of
S (or SI) than the whole image, as in (c) and (h).

The resulting blur-noise diagrams are displayed in Fig. 6
for the images Barbara and Lighthouse using a repre-

sentation by level curves (isovalues of S). We can ob-

serve that the S index, like GPC and SI, smoothly de-

creases with blur and noise, These diagrams are also
interesting because they show that S induces an (image-
dependent) equivalence between blur and noise. In the

case of Barbara for example, we can see that a Gaus-
sian blur of 1.5 pixel is, according to S, equivalent to a

Gaussian noise with standard deviation 12.6.

4.5 The Dirac paradox

Although it seems that for all natural images the value

of S decreases when the image is blurred, we found an

exceptional case where the opposite phenomenon hap-

pens for a very small level of blur. Indeed, if we con-

sider a Dirac image (a single bright pixel on a constant

background) and examine the evolution of S when it
is blurred by a Gaussian kernel with parameter ρ (as

defined in Equation (24)), it happens that S first in-

creases as ρ departs from 0, then decreases as expected

when the level of blur increases further (Fig. 7). So

far, we have not found a theoretical explanation of this

phenomenon. We can remark, however, that it is not

really incompatible with the idea that S is linked to

image quality and our perception of sharpness: since a

Dirac image is aliased, one could consider that a slightly

smoother (and hence less aliased) version is sharper (in

the sense: more geometrically accurate).

This kind of paradox raises interesting questions

linked to the aliasing-ringing-blur trade-off that must

face any image reduction (zoom out) algorithm [2]. What

is, among the images that represent a single light source
(in a sense to be defined), the one that maximizes the
value of S? (the experiment reported in Fig. 7 proves

that this is not a Dirac image). What is the unimodal
(increasing, then decreasing) one-dimensional signal that
maximizes the value of S? Notice that these questions
may be addressed numerically by using the stochastic

optimization framework that we describe in Section 5.

4.6 Sensitivity to ringing, parametric deconvolution

Suppose that we observe a blurry image v that is the

result of the convolution of a clean (unobserved) image

u0 with a Gaussian kernel (24), plus some (unknown)

noise. We can try to invert this blurring process by

using the special case of the Wiener filter obtained with

H1 regularization in a variational setting. Indeed, there

is a unique image uλ,ρ that minimizes the convex energy

‖κρ ∗ u− v‖22 + λ‖u‖2H1 , (25)
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Fig. 6 Blur-noise diagrams. Each diagram displays the isolevel curves of S obtained when a given image (Barbara on the
left, Lighthouse on the right) is degraded with a certain amount of blur (vertical coordinate) and noise (horizontal coordinate).
As expected, the largest value of S is obtained in each case at the origin (no blur, no noise), and decreases smoothly (in a
rather similar way) as the levels of blur and noise increase.
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Fig. 7 The Dirac paradox. Evolution of S and SI (vertical
axis) for a discrete Dirac image convolved with a Gaussian
kernel of width ρ (horizontal axis). Surprisingly, S and SI only
decrease after a certain critical value of ρ, which shows that
the Gaussian kernel that reaches the maximum value of S is
not the Dirac, but a slightly blurrier kernel (ρ ≈ 0.4 pixels).

and it is explicitly given (thanks to Parseval’s formula)

in Fourier domain by

∀ξ ∈ Ω, ûλ,ρ(ξ) = v̂(ξ) · κ̂ρ
∗
(ξ)

|κ̂ρ|2(ξ) + λ〈ξ, ξ〉 . (26)

This deconvolution method has two parameters λ and

ρ. The first one λ, sets the importance of the regular-
ization term ‖u‖2H1 of (25) in comparison to the fidelity

term ‖κρ ∗ u− v‖22, so that if λ increases, the image is
more regularized. The balance between fidelity and reg-

ularization is an interesting problem which is encoun-

tered in several image processing tasks, but we will not

discuss it here. We decided to set λ = 0.01 which, in

our simulations, always gave satisfying results.
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Fig. 8 Blur-ringing trade-offs. These diagrams plot the
values of SI (in green) and S (in red) of the H1 regularization
uλ,ρ defined by (26) with λ = 0.01, as functions of the param-
eter ρ (in pixels) for images Yale (left) and Barbara (right). SI
and S attain their maximum value for a very similar value of
ρ, which corresponds in each case to a good trade-off between
blur and ringing for these images (see Fig. 9).

The second parameter ρ, however, is critical. If ρ

is underestimated, some blur remains; if it is overesti-

mated, spurious oscillations (called ringing) appear. As

we can see in Fig. 8, SI and S can be used in a very
simple way to design an automatic procedure that se-

lects an optimal value of ρ (in the sense of the quality of
the deconvolved image), because SI(uλ,ρ) and S(uλ,ρ)

are maximal for a value of ρ that corresponds very well

to the transition between blur and ringing (see Fig. 9).

This is quite a remarkable property, for classical im-

age quality indices (including the metric Q presented
below) are not sensitive to ringing artifacts in general

(see [5]).

4.7 Comparison with Zhu and Milanfar’s Q metric

In [39], Zhu and Milanfar proposed a sharpness metric

Q based on the singular values of the local gradient field
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original (ρ = 0) Wiener deconvolution (ρ = 0.7) Wiener deconvolution (ρ = 1)

Fig. 9 Parametric blind deconvolution using sharpness indices. On the first row, we can see the original Yale image
(left), and two Wiener-H1 deconvolution results obtained with a kernel width of ρ = 0.7 (middle) and ρ = 1 (right). Close-up
views of these three images are shown on the second row. The value ρ = 0.7, which maximizes the sharpness indexes SI and S
(see Fig. 8), corresponds surprisingly well to the desired critical value that rules the transition between blur (observed on the
left for ρ = 0) and ringing (observed on the right for ρ = 1).

of the image. In particular, they use it to select an op-

timal number of iterations in the steering kernel regres-

sion (SKR) denoising algorithm of Takeda et al. [34].
We reproduced the same experiment and compared the
effects of the Q and the S indices in Fig. 10. Interest-

ingly enough, the global behavior of both indices is the

same: as the level of denoising (that is, the number of

iterations in [34]) increases, both indices grow, attain a

maximal value, then decrease. However, it can be ob-

served that the S index attains its maximum value for
a smaller number of iterations (8, versus 14 for Q). This

effect is confirmed on other experiments (not displayed

here): the S index seems to consider that at some point,

the denoising structures left by the SKR algorithm are

sharp details and leads to a lower denoising level. This

general behavior will be discussed further in Section 4.8:

an image process that create phase-coherent artifacts
may increase the S index.

As the sharpness metrics SI and S, the Q metric is

sensitive to blur and noise. However, it is not sensitive
to ringing, so that the parametric deconvolution process
described in Section 4.6 cannot be achieved with the Q

index, as shown in Fig. 4.7. This is a crucial difference
between these two indices.
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Fig. 11 S versus Q. These diagrams represent the values of
S (left) and the values of the metric Q of Zhu and Milanfar
(right) computed on the H1 regularization uλ,ρ defined by
(26) with fixed λ = 0.01 and varying ρ (horizontal axis), for
Lena image. One can see that S admits an optimal value
whereas Q does not. Therefore, contrary to S, the metric Q
can not be used for parametric blind deblurring, as it does not
consider that ringing artifacts decrease image quality. This
limitation of Q is studied more deeply in [24].

4.8 Perceptual sharpness and Visual Summation

Even if GPC, SI and S are sensitive to noise, blur and
ringing, we should not forget that they were initially de-

signed to measure phase coherence, and that it only ap-
pears that they can be interpreted as image quality in-

dices. Thus, contrary to image quality metrics designed
on purpose, there is no reason a priori that these indices

reflect accurately our visual perception of sharpness. An
interesting illustration of this is brought by image com-
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Fig. 10 Parameter selection in SKR denoising: Q versus S. The plots on the left report the evolution of Q and S
as functions of the number of iterations in the SKR denoising algorithm applied to the image Cheetah corrupted by a white
Gaussian noise with standard deviation 18. Both indexes are able to select an optimal number of iterations, and the resulting
images are shown in the middle column (with some close-up views on the right). Note that the residual phase-coherent artifacts
left by the SKR algorithm are considered as sharp by the S index, which thus selects a number of iterations that is significantly
smaller. In that particular application, the Q metric is best suited to denoise uniform zones, while the S index leads to better
texture preservation.

pression. For example, JPEG compression is known to

produce artificial edges (in particular along the bound-

aries of the 8 × 8 blocks used for DCT), and as these

edges require global phase coherence, one can logically

expect them to produce high values of GPC, SI and S.
Fig. 12 confirms this analysis. Note, however, that one

could probably adapt the sharpness indexes we defined
to reflect more accurately the quality of compressed im-
ages. Indeed, a lossy compression function C : RΩ → A

is never one-to-one, and any image v ∈ RΩ that satisfies

C(v) = C(u) can be considered as a valid uncompres-

sion of the compressed image C(u) (by the way, the
selection of interesting candidates for v is a research

area by itself). Defining the S index of a compressed
image a = C(u) by

S(a) = min
v∈RΩ ,C(v)=a

S(v)

could reflect more accurately our perception of image
quality, and would in particular enforce the natural
property S(C(u)) ≤ S(u).

If we follow the idea of relating the sharpness in-

dices GPC, SI and S to perceptual sharpness, the issue

of normalization with respect to image size must be ad-
dressed. As we saw in Section 4.3, these indices tend to

grow rapidly with the size of an image, which does not
really correspond to our visual perception. One possi-
bility to deal with this problem could be to use a “visual

summation” principle [36], and define the overall sharp-

ness of an image as the maximal sharpness of all its
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Fig. 12 Sharpness indices and JPEG compression.
These diagrams show the evolution of SI (in green) and S
(in red) when an image (respectively, Barbara on the left,
and House on the right) is compressed using the JPEG stan-
dard. The horizontal scale refers to the JPEG quality pa-
rameter. One can see that S and SI do not reflect our per-
ception of image quality in this case: they increase as the
image compression rate increases. This phenomenon, due to
the artificial phase coherence brought by the image uncom-
pression scheme, could be avoided by considering instead, for
a given compressed image, the minimum sharpness of all pos-
sible original images.

fixed-size (say, 32× 32) sub-parts. A less extreme vari-

ant could be to weight the sharpness of each sub-part

by some sort of saliency measure. These solutions would

solve the size-dependence issue, and thus probably in-

crease the similarity between the proposed indices and
our visual perception of sharpness. However, the ob-
tained indices would be analytically more complicated
and probably less stable when addressing restoration

problems like the blind deblurring application we con-

sider in the next section.
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5 An Application to Blind Deblurring

In Section 4.6, we saw that the S index could be used

to select a parameter in a deconvolution process. In

this section, we will show that it can drive much more

general blind deblurring algorithms. Blind deblurring

consists in sharpening an image without knowing pre-
cisely the blurring process involved in the image acqui-
sition. We here focus on linear and spatially-invariant
blur, which can be modeled by a convolution operator.

There is an abundant literature on that subject, and

regular advances. We will compare the results we ob-

tain with the method proposed by Levin et al. [23], that

is able to produce very impressive results.

To design blind deblurring algorithms based on the

S index, we will follow the general scheme proposed
in [4]: instead of trying to recover an unknown convo-

lution kernel ϕ and then invert the image formation

process u0 = ϕ∗u+n (where u0 is the observed image,

u the image to recover and n an additive noise), we will

select a restoration kernel k that maximizes S(k∗u), the
sharpness of the restored image k∗u. In this framework,

k can be interpreted as a regularized inverse of ϕ, that is
supposed to mitigate the effects of the noise. Of course,

the linearity of the deblurring process is a limitation of

this approach, but as we shall see, a well-chosen linear

filter may perform surprisingly well compared to more

sophisticated non-linear image transforms. Moreover,

linearity has several advantages like stability, computa-

tional efficiency, and the fact that deconvolution arti-
facts (and in particular the effect on noise) are much
better understood in the linear case.

5.1 Remarks on k 7→ S(k ∗ u)

As mentioned above, the idea underlying the algorithms
that will follow is the maximization of the function

Fu : k 7→ S(k ∗ u) (27)

on a given set K of deconvolution kernels. Since the
function S is quite singular, it is worth discussing the

existence of maxima. First, Proposition 4 ensures that,

as soon as the set {k ∗ u , k ∈ K} does not contain any

image which is constant in the x or y direction, Fu is

continuous onK. Moreover, since S(λk∗u) = S(k∗u) for
any λ 6= 0, the maximization of Fu can be equivalently

realized on the bounded set

K′ = {k/‖k‖, k ∈ K}.

Thus, if K′ is closed (which is an easily achievable con-

dition), Fu has to be maximized on a compact set and

we can thus guarantee the existence of a solution. It

seems difficult to obtain any guarantee of uniqueness

in general (recall that the function S is not concave),
but we can at least hope to design algorithms that con-

verge to an interesting local maximum of Fu. Among

them, Algorithm 2 below (a direct adaptation of the

algorithm proposed in [4]) is very flexible since it can

handle various types of kernels, as we will see in the

next paragraphs.

Algorithm 2

– Begin with k = δ0
– Repeat n times

⊲ Define k′ from a random perturbation of k

⊲ If S(k′ ∗ u) > S(k ∗ u) then k ← k′

– Return k and k ∗ u

5.2 Kernels with compact support

A first interesting case is the set of symmetric kernels
with a fixed support, e.g. a 11 × 11 square . One pos-

sible perturbation strategy at each iteration consists
in adding a random number uniformly distributed in
[−α, α] (say, α = 0.05) to a randomly chosen coeffi-

cient of the kernel (see [4]). As shown in Fig. 13, this
simple stochastic algorithm already gives interesting
sharpening results. However, it may also lead to fail-
ure cases, in particular when the image contains some

high-frequency structured textures [21]. We believe that

these failure cases are mostly due to the fact that this

set of kernels contains candidates which are not plausi-

ble as deconvolution kernels.

5.3 Kernel with a radial-unimodal Fourier transform

To cope with the failure cases of fixed support kernels,
we suggested in [21] to consider another class of kernels,
whose shape is built in Fourier domain by rotating a

radial profile defined by d values

r(0) = 1, r(1), r(2), . . . , r(d− 2), r(d− 1) = 0.

More precisely, we consider the deconvolution kernel kr
defined in Fourier domain by

k̂r(ξ1, ξ2) = Lr

(
(d− 1)

√
2

(( ξ1
M

)2
+
( ξ2
N

)2)
)
,

where Lr : [0, d − 1] → R denotes the piecewise affine

interpolation of r. In order to avoid undesired oscilla-
tions of the radial profile Lr, we suggested to constrain

the discrete profile r to be unimodal, which means that

there exists a value m such that

∀i < m, r(i+ 1) ≥ r(i) , and ∀i ≥ m, r(i+ 1) ≤ r(i) .
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Fig. 13 Blind deblurring results obtained by running Al-
gorithm 2 on the set of 11× 11 kernels. The original (unpro-
cessed) images are shown on the left column (from top to bot-
tom: Yale, Caps (cropped), Room), and the sharpened images
are displayed on the right column. In the first two cases, the
output image is sharper than the original one, and presents
a limited quantity of ringing artifacts. However, the result is
not satisfactory for the Room image.

In practice, enforcing the unimodality constraint (by

performing a projection on the set U of all unimodal

sequences for example) appeared to be rather inefficient

in terms of convergence, and this is why we decided to

relax the unimodality constraint by incorporating the

Euclidean distance2 d(r, U) between r and the set U in

the objective function. We also decided to constrain the

profile r to be smooth with the additional term

‖r‖2H1 =
d−2∑

i=0

(
r(i+ 1)− r(i)

)2
.

Finally, the function to optimize is

Fu(r) = S(kr ∗ u)− λum d(r, U)− λreg ‖r‖2H1 , (28)

where λum and λreg are two weighting parameters. The

maximization of Fu is realized with Algorithm 3.

2 See Appendix D for the numerical computation of d(r, U).

Algorithm 3

– Initialize r with the piecewise affine profile de-
fined by r(0) = 1, r(minit) = 2, and r(d−1) = 0.

– Repeat n times
⊲ Pick a random index i ∈ {1, 2, . . . d− 2}
⊲ Draw a uniform random value ε ∈ [−a/2, a/2]
⊲ Set r′ ← r, and then r′(i)← r(i) + ε

⊲ If Fu(r′) > Fu(r) then r ← r′

– Return r, kr and kr ∗ u

We observed in practice that Algorithm 3 reached a

stable state in less than 10000 iterations (which, on a

512×512 image takes about 4 minutes with a parallel C

implementation using a dual-core processor). Although

Fu may have several local maxima, several realizations
of the algorithm would always return approximately the

same profile r, which demonstrates its stability.

Algorithm 3 involves several constants (λum, λreg,
d, minit, n, a), but in practice only λreg is a real pa-

rameter. The value d can be set to 20, which achieves

a goof trade-off between the dimension of the param-

eter space and the accuracy of the radial profile. The

setup a = 0.1 led to an efficient proposition strategy

in all cases. As mentioned before, the value n = 10000

seems to be sufficient for convergence, in the sense that

the average rate of convergence
∥∥∥ rnew−rold

rold

∥∥∥
∞

was in

general less than 10−3 after 10000 iterations. To force

r to be as close to unimodal as possible, we affected to

λum a high value (10000 in our experiments); we could
have made it grow to +∞ in the last iterations. As con-

cerns minit (the initial mode index), we observed that
the different possibilities of initialization (any integer

between 1 and d − 2) could lead to two (or three in a

few cases) different radial profiles. A systematic strat-

egy would be to try all these possible values and select

the one leading to the maximum value of Fu. In prac-
tice, we observed that the same result was generally

obtained with minit = d/2 (that is, 10), so we stuck to
this value in the experiments.

In Fig. 14, we show some results obtained with Al-

gorithm 3 (for λreg = 0) on the original images Yale
and Barbara (no blur or noise added). In both cases,

the resulting image is clearly sharper than the origi-

nal one and the edges are nicely enhanced, even on the

image Barbara which is a difficult case for it contains

high-frequency textures.

To assess more precisely the performances of Algo-

rithm 3, we also ran it on artificially degraded images.

We transformed each original image u0 into a blurry

and noisy image

u = κ1 ∗ u0 + n , (29)
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Fig. 14 Blind deblurring of unprocessed images. Algorithm 3 is applied (with λreg = 0) to the images Yale (top 2
rows) and Barbara (bottom rows). In each case, the obtained radial profile r is displayed, as well as the Fourier transform of
the corresponding deconvolution kernel kr. It is interesting to observe the stability of the proposed algorithm: the deblurred
images are much sharper than the original ones, but do not present ringing artifacts or excessive noise amplification. Notice
also how the deconvolution kernel adapts itself to each image, leading, in the case of Barbara, to a quite irregular profile.
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where κ1 is the Gaussian kernel (24) obtained for ρ = 1

and n is a realization of a Gaussian white noise with
standard deviation σ = 1. This setup allowed us to

build two oracle deblurring filters: the Wiener filter (26)

associated to the (supposedly unknown) kernel κ1, and

the oracle radial filter minimizing the expected l2 risk,
defined by

k0 = argmin
kr

E
(
‖u0 − kr ∗ (κ1 ∗ u0 +W )‖2

)
, (30)

whereW is a white Gaussian noise with variance σ2 = 1
and the argmin is taken over all kernels kr obtained

from an arbitrary radial profile r with d points3.

A comparison of the effect of these filters (including

Algorithm 3 with several values of the λreg parame-

ter) is shown on Parrots image in Fig. 15. We can see

that Algorithm 3 manages to find a kernel that is close
to the Wiener filter associated to the true level of blur

(ρ = 1). The oracle output reveals slightly more details,
but also leaves on the image some undesirable struc-

tured noise (which is not costly for the l2 risk function

that it optimizes). The comparison with [23] is also in-

teresting: compared to Algorithm 3, it manages to clean

uniform zones better, but tends to reveal less details in

more complex areas (geometric structures or textures).

In terms of PSNR (which use is questionable since the

original image itself could be noisy and blurry), Algo-

rithm 3 performs better (for λreg = 10) that [23] and

the Wiener oracle, but does not attain the ultimate per-

formance given by the oracle radial filter.

To end this section, we now discuss the influence
of the regularity parameter λreg. As expected, increas-

ing λreg tends to smooth the radial profile r (see Fig.

15 and 16). One can also see that this regularity prior

constrains the overall energy of the kernel, so that when

λreg increases, the kernel values tend to decrease. The

Room image (see Fig. 16) is difficult to process because

it contains different high-frequency textures that are
likely to produce ringing artifacts. In this particular

case, the regularity constraint is mandatory: the dis-

appointing result obtained for λreg = 0 is greatly im-

proved for λreg = 100. For the other images we consid-

ered (and that are not displayed here), we noticed that

the choice λreg = 100 always led to visually satisfying
results, and λreg ∈ [0, 25] gave even better results with

images that were not too prone to ringing artifacts.

6 Perspectives

In this paper, we discussed and compared the phase

coherence indices GPC, SI and S, and provided some

3 The computation of this oracle kernel is detailed in Ap-
pendix E.

mathematical results as well as several experiments de-

monstrating their usefulness for no-reference image qual-

ity assessment and blind deblurring. The more explicit

and simple variants SI and S are clearly an improve-

ment over the original GPC, but many questions re-

main. The decrease of these indices with respect to

noise and blur is easy to check numerically, but a math-

ematical proof is still to be established. Also, it would
be interesting to understand, from an analytical (non-
probabilistic) point of view, why the formulae obtained

for SI and S are efficient for image quality assessment

and blind deblurring. This could be a way to design

non-probabilistic variants, very different from classi-

cal analytical regularizers like TV or more generally

sparsity-promoting priors. The optimization of S also

brings interesting issues, and it seems very likely that

the simple iterative stochastic optimization we proposed

could be greatly improved, which should increase even

further the attractiveness of these indices.

Software resources

Source codes to compute the GPC, SI and S metrics

and images files used in the experiments are freely avail-
able on the web page

http://www.mi.parisdescartes.fr/∼moisan/sharpness/

Appendices

A Estimation of the mean TV of a RPN

We saw in Theorem 1 (Equation (10)) that

E(TV(u ∗W )) = (αx + αy)

√
2

π

√
MN . (31)

Indeed, the right-hand term of (31) appears to be a good
approximation of E(TV(uψ)), that is, the mean TV in the
RPN model. As noticed in [4], for most images the relative
error is around 1% or below. In this section, we will exhibit
an upper bound of the absolute difference.

With the Fourier reconstruction formula, one can write
that for all x ∈ Ω,

∂xu̇ψ(x) =
1

MN

∑

ξ∈Ω

|û(ξ)|eiψ(ξ)e2iπ〈x,ξ〉(e
2iπx1
M − 1) . (32)

For any x ∈ Ω, the set (eiψ(ξ)e2iπ〈x,ξ〉)ξ∈Ω is a random
phase field. It follows that the r.v. |∂xu̇ψ(x)| are identically
distributed, but they are not independent a priori. This is
why we cannot use the central limit theorem directly on the
sum

∑
x∈Ω |∂xu̇ψ(x)| . Instead we will use a Gaussian ap-

proximation of each ∂xu̇ψ(x) in order to derive a bound for
the previous approximation.
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Fig. 15 Blind deblurring of a blurry and noisy version of Parrots. The first row displays the degraded image (used
as input), and the deblurred image obtained with Levin et al. algorithm [23]. Each other row is devoted to a different linear
algorithm based on a radial kernel (in each case, the radial profile and the Fourier transform of the kernel are displayed). The
PSNR values are computed with respect to the original Parrots image. The result obtained with Levin et al. algorithm is
cleaner in uniform regions, but slightly less detailed than the one obtained with Algorithm 3 when λreg = 10. Notice also the
similarity between the filter obtained with λreg = 10 and the Wiener oracle filter.
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Fig. 16 Blind deblurring of the original Room image for three different levels of regularization of the Fourier profile.
On the top row, we display a close-up of the result of the blind deblurring Algorithm 3, which selects (and applies) an optimal
radial convolution filter (the corresponding radial profile is shown on the bottom row in each case). The strong ringing artifacts
that appear for λreg = 0 (left column) are greatly attenuated for λreg = 25 (middle) and disappear almost completely for
λreg = 100. On this kind of images presenting a strong high-frequency content (here, the stripes of the piece of clothing in
particular), the parameter λreg plays a crucial role.

A.1 Sketch of proof

With the definition of TV, one can write

E(TV(uψ)) =
∑

x∈Ω

E|∂xu̇(x)|+ E|∂yu̇(x)|

so that it is sufficient to show that E|∂xu̇(x)| ≈ αx

√
2

πMN

(and E|∂yu̇(x)| ≈ αy

√
2

πMN
) for each x ∈ Ω. For that, we

will use a Gaussian approximation of ∂xu̇(x) to show that

E(|∂xu̇(x)|) ≈
√

2

π

√
E((∂xu̇(x))2) (33)

(notice that the equality holds for a zero-mean Gaussian r.v.,
as shown by Lemma 8 of Appendix C). That Gaussian ap-
proximation comes from (32) where the r.v. eiψ(ξ) are inde-
pendent modulo the hermitian symmetry. Since the eiψ(ξ),
ξ ∈ Ω \ {0} have zero mean, we will get from (32) that

E[(∂xu̇(x))
2] =

1

M2N2

∑

ξ∈Ω

|û(ξ)|2|e
2iπξ1
M − 1|2

=
1

M2N2
‖∂̂xu̇‖22 =

1

MN
‖∂xu̇‖22 =

1

MN
α2
x ,

and therefore, with (33) we will get E|∂xu̇(x)| ≈ αx
√

2
πMN

.

as expected.

A.2 The entire proof

Some details in the previous sketch have to be precised, in
particular the Gaussian approximation of ∂xu̇(x). And of
course, since we sum the approximation (33) obtained for
each x ∈ Ω, the errors are summed; this is one reason to
search for explicit bounds, and thus to use the Berry-Esseen
theorem. Another reason is that, when working with natural
images, there is no natural asymptotic framework in which
we could use with benefit the usual central limit theorems.

Now, let us describe the proof in more details. First, to
cope with the hermitian-dependence, we have to introduce a
subset Ω+ of Ω \ {0,ηx,ηy,ηxy} that contains exactly one
point in each pair of symmetrical points, that is, such that

Ω \ {0,ηx,ηy,ηxy} = Ω+ ∪ (−Ω+)

and the union is disjoint. To make the following proof lighter,
we will assume that if they exist, the Nyquist coefficients
û(ηx), û(ηxy), and û(ηy) are equal to zero (in general, in
natural images these coefficients are very small). Then we
can write

uψ(x) = |û(0)|(−1)ε0 +
1

MN

∑

ξ∈Ω+

2|û(ξ)| cos(ψ(ξ)+ 〈x, ξ〉) ,

and therefore

uψ(x1 + 1, x2)− uψ(x1, x2) =
1

MN

∑

ξ∈Ω+

Xξ ,
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where we set for all ξ ∈ Ω+,

Xξ = 2|û(ξ)|
(
cos
(
ψ(ξ) + 〈x, ξ〉+ 2πξ1

M

)
− cos

(
ψ(ξ) + 〈x, ξ〉

))

= −4|û(ξ)| sin
(
ψ(ξ) + 〈x, ξ〉+ πξ1

M

)
sin
(πξ1
M

)
.

Since the Xξ are independent and centered r.v., we can ap-
ply the following generalization of Berry-Esseen Theorem (for
non identically distributed r.v.):

Theorem 5 (Berry-Esseen, 1942) Let X1, . . . , Xn be in-
dependent and centered r.v. in L3. Let us denote σ2

i = E(X2
i )

and ρi = E(|Xi|3). Let Fn be the cumulative distribution
function of

X1 + . . .+Xn

(σ2
1 + . . .+ σ2

n)
1/2

.

Then there exists a positive universal constant C0 such that

∀t ∈ R, |Fn(t)− P(Y ≤ t)| ≤ C0ψ0

where Y ∼ N (0, 1) and ψ0 =

(
n∑

i=1

σ2
i

)−3/2( n∑

i=1

ρi

)
.

Concerning the value of C0, some recent papers (e.g. [32])
have shown that the best constant C0 is below 0.56.

Let us apply this theorem to the r.v. Xξ, ξ ∈ Ω+. Remark
that if the r.v. U is uniformly distributed on [0, 2π], then
E(sin2(U)) = 1

2
and E(| sin(U)|3) = 4

3π
. Thus, we have for all

ξ ∈ Ω+,

σ2
ξ := E(X2

ξ) = 8|û(ξ)|2 sin2

(
πξ1

M

)
,

ρξ := E(|Xξ|3) =
44

3π
|û(ξ)|3

∣∣∣∣ sin
(
πξ1

M

)∣∣∣∣
3

,

and consequently

∑

ξ∈Ω+

σ2
ξ =

∑

ξ∈Ω+

8|û(ξ)|2 sin2

(
πξ1

M

)

=
∑

ξ∈Ω

4|û(ξ)|2 sin2

(
πξ1

M

)

=
∑

ξ∈Ω

|û(ξ)|2
∣∣∣e

2iπξ1
M − 1

∣∣∣
2
=
∥∥∂̂xu̇

∥∥2 =MN‖∂xu̇‖2 ,

and

∑

ξ∈Ω+

ρξ =
44

3π

∑

ξ∈Ω+

|û(ξ)|3
∣∣∣∣ sin

(
πξ1

M

)∣∣∣∣
3

=
128

3π

∥∥∂̂xu̇
∥∥3
3
.

Hence, noticing that

1√
MN‖∂xu̇‖

∑

ξ∈Ω+

Xξ =

√
MN

‖∂xu̇‖
∂xu̇ψ(x) ,

and setting

ψ0 =
K(u)

(MN)3/2
with K(u) =

128
3π

∥∥∂̂xu̇
∥∥3
3

‖∂xu̇‖3
,

Theorem 5 ensures that for all t ∈ R,
∣∣∣∣∣P
(√

MN

‖∂xu̇‖
∂xu̇ψ(x) ≥ t

)
− P(Y ≥ t)

∣∣∣∣∣ ≤
C0K(u)

(MN)3/2
. (34)

Now, we write

E

(√
MN

‖∂xu̇‖
|∂xu̇ψ(x)|

)
=

∫ +∞

0

P

(√
MN

‖∂xu̇‖
|∂xu̇ψ(x)| ≥ t

)
dt ,

and E(Y ) =

∫ +∞

0

P(Y ≥ t) dt ,

and we split the integral into two parts :
∫+∞
0

=
∫A
0

+
∫+∞
A

.
Inequality (34) can be integrated between 0 and A to give

an upper bound of
∫A
0
, whereas the tail

∫+∞
A

can be treated
using Bienaymé-Tchebitchev inequality :

P

(√
MN

‖∂xu̇‖
|∂xu̇ψ(x)| ≥ t

)
≤ 1

t2MN‖∂xu̇‖2
E


 ∑

ξ∈Ω+

Xξ




2

=
1

t2MN‖∂xu̇‖2
∑

ξ∈Ω+

σ2
ξ =

1

t2
.

Putting the two terms together, we have for all A > 0,

∣∣∣∣∣E
(√

MN

‖∂xu̇‖
|∂xu̇ψ(x)|

)
− E(|Y |)

∣∣∣∣∣ ≤
2C0K(u)

(MN)3/2
A+

2

A
,

and then, choosing the best A,

∣∣∣∣∣E
(√

MN

‖∂xu̇‖
|∂xu̇ψ(x)|

)
−
√

2

π

∣∣∣∣∣ ≤ 4

√
C0K(u)

(MN)3/4
.

Therefore, for all x,

∣∣∣∣∣E
(√

MN |∂x ˙uψ(x)|
)
− αx

√
2

π

∣∣∣∣∣ ≤
Cx(u)

(MN)3/4
,

where Cx(u) = 4
√
C0

√√√√ 128
3π

∥∥∂̂xu̇
∥∥3
3

‖∂xu̇‖
.

Recalling that αx = ‖∂xu̇‖, one has

∣∣∣∣∣E
(
‖∂xu̇ψ‖1

)
− αx

√
MN

√
2

π

∣∣∣∣∣

≤ 1√
MN

∑

x∈Ω

∣∣∣∣∣E
(√

MN |∂xu̇ψ(x)|
)
− αx

√
2

π

∣∣∣∣∣

≤ 1√
MN

∑

x∈Ω

Cx(u)

(MN)3/4
,

and thus,

∣∣∣∣∣E
(
‖∂xu̇‖1

)
− αx

√
MN

√
2

π

∣∣∣∣∣ ≤
Cx(u)

(MN)1/4
. (35)

Finally, we obtain the following

Theorem 6 If ψ is a discrete random phase field, then

∣∣∣∣∣E
(
TV(uψ)

)
− (αx + αy)

√
MN

√
2

π

∣∣∣∣∣ ≤
Cx(u) + Cy(u)

(MN)1/4
,

where ∀a ∈ {x, y}, Ca(u) = 32

√
2C0

3π

√√√√
∥∥∂̂au̇

∥∥3
3

‖∂au̇‖
.
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A.3 Some comments about Theorem 6

Theorem 6 provides an explicit bound on the absolute er-
ror between the mean TV of a RPN and the exact formula
(31) obtained for the associated Gaussian field, but this error
bound depends on the considered image and all terms tend
to increase with the image size. We can write a normalized
inequality by dividing (35) by αx

√
2MN/π, so that

∣∣∣∣∣
E
(
‖∂xu̇‖1

)

αx
√
MN

√
π

2
− 1

∣∣∣∣∣ ≤ cx(u) , (36)

where the relative error bound is now

cx(u) :=
32

(MN)3/4

√
C0

3

√√√√
∥∥∂̂xu̇

∥∥3
3

‖∂xu̇‖32
= 32

√
C0

3

√√√√
∥∥∂̂xu̇

∥∥3
3∥∥∂̂xu̇
∥∥3
2

(of course, one would obtain a similar inequality for the y
component).

Taking C0 = 0.56, one can compute values of cx for dif-
ferent natural images. For example, cx(u) ≈ 1.025 for the
512×512 Lena image, while cx(u) ≈ 0.337 for the 13 Mpixels
Lotriver image4. The bound is quite useless for Lena, and still
far from sharp for Lotriver (numerical computations seem to
indicate that the true values of the left-hand term of (36) are
below 10−4 for these two images).

Even it does not provide an accurate error bound, Theo-
rem 6 remains interesting because it indicates that (31) pro-
vides the correct asymptotical estimate of the mean TV of a
RPN when the image size tend to infinity. Indeed, it has been
known for a long time that natural images statistically exhibit
a power-law Fourier spectrum (see [8] and other references in
[30]), that is,

|û(ξ)| ∝ |ξ|−α (37)

in average, where α is a bit larger than 1 in general. Using
(37) in the expression of cx above, one easily obtains that
for a R × R image, cx ∝ R−1/2 as R → ∞, provided that
α < 5/3. This suggests that the bound cx tend to decrease
to 0 when the size of the considered image increases.

B Gaussian approximation of TV(W )

We would like to prove that TV(uψ) and TV(u∗W ) approxi-
mately (or asymptotically) follow Gaussian distributions. Un-
fortunately, as we already said in the previous paragraph, we
cannot apply a classical central limit theorem because the
r.v. appearing in the TV formula are not independent. These
dependencies introduce a lot of difficulties and this is why
we shall here focus on a much simpler problem, that is, the
asymptotical distribution of TV(W ) (that is, the TV of the
Gaussian model in the particular case u = δ0).

Proposition 8 Let (Ωn)n≥0 be a sequence of rectangular
domains of Z2 such that |Ωn| → ∞ when n tends to ∞,
and let (Wn(x))x∈Ωn be a set of i.i.d. r.v. with distribution
N
(
0, |Ωn|−1/2

)
. Then one has

TV(Wn)− E(TV(Wn))
d−→ N (0, σ2) , where

E(TV(Wn)) =
4|Ωn|1/2√

π
and σ2 =

8

π

(
ω(1) + 6 · ω

(1
2

))
.

4 This image is available on the web site
http://www.mi.parisdescartes.fr/∼moisan/sharpness/.

To prove this result, we will use the central limit theorem
given in [18], which applies to a set of r.v. whose dependencies
are controlled through their dependency graph.

Definition 5 ([18]) A graph Γ is a dependency graph for a
set of r.v. if the following two conditions are satisfied:

1. There exists a one-to-one correspondence between the r.v.
and the vertices of the graph.

2. If V1 and V2 are two disjoint sets of vertices of Γ such
that no edge of Γ has one endpoint in V1 and the other
in V2, then the corresponding sets of r.v. are independent.

Now we can recall the

Theorem 7 (Janson [18]) Suppose, for each integer n,
that (Xn,i)i=1,...,Nn

is a set of r.v. satisfying |Xn,i| ≤ An
a.s. for all i. Suppose further that Γn is a dependency graph
for this set and let Mn be the maximal degree5 of Γn (un-
less Γn has no edges at all, in which case we set Mn = 1).

Let Sn =
∑Nn

i=1Xn,i and σ2
n = Var(Sn). If there exists an

integer m such that

(
Nn

Mn

)1/m MnAn

σn
→ 0 as n→∞ , (38)

then
Sn − E(Sn)

σn
→ N (0, 1) in distribution as n→∞.

First, we will clarify the remark following this theorem in
[18]. It states that we can replace the boundedness hypothesis

∀n, ∀i, |Xn,i| ≤ An a.s.

by
Mn

σ2
n

Nn∑

i=1

E(X2
n,i1|Xn,i|>An|)→ 0 as n→∞ . (39)

Indeed, assume that (39) is true. We use the truncation ar-
gument suggested in [18] and set

XTn,i = Xn,i 1|Xn,i|≤An ,

STn =

Nn∑

i=1

XTn,i , and (σTn )2 = Var(STn ) .

Notice that it is clear that the variables XTn,i have the same
dependency degree than the Xn,i. We will see that (38) is
still true for σTn so that Janson’s Theorem will give

STn − E(STn )

σTn

d−→ N (0, 1) .

But first let us explain how we control the residual sum. One
can write

Sn − E(Sn)

σn
− STn − E(STn )

σn

=
1

σn

Nn∑

i=1

(
Xn,i 1|Xn,i|>An − E(Xn,i 1|Xn,i|>An)

)
.

For a fixed n, setting

Ti = Xn,i 1|Xn,i|>An − E(Xn,i 1|Xn,i|>An)

5 We recall that the maximal degree of a graph is the max-
imal number of edges incident to a single vertex.
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(which again have a dependency degree smaller than Mn)
and writing i ∼ j if Ti and Tj are not independent, one can
write

E

((∑

i

Ti

)2
)

=
∑

i,j

E(TiTj)

=
∑

i

∑

j∼i

E(TiTj)

≤ 1

2

∑

i

∑

j∼i

E(T 2
i ) + E(T 2

j )

=
1

2

∑

i

∑

j∼i

E(T 2
i ) +

1

2

∑

j

∑

i∼j

E(T 2
j )

≤ (Mn + 1)
∑

i

E(T 2
i )

≤ 2Mn

∑

i

E(T 2
i ) ,

which gives

E


 1

σ2
n

(
Nn∑

i=1

Xn,i 1|Xn,i|>An − E(Xn,i 1|Xn,i|>An)

)2



≤2 Mn

σ2
n

Nn∑

i=1

Var(Xn,i 1|Xn,i|>An)

≤2 Mn

σ2
n

Nn∑

i=1

E(X2
n,i 1|Xn,i|>An) .

Therefore, (39) gives that

Sn − E(Sn)

σn
− STn − E(STn )

σn

L2

−−→ 0 . (40)

To conclude, it remains to show that
σT
n

σn
→ 1 as n tends

to∞. Indeed, it is thus equivalent to check condition (38) for
σn or σTn so that we are able to apply Janson’s theorem to
obtain

STn − E(STn )

σTn

d−→ N (0, 1) . (41)

Moreover it implies that the distributional convergence of
STn − E(STn )

σTn
is equivalent to the one of

STn − E(STn )

σn
. To

show that σn and σTn are equivalent, notice that (40) and
the reverse Minkowski inequality (in L2) give

∥∥∥∥
Sn − E(Sn)

σn

∥∥∥∥
L2

−
∥∥∥∥
STn − E(STn )

σn

∥∥∥∥
L2

→ 0 ,

which is exactly

1− σTn
σn
→ 0 . (42)

Finally, putting together (40), (41), (42), we obtain that

Sn − E(Sn)

σn

d−→ 0 . �

Let us now get into the details of the application to the
TV of a white Gaussian noise. For x ∈ Ωn, we will set

Zn,x = |Ẇn(x+1, y)−Ẇn(x, y)|+ |Ẇn(x, y+1)−Ẇn(x, y)| ,

so that TV(Wn) =
∑

x∈Ωn
Zn,x . With these notations, we

will be able to apply Janson’s theorem on this sum with
Mn = 6. Indeed, for a fixed x = (x, y) ∈ Ωn, the variables
Ẇn(x + 1, y), Ẇn(x, y + 1) and Ẇn(x, y) appear in Zn,x.
These two variables also appear in Zn,(x−1,y), Zn,(x−1,y+1),
Zn,(x,y−1), Zn,(x+1,y−1), Zn,(x+1,y), Zn,(x,y+1), and do
not appear in any other Zn,x, x ∈ Ωn. That is why we can
set Mn = 6.

Next, to apply the theorem, we also need to know the
variance of the sum. It is actually independent of n and given
by Theorem 1:

σ2 = σ2
n = Var(TV(Wn)) =

8

π
(ω(1) + 6 · ω(1/2)) .

Notice that the theorem also gives

E(TV(Wn)) =
4√
π
|Ωn|1/2 .

Now, it remains to find a sequence An which satisfies both
(38) and (39). Since here Mn and σn are constant, we must
find An and an m such that

|Ωn|1/mAn → 0 and
∑

x∈Ωn

E(Z2
n,x1|Zn,x|>An|)→ 0

as n → ∞. Since all the Zn,x follows the Gaussian distribu-
tion with standard deviation 2|Ωn|−1/2, the second condition
is equivalent to

E
(
Z21|Z|>An|Ωn|

)
→ 0 .

Hence, it suffices to find An and an m such that

|Ωn|1/mAn → 0 and An|Ωn| → ∞ .

We can take m = 3 and An = |Ωn|−1/2. The two conditions
are satisfied, and with Janson’s theorem we obtain the result
of Proposition 8. �

Remark: One can point out that we applied a powerful
central limit theorem in order to prove a very specific case. In
fact, one can adapt the preceding proof to show that, as soon
as u has compact support in Ωn with |Ωn| → ∞, we have
normal convergence of E(TV(u∗W )) after centralization and
normalization.

C Proof of Theorem 2.1

Before proving Theorem 1, let us give two lemmas about
Gaussian random vectors.

Lemma 8 Let X be a Gaussian r.v. with zero mean and

variance σ2. Then E(|X|) = σ

√
2

π
.

Proof Since X ∼ N (0, σ2), one can write

E(|X|) = 1

σ
√
2π

∫ +∞

−∞

|x|e− x2

2σ2 dx =
2

σ
√
2π

∫ +∞

0

xe−
x2

2σ2 dx

=
2

σ
√
2π

[
−σ2e−

x2

2σ2

]+∞

0

= σ

√
2

π
. �
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Lemma 9 Let Z = (X,Y )T be a Gaussian random vector
with zero mean and covariance matrix

E(ZZT ) =

(
a2 ab sin θ

ab sin θ b2

)
,

with θ ∈ [−π
2
, π
2
]. Then, one has

E(|XY |) = 2|ab|
π

(cos θ + θ sin θ) .

Proof If a = 0 or b = 0, then E(XY ) = 0 so there is nothing
more to prove. Hence we can assume that ab 6= 0 and set
X′ = X/a, Y ′ = Y/b, so that

E|XY | = |ab| · E|X′Y ′| , (43)

where the covariance of Z′ = (X′, Y ′)T is

C = E(Z′Z′T ) =

(
1 sin θ

sin θ 1

)
.

If | sin θ| = 1, then Y = X sin θ almost surely, so that E|X′Y ′| =
EX′2 = 1 and E|XY | = |ab| by (43). Hence, we assume in
the following that |θ| < π

2
. Now we have

C−1 =
1

cos2 θ

(
1 − sin θ

− sin θ 1

)
,

so that E|X′Y ′| equals

1

2π cos θ

∫

R2

|xy| exp
(
−x

2 + y2 − 2xy sin θ

2 cos2 θ

)
dxdy .

Using symmetry considerations, this formula can be rewritten
under the form

E|X′Y ′| = I(θ) + I(−θ)
π cos θ

(44)

with I(θ) =

∫ +∞

0

∫ +∞

0

xy exp

(
−x

2 + y2 − 2xy sin θ

2 cos2 θ

)
dxdy.

Using polar coordinates, we then get

I(θ) =

∫ +∞

0

∫ π

2

0

r2 cosϕ sinϕ

exp

(
− r2

2 cos2 θ
(1− 2 cosϕ sinϕ sin θ)

)
r drdϕ

=

∫ π

2

0

(
cosϕ sinϕ

∫ +∞

0

r3e−α(ϕ)r2

dr

)
dϕ ,

with α(ϕ) =
1− 2 cosϕ sinϕ sin θ

2 cos2 θ
≥ 0 .

Integrating by part the inside integral yields

∫ +∞

0

r3e−α(ϕ)r2

dr

=

[
r2 · 1

−2α(ϕ)e
−α(ϕ)r2

]+∞

0

− 1

−2α(ϕ)

∫ +∞

0

2re−α(ϕ)r2

dr

=
1

2α(ϕ)2
.

Thus we have

I(θ) =

∫ π

2

0

cosϕ sinϕ · (2 cos2 θ)2

2(1− 2 cosϕ sinϕ sin θ)2
dϕ

= 2 cos4 θ ·
∫ π

2

0

tanϕ

(cos−2 ϕ− 2 tanϕ sin θ)2
dϕ

cos2 ϕ

= 2 cos4 θ ·
∫ +∞

0

t

(1 + t2 − 2t sin θ)2
dt (t = tanϕ)

= 2 cos4 θ ·
∫ +∞

0

t

((t− sin θ)2 + cos2 θ)2
dt

= 2 cos4 θ ·
∫ +∞

− sin θ

u+ sin θ

(u2 + cos2 θ)2
du (u = t− sin θ) .

Now usual integration formulae give (for a > 0),
∫

u

(u2 + a2)
du =

−1
2(u2 + a2)

and

∫
1

(u2 + a2)2
du =

1

2a3
arctan

u

a
+

u

2a2(u2 + a2)
,

so that I(θ) equals

I(θ) = 2 cos4 θ

([
1

(u2 + cos2 θ)2

]+∞

− sin θ

+sin θ

[
1

2 cos3 θ
arctan

u

cos θ
+

u

2 cos2 θ(u2 + cos2 θ)

]+∞

− sin θ

)

= 2 cos4 θ

(
1

2
+ sin θ

(
π

2 cos3 θ
+

θ

2 cos3 θ
+

sin θ

2 cos2 θ

))

= cos4 θ +
π

2
sin θ cos θ + θ sin θ cos θ + sin2 θ cos2 θ

= cos2 θ +
π

2
sin θ cos θ + θ sin θ cos θ .

Then, I(θ) + I(−θ) = 2 cos θ(cos θ + θ sin θ) and we conclude
by (43) and (44) that

E|XY | = 2|ab|
π

(cos θ + θ sin θ) . �

Proof of Theorem 1

Writing U = u ∗W , we have by linearity

∂xU̇ = (∂xu̇) ∗W ,

so that the discrete random field ∂xU̇ is a stationary Gaus-
sian field whose marginal distributions have zero mean and
variance

E((∂xU̇(x))2) =
1

MN

∑

y∈Ω

(∂xu̇(x− y))2 =
α2
x

MN
.

From Lemma 8, we hence get that for any x ∈ Ω,

E(|∂xU̇(x)|) = αx√
MN

√
2

π
,

and by using a similar reasoning on ∂yU̇ , we obtain (10).

We now consider the variance of TV(U). We have

E(TV(U)2) =
∑

x,y∈Ω

E|∂xU̇(x)∂xU̇(y)|+ E|∂xU̇(x)∂yU̇(y)|

+ E|∂yU̇(x)∂xU̇(y)|+ E|∂yU̇(x)∂yU̇(y)| .
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Writing z = y − x and using the stationarity of ∇U̇ , the
quantity E(TV(U)2) can be rewritten

MN
∑

x∈Ω,y∈Ω

E|∂xU̇(0)∂xU̇(z)|+ E|∂xU̇(0)∂yU̇(z)|

+ E|∂yU̇(0)∂xU̇(z)|+ E|∂yU̇(0)∂yU̇(z)| . (45)

Each term of this sum can be written under the form E|XY |
where (X,Y ) is a zero-mean 2-dimensional Gaussian vector
with covariance matrix
(
E(X2) E(XY )
E(XY ) E(Y 2)

)
.

For the second term of (45) for example, we haveX = ∂xU̇(0)
and Y = ∂yU̇(z), thus

E(XY ) = E


 ∑

x∈Ω,y∈Ω

∂xu̇(−x)∂yu̇(z− y)W (x)W (y)




=
1

MN

∑

x∈Ω

∂xu̇(x)∂yu̇(z+ x) =
1

MN
Γxy(z)

and the covariance matrix of (X,Y ) is

1

MN

(
α2
x Γxy(z)

Γxy(z) α2
y

)
,

so that thanks to Lemma 9 we obtain

E|XY | = 2αxαy

πMN
· ω̃
(
Γxy(z)

αxαy

)
,

with ω̃(t) = t arcsin t +
√
1− t2 = ω(t) + 1. Combining all

terms arising from (45), we finally obtain that

E(TV(U)2) =
2

π

∑

z∈Ω

α2
xω̃

(
Γxx(z)

α2
x

)
(46)

+ 2αxαyω̃

(
Γxy(z)

αxαy

)
+ α2

yω̃

(
Γyy(z)

α2
y

)

and the announced result follows from

Var(TV(U)) = E(TV(U)2)− (E(TV(U)))2 ,

which simply amounts to change ω̃ into ω in (46). �

D Unimodal regression

In this appendix, we detail an algorithm to compute the dis-
tance from a signal s = (s(1), s(2), . . . , s(n)) ∈ Rn to the set
U of unimodal signals of size n, defined by

U =
⋃

1≤i≤n

Ci ∩Di ,

where Ci = {p ∈ Rn, p(1) ≤ p(2) ≤ . . . ≤ p(i)}
and Di = {p ∈ Rn, p(i) ≥ p(i+ 1) ≥ . . . ≥ p(n)}
(with the natural convention C1 = Dn = Rn). The algorithm
we use is due to Frisen [15]. It is based on the fact that U can
also be written

U =
⋃

1≤i≤n−1

Ci ∩Di+1 ,

Algorithm 4: Monotone regression [1]

– Inputs: s ∈ Rn, ε ∈ {−1, 1}
– Output : non-decreasing (case ε = 1) or non-increasing

(case ε = −1) regression p of s.
– k ← 1
– For each i = 1, . . . , n

⊲ σk ← s(i)
⊲ nk ← 1

⊲ While k > 1 and
(
σk−1

nk−1
− σk
nk

)
ε > 0

· σk−1 ← σk−1 + σk
· nk−1 ← nk−1 + nk
· k ← k − 1

⊲ k ← k + 1
– i← 1
– For l = 1, . . . , k, repeat nl times the steps

⊲ p(i)← σl
⊲ i← i+ 1

Algorithm 5: Unimodal regression distance [15]

– Input: s ∈ Rn

– Output: d(s, U)
– For each i = 1, . . . , n

⊲ p← non-decreasing regression of (s(k))1≤k≤i
⊲ q ← non-increasing regression of (s(k))i+1≤k≤n

⊲ d2i ←
i∑

k=1

(s(k)−p(k))2+
n−k−1∑

k=1

(s(i+1+k)−q(k))2

– return min
i
di.

which entails d(s, U) = min1≤i≤n−1 di with

d2i = min
p∈Ci∩Di+1

‖p− s‖22

= min
p∈Ci

i∑

k=1

(p(k)− s(k))2 + min
q∈Di+1

n∑

k=i+1

(q(k)− s(k))2 ,

and these two monotone regression problems are independent,
and can be solved in time O(n) using the simple Pool Adja-
cent Violators algorithm described in [1] (see Algorithm 4).
Thus, the computation of d(s, U) can be realized in time
O(n2) (Algorithm 5). Note that in fact the unimodal regres-
sion problem can be solved in time O(n) with a more sophis-
ticated algorithm (see [33]), but considering the small value
of n we use in Section 5.3 (n = 20), the gain obtained with
this algorithm would be negligible compared to other steps
(e.g., Fourier transforms) of the deblurring process.

E Oracle deconvolution filter

Consider a blurry and noisy image v = κ ∗ u0 + n, obtained
from an image u0 after a convolution by a kernel κ and the
addition of a Gaussian white noise n with standard deviation
σ2. In this appendix, we show how to compute the oracle
kernel k0 which provides, in average with respect to n, the
best linear estimate of u0 that can be computed from v. This
oracle kernel is defined by

k0 = argmin
k

E
(
‖u0 − k ∗ (κ ∗ u0 +W )‖2

)
, (47)

where W is a Gaussian white noise with variance σ2. The
argmin can be taken over various kernel spaces, here we con-
sider the set of kernels obtained by rotating a radial linearly
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interpolated profile, that is

∀ξ ∈ Ω, k̂(ξ) = r(⌊|ξ|⌋)(⌈|ξ|⌉ − |ξ|) + r(⌈|ξ|⌉)(|ξ| − ⌊|ξ|⌋) ,

where (r(0), . . . , r(d− 1)) ∈ Rd,

|ξ|2 = 2(d− 1)2
(( ξ1

M

)2
+
( ξ2
N

)2)
,

and ⌊t⌋ and ⌈t⌉ denote respectively the lower and upper inte-

ger part of t ∈ R (we also set k̂(ξ) = 0 when |ξ| > d−1). This
interpolation formula naturally involve the disjoint subsets

Ω̂l = {ξ ∈ Ω, l ≤ |ξ| < l + 1} . (48)

Since W is a white Gaussian noise, the cost function of
(47) can be written

‖u0 − k ∗ κ ∗ u0‖2 + σ2MN‖k‖2

=
1

MN

∑

ξ∈Ω

|û0(ξ)|2|1− k̂(ξ)κ̂(ξ)|2 + σ2MN |k̂(ξ)|2 , (49)

which, when k̂ is radial and when κ is supposed to be sym-
metrical, transforms into

1

MN

d−1∑

l=0

∑

ξ∈Ω̂l

|û0(ξ)|2
(
1− κ(ξ)r(l)(l + 1− |ξ|)

− κ(ξ)r(l + 1)(|ξ| − l)
)2

+σ2MN

(
r(l)(l + 1− |ξ|) + r(l + 1)(|ξ| − l)

)2

.

This is a quadratic function in r, and its unique minimum
is characterized by the vanishing-gradient condition, which
can be written Ar = b, where A = ((ak,l))0≤k,l≤d−1 and
b = (bl)0≤l≤d−1 are defined by

al,l =
∑

ξ∈Ω̂l

(l + 1− |ξ|)2(|κ(ξ)|2|û0(ξ)|2 + σ2MN)

+
∑

ξ∈Ω̂l−1

(|ξ| − l + 1)2(|κ(ξ)|2|û0(ξ)|2 + σ2MN)

al,l+1 =
∑

ξ∈Ω̂l

(l + 1− |ξ|)(|ξ| − l)(|κ(ξ)|2|û0(ξ)|2 + σ2MN)

al,l−1 =
∑

ξ∈Ω̂l−1

(|ξ| − l + 1)(l − |ξ|)(|κ(ξ)|2|û0(ξ)|2 + σ2MN)

al,m = 0 for |l −m| > 1

bl =
∑

ξ∈Ω̂l

(t+ 1− |ξ|)2(|κ(ξ)||û0(ξ)|2)

+
∑

ξ∈Ω̂l−1

(|ξ| − l + 1)2(|κ(ξ)||û0(ξ)|2) .

This linear system associated to the tridiagonal matrix
A can be solved with standard numerical techniques. The
solution is the oracle radial profile r0, from which the DFT
of the oracle kernel k0 can be defined by

∀l, ∀ξ ∈ Ω̂l, k̂0(ξ) = r0(l)(l + 1− |ξ|) + r0(l + 1)(|ξ| − l) .

Remark: One can also consider the minimization prob-
lem (47) on the set of all kernels k. It is easy to deduce from

(49) that the corresponding oracle kernel is given in Fourier
domain by

∀ξ ∈ Ω, k̂(ξ) =
κ̂(ξ)∗ |û0(ξ)|2

|κ(ξ)|2|û0(ξ)|2 + σ2MN
.

One can notice that, making the assumption |û(ξ)|2 = c|ξ|−2

(see the discussion at the end of Appendix A), and setting
λ = cσ2MN , the corresponding filter is exactly the one that
optimizes the criterion (25).
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